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Abstract

The emphasis of multilevel modeling techniques in the Neurosciences
has led to an increased need for large-scale databases containing neu-
roscientific data. Despite this, such databases are not being popu-
lated at a rate commensurate with their demand amongst Computa-
tional Neuroscientists. The reasons for this are common to scientific
database curation in general–limitation of resources. Much of Neu-
roscience’s long tradition of research has been documented in com-
putationally inaccessible formats, such as the pdf, making large-scale
data extraction laborious and expensive. Here we present three sets
of studies designed to construct automated tools for alleviating three
bottlenecks in the workflow of a community-curated knowledge base
of neuroscience-related information. Virk, the first of these tools, is
designed specifically with under-developed knowledge bases in mind,
using active learning to allow them to quickly bootstrap their devel-
opment. Flokka, our second tool, is designed for prioritizing a set
of potentially-relevant manuscripts, so that they can be examined in
order of their likely relevance. Finna, our final tool, is designed to
rank-order the composite paragraphs of a likely relevant document,
in terms of the probability that the paragraph contains information
that is of interest to the database. Each of our systems attained
a level of performance indicating its potential usefulness in the real
world. In addition, we present a data set consisting of 962 expert-
curated neuroscience documents–to our knowledge, the first data set
of its kind. Each document was annotated at the document level, in
terms of their relevance for a neuron-related knowledge base, and at
the sentence level, in terms of whether a particular sentence commu-
nicates information that would lead to the document being included
in the knowledge base.



Chapter 1

Introduction

Like most domains in biological research, neuroscience has experienced a recent

explosion in the volume of published information [260]. The history of neuro-

science can arguably be traced back at least as far as the works of Camillo Golgi

and Santiago Ramón y Cajal, in the early twentieth century. Since that time,

Neuroscience has become increasingly fractionated into various sub-domains, in-

corporating elements of Molecular Biology, Genetics, Computer Science, and Cog-

nitive Science, to name but a handful. Each of these domains has proven equally

prolific, such that a simple Google Scholar search for “neuro∗” yields nearly a

million and a half results. To say that any one scientist can or should have this

volume of information available for immediate recall in his or her head is folly,

and yet, in order to efficiently advance the field of research, this can seem ex-

actly what would be required. How can we, as neuroscientists, be sure we’re not

repeating ourselves, investigating experimental hypotheses that have long-since

been addressed? How can scientists efficiently synthesize the knowledge within

a particular neuroscientific sub-domain in order to see where the gaps in our
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knowledge lie? Given the diversity of training background in the neuroscience

community, how can we be sure we’re not falling subject to communication er-

rors, using differing terminology to refer to similar neuroanatomical concepts,

and therefore losing opportunities to make new conceptual connections? These

are the kinds of questions that neuroinformatics and text-mining attempts to

address. Each of these questions has been posed in the past, and a variety of

solutions have been devised. Several of the solutions that have shown to provide

greatest benefit, and most potential for continued use, are derived from a sub-

domain of machine learning called text-mining.

In this chapter, we will review many of the important developments in text-mining

research, as well as how they apply and can be applied to research the behavioral

neurosciences. Aside from its importance to Neuroscience in-and-of themselves,

the information reviewed here sets the context in which this dissertation will be

cast. Neuroscience is an incredibly diverse field, having many data sharing, termi-

nology integration, and anatomy-related problems that make this an interesting

area in which to conduct a set of text-mining studies. As the importance of data

sharing and data integration increases, the importance of automated solutions to

solving many of the workflow issues that arise in the data curation for the neu-

rosciences will continue to increase in importance as well. Before turning to our

work, we will first review some of the issues associated with working with text

in the neurosciences, highlighting some of the interesting problems, important

achievements, and future directions that it will likely go.
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1.1 The Importance of Terminologies & Data

Integration to Neuroscience

Neuroscience is an incredibly diverse field, consisting of researchers from chem-

istry, neurobiology, cognitive science, and mathematics, to name a handful. Al-

though united by a shared interest in the study of the brain, each field has its own

way of communicating–the cognitive psychologist might refer to Brodmann area

IV, while the behavioral neuroscientist might refer to the primary motor cortex.

Researchers in the field are not typically confused by this diversity in language,

but computers often are. To the non-informatician, this may not seem like much

of a problem–after all, computers don’t need to “understand” concepts, they just

need to efficiently manipulate them in accordance with a user’s instructions. Un-

fortunately, this is very much not the case. Although neuroinformatics is still a

young field, the heterogeneity of terms in neuroscience is already an interesting

problem being addressed in order to improve mathematical modeling, machine

learning document classification systems, and information retrieval systems, with

a particular focus on neuroanatomical terminologies. Terminologies can be help-

ful tools for facilitating communication between colleagues in related disciplines

and sub-disciplines, and aid in data sharing. Ontologies are related, as they allow

for the definition of hierarchical types of objects and abstract concepts in a way

that is understandable to both machines and human readers. Here we will discuss

two example systems: NeuroNames, and the NIFSTD & BIRNLex Ontologies.
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1.1.1 NeuroNames: A Neuroanatomical Nomenclature

Co-created by Douglas Bowden and Richard Martin [43; 200], NeuroNames1 was

one of the first popular neuroanatomical terminologies in the field. At the time

it was first published, there was an absence of machine-readable neuroanatomical

terminologies, making even something as seemingly straightforward as finding

articles pertaining to a particular neuroscience sub-discipline difficult [42]. In

order to facilitate scholarly communication and information retrieval in the neu-

rosciences, Bowden and colleagues set out to define a “comprehensive set of mu-

tually exclusive primary structures that constitute the brain” [42]. NeuroNames

consists of 15,000 neuroanatomical terms, spanning 2500 brain-related concepts,

culled from textbooks, atlases, and research articles. [41] One of the most im-

portant contributions of the NeuroNames vocabulary is that it constitutes one of

the first attempts to standardize neuroanatomical terms, by serving as a reference

point for neuroscientists, and by providing a standardized set of terms that unites

multiply-defined anatomical structures by combining the concept name and the

author and year of publication of the publication in which the term appeared

(e.g., Area 9 of Brodmann-1909).

1.1.2 Leveraging Neuroscience Ontologies & Vocabularies

in New Resources

The Neuroscience Information Framework (NIF) has made significant contribu-

tions to fulfilling the need for standardized terminologies in the Neurosciences.

1http://braininfo.rprc.washington.edu/
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Their standardized ontology (the NIFSTD) is an hierarchically-structured col-

lection of neuroscience-related terminologies, including terms used for describing

neuroscience data, methods, anatomy, and digital resources [47; 139]. The project

is an extension of the Biomedical Informatics Research Network (BIRN) project

[201], is formatted in the style of a semantic wiki, as the NeuroLex, [26; 176; 177],

and is easily downloadable in owl file format1, the standard format for describing

ontologies (see Figure 1, for an example). The idea is that Neuroinformaticians

developing their own resources will be inclined to fold the NIFSTD ontology into

their own resources, rather than developing a new set of terms, as has so often

been the case in the past. In fact, this movement has already begun to take hold.

For example, [203], used the NIFSTD to connect entities in clinical descriptions

of human disease to model systems, thus bridging phenotypes in animal models

from behavioral research to descriptions of human pathological features.

On the surface, terminologies and ontologies may not seem like useful resources to

bench neuroscientists, as they seem something far removed from their day-to-day

research activities. However, they begin to address what has long been recognized

as a difficult problem that is deeply integrated into the way neuroscientists think

about the brain. Sometimes called the neuron classification problem [38], the

question of what constitutes necessary and sufficient criteria for distinguishing

one type of neuron from another, dates back to the foundation of Neuroscience

itself, with Camillo Golgi and Santiago Ramón y Cajal (Clarke & Jacyna, 1987).

Are histological differences sufficient for distinguishing one cell type from another,

or should spatial location in the brain be a factor as well? Within a particular

1http://purl.org/nif/ontology/nif.owl
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region of the brain (e.g., central nucleus of the amygdala), is directionality also

important (e.g., lateral, ventral, etc.)? These are the questions that neuroinfor-

maticians, in collaboration with molecular neuroanatomists, aim to address. The

decisions that are made will facilitate how researchers interact with one another,

both in terms of scholarly discourse (e.g., how we describe neuron-related find-

ings), as well as in terms of how they share data with each another. As users,

other neuroscientists will benefit from further development of these tools by being

able to better collaborate with other researchers in related disciplines.

Although the NIF/NIFSTD has made great strides in addressing the problems

of data and information integration in the neurosciences, they have not solved it

entirely. The NIFSTD is quite useful for integrating together the information that

has been released in disparate data sources, moving them to a common language

of neuroscience. However, the NIF, and sources like it, are only as useful as the

data sources they are able to obtain information from. Integrating one’s resource

with the NIF means that any changes made to the local version of the tool that

has been integrated are immediately available to users of the NIF–it’s useful

because there are a variety of constantly-updating resources that it is able to

obtain information from, not necessarily because it is creating information itself.

Thus, the same data curation problems remain, but are not the consideration of

the NIF per se. Instead, the resources that it is obtaining information of each

need to have general-purpose tools available to them that can streamline their

respective workflows, allowing them to efficiently update their resources as new

information is discovered.
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1.2 Information Retrieval in Neuroscience

Information Retrieval (IR) is a sub-discipline of computer science that is con-

cerned with developing accurate algorithms for retrieving information from databases

of documents or textual information [126]. In general, IR systems are designed

to take users’ search requests (queries), identify relevant data in a database, and

return a ranked list of results that is ordered according to likelihood of relevance

to the input query [126]. Such systems are quite common in today’s information-

heavy age, with common examples being Google search, PubMed, or Apple’s

Spotlight system, on the OSX operating system.

In the Biomedical sciences, IR is most-commonly associated with the National

Library of Medicine’s PubMed search engine1, which queries against a database of

over 21 million peer-reviewed scientific publications. In addition to joining query

terms via standard boolean operators (e.g., AND, NOT, OR2), PubMed also uti-

lizes a vector representation of the query to identify the most relevant related

articles. [141] Although PubMed is one of the first resources many researchers

will use when performing a literature search, it is not without its limitations.

Domain-specific IR systems can provide several advantages over general-purpose

ones, such as PubMed. Although general-purpose biomedical IR solutions will of-

ten suffice, there are situations where neuroscientists can need specialized search

tools [22]. For example, a researcher conducting a literature review on retro-

grade tracer studies could run a simple PubMed query retrograde tracer, and

1http://www.ncbi.nlm.nih.gov/pubmed/
2http://www.ncbi.nlm.nih.gov/books/NBK3827/
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obtain approximately 2700 results (query performed July, 2012). The enumer-

ated publications will be articles in which the term retrograde and the term tracer

appeared in at least one of 64 data fields (e.g., Abstract, MeSH Term, Title; for

a full and up-to-date list, see1. If the researcher is only interested in studies that

actually used retrograde tracing as an experimental method, the results returned

by PubMed are likely to contain many documents that are not of interest (e.g.,

35 of the results obtained were review articles), and, in addition, are likely to

not identify publications that would have been relevant (e.g., studies that used

retrograde tracing, but did not include this exact term in the titles or abstracts).

Because of this, the researcher performing the literature review will have to spend

time manually going through the entire list of results to identify the publications

that are genuine of interest, in addition to performing extra queries, to obtain

articles that were not initially identified. The costs associated with performing

these tasks are often prohibitive; thus, neuroinformaticians have constructed spe-

cialized search tools for the neuroscience literature base that can overcome this

difficulty. Two of the major developments in Neuroscience Information Retrieval

(NIR) solutions that have come about in the last five years are Textpresso for

Neuroscience [218], and the platform developed by the Neuroscience Information

Framework [105]. As these two systems have taken somewhat different approaches

to addressing NIR, we’ll discuss each in turn.

1http://www.nlm.nih.gov/bsd/mms/medlineelements.html

16

http://www.nlm.nih.gov/bsd/mms/medlineelements.html


1.2.0.1 Textpresso for Neuroscience: A Combination Information Re-

trieval & Extraction System

Textpresso for Neuroscience is the Neuroscience-specific version of the popular

Textpresso system, from Müller, Kenny, and Sternberg, of Howard Hughes Med-

ical Institute and California Institute of Technology [217]. Textpresso is an IR

system distinguished by two key components: the ability to perform full text

searches, and the use of an ontology (see previous section), allowing for defining

types of objects and abstract concepts in a way that is understandable by both

machines and human readers. One can easily perform a search for anchor cell in

a general-purpose search engine, but many of the documents returned may end

up being, for example, about maritime justice systems. If we are truly interested

in documents only refering to anchor cells in the biological sense, an ontology

could be useful for informing the search system that anchor cells are a type of

biological cell in the C. elegans, and are characterized by production of the signal-

ing molecule LIN-3/EGF [128]. To allow full text searching, Textpresso uses the

xpdf software1 in combination with journal-specific templates, which allow them

to extract the plain text from the PDF representation of a publication with some

degree of accuracy. This approach contrasts with that taken by PubMed, which

uses publisher-supplied metadata (e.g., keywords) for their database. Although

this approach is limited somewhat by the hit-or-miss process of extracting text

from a PDF, it does allow users to query against the entire document, which can

be advantageous, particularly if users wish to query based on text that is likely

to be found in figure captions [130]. Similarly advantageous is Textpresso’s use of

ontologies to facilitate accurate searching of the text. In the original Textpresso

1http://www.foolabs.com/xpdf/
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paper [217], Müller and colleagues describe a variety of categories that were used

to mark up their documents, enabling a variety of concepts to be included in a

search query, including biological concepts, relationships, and descriptions. [218]

For example, to search for brain areas in which the TRP channel TRPC1 is found,

the user could specify to include TRPC1, and select the categories brain area,

and NIF (neural) stem cell types.

To extend their approach to the Neurosciences, Müller and colleagues included

publications from 18 Neuroscience journals that were selected in collaboration

with the NIF [303]. As of the time of this writing, their system allows full text

searching for over 100,000 neuroscience publications, and allows for the specifi-

cation of several neuroscience-related term categories and sub-categories (Table

1). Textpresso for Neuroscience can be accessed either through the systems’ main

website1, or through their webservice. In addition, it has been incorporated into

the NIF [117].

The Textpresso for Neuroscience system can be used by research scientists outside

of neuroinformatics to further their own work. Because the Textpresso system

allows for full text searching of research publications, users can perform more

specific queries that are targeted at text occurring throughout the document. If

one is interested in retrieving documents based on information that is in figure

captions (where experimental results are frequently described with greater con-

cision), this would be possible with Textpresso, since the entire text is indexed,

but it would only be possible for the open access publications that are indexed

1http://www.textpresso.org/neuroscience/
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by PubMed. A major limitation of the system, however, is that its bibliogra-

phy has not been updated since 2009 (website accessed on July, 2012 ). This

highlights a shortcoming of many digital resources: it is typically more common

for research scientists to receive grant funding for a project aiming to develop

new methods for using or accessing digital resources than it is for one that will

maintain said resource beyond its initial funding period. An incredibly useful

tool, such as Textpresso for Neuroscience, is only as good as the data it indexes,

and, since the number of neuroscience-related publications is always increasing,

without ongoing support it can quickly become out of date. This highlights the

need for developing general-purpose tools for maintaining the distributed data

sources that are used to inform information retrieval tools such as this, as well as

the one we review next, the Neuroscience Information Framework.

1.2.0.2 Information Retrieval Using the Neuroscience Information Frame-

work

The Neuroscience Information Framework was created as a part of the National

Institute of Health’s Blueprint for Neuroscience Research, in 2004. [27; 105] A

complete description of the NIF can be found in Chapter three of this volume.

Briefly, the NIF distinguishes itself from more traditional document IR systems

(e.g., PubMed) by providing a central framework with which existing online Neu-

roscience resources can be integrated. These resources aren’t just limited to

documents–they include expression data (e.g., as documented in BrainSpan1),

atlases (e.g., as documented in the Allen Mouse Brain Atlas2), and imaging

1http://www.brainspan.org/
2http://www.brain-map.org/
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databases (e.g., as documented in the Brede Database1). This diversification

stems from the NIF’s driving goal, to facilitate access to, and integration of, het-

erogenous neuroscience data, for the purpose of enabling new discoveries to be

made, and new neuroinformatics tools to be developed [105].

Integrating dynamically-updating data from geographically-distributed resources

can be something of a daunting task, since all data needs to be mapped from

different views of the human brain into a common data model, but, if carried out

properly, it provides significant advantages to users. The NIF currently offers

three levels of data integration to neuroscientists who have information resources

they would like to make available. The most in-depth of these levels allows con-

tributors to integrate their data into the larger NIF data federation by submitting

schema information and database views to the NIF mediator. They use a concept

mapping tool to map the data to the tables, fields, and values in the NeuroLex

ontology2. This allows resource providers to leave their data in its original for-

mat, maintaining its integrity, and leaving any necessary transformations to be

made in the ontology mapping stage. This allows for updates to the content to be

made available as they happen. From the perspective of the user, this deep-level

integration means that queries performed on the NIF’s main page will be run

against a variety of neuroscience data resource simultaneously, with the results

packaged in a way that’s meaningful and easy to navigate. For example, running

the query Amygdala basolateral nucleus pyramidal neuron on the NIF returns 189

literature results, and several results from the data federation–four brain regions,

1http://neuro.imm.dtu.dk/services/jerne/brede/
2http://neurolex.org
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two genes, four grants, and two diseases (query performed July, 2012 ). If more

than one of these resource categories were of interest to a user, and he or she

weren’t using the NIF, multiple queries would need to be performed on several

external databases (e.g., BAMS, OMIM, and NIH RePORTER) using different

query formats and terminologies, which would be time-consuming to perform,

and would leave the scientist to do the integration of the retrieved results.

One use case for a resource like the NIF is that of data integration. Because

the NIF takes care of mapping multiple heterogenous data resources back to a

common data ontology, it is possible to query across multiple data types in a

meaningful way. To return to the Amygdala basolateral nucleus pyramidal neu-

ron query example, if a scientist were interested in doing a study involving this

cell type, he or she could learn that four grants have been funded to NIH insti-

tutions on this topic, but that the most recent one ended in 2011. One would

also find that, in the Online Mendelian Inheritance in Man (OMIM) database, it

related to brain-derived neurotrophic factor (BDNF), obsessive-compulsive dis-

order, and congenital central hypoventilation syndrome. All of this information

would be helpful to developing a new hypothesis or designing a study, and it is

immediately available in one integrated resource.

A second use case relates more directly to text-mining experiments that might be

conducted by or for behavioral neuroscientists. Behavioral assays, such as the ele-

vated plus maze [243], conditioned place preference [78], or the adjusting-amount

procedure [212], are the backbone of behavioral neuroscience. Such procedures

are used as behavioral models of disease, and used, for example, to evaluate the

21



efficacy of drugs for treating disease. If a scientist were conducting a literature

review on the use of the adjusting-amount procedure in evaluating the effects of

dopamine-2 receptor antagonists on impulsive choice, they could perform a query

in PubMed, and manually sift through the many documents it would return.

Carrying out the same task using the NIF, however, would allow the researcher

to leverage the previously-described ontology, ensuring that the results returned

are indeed relevant to both the behavioral procedure in question and the specific

class of drugs. That is, the results would include instances of the procedure and

drug themselves, rather than just the words themselves (i.e., adjusting-amount

procedure as a method, rather than documents containing the words adjusting-

amount and procedure). As it stands, this tool is useful enough, but the future

possibilities for this type of information retrieval could greatly affect the way lit-

erature reviews are conducted in the behavioral sciences. For example, using a

procedure similar that described in the CoCoMac classification experiment de-

scribed in the following section, one could use the NIF to obtain documents in

which certain behavioral procedures are known to have been used. These data

could be used to create a document classifier that would then identify research

publications in which the procedure was used, but which had not been identified

by the NIF either because they were newly-published, or because of publisher

error. Such tools, like the ones we will present in this dissertation, are necessary

for maintaining the relevance of such knowledge bases.
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1.3 Supervised Text Classification in the Neu-

rosciences

The frequency and volume of newly-published scientific literature is quickly mak-

ing the maintenance of publicly-available scientific databases unrealistic and costly.

Assuming a newly published article is identified as potentially containing relevant

information, database curators can spend up to 48 hours determining whether

it should be included in their database, and manually extracting the relevant

information from the full text document. Therefore, supervised document clas-

sification systems are an increasingly effective machine learning tool to promote

efficiency for the many text-related tasks in biomedical science [69]. In such sys-

tems, a collection of documents are manually annotated with regards to some

criteria–for example, include/exclude in a database, or relevant/irrelevant for a

literature review, and are then used to train a classifier to make judgments on

documents that have not yet been seen. Cohen and colleagues [65; 66; 303] have

used such an approach to provide text-mining support tools to the Systematic

Review community. In this work, the Medline records associated with documents

are used as input features to a classifier that assigns each a relevance judgement

for a number of systematic review topics. In a more biomedical application, they

have also used text classification for using the text in the i2b2 challenge tasks

for mining clinical discharge summaries to predict smoking status [64], obesity-

related disease comorbidity status [8], and identification of biomedical concepts,

assertions, and relations (e.g., type II diabetes, “disease is present,” and “hyper-

tension was controlled by hydrochlorothiazide,” respectively) [9; 68].
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In the neurosciences, document classification is manifest in the maintenance of

databases documenting primary-source experimental data on, for example, neu-

roanatomical connectivity. Many of these databases have become invaluable re-

sources for neuroscientists studying connectivity itself [36; 270], and a useful

reference for behavioral neuroscientists in conducting lesion or micro-injection

studies. Despite the frequency with which they are used, the information con-

tained in such connectivity databases is often based on user-submitted connection

information, and it may or may not be possible for the database owner to find

enough time to verify the information for themselves, or to identify new informa-

tion and update the database.

Gully Burns and colleagues’ Scientific Knowledge Mine (SciKnowMine) project

is an important development for behavioral researchers. [125; 237; 238] They

recently showed how their document classification/biocuration pipeline can be

used to help curation at the Mouse Genome Informatics group[48]. They take

an all-in-one approach to solving the problem of applied text-mining, providing

a system that stores documents, extracts text from PDFs, pre-processes data,

maps the text to an ontology, and outputs the data to web services. They used

this system at the MGI to perform automated document triage (identifying which

documents in a large data set are irrelevant for some curation task). Burns and

colleagues’ unified system approach to text-mining is an important example of

how machine learning experts and neuroinformaticians are beginning to recog-

nize the importance of making their tools accessible and useful for performing

common tasks in research scientists’ work flows; such tools are motivating exam-

ples for the work in this dissertation. Similarly, the work of Lynette Hirschman,
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Gully Burns, and others [51; 53; 130; 233] has shown how text-mining can be

used to optimize biocuration workflows in the molecular sciences. In particular,

text-mining can be useful for the document triage task described above, wherein

bio-entity identification and normalization (i.e., removing specific mentions of bi-

ological entities from text prior to classification) can be leveraged to develop a

useful document classification system, or to suggest relations for annotation in

a database. For example, in a recent study where we built a document classi-

fier for identifying protein-protein interaction (PPI)-related information [9], we

observed that replacing protein mentions in the text of documents with a nor-

malized feature (e.g., changing “5-HT Receptor” to “PROTEIN MENTION”)

led to improved classification performance. The reason for this is that in many

biocuration classification procedures, it is more important that the classifier use

the contextual features surrounding annotatable information than the specific en-

tities themselves. In the case of neuroanatomical connection classification, this

would be akin to relying more on features like connects, afferent, and efferent,

rather than ones like hippocampus, cortex, and striatum. Similar to the PPI nor-

malization case described above, the contextual features will allow the classifier

to more-easily identify documents containing annotatable information regarding

neuroanatomy that it has not previously seen.

1.3.0.3 Classification for the CoCoMac Database – An Example of

Text-mining for the Neurosciences

Text classification experiments can be fairly complex, but as a rule of thumb,

there are generally five elements to a text-classification pipeline:

1. Text extraction: free text is extracted from a PDF document (e.g., in [238]),
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website, or some other input resource, and put in a format readable by the

classification software. This could be a directory of txt files, an xml file, or

a database.

2. Pre-processing: this step is important to get the extracted text into a reg-

ularized and predictable form [9]. In the above-mentioned PPI study, we

found that an important feature of a document classifier for identifying pa-

pers containing PPI-related information was a step in which we removed all

mentions of specific proteins. Classification systems make their judgements

based on the characteristics of the input documents. Thus, if one’s goal is

to create a system for identifying documents containing a variety of PPIs,

and not just those that were observed in the training data, removing spe-

cific PPI mentions forces the classifier to make its judgments based on other

document characteristics, for example the sorts of sentence structures that

often describe relation information between two proteins (e.g., “our data

demonstrate that PROTEIN interacts with PROTEIN”). Other procedures

frequently done during pre-processing is the removal of all punctuation in

the text, and case-normalization.

3. Tokenization: In this step, the pre-processed documents are split into in-

dividual tokens, or features. A simple normalization procedure that is fre-

quently used in text-mining experiments is simple unigram tokenization.

This approach splits the document into a “bag of words”, wherein each

feature is a word, and no ordering is conserved. Other approaches will be

based on bi- or tri-grams (individual pairs or trios of words, respectively),

which retain some word ordering observed in the original document.
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4. Modeling: The collection of tokens resulting from the tokenization step is

next modeled for use by the classification algorithm. Binary feature mod-

eling is a commonly-used modeling procedure in which the unique set of

features observed in the entire training document collection is assigned a

position in vector. Each document is then represented as a vector of the

same length, in which each position contains either a zero or a one, corre-

sponding to the absence or presence of that feature within the document in

question.

5. Classification: The classification algorithm is given a set of (vector, true

class label) pairs (during classifier training), or just document vectors (dur-

ing classification), and using whatever classification procedure has been se-

lected for the task, it will either learn the mathematical relationship between

document feature vectors and their class labels (in training), or predict the

class label of new documents (during classification). Many classification al-

gorithms exist, but Support Vector Machines [142], and Näıve Bayes [205]

are commonly-used procedures in text classification.

As a proof of concept for the application of text classification in the neurosciences,

we developed a machine learning framework for automating the identification of

sentences containing neuroanatomical connectivity information appropriated for

incorporation into the CoCoMac online database of Macaque connectivity infor-

mation1. The CoCoMac database was selected for several reasons. First, it con-

tains a great deal of connectivity information indexed according to the PubMed

Identifier (PMID) associated with the article from which the information was

1http://www.CoCoMac.org
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obtained. Many online neuroscientific databases contain a combination of un-

published experimental data and peer-reviewed results, and since this proof-of-

concept system is concerned with verifying the information that has been accepted

into the scientific body of knowledge, it made sense to choose a database specif-

ically focusing on the published literature. Second, the CoCoMac database has

an intuitive, built-in URL search interface that makes it easy for an automated

system to pull down information on an as-needed basis, rather than having one

or more individuals spend time performing manual information retrieval. Third,

CoCoMac’s article curation process is rigorous and well-documented. Further-

more, the CoCoMac database has not been updated since 2005, due, according

to its founder, to the fact that verifying the information contained in one article

can take up to two days (Kotter, 2009; personal communication)–emphasizing

the need for automated methods for streamlining the curation process, which we

will present in this dissertation.

We created a classifier that, given a list of connections supposedly documented

within an article, would identify the sentences in the article’s abstract containing

this information. We first obtained a complete list of PMID IDs contained in the

CoCoMac database (approximately 600 IDs), and located an electronic version of

the fulltext for each using PubMed, Google, and Google Scholar. Even though the

present set of experiments was based on sentence-level classification judgments in

the abstract, an important follow-up experiment is to expand our classification

to Results sections in full text (see Chapters 2, 3, and 4), as well and therefore

our studies included only those abstracts for which we could obtain the entire

document (approximately 250). For this subset, we extracted the abstracts from
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their respective PDFs. In order to train a classifier to identify connectivity infor-

mation at the sentence level, it was necessary for us to manually markup a subset

of our abstracts using the Knowtator annotation plugin for the Protege ontology

management system [227], identifying those sentences containing connectivity in-

formation, as well as any single- or multi-word strings that refer to a particular

neuroanatomical concept. For this proof-of-concept we only annotated 60 articles

in our data set, however this resulted in a dataset containing approximately 600

sentence/connectivity judgment pairs. We performed cross-validation on these

data to develop a baseline support vector machine (SVM [285])-based classifier

against which we compared the results of various feature selection and resampling

experiments. For thoroughness, we compared the performance of our SVM-based

systems to that of a non-SVM classifier, k IGNN, a mutual information-based

k -nearest neighbor classifier that has been shown to be effective in identifying

documents containing protein-protein interaction-related information [9]

The performance of our baseline system, according to the area under the receiver

operating characteristic (AUC), is depicted in 1.1. For the AUC, random classi-

fication would equate to a value of 0.5. Although our baseline system performs

better than random (0.63±0.05), an examination of the ratio of positive classes

in light of previous research [62] led us to hypothesize that the over-abundance of

negative class-sentences was leading to poor performance. To overcome this, we

used a previously-described resampling method [62], in which we sampled (with

replacement) from our existing dataset to create a new one, but increased the

probability that a given sample would be from the positive class. Performance

of this approach is depicted in Figure 3 for a range of probabilities for obtaining
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a positive class sample (1-5: 1x through 5x as likely). Importantly, since this is

a resampling method, even though the 1x probability level is equivalent to our

baseline system, this method results in a dataset five times as large as that of our

baseline system. This is reflected in the fact that the AUC of the baseline and 1x

system are roughly the same, but the 1x confidence intervals are much tighter.

We were interested in determining feature selection and feature generation meth-
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Figure 1.1: AUC (with 95% confidence intervals) comparisons of our baseline
(libsvm) and various number of costs for misclassifying a positive sentence (1-5),
with a previously-successful relationship extraction system (kIGNN).

ods that would lead to improved performance. Here, we examined the effects of

neuroanatomical term normalization and neuroanatomical term-based distance

feature generation on performance. Using the neuroanatomy markups obtained

during our Knowtator annotation procedure, we replaced all recognized neu-

roanatomical features with a single common feature. To examine the effects of

doing this on performance, we plotted the information gain associated with each
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feature for our normalized and non-normalized datasets (Figure 1.2 normalized:

blue; non-normalized: black). As this figure makes clear, when all neuroanatomi-

cal terms are replaced with a common feature, the peak of the information gain is

sharper and shifted to the left. This implies that many of the predicitive features

in the non-normalized collection were neuroanatomical terms, and that perfor-

mance would be improved by grouping all these into a single feature. In terms

of qualitative implications, this would mean that one of the best ways our clas-

sification system was able to distinguish between sentences that were positive or

negative for containing connectivity information was whether they contained neu-

roanatomical terms. Figure 1.3 depicts the distribution of the average distance

between neuroanatomical terms within each sentence for the positive (black) and

negative (red) classes. The results depicted in Figure 1.3 fit well with those de-

picted here–the peak of the distribution for the negative class is sharply centered

around 0 (meaning that one or fewer neuroanatomical terms were contained in

the sentence.). The positive class is also centered around 0, but it drops less

gradually toward positive values. Based on these results, we hypothesized that

normalizing our dataset for neuroanatomical terms, as well as including a feature

describing the average distance between neuroanatomical terms in a given sen-

tence, would improve performance of our classifier. This combination of features

led to substantial improvement in our cross-validation studies (AUC: 0.81).

This proof-of-concept text classification experiment demonstrates the feasibility

of developing a sentence-level neuroanatomical relationship classifier using a small

number of annotated articles. We were able to achieve a level of performance that

could be useful for performing actual classification tasks (i.e., AUC>0.80) by us-

ing a support vector machine classifier and cost-based resampling methods. In

31



M
ut

ua
l I

nf
or

m
at

io
n

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 1.2: Feature information gain with (blue) and without (black) neu-
roanatomical term normalization, for the CoCoMac classification experiment.

practice, Neuroscientists could use a system such as this to extract a literature-

based connectome for a particular model organism. In particular, this tool could

be integrated with a system recently developed by French and colleagues [100; 101]

to identify specific brain regions and pull down their gene expression-related in-

formation from the Allen Brain Atlas [180]. Integrating all this information could

be used to create an integrated visual map of brain connections and their gene

expression data that could be used, for example, to model spatial correlation of

gene expressions in the brain.

Although the supervised classification approach to developing a knowledge base

is a useful one, it is not without limitations. We will review these in the next

section.
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Figure 1.3: Distribution of average distance between neuroanatomical terms in
the positive (black) and negative (red) classes, for the CoCoMac classification
experiment.

1.3.0.4 Efficient Approaches to Classification: Knowledge Mining

One alternative to using machine learning for assisting manual database curation

is that of automated mining from document databases. Because the financial and

time costs associated with developing a large curated document collection is often

prohibitive, researchers will sometimes perform automated association mining, in

which textual features are extracted from a large collection of input documents

and used to either further one’s understanding of the relationships between the

documents themselves, or to develop hypotheses that can be investigated on their

own. Voytek and colleagues [290], for example, used co-occurrences of brain re-
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gion mentions, cognitive functions, and brain-related diseases to demonstrate that

known relationships can be extracted in an automated and scalable way by us-

ing clustering algorithms. Importantly, they were able to extend this approach

to semi-automatically generate hypotheses regarding “holes” in the literature–

associations between brain structure and function, or function and disease which

are likely to exist, but lack support in the literature. For example, they discovered

that the structure striatum and the term migraine were strongly related to the

term serotonin (they co-occurred in nearly 3000 publications for each relation-

ship), yet the striatum and migraine had only 16 shared publications themselves,

indicating that this association may exist but be understudied.

French and colleagues [99] used knowledge mining to automatically map neu-

roanatomical identifiers found in a large volume of journal abstracts from the

Journal of Comparative Neurology (JCN) to connect over 100,000 brain region

mentions to 8,225 normalized brain region concepts in a database. In this work,

they used an annotated collection of abstracts from JCN and other Neuroscience

journals [97], expanding all abbreviations in the text, and manually identified

the brain region mentions they contained. They also put together a dictionary

of 7,145 brain regions having formal unique identifiers from the NeuroNames vo-

cabulary [41], NIFSTD/BIRNLex [47], Brede Database [225], Brain Architecture

Management System [40], and Allen Mouse Brain Reference Atlas [85]. In total,

they used five different techniques to link the free-text neuroanatomical mentions

to the compiled set of terms: exact string matching, bag of words, stemming, bag

of stems (similar to gap-edit global string matching [271]), and the Lexical OWL

Ontology Matcher, which allows for the specification of specific types of entities.
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[111] Scientists interested in using these resources could incorporate their anno-

tated data (freely available at1 into a classification system like the ones described

in the previous section.

1.4 A Case Study in Neuroinformatics Knowl-

edge Base Maintenance: The Neuron Reg-

istry

In the introduction to his recent book on Systems Biology and Neuroscience, Neu-

roscientist Olaf Sporns proposed that “we cannot fully understand brain function

unless we approach the brain on multiple scales.” [267] To approach our under-

standing of the brain on multiple scales, Computational Neuroscience has turned

to multilevel mathematical modeling—a collection of techniques which allow for

mathematically representing the layered complexity of the brain. Though effec-

tive, such models require large volumes of data for each layer they represent,

which is most commonly obtained in some form of database.

Neuroscience is fractionated into many sub-disciplines, each of which, though

concerned with respective questions of interest, is in some way motivated by

extending our knowledge and understanding of how the brain works [161]. In

response to this fractionation, the collective goal of reverse-engineering the brain

[247] was recently set by Neuroscientists and Engineers. In practice, a reverse-

engineered brain would be a mathematical representation of the brain as a system,

1http://www.chibi.ubc.ca/WhiteText
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which would be useful for conducting in silico simulations that would increase

our knowledge of brain operation in diseased and healthy states. Such knowledge

would translate to better, more targeted treatment for neurological disorders,

like Traumatic Brain Injury [131; 157], Alzheimer’s Disease [215; 260], and the

relationship between variation in an individual’s brain structure and function

[100; 266; 268]. This future for Neuroscience will be attained by leveraging the

wealth of knowledge already obtained over its productive history, in the form

of mathematical models and simulations of the brain. Such simulations have

been, and will continue to be, useful for determining the relationship between

brain structure, function, and treatment. A significant barrier to achieving this

goal, however, is getting the extant Neuroscience-related knowledge into machine-

accessible databases. Using a manual approach for such a task is unrealistic; it

would require an excessive amount of financial and personnel resources that are

unavailable. Thus, scalable machine learning methods must be created, for iden-

tifying and extracting Neuroscience-related knowledge from the published litera-

ture, and subsequently storing it in machine-readable databases for computational

modeling.

1.4.1 Databases & Research Science in the Information

Age

Databases (or, in the case of a database of qualitative scientific knowledge, knowl-

edge bases, in this work) play an important role in the way modern scientific

research is conducted. In general terms, they have two purposes[58]: sharing the

results of scientific research in a meaningful way, and providing structured data

36



that is useful for leading to previously unknown scientific knowledge. In either

case, the integration of database technology in scientific research tends to be pre-

ceded by the development of methods that yield a high volume of data [264].

In Genomics, for example, an event that is often cited as important in leading

to the prevalence of sequence databases is the development of rapid methods

for determining the base sequences in DNA [253]. More than just for sharing

sequences themselves, these databases have been important tools for generating

new knowledge in Genomics and other fields alike. For example, comparing sim-

ilarities between the mouse and human genome has led to discoveries of new

gene regulatory elements [124], and genetic events that may have given rise to

differences between the respective genomes [274]. Similarly, the availability of

sequence databases for multiple organisms has enabled the phylogenetic mapping

of organisms, allowing us to learn about the evolutionary history of species [228].

1.4.2 The Importance of Databases to Neuroscience Re-

search

In partial contrast with the Genomics field, the integration of the neuroscientific

knowledge base with database technology has been only somewhat preceeded by

the increased use of high-data-volume methods, such as electroencephalography

(EEG) and neuroimaging. Adoption of database technology has been partly mo-

tivated by its success in bioinformatics (e.g., the Allen Brain Atlas[179]), and by

the need for meaningful communication between sub-disciplines in the field (e.g.,

the NeuroNames brain hierarchy [43]; see Chapter 3), as well as the desire for

data-informed computational models of brain function.
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In the late 1990s and early 2000s, discussion of databases within the realm of

Neuroscience was largely concerned with the community’s reluctance for sharing

data [58; 159; 160]. At the time, the primary barrier to digitally representing

Neuroscience knowledge was an apparent proprietary view, held by many inves-

tigators in the field, regarding their discoveries. This no longer seems to be a

substantial barrier; there are several possible reasons for this. For one, a possible

reason for this might be the obvious success of databases and data sharing in

related fields, like molecular biology and genomics. Alternatively, the increasing

emphasis of funding organizations, such as the National Institute of Health, on

having a plan for making data available to researchers may be an important in-

fluence. Just as likely, the shift in thinking may be due to the influence of the

International Neuroinformatics Coordinating Facility 1 and similar organizations

on shaping the way research Neuroscientists think about the future of their field

[94].

1.4.3 The Neuron Registry: A Community-Curated Knowl-

edge Base for Neuroscience

The Neuron Registry (NR) is a community database being developed by the

Neuron Registry Task Force (NRTF), under the International Neuroinformat-

ics Coordinating Facility’s (INCF) Program on Ontologies of Neural Structures

(PONS). The stated purpose of the NRTF 2 is to put structure into place for a

knowledge base of neuronal cell types, providing a formal means for describing

1http://www.incf.org/
2http://pons.neurocommons.org/page/Neuron registry
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and quantifying existing cell types from their properties, and populating it with

information from the literature. Among the task force’s goals with regard to the

development of the NR database itself, three key responsibilities stand out:

1 To initially populate the registry.

2 To continuously curate the registry.

3 To establish a self-propagating long-term system for maintenance and up-

dates.

1.4.3.1 Do we need another knowledge base?

At times, it can seem that the landscape of the internet is scattered with various

scientific knowledge bases. Each likely has a niche amongst a certain group of re-

search, and even the ones which are no longer updated were probably at one point

quite useful for the users the developers were targeting. There are many barriers

to maintaining such services–lack of publicity, inability to easily fit into the target

user groups’ research workflow, or possibly failure to consider a viable plan for

their long-term maintenance. Database developers working in a quickly-changing

field, such as Neuroscience, must be aware that future research is likely to bring

major changes to the field which, if not they are not careful, could potentially

render the database obsolete, by not fitting into their way of representing the

data. Neuroimaging databases, for example, have been met with much this same

issue on more than one occasion[284]. Facing obsolescence due to drastic changes

in imaging technology, changes in the capabilities of the internet (e.g., semantic

web technology), and shifting opinions on whether to share raw or pre-processed
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data, considerable effort has been made in that community to change the way

their data are stored and shared.

1.4.3.2 A Clinically-relevant Use Case for the Neuron Registry

The importance of a well-structured database of neuronal attributes extends be-

yond bench research by providing a centralized computationally-accessible ware-

house of neuron-related Neuroscience findings that can be used to further our un-

derstanding of the diseased brain. Clinicians[3], Psychiatrists, in particular[138],

have expressed a desire for the modeling community to create models that are

more obviously clinically-relevant, especially to the extent that they don’t over-

simplify the biology involved. Many Neuroscientists [17; 20; 31; 138; 247] argue

that multilevel mathematical models of the brain will be a key tool for in increas-

ing our understanding of how the brain works, and translating that knowledge

into clinically-relevant findings. Such models are mathematical representations of

the integrated layers of the brain, and are used to recreate computational simu-

lations of various Neuroscientific findings, and subsequently generate hypotheses

that can be tested in the lab. For example, Migliore and colleagues [209] recently

used a computational modeling strategy to investigate the biological basis of hal-

lucinations in Schizophrenia. An important characteristic symptom associated

with Schizophrenia is hallucinations, a phenomenon which has been thought to

arise from problems in hippocampal-mediated associative recall[182]. Much is

known about the electrophysiological and morphological properties of neurons in

the hippocampus, particularly in the cornu ammonis 1 (CA1) region[259], which

is known to be important in memory encoding and recall. Using data obtained
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from Ascoli’s[18] Neuromorpho project1, Migliore and colleagues were able to il-

lustrate how a change in context-dependent input to an ensemble of CA1 synapses

would lead to activation of perceptions not relevant to one’s immediate context

(i.e., hallucinations). By drawing qualitative (e.g., receptor types) and quantita-

tive information (e.g., specific parameter values) directly from the Neuroscience

literature, their model was able to demonstrate one possible mechanism of a well

known and poorly understood psychiatric symptom. Although similar modeling

efforts have been previously undertaken by Computational Neuroscientists and

Psychiatrists[112; 234; 265; 289], many of these models were created using a sim-

plified representation of neurons and their properties. Although this approach

can be useful in some cases, Migliore and colleagues were particularly interested

in understanding the role of the individual neuron in generating the schizophrenic

symptoms. Thus, particular care was taken to make sure that the neuron prop-

erties used in the model reflected those which had been experimentally verified.

Their approach resulted in a model which was not only consistent with experi-

mental and clinical findings, but was able to generate a hypothesis for inconsistent

results regarding hippocampal activity in schizophrenic subjects, as measured by

functional magnetic resonance imaging (fMRI), and to make a testable prediction

for context-dependent associative learning in schizophrenics.

Such models are going to play an important role in moving bench and clinical Neu-

roscience forward, but are only made possible by leveraging empirical neuronal

data. Although much of this data has already been collected and published over

the years, much of it is only available in hard-copy, or pdf form, which is ineffi-

1http://neuromorpho.org/
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cient to access. The data used to carry out the Migliore study was obtained from

existing public resources for Computational Neuroscientists, such as the afore-

mentioned NeuroMorpho project, which stores digital reconstructions of neurons,

and ModelDB[129], an online resource for storing mathematical Neurosciences

models1. These resources are useful for studies involving neuronal morphology

and their electrophysiological properties, but in order to extend such simulations

to incorporate circuits of realistically-depicted neurons, additional resources are

needed.

1.4.3.3 The Neuron Registry as an Aid to Developing Neuroinformat-

ics

The Neuron Registry will be an important computational modeling resource for

making the jump from biologically-realistic models of individual neurons, to net-

works of biologically-realistic neurons–a leap that will be necessary to make, in

order to create mechanistic models of complex behavior, such as addiction, or

to move from modeling the mechanisms underlying particular disease symptoms,

to those which lead to, or persist during, a disease state. Much is known about

the properties of neurons, but, until recently, it has remained unclear how to

best distinguish types of neurons from one another. Moreover, the question of

what constitutes a neuron “type” has been rather ad hoc[39]. The consequence

of this, for computational neuroscientists, is that models operating at the level

of “neuron type” may or may not be using legitimate experimental findings to

inform parameter value and model topology selection. Take the case of the pyra-

1http://senselab.med.yale.edu/modeldb/
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midal cell, for example. The CA1 region of the hippocampus is populated with

pyramidal cells, as is the CA3 region. Although pyramidal cells in both regions

express glutamatergic NMDA receptors, however in each region the cellular trans-

duction pathways regulating NMDA receptor expression differentially respond to

Ca2+levels resulting in a down-regulation of NMDA receptors in CA3 have been

shown to have a much less pronounced effect in CA1[114]. This example high-

lights both a potential problem for Computational Neuroscientists, as well as its

solution–neurons should be defined in terms of their properties, and not solely

by whether they are pyramidal cells, bipolar cells, etc. The Neuron Registry will

provide a computationally-accessible framework for defining neurons in such a

way, allowing modelers and bench researchers to have access to this information

in a structured way that will not only be able to be incorporated into mathemat-

ical models, but will allow the research community to identify where there are

gaps or contradictions in our current neuron-related knowledge.

The frequency and volume of newly-published scientific literature is quickly mak-

ing the maintenance of publicly available scientific databases unrealistic and

costly. In the Neurosciences, this problem is manifest in the maintenance of

databases documenting primary-source experimental data on, for example, neu-

roanatomy or neuronal morphology. Many of these databases have become invalu-

able resources to bench and Computational Neuroscientists alike[35; 269]. The

information contained in such databases is often based on user-submitted knowl-

edge, and, despite the frequency with which they are used, it may or may not be

possible for database owners to obtain sufficient resources to verify the informa-

tion themselves. I propose that machine learning can provide a solution to this
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lack of resources. And, although efforts for maintaining our neuroscientific knowl-

edge in databases have been underway for several years [58; 73; 74; 76; 163; 164],

little work has been done in developing targeted Machine Learning and Text-

mining methods for minimizing the human effort involved in their curation, mak-

ing this a useful target of new research agendas. Document classification has been

shown to be particularly useful in related fields. Supervised document classifica-

tion is a machine learning technique in which a set of documents are manually

labeled as positive and/or negative examples of some criterion of interest. An

extension of this procedure, that we’ll refer to as database submission classifi-

cation, is related, in that it would, given a document and information that it is

supposed to contain, automatically classify the submission as correct or incorrect.

Workflows for large-scale databases have many well-documented areas where ma-

chine learning methods can improve their efficiency [65; 66; 69]. Although the

results found in related biological domains can often inform the application of doc-

ument classification-like techniques to a new one, there are often domain-specific

aspects that ought to be considered as well [9]. As such, it is important for both

the machine learning and Neuroinformatics communities that such text mining

methods be studied within the context of Neuroscience. For one, it is important

for the Neurosciences, since it will allow text mining methods to be optimized

specifically for performing within its feature space. For machine learning theo-

rists, it will deepen our understanding of the relationship between the character-

istics of a particular domain’s textual feature space (i.e., the way experts discuss

their field), and the relative performance of various text classification algorithms

[9].
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The main goal of the proposed studies is to design, build, and evaluate a sys-

tem for automating certain aspects of the textual, neuron-related, community

database curation workflow. The specific target-users of this system will be those

involved in data curation at the Neuron Registry, however, the general framework

used in these studies will be relevant to those involved in database curation for the

Neurosciences in general. The Neuron Registry was chosen for several reasons, in

addition to those already discussed [1.4.3.3]. First, biologically-sound multilevel

models of neural circuitry will all necessarily leverage the information contained

in a database of neuronal attributes. As such, the Neuron Registry stands to be-

come an important source of modeling information in Neuroinformatics. Second,

is the amount of already curated information contained in the Neuron Registry.

The process of identifying and verifying new material for inclusion in the such a

database is laborious, and so it is unsurprising that the Neuron Registry houses

only a small amount of information to date. The small amount of data already

contained means that it will greatly benefit from our efforts, in a way that an

already established database might not. Despite this, preliminary studies indi-

cate that it contains enough curated information to support a machine learning

approach to identifying and prioritizing new documents for inclusion. Third, the

Neuron Registry has adopted a collaborative approach to curation–an approach

largely unstudied, in terms of how text-mining and machine learning can effec-

tively aid its curation.
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1.5 Key Contributions of this Dissertation

The results and methods used in the experiments described in this dissertation

have made several key contributions to the fields of neuroinformatics, biocuration,

and neuroscience.

1. The data set we developed to use in our experiments is unique, and can be

used by neuroinformaticians and machine learning developers for their own

experiments. This documents in this data set were obtained by construct-

ing searches that a typical neurobiologist would perform to find articles of

interest, and 962 of these were annotated at the document- and sentence

level, in terms of their relevance to a knowledge base of interest, and is

useful for developing information retrieval systems, supervised document

classifiers, or information extraction systems. (Chapter 2.)

2. We have developed a general approach to bootstrapping the development

of an under-represented knowledge base in the biomedical sciences. This

technique will be useful to knowledge base developers who wish make effi-

cient use of the time they have for identifying documents for inclusion in a

knowledge base. Our approach, an adapted for of active learning, improves

its accuracy as more information is given to it, over the course of knowledge

base development, and will drastically decrease the amount of time spent

reading irrelevant publications. (Chapter 2.)

3. We have developed a supervised document classification system useful for

identifying publications that are relevant to a neuron-related knowledge

base.
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4. We have created several hand-curated regular expression lists for identifying

NeuroLex and Methods-related terms in the text of publications.

5. We have developed a system for ranking paragraphs in a document, in

terms of their likely relevance for containing information of interest for a

knowledge base. Our general approach could be applied outside of the

neurosciences, as the techniques used did not rely on neuroscience-specific

information.

1.6 Thesis Overview

This thesis is comprised of three main chapters, each describing the development

and evaluation of a text-mining-based tool designed to target a specific bottleneck

in the curation workflow of a community knowledge base in the neurosciences:

1. Virk (Chapter 2): an active learning tool designed specifically with under-

developed knowledge bases in mind, allowing them to quickly bootstrap

their development.

2. Flokka (Chapter 3): an document classification tool that will rank-order

documents, in terms of their likelihood of containing information that is

relevant to some knowledge base.

3. Finna (Chapter 4): a paragraph ranking tool that, given a manuscript that

is likely to contain relevant information for a knowledge base, will prioritize

those paragraphs in terms of how likely they are to contain the information

that would lead to being included in a knowledge base.
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Taken together, these tools can enable the start-up and maintenance of knowledge

bases in the Neurosciences, and constitute an important contribution to the fields

of neuroscience, biocuration, and applied machine learning.
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Figure 1.4: Diagram describing the submission/curation workflow at the Neu-
ron Registry. Circled areas denoted points in the workflow which can give rise to
bottle necks or inefficiencies. Blue: delay from lack of self-motivated user submis-
sions. Green: bottleneck from needing to read through a collection of potential
source documents, some of which will won’t be used. Purple: bottleneck due to
the process of identifying useful substring(s) in the source documents that haven’t
been triaged. Red: bottleneck due to validation of (knowledge, document) pairs,
from either user submissions, or in-house identification.
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Chapter 2

Virk : An Active Learning

System for Bootstrapping New

Curated Neuroinformatics

Knowledge Bases

2.1 Introduction

In 2008, Howe and colleagues proposed that in the next five years the field of

biocuration should create a mechanism by which community-based curation ef-

forts can be facilitated[134]. This challenge has been taken on and applied in

already successful online databases, such as FlyBase1, the online repository of

drosophila genetic information, and GrainGenes2, a browser for the triticeae and

1http://flybase.org/
2http://wheat.pw.usda.gov/GG2/index.shtml
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avena genomes, but is not so easily translated to new databases, which do not

already have an active contributing community, or are able to support the profes-

sional staff to maintain it. As the neuroinformatics community begins to rely more

and more on online resources containing structured information that can be used

for large-scale mathematical modeling and simulation, the ability to efficiently

create a new database and build it up to the point where it can be a useful re-

source to an active community will increase in importance, even as the amount of

information that must be manually search through increases with exponentially-

increasing rates of publication. It is because of this that the community must

turn to automated techniques that have demonstrated their effectiveness in the

field of machine learning. Such techniques are known as recommender systems

[240].

The process of manual curation of data from published papers into underlying

databases in an important (and mostly unacknowledged) bottleneck for develop-

ers of neuroinformatics systems. For example, the first version of the CoCoMac

system (Collations of Connectivity data on the Macaque brain1[272]) is a neuroin-

formatics database project concerned with inter-area connections in the cerebral

cortex of the Macaque. It is a mature solution for a problem that was under con-

sideration by national committees concerned, as far back as 1989 (L.W. Swanson,

personal communication). CoCoMac currently contains roughly 2.0 ×104 connec-

tion reports, reflecting the dedicated effort of a small curation team of the course

of years of work. Due to the machine-readable nature of much of the data in their

field, bioinformatics systems in molecular biology are usually larger by several or-

1http://cocomac.org
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ders of magnitude. The Uniprot KB release for February 2013 contains 3.03 x 107

entries. Naturally, this disparity is due to many factors, including the levels of

available resources for curation, the general utility of the data being housed, and

the relative size of user communities. In any case, the rate-determining step for

developing informatics systems of any size is the speed of curation, and so accel-

erating that process is an important central goal.

To mitigate the problems arising from having more information that needs to be

annotated, but not necessarily a commensurate increase in available resources,

biocurators should adopt automated approaches to identifying documents that

contain information relevant to their particular knowledge base, such as active

learning (AL) systems. An extensive review of AL methods is available from Burr

Settles, [258] but, briefly, AL is a type of supervised machine learning (ML), in

which a classification algorithm works collaboratively with an expert user to train

a classifier as efficiently as possible (in terms of the expert’s effort), by requesting

gold-standard annotations for the data the AL system deems most informative.

Such methods could be incredibly useful for neuroinformaticians starting up new

knowledge bases, by helping them to efficiently create a publication recommen-

dation system that would allow them to spend more time reviewing manuscripts

that are likely to contain information relevant to their group’s interests.

A substantial body of work has demonstrated the effectiveness of AL and rec-

ommender systems for efficiently developing a document classifier that has been

incrementally trained on gold-standard data. Mohamed and colleagues, for exam-

ple, used AL to develop a protein-protein interaction predictor [214], and Arens,
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in conjunction with a support vector machine (SVM) classifier, used AL for learn-

ing document ranking functions in a biomedical information retrieval task [16].

SVMs and AL have also been paired together for the identification of documents

that are eligible for inclusion in a systematic review [292]. Here, Wallace and

colleagues adapted previously-developed AL strategies for biomedical document

classification, by taking into account the commonly-observed highly-skewed class

distribution in such publications.

The Neuron Registry (NR) is a community-curated knowledge base under the

direction of the Neuron Registry Task Force (NRTF1), a part of the International

Neuroinformatics Coordinating Facility (INCF) Program on Ontologies of Neural

Structures (PONS). The primary goal of the NRTF is to create the infrastructure

for a machine-readable knowledge base of neuronal cell types, providing a formal

means for describing and quantifying existing cell types from their properties,

and populating it with information that has been extracted from the primary

literature.

As a community-curated knowledge base, growth of the NR is contingent upon

user submissions–the problem of adding new information to the system has been

largely left to the people who use it. For knowledge bases that already have a

strong user-base and an active community (e.g., Wikipedia), new submissions are

frequently being made. This makes sense–Wikipedia is one of the more frequently-

accessed web sites in the world; for a less-well-known resource, such as the NR

(which has contributions from only 13 individuals, to date), some level of useful-

1http://pons.neurocommons.org/page/Neuron registry
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ness will need to be demonstrated before it becomes something researchers are

regularly willing to submit new information [49]. Given the scope of informa-

tion that is relevant to the NR, a great many more contributions will need to

be made before it can be used as a reliable, machine-readable repository of our

neuron-related knowledge. This is a common problem in informatics, in general,

and neuroinformatics, in particular. New web-based resources are frequently cre-

ated and made publicly available for use in others research. Initially, the creation

and maintenance of such resources is often supported by the grant that lead to

their starting up, but it is uncommon for funds to be available for the continued

maintenance of a resource that hasnt already demonstrated meaningful contri-

butions to the research community[10]. This can lead to the gradual decline of

a resource, to the point where it is no longer a reliable, up-to-date snapshot of

the community’s knowledge. For example, this happened with the well-known

CoCoMac database, which was unable to keep up with the pace of the published

literature on Macaque connectivity beyond 2008, because of increasing rates of

publication and limited resources (Kötter, personal communication; 2009). Thus,

informaticians interested in creating accessible knowledge bases for the research

community are left with a dilemma: how can they create a resource and deploy

it with sufficient information useful to the community, without spending a great

deal of time and money on curating the information they wish to include before

the user community has been established? From the ML community, the answer

to such a problem has been AL and recommender systems.

Although AL has been shown to be useful for identifying documents which will

provide the most information to a supervised classification system, no one has
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yet used AL for simultaneously identifying new documents containing relevant

information for a knowledge base while training a new document classifier for

later use in updating the knowledge base. While the creation of a data set for

training document classifiers is useful to the biocuration community (for a re-

view, see [130]), it should also be possible to use AL to streamline the process

of identifying initial documents that contain information that is of interest to

under-developed knowledge bases which don’t contain sufficient data to train an

accurate classifier. There are two main hurdles to achieving this goal. First, to

do this, a system will need to simultaneously identify documents that are likely

to contain information of interest while identifying documents on which it can-

not reliably make a judgment. Second, the existing methods for evaluating AL

systems have been designed to work with a large, fixed corpus of data already an-

notated, which is not available for our purposes–no annotated full text corpus of

neuron-related documents has been made available to the public. What’s more,

existing evaluation metrics primarily focus on the accuracy of the classifier being

built and the rate at which it was able to achieve peak performance [258]. While

these aspects of the proposed system are important, we are also interested in the

point at which the maximum number of relevant documents are identified at the

minimum amount of annotation effort–this trade-off does not exist in typical AL

applications.

Here, we present and evaluate Virk, an AL system that is able to rapidly boot-

strap knowledge base development. Over the course of the study we dramatically

increase the coverage of the NR, which will make it possible for the knowledge

base to be a more useful resource neuroscientists, and create a unique, publicly-
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available gold-standard document collection for the neurosciences that will be

of great use to neuroinformaticians in the future. We describe a gold-standard-

trained recommender system that was used to efficiently develop the NR, con-

tributing important, expert-curated knowledge to the neuroinformatics commu-

nity, and demonstrating for the first time that, with minimal effort spent on

tuning a classification algorithm workflow, an AL system can provide meaningful

contributions to the biocuration workflow. Importantly, our system is designed to

specifically address to bottlenecks in the NR curation work-flow (Figure 1.4). As

a tool primarily designed for bootstrapping the start-up of new knowledge bases,

the Virk system will be helpful in the “Self-Curation” node depicted in Figure 1.4.

New knowledge base developers can have a significant volume of publication they

must review, but may have no prior information that can help them efficiently

prioritize the order in which they do their reading. Virk will help biocurators by

interactively re-ordering a list of publications in terms of their likely relevance,

updating its judgements after receiving feedback from the curation staff.

2.2 Methods

2.2.1 Collecting a Full Text Neuron-related Document Set

Data collection proceeded in two main stages: journal selection and article selec-

tion. First, we determined which neuroscience-related journals to use to build our

corpus. Our primary goal was to build a document collection that adequately rep-

resented the diversity of the neuroscience literature, so that our classifier would

be exposed to articles about neuroimaging, computational neuroscience, and be-
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havior, in addition to documents containing information on neuron-related exper-

iments. At the same time, we wanted to obtain a sufficient number of documents

containing information relevant to the NR. Thus, we downloaded the all en-

tries in vertebrate neuron category on NeuroLex1, an online, community-curated

neuroscience lexicon, and found which journals most often include these terms

within the MEDLINE records of the research articles they publish. We wanted

to be certain that the articles we eventually included in our corpus had complete

MEDLINE records and were representative of the sorts of terminology used in

newly-published research, so we decided to limit our document selection to those

published during the year 2010.

PubMed2 queries were constructed for each selected NeuroLex term, each tak-

ing the form “NEURON”, where NEURON corresponded to an entry in the

NeuroLex (e.g., “Amygdala basolateral nuclear complex pyramidal neuron”). We

rank-ordered the journals, in terms of their frequency of using NeuroLex terms

in 2010. The top eight journals are listed in Table 2.1. We limited our selected

journals to eight, because the ninth journal was the Proceeds of the National

Academy of Science, which would have doubled the size of our corpus and would

have also diluted the concentration of annotatable information by adding many

non-neuroscience articles (e.g., geology or astronomy). Column n2010 in Table 2.1

shows the number of publications associated with that particular journal in 2010.

The complete MEDLINE records for all 5932 articles included in Table 2.1 were

downloaded and stored in a mongoDB database3. We chose a document-oriented

database for this work because they allow us to efficiently represent MEDLINE

1http://www.neurolex.org
2http://http://www.ncbi.nlm.nih.gov/pubmed/
3www.mongodb.org
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Journal n2010

The Journal of Neuroscience 1457
Brain Research 1267
Neuroscience Letters 1056
Neuroscience 910
The Journal of Physiology 495
The Journal of Comparative Neurology 276
Hearing Research 256
Journal of Neurophysiology 215
Total 5932

Table 2.1: Table of PubMed results by the top nine-matching journals in the
data set, based on performing queries with the NeuroLex terms. n2010 denotes
the number of 2010 publications associated with that journal.

records, which often have fields that differ from document to document. Since

our University library had subscriptions to the eight journals of interest, we at-

tempted to download the full text for each. Due to time constraints, we only

attempted to download each of the 5932 full text documents once–if an error

occurred, we simply skipped that document. In all, we were able to successfully

download 3336 of the documents we were interested in. Since the approximately

2500 articles we were unable to download were distributed amongst all the jour-

nals of interest, and 3336 was likely to be an adequately-sized data set, no further

attempt to retrieve these articles was made.

The 3336 documents were associated with their respective MEDLINE records

in our database, and distributed into one of four document pools, according to

Figure 2.1.
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Figure 2.1: Diagrammatic representation of the distribution of documents in our
corpus. Documents were randomly allocated to either the initial training, active
learning pool, validation, or test collections.

2.2.2 Procedure for Annotating the Documents

One of the goals of this study was to build up a document classification data set

for identifying publications that are likely to contain information that is relevant

to the Neuron Registry (NR). The NR is a collection of neuron-related infor-

mation, in the form of rows of (neuron type, relation, value) tuples (e.g., CA1

pyramidal cell, located in, CA1 stratum oriens), and an associated reference (e.g.,

a PubMed identifier). Previous work has shown that having well-defined anno-

tation schema and criteria is important for building up a consistent document

collection for machine learning. Thus, in collaboration with Giorgio Ascoli at

the Neuron Registry, we developed an annotation schema where an article was

marked excluded unless it could meet the following inclusion criteria:

1. The document appears in a peer-reviewed scientific journal.

2. The document is a primary source of the information in question (i.e., a

primary, citable communication of the information in question (and not,

for example, a review article).
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Accepted Neuron Registry Neuron Relations
Expresses protein Does not express protein
Has molecule Does not have molecule
Makes contact to Does not make contact to
Receives contact from Does not receive contact from
Located in Not located in
Has current Has firing pattern
Has part Lacks part
Has orientation Generates
Has mRNA transcript Expresses gene
Lacks quality Has quality
Has size Has shape

Table 2.2: The list of accepted Neuron Registry neuron relation values used for
creating the annotated document collection. The list was generated by examining
entries already annotated into the neuron registry, and examining neuroscience
publications.

3. The document contains all parts of the (Neuron Type, Relation, Value,

Publication ID) tuple.

4. The Neuron Type and Relation identified in the document in question are

found in the accepted set of values:

(a) The Neuron Type must either map to one of the types listed on neu-

rolex.org1, or, if it’s not included, a strong case must be able to made

for needing to include it.

(b) The relation must be an accepted NR relation type (see Table 2.2).

5. The (Neuron Type, Relation, Value, Publication ID) tuple must not already

be included in the NR.

During the process described below, documents were annotated for inclusion in

the NR, and, if it was determined the document ought to be included, the specific

1http://neurolex.org/wiki/Neuron Types With Definitions
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text which led to this judgment was extracted and the information was uploaded

to the NR website.

2.2.3 Developing & Training the Baseline Classifier

100 randomly-selected documents were annotated for the Initial Training collec-

tion (Figure 2.1). We used these documents to conduct a set of classification

experiments that would help us determine various aspects of the active learning

classifier. We were interested in creating a classifier that could perform reasonably

well without using many enriched-engineered features (e.g., named entity recog-

nition, or part of speech tagging). We made an a priori decision to use a support

vector machine classifier with linear kernel[90], using default parameter settings,

as we have used this for a baseline classifier in previous work[8; 9; 63; 66; 68].

Moreover, part of the motivation for the present experiments was to create a

document corpus that could be used for supervised document classification ex-

periments down the road. If a more complex classifier using engineered features

were used here, it’s possible that the selections it makes could affect the results

of those future experiments. Thus, to focus on the AL process, we aimed to use

the simplest possible classification pipeline. We decided there were three aspects

of our classification system we could optimize for the baseline classifier: input

features, feature normalization, and modeling type. The input features we in-

vestigated were all combinations of MeSH terms, abstract unigrams, and title

unigrams (as obtained from the associated MEDLINE record), and full text un-

igrams (as obtained from the above-described pdf-to-text extraction procedure).

We considered two feature vector normalization techniques–one in which the fea-
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tures from different sections of the document are simply combined into a single

larger vector of greater dimension, and another which applies L2 normalization

to the vector components. Finally, we considered two feature modeling methods:

binary, and mutual information-based. In binary feature modeling, each docu-

ment in the training collection is represented as an n-length vector of 0’s and 1’s,

where n corresponds to the unique set of features in the training collection, and a

given index in each document’s vector maps to the same feature. When applying

the training model to unseen data, then, only the features that were observed

in the training collection are used to make the classification judgment–any pre-

viously unseen features are ignored. Mutual Information-based feature modeling

is similar, however, the role of each index of the vector in this method corre-

sponds to the mutual information of that feature for the classification problem

at hand, where we define mutual information, or information gain, of feature j

in all documents as

IGx.j = H(x.j)−H(x.j|yi), (2.1)

where yi corresponds to the true class label y of document i, and H(x.j) is the

entropy of feature j in the collection of documents, defined as

H(x.j) = −
∑

p(x.j) log p(x.j) (2.2)

The results from our baseline classifier experiments are shown in Table 2.3. As

is shown there, the two top-performing systems, in terms of the AUC observed

on 5x2 cross-validation using the 100 manually-annotated documents from the

Initial Training collection (Figure 2.1), used features from the title, abstract,

and MeSH terms from each paper, and binary feature modeling using either
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Feature Type Normalizing Default
Text Title Abstract MeSH IG Binary IG Binary

X X X X 0.737 0.711 0.678 0.680
X X X 0.713 0.798 0.705 0.797
X X 0.596 0.689 0.564 0.670
X X X 0.755 0.707 0.684 0.668
X X 0.755 0.707 0.664 0.668
X X 0.702 0.787 0.689 0.774
X 0.621 0.707 0.567 0.666

X X X 0.739 0.807 0.746 0.808
X X 0.706 0.662 0.775 0.659
X X 0.804 0.650 0.745 0.607
X 0.637 0.687 0.651 0.659

X X 0.675 0.797 0.802 0.801
X 0.638 0.627 0.699 0.635

X 0.751 0.640 0.726 0.600

Table 2.3: Summary of AUC results observed in the baseline classifier cross-
validation (five repetitions of two-way; 5x2) experiments. An X in any of the
four left columns indicates the inclusion of textual features from that portion of
the document. The four right-hand columns show the AUC observed when using
either the Normalizing Feature Combiner (columns five and six), or the Default
Feature Combiner (columns seven and eight), along with either the Information
Gain-based (IG) or binary modelers. The AUCs highlighted in red denote the
two top-scoring system configurations. The top-performing baseline systems were
both obtained from systems using unigrams derived from documents’ title, ab-
stract, and MeSH terms.
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the default or normalizing feature combiners. The default mode for combining

features involved simply combining all features into a binary vector, while the

normalization approach involves also normalizing the length of the vector to 1.

Since the difference between the two top-performing systems was small (0.001),

we opted to use the simpler of the two–the one using default feature combining–for

our active learning experiments.

2.2.4 The Active Learning Procedure

We had two simultaneous goals with our active learning system: to learn more

about the efficiency of our ML approach in the domain of neuron-related doc-

uments, and to identify the greatest number of annotatable documents for the

NR as possible, in the least amount of time, and with the fewest-possible total

documents examined. In a typical AL text-mining experiment, ML scientists will

use a corpus of documents that has already been annotated for a particular task

(e.g., the Reuters Corpus, as in [37; 89; 186; 206; 255; 277]). This is because

such studies are concerned with coming to a greater understanding of what clas-

sification approaches, modeling techniques, and input feature types lead to best

classifier performance in an AL framework. Here, as is often the case with an

under-developed or new knowledge base, we have no gold standard available to us.

If such a corpus were available, we would simply train a document classifier using

the data available, and use the classifier to identify newly-published documents

that contain information relevant to the NR. Although it would be possible to

create a classifier using the little data already in the NR, it results in a classifier

trained to identify documents containing only a small set of neuron-related con-
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cepts (e.g., only documents containing, for example, the word purkinje cell). This

is because, when only a small amount of data is available for a very broad and

terminologically-rich field, such as neuroscience, there is not enough information

available to create a general representation of the sorts of documents that one is

interested in. Often times, the small amount of data available may be about a

small set of concepts for which there has been a great deal of research (e.g., purk-

inje cells), making mentions of specific neuroanatomical features highly-predictive

terms for a classifier built to identify documents containing information that is

similar to those already included in the knowledge base. Ideally, a classifier would

make its judgments based on more general concepts, such as methods that are

often used in NR-relevant publications (e.g., patch-clamp), or observation-related

words associated with those types of methods (e.g., current), but, to learn these

types of associations, the classifier would need to be presented with many more

examples of relevant and irrelevant documents than were available to the NR,

(or, indeed, than often are available to many new knowledge bases). Here we

create a method for using AL to bootstrap the development of a knowledge base

while simultaneously training a document classifier. To our knowledge, this is the

first-published method accomplishing this task.

A work-flow diagram of our annotation procedure can be seen in Figure 2.2. We

trained our baseline classifier on the annotated Initial Training sample, and clas-

sified all 1235 of the documents in the Active Learning pool. We rank-ordered

these judgments in terms of confidence, where a confidence of 1.0 is a document

that our system is highly confident is one containing annotatable information, to

0.0, which is one the system is least confident the document contains annotatable
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information (or, most confident that it does not contain such information). There

are a variety of active learning sample selection methods that have been used in

previous work (for a review, see [258]). We chose this approach for its simplicity

and efficiency. From the rank-ordered list, we identified 30 documents–the top

20 highest confidencethat were most likely to contain annotatable information,

and the 10 that the classifier was least certain about (i.e., the 10 nearest to a

confidence value of 0.5). These numbers of documents were selected because we

thought they would provide the right balance of possible granularity in our per-

formance metrics, while still being small enough that we could detect changes in

classifier performance. These articles were then read in full, and annotated as be-

ing positive or negative for containing information relevant to the NR (the terms

positive-class/relevant and negative-class/not relevant are used interchangeably

in this manuscript). For those which were found to contain annotatable informa-

tion, the relevant data was manually extracted and immediately uploaded to the

NR. The annotated 10 uncertain documents were then added to the documents

from the Initial Training sample (giving 110 annotated documents), the model

was re-trained, and the remaining documents in the Active Learning pool were

re-classified. The whole process was repeated for 20 iterations. We chose to only

include the 10 uncertain documents, rather than using all 30 annotated at each

iteration, in the data the model was trained on because we hypothesized that,

while adding all 30 documents would likely help boost the model’s performance,

in terms of AUC, it wouldn’t necessarily help us pick the most useful documents

for classifier training, and bias the classifier toward positive prediction (see Dis-

cussion section).
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This procedure highlights the dual purpose of this set of experiments: the 10

uncertain documents are akin to those that would be added at each iteration of

a typical active learning experiment, while the 20 most likely relevant documents

are identified at each iteration of our procedure so that we are more likely to

identify documents containing actual annotatable information at each iteration.
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Figure 2.2: Work-flow diagram for annotation in the active learning experiment.
A total of 962 documents were annotated during these experiments–670 during
the active learning procedure, 92 during the random validation experiments, and
an additional 200 for the hold-out test collection, used to evaluate the Virk system
against the random system.

2.2.5 Evaluating the Dual Purpose Approach to Using

Active Learning

We evaluated our general approach in terms of the change in classifier performance

over active learning iterations, and the change in the ratio of the ML-predicted

relevant to truly relevant documents. The former relates to the performance

metrics often used in other AL and text classification studies–change in the area
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under the ROC curve (AUC) over learning iterations. We chose AUC as a per-

formance metric because we were primarily interested in our system producing

accurate rank-orderings, rather than completely accurate predictions–that is, it

was more important to us that the top 20 documents that were predicted to con-

tain annotatable information actually contained such information, than whether

or not the SVM actually predicted them as belonging to the positive class. The

later performance metric has to do with our goal of developing an AL system

that is able to bootstrap knowledge base development by identifying publications

that are likely to be relevant. We would expect that, if our system is able to

accomplish this task, the number of truly relevant publications that it identifies

would increase during the initial stages of training, level out for a time, and then

begin to decline again, once the relevant documents in the AL pool collection

become more rare.

In order to determine whether the classifier would be better off being trained

by all 30 manually-annotated documents at each iteration, rather than just the

10 uncertain documents, we ran a set of experiments comparing the two possi-

ble approaches. To do this, we annotated an additional 200 randomly-selected

documents from the hold-out validation pool. We trained a classifier using the

documents that were selected up to each iteration in the original run of AL exper-

iments, classifying the 200 validation documents using one of two methods–either

a model which was trained using only the 10 uncertain documents identified at

each iteration, or using a model trained on all 30 documents (the 10 uncertain

documents, and the 20 predicted relevant ones).
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Finally, we wished to compare the performance of our system against a randomly-

performing system not using an AL document selection mechanism. To do this,

we started a new active learning system from the same 100 documents selected

to initialize the Virk system, and then randomly selected 10 documents from the

active learning document pool over 19 sampling iterations. If a selected document

had not previously been annotated, the document was annotated, and, if it was a

positive-class document, it was used to add one or more annotations to the NR.

To simulate the process of random sampling over 190 iterations (10 rounds of 19

iterations each), we randomly assigned each of these documents to one iteration in

each round. At each iteration of both systems, the systems were trained on their

annotated training data and evaluated against 200 randomly selected documents

from the previously-described 200 documents that were annotated from the hold-

out validation collection.

2.3 Results

100 randomly-selected documents were annotated for the first iteration of train-

ing, of which 8 were manually determined to contain NR-relevant information.

Based on this, we inferred an 8% positive sample inclusion rate (4.4%-14.8%, 90%

CI, based on the binomial distribution) in the larger population of potentially-

included documents.

Over 20 iterations of AL, a total of 670 full text documents were annotated, over

the course of four months, for containing information to include in the NR. Of

those, 159 were identified for inclusion, with the remaining 511 being excluded.
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Thus, after twenty iteration we observed a positive inclusion rate of approxi-

mately 24%–well outside the originally-projected inclusion rate of between 4.4%

and 14.8%. This, of course, is to be expected from a system designed, in part,

to identify positive-class documents. Figure 2.3 depicts the progress of our anno-

tation and active learning procedure. From this figure, it is clear that there are
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Figure 2.3: Performance statistics for the active learning system over iterations
of document curation. The grey bars show the cumulating number of positively-
annotated documents, while the black dotted line indicate the total number of
documents annotated at a given iteration (increasing by 30 at each iteration
after the first). The solid black line intersected with solid red lines indicates
the estimated number of randomly-selected documents (±90% CI) that, at any
iteration, would need to be annotated in order to obtain the same number of
positive documents identified by Virk by that iteration. After three rounds of
annotation, the average number of documents that would have to be read for a
given number of positives is statistically significantly greater than that needing
to be annotated with the Virk system.

different perspectives from which one can assess performance of our system–such

as the rate at which positives are identified by Virk, and the savings conferred

by Virk over the random system. One consequence of the system identifying a

finite number of relevant documents from a fixed pool is that, as the number
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of positive-class documents in the pool depletes, the classification task becomes

more difficult as the positive documents become more rare. To account for this,

we evaluated our system in terms of an adjusted positive inclusion rate, defined

as

AIR =
npos20

20
n̂posRemaining

nRemaining

, (2.3)

where npos20 is the number of positive-class documents identified in a round of

classification, and n̂posRemaining is the number of positives estimated to remain in

the active learning pool, based on the initially-estimated positive prevalence rate,

and nRemaining is the number of documents remaining in the AL pool. This met-

ric will adjust the fraction of positive-class documents found during one iteration

of AL by the number of positive-class documents that are estimated to remain

in the AL pool, thus accounting for the change in difficulty of the task at each

iteration.

In order to evaluate the effect of only using the 10 uncertain documents to train

our classifier (as opposed to all 30 annotated), we ran an experiment to compare

the relative performance (in terms of AUC) of a system classifying a hold-out

validation set of 200 documents using either a model trained on just the uncer-

tain documents at each iteration, versus one trained on all annotated documents

at each iteration. Of these 200 documents, 28 were found to contain relevant

information for the NR, while the remaining 172 did not. This resulted in a

positive-prevalence rate of 14%, which is within the 90% confidence interval of

the original estimated positive-prevalence rate conducted at the outset of the

study. The results of this experiment are shown in Figure 2.4. In terms of AUC,
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the system trained using the all annotated documents consistently out-performs

the one trained using only the 10 uncertain documents at each iteration, though

both systems begin to converge to similar values after 20 iterations. This implies

that, despite the fact that the classifier is getting trained on a corpus of docu-

ments with a class-distribution different from that of the larger population, the

extra information contained in the additional documents improved the ranking

performance of the classifier. Importantly, however, this does not reflect the im-

pact that this change in training samples might have on our ability to identify the

most informative documents for subsequent training, based on the most uncertain

predictions of the classifier. With the lowest-confidence sample selection method

that we used here, including the 20 most confident documents in the training

would have raised the proportion of positive samples in the training data. This

likely would have biased the confidence estimates upward, leading to the system

being trained with more negative documents and fewer positives. We will return

to this issue in the Discussion section.

Prior to beginning this study, there were 235 entries in the NR, derived from 16

different journals, and submitted by 13 different authors. The majority of these

submissions were added by the NR development team over the course of one year

(between April 2010, and April 2011). Over the course of four months of annota-

tion using Virk, an additional 257 annotations were added to the NR (more than

the number of entries that it included prior to our work). This expanded the NR

coverage of NeuroLex1 neuron types from 16% to 55%. Using the class preva-

lences derived from our initial sample, using a random-selection approach, one

would need to review between 160%-570% more documents than our approach

1http://neurolex.org
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Figure 2.4: Relative performance of a system trained using only the uncertain
documents at each iteration of active learning (black), versus all documents an-
notated up to that point (red), in terms of AUC. At Iteration 1, both systems are
trained using the same data (the 100 initially-annotated documents), and thus
score the same. After that, the system trained using all the data consistently out-
performs the one using only the uncertain data, though both begin to converge
to similar values after 20 iterations.

required (between 1116-3785 total documents).

To examine the validity of our selection approach and performance metrics, we

compared the Virk system to that of a system using the data selected for the first

iteration of Virk, and 10 randomly-selected documents at each of 19 iterations

(if the document had not already been annotated during the Virk process, it was

annotated and added to the NR, if necessary), using the system to classify the

200 hold-out validation documents every iteration. The random process was re-

peated 10 times, so that we could calculate confidence intervals.

The results of the random validation experiment are shown in Figures 2.5 and 2.6.

To compare the Virk and Random Validation systems, we used area under the

receiver-operator curve (AUC) obtained from training on the data available at a

particular iteration, and classifying the hold-out validation set of 200 documents
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that were randomly selected from the Validation partition of the data set. As can

be seen in Figure 2.5, for the first five iteration, the Virk system performs worse

than random, although the performance differences are not substantially signifi-

cant. By the sixth iteration, performance of the Virk system greatly exceeds that

of the Random Validation system. Peak performance by Virk (AUC ≈ 0.87) ap-

pears to occur around iteration 14, while peak performance of Random Validation

levels out by iteration twelve (AUC ≈ 0.72). Figure 2.6 compares the number of

positive-class documents identified by the Virk and Random Validation systems.

After 20 iterations, Virk identified 159 documents containing information relevant

to the NR, whereas the Random Validation system only identified an average of

36 documents. After 4 iterations, our system exceeded the average number of

positive-class documents identified using 20 iterations of random sampling. On

average, the Random Validation system was able to identify approximately 1.5

positive-class documents per iteration (compared to approximately 8.0, by Virk).

Thus, one would have to complete 106 iterations of annotation by random sam-

pling to achieve what our approach was able to do in 20–a greater than 500%

difference in work savings. These results demonstrate that Virk is able to quickly

out-perform the standard document identification approaches used by biocurators

today–our approach was able to identify significantly more relevant documents

than the standard approach, and was able to do so with significantly less anno-

tation effort.

While performance metrics such as AUC and number of positive documents iden-

tified are important to assessing a classification system, in the case of active learn-

ing, they do not necessarily tell the whole story. Besides being able to establish
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Figure 2.5: Performance evaluation comparing AUC of the Virk (red line) and
Random Validation (black line) systems over iterations of active learning. The
Random Validation system AUC was averaged over 10 random samplings, so that
standard error could be calculated (bars). After six iternation, the Virk system
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Figure 2.6: Number of positive-class documents identified over 20 iterations by
Virk (red line) and Random Validation (black line, ± 95% confidence interval).
After 20 iterations, the random validation system identified the number of posi-
tives found after only three iterations of the Virk system.

that our system can make accurate classifications, we also wanted to understand

the trade-off annotators must make when deciding whether to use the system de-

veloped at any particular point or make additional annotations. To address this,

we developed a metric called goodness:work, which quantifies the level of benefit

obtained from accurate classifications made by the system relative to the amount

of work that has been done in developing it up to that point. Biocurators could

use a measure such as this to make informed judgments about when to stop data

curation to train an active learning system, or to make informed decisions about
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how many documents would need to be annotated for future related systems. We

define the goodness:work measure at iteration i as

(g : w)i =
npositivesidentified/ntotalpositivesestimated
nannotateddocument/ndocumentsinALpool

(2.4)

goodness:work over iterations is depicted in Figure 2.7. goodness:work steadily

increases, until it is maximized around iteration 7, where it remains stable for

eight more iterations before beginning to drop around iteration 15, likely because,

at that point, the number of positive documents remaining in the AL Pool has

decreased enough that they are more difficult to find.
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Figure 2.7: goodness:work ratio over iterations of active learning. No data exists
at the first iteration because no active learning has yet taken place. Between
iterations 2 and 7, the goodness:work ratio increases, being approximately level
until iteration 15, where it begins to decline.

To better understand the contribution of different features to performance across

iterations, we created ranked lists of the highest information gain features at each

of the twenty classification tasks. Information gain was calculated according to

I(X|Y ) =
∑
yεY

∑
xεX

p(x, y) log

(
p(x, y)

p(x)p(y)

)
, (2.5)

where p(x, y) is the joint probability distribution of X and Y , and p(x) and
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p(y) are the marginal probability distribution functions of X and Y , respectively.

The top twenty information gain-scoring features at each iteration of the active

learning procedure are shown in Figure 2.8, where the word in the first position

is the one that was the most informative for classification on that particular

round, and its color corresponds to which part of the document meta data it

came from (either title (black), abstract (red), or MeSH term (blue)). As the

figure shows, the predictive features used at the first iteration of AL are a mix of

cell-related terms (e.g., ganglion), relations (e.g., expressed), and stop words (e.g.,

at, or than). After the first iteration, stop words (defined here as terms unrelated

to biological research, such as at, and in) are hardly used, and more cell-related

terminology begins to show up. By the final iteration, a stable selection of features

has been identified, coming from the title, abstract, and MeSH terms. Patch-

clamp, for example, is a method used to study ion channels in the cell, and could

be used to collect data for a variety of types of NR submissions. The presence of

ganglion (likely, from dorsal root ganglion cell) and purkinje (from purkinje cell)

are not surprising either–both of these cell types have been extensively studied

in the literature.
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2.4 Discussion

The creation and maintenance of machine-readable public repositories of scien-

tific information is an increasingly important and interesting area of informatics

research. In this work, we demonstrate the utility of AL systems for aiding in the

community-curated database biocuration workflow. Using a simple approach,

incorporating binary feature modeling of documents title, abstract, and MeSH

terms, and an SVM classifier, we developed a system that shows how AL can be

used by biocurators to quickly add annotated resources to an under-developed

database while simultaneously training an ML classifier for later large-scale use.

For completeness, here, we assumed that no previously-curated data was avail-

able for the initial training data. Its important to note that, for many knowledge

bases, this would not be the case–some small amount of seed training data may

already be available to biocurators, making the start-up costs of using our ap-

proach quite small.

Our research was able to make several important contributions to the NR, as well

as to the neuroinformatics community at-large by improving several aspects of

the NR knowledge base–we increased the number of entries by a factor of 90%,

we increased its coverage of terms from the NeuroLex ontology, and we created

an expert-curated neuroscience document collection that has been manually ac-

cording to whether each contains information that is relevant to the NR (i.e., it

contains curatable information about neuron-related phenomena). According to

our calculations, based on annotation rates observed in this study, we were able

to make approximately 1-2 years-worth of annotation contributions to the NR in
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only four months. The first two of these contributions will help make the NR into

a resource that can be used by multi-level modelers in neuroinformatics (e.g., re-

searchers interested in integrating information across multiple levels of the brain),

as well as researchers wishing to find cited information on various aspects of the

central nervous system at the neuron level. By improving the coverage and depth

of the NR, we have helped increase the visibility of the NR, and therefore increase

the likelihood that it will obtain new users and experts who will be willing to add

their own contributions to the database.

The 962-document manually-curated collection that was created to run our exper-

iments is also an important and usefulcontribution. As the neuroscience literature

base continues to grow, methods for information retrieval and information extrac-

tion will continue to increase in importance, to neuroscientists and neuroinfor-

maticians alike. Many such resources are trained on expertly-curated document

collections that can be expensive to obtain. Here, we created a large collection of

documents for training supervised algorithms. Our document collection has been

annotated at both the document (i.e., relevant v. irrelevant) and sentence level

(the sentence(s) containing the information that led to a relevant judgment), so,

in addition to being useful for training document classification systems, it could

be used for training structure classification algorithms for information extraction.

No such resource was previously available for neuroinformatics.

One limitation of the presently-described experiments is that only one curator

(KHA) was used to assign inclusion/exclusion judgments to documents in the

seed training collection, active learning pool, and evaluation collection. Although
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the curator has a graduate-level education in the neurosciences, and the annota-

tion criteria used was developed in collaboration with a professional biocurators

and the NR staff, it would have been preferable to use a team of curators to

assign labels, so that inter-annotator agreement statistics could have been cal-

culated. Despite this limitation, all the annotations submitted over the course

of this study have been reviewed and accepted by the NR curation staff. Along

similar lines, in order to simplify the full text document acquisition step of our

experiments, we limited our training data collection to only articles published in

2010, in nine top neuroscience journals. We made this choice in order to ensure

that adequate metadata would be available in MEDLINE, and to maximize the

number of articles that we would encounter that would be relevant to the NR,

while still being true to the diversity of the neuroscience literature base as a

whole. Although this wasnt an especially limiting assumption, future work could

extend that presented here by taking a larger, more chronologically diverse slice

of neuroscience publications. This would enable future work to look at the role

of concept drift (e.g., [93]) in the performance of AL and recommender systems

for biocuration.

Similar to others [8; 66; 67; 165; 166; 279; 292], we used AUC and ranking to

evaluate the system and prioritize the literature for annotation work. Another

potential area for future research lies in optimizing the number of uncertain doc-

uments used to train the classifier at each iteration (here, 10 documents) and

the number of predicted-relevant documents used for annotation and evaluation

(here, 20 documents). Although our values were methodically selected, according

to the characteristics of the task we wished to perform, a more principled ap-
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proach would be to derive these values based on the characteristics of the corpus

from which relevant documents are being drawn, in order to both optimize the

rate of training as well as the rate of accumulation of annotated articles. For

example, in corpora where relevant documents are more prevalent, it might make

more sense to increase the number of top-ranked documents drawn at each iter-

ation for annotation into the knowledge base.

The results of our experiment comparing a system trained with only the un-

certain documents to one trained on all the available documents are intriguing.

While the system trained on all the available annotated documents consistently

outperformed the system trained only on the uncertain documents in terms of

AUC, this comparison is incomplete. An important part of our system is the

method used to select the most informative documents for manual annotation

and addition to the training set in the next iteration. In our system, we used the

simple approach of choosing the 10 documents for which the classifier had the

most uncertainty - the documents with the lowest confidence in their predictions.

This enabled us to keep the prevalence of the training set approximately equal

to that of the document pool. If we had included all of the annotated docu-

ments in each round of training (both the uncertain and confident documents),

the training set would become gradually more and more skewed towards the pos-

itive documents and therefore our simple approach of selecting the documents

with the most uncertainty would also be subject to this bias. It is unclear what

the impact would be on the performance of our system in this situation. More

sophisticated means of choosing the most informative documents could avoid this

problem and allow training on all of the annotated documents at each stage with-
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out risk of biasing the classifier. However, these methods tend to be much more

computationally and algorithmically complex than the simple method that was

effective here[91; 258; 277].

Another possibility is to start off training on only the annotated uncertain docu-

ments and after some number of iterations switch to including all of the annotated

documents. An avenue for future investigation will be to examine a priori methods

for identifying the point at which this switch should be madein our studies, based

on Figure 2.4, it appeared that this point occurred somewhere between iterations

10 and 14, but this may have been influenced by some aspects of our experiments

(e.g., class distribution, or the number of documents used from training at each

iteration). Finally, although our system is adept at expanding an online knowl-

edge base (one bottleneck in the workflow of a community-curated database), it

does nothing to address other inefficiencies, such as identifying likely erroneous

submissions, recognizing newly-published articles that contain information of in-

terest, or identifying where in an article the annotatable information could be

found. Each of these, however, should be points of focus for future work.

2.5 Conclusion

In the present study we have demonstrated an approach to bootstrapping the de-

velopment of knowledge bases with active learning. Using a simple support vector

machine classification system, Virk was able to efficiently aid document discovery

for biocuration of the Neuron Registry. Over the four months our system was

used, we were able to increase the coverage of the Neuron Registry, more than
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doubling the number of MEDLINE-indexed references included in the knowledge

base–an addition which would have required between 1-2 years by standard ap-

proaches used today. In addition to contributing to the content of the Neuron

Registry, our approach resulted in a highly-attuned document classifier which will

be used in future studies to identify newly-published relevant documents. The

962 annotated document collection created to conduct the experiments we have

presented is also an important contribution. High-quality sentence-level annota-

tions are not commonly available in the general biomedical informatics field and

rare in neuroinformatics. To our knowledge, ours is the only one of its kind, and,

to encourage additional work on text classification in the neurosciences, we have

made it available as supplementary data.
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Figure 2.8: The top 20 rank-ordered features, in terms of information gain, over
iterations of active learning. The color of the text denotes which section of the
document’s associated MEDLINE record the term came from: either title (black),
abstract (red), or MeSH (blue). Certain terms, such as ganglion are found across
many iterations, though its position in the rank-ordered list changes, while others,
such as “via” were less informative, appearing only in the first iteration.
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Chapter 3

Flokka : A Document

Prioritization System for

Curating Databases in the

Neuroscience

3.1 Introduction

Developing effective automated methods for streamlining biocuration workflows is

essential to the continued advancement of Neuroinformatics. Although databases

documenting the current state of our brain-related knowledge are currently under

development, they contain only a small fraction of the information comprising the

current state of our brain-related knowledge. What’s more, as Neuroinformat-

ics as a field continues to rely on multi-level modeling as a strategy for under-

standing the complexities of the brain, computationally-accessible databases of
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Neuroscience information extracted from the primary literature will become more

and more important. In order to make these databases into effective resources

for mathematical models and Neuroscience researchers alike, we need to develop

strategies for stream-lining biocuration work-flows that rely on text-mining.

Although using text-mining for document prioritization is not new, there are sev-

eral complications associated with using such a system for curating a database

with information derived from Neuroscience manuscripts. First, the language

used to discuss neuroanatomy is quite heterogeneous. Neuroscience is made up

of scientists from a variety of backgrounds (e.g., Biology, Chemistry, Physics,

Computer Science), each of which has its own writing conventions and ways of

discussing neuroanatomy. Second, Neuroscience research is done in a variety of

species–the manner by which the different parts of the brain have been parsed

into structures and substructures frequently differs between these species (e.g.,

birds have a region known as Area X, which is thought to be a homologue of the

basal ganglia, in mammals [86]).

The overall goal of this set of studies was to identify a combination of classification

algorithms and feature generation methods that can lead to good performance in

a document ranking system for prioritizing manuscripts in terms of their relevance

for the Neuron Registry (NR), a community-curated database of neuron-related

information. Flokka, our system, addresses a specific problem in the NR cura-

tion work-flow that is also manifest in other community-curated knowledge bases.

Figure 1.4 depicts the NR submission/curation work-flow. We have developed the

Flokka system to help both external and internal submissions, as well as the cu-
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ration process itself. First, this tool will be able to determine the likelihood that

a publication submitted as a reference to a new entry contains information of rel-

evance to the NR, which could be used as a warning system for flagging erroneous

submission. Second, this tool can be used by internal and external sources alike,

to identify newly-published manuscripts that will likely contain information of

interest to the NR. Finally, this system can be used to prioritize documents, in

terms of their likelihood for containing relevant information, which can be applied

to internal development of the NR, when curators need to read through a large

set of publications in a short amount of times.

3.2 Methods

3.2.1 Obtaining the Document Collection

For the set of experiments described here, we used the annotated document corpus

described in [12] (see Chapter 2). For a full description of the data collection

methods, we refer the reader to that chapter. Briefly, the documents used in this

study were selected from the articles published in the 8 neuroscience journals (see

Table 2.1) in 2010 using an active learning procedure. Documents in this study

were assessed for their relevance to the Neuron Registry1 (NR), and assigned

either a positive-class or negative-class label, according to whether they contained

information that could be included in the NR. 762 documents were randomly

assigned to either the training collection (572 documents: 118 positive-class, 454

negative-class), for developing and comparing various system configurations, or

1http://incfnrci.appspot.com/
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the hold-out testing collection (190 documents: 43 positive-class, 147 negative-

class), for verifying the performance of our chosen systems on previously-unseen

data.

3.2.2 Evaluating the Classifiers

In order to identify the best set of classifiers, we evaluated several classification

algorithms with five repetitions of 2-way cross-validation, in terms of area under

the curve (AUC), and with a common set of features–unigrams constructed from

each document’s title, abstract, and MeSH terms. We investigated a range of

parameterizations for a variety of classification algorithms and implementations,

including support vector machines (SVM; [142]), k-nearest neightbors [2; 9], cen-

troid classification [116], logistic regression [299], adaboost with decision stumps

[221], näıve bayes [152; 153], decision trees [235], random forests [184], star [96],

and winnow [188].

Our previous work [10; 62; 63; 66; 70] has shown that SVMs are particularly ef-

fective for classifying biomedical text, however we have never directly examined

the differences between different implementations of the SVM algorithm on the

same data. Thus, here, we also compared performance two implementations of

the linear support vector machine algorithm: SVMlight, and Weka. In addition,

since many of the classifiers have parameters which need to be optimized (e.g.,

polynomial svm, and random forests), we investigated a range of parameter val-

ues using cross-validation. In an ideal situation, we would have had a separate

hold-out data set for parameter optimization, however, since the data set used in
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these experiments is not large, we opted to just used the cross-validation set for

parameter optimization. For classifiers where a broad range of parameter values

showed equal, or near equal, performance, we selected a set of parameters set-

tings lying in the middle of the equivalent range. The classifiers with different

parameter values, and the ranges we investigated, are shown in Table 3.1.

Classifier Parameter(s) Range(s) Selected Value(s)
SVM (Linear Kernel) C 1 x 10−9 → 1 x 106 1.0
SVM (RBF Kernel) γ 1 x 10−4 → 10 0.02
SVM (Sigmoid Kernel) S 1 x 10−3 → 5 1 x 10−3

SVM (Polynomial Kernel) d, S 1-5, 1 x 10−5 → 0.09 4, 7 x 10−4

Random Forest ntrees, nfeatures 1− 100, 1− 512 74, 32
Adaboost DS niterations 1− 700 300

Table 3.1: Classifier parameter settings investigated in our study. Many of the
algorithms we used did not have parameters needing to be optimized, and so were
excluded from this list. For those here, we selected a logical range of possible
values based on our previous experience with using these classifiers.

We ran our set of cross-validation experiments so that we could choose a group

of classifiers with which to evaluate against a variety of features, in a later ex-

periment. To do this, we had several criteria: performance (in terms of AUC),

diversity (so that we could evaluate how different types of classifiers perform

against different types of input features), and training and classification speed.

3.2.3 Feature Generation Methods

Once we selected a group of classifiers using the baseline set of input features, we

investigated more complex features derived from neuroscience-related terminol-

ogy. Since many of these approaches resulted in quantitative features–as opposed

to the previous experiments, which used binary features–we had to incorporate
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a method for representing these continuously-valued features in the language of

binary feature vectors, which are used by our classifiers. We will describe these

methods, the All Feature Value Sum Normalizing Modeler (AVSM) and the Re-

cursive Partitioning Summing Modeler (RPSM) following our description of the

quantitative features we investigated.

3.2.3.1 Methods for Generating Continuously-Valued Features

3.2.3.1.1 NeuroNames: Quantifying Neuroanatomical Term Mentions

To determine the contribution of the presence of neuroanatomical-related termi-

nology to whether a document contained information relevant to the NR, we cre-

ated a list of regular expressions from the NeuroNames terminology [42; 43; 200],

and incorporated two features based on these into our experiments–the total num-

ber of NeuroName mentions in the full text and MEDLINE records of the input

data, and the total number of unique NeuroName mentions (e.g., if the term

Amygdala was mentioned 20 times in a document, this we result in one unique

count and 20 total counts).

3.2.3.1.2 NeuroLex: Quantifying Terms from a Neuroscience Ontol-

ogy The vertebrate neuron branch of the community-curated ontology Neu-

roLex1 were used to create regular expressions for identifying the presence of

each term within the full text of the training documents. Initial investigation

showed that the only term which was directly identifiable in the training corpus

was retinal ganglion cell, which occurred multiple times in both positive- and

negative-class documents. This is not entirely surprising–Neuroscience is a het-

1http://neurolex.org/wiki/Vertebrate Neuron overview
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erogeneous research research discipline that is composed of investigators from a

variety of academic backgrounds, and each has its own particular way of referring

to neuroanatomical entities and writing conventions. For example, amygdala ba-

solateral nucleus stellate neuron, could be referred to in a publication as stellate

neuron in the basolateral nucleus of the amygdala, which would not be matched

by our approach. Because manually creating a list of regular expressions covering

all the possible ways each of the 247 neuroanatomical entities in the NeuroLex,

we instead hand-selected substrings from the NeuroLex entries which would likely

be found in whatever way someone used to refer to the concept. For example,

the amygdala basolateral nucleus stellate neuron became stellate neuron, and the

retinal ganglion cell became ganglion cell.

3.2.3.1.3 Methods: Quantifying Analytical Technique Mentions Reg-

ular expressions were manually constructed that would enable us to identify

methods-related terms mentioned within the text of articles’ title, abstract, MeSH,

and figure captions. To determine which methods should be represented, the full

text of 10 positive-class documents from our training collection were examined for

the mention of methods-related terms, and regular expressions were constructed

for each that enabled fuzzy matching (e.g., the presence or absence of hyphens,

etc.). To expand this set, the terms were searched for on the MeSH Heading Term

browser1, and relevant methods-related terms from higher up on the tree were

added to our list, where those occurred (e.g., after search for the term Immunohis-

tochemistry, we examined terms higher up in its hierarchy, from the Immunologic

1http://www.nlm.nih.gov/mesh/MBrowser.html
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Techniques category). Additional category subsections were also examined based

on the author’s (KHA) expertise in neuroscience-related methods. This approach

led us to add terms from the following MeSH categories:

1. Analytical Chemistry Techniques

2. Cytological Techniques

3. Genetic Techniques

4. Immunologic Techniques

5. Microscopy

6. Molecular Probe Techniques

Finally, we investigated whether there was useful information to be found in

the average and minimum word-based distances between these types of quan-

titative feature terms. Our thinking was that, since a valid entry for the NR

includes an entity, a value, and a relationship, in the full text of documents,

these will frequently be expressed as sentences describing some finding, and the

method by which it was discovered. Thus, we investigated the mean and mini-

mum document-level distances between methods-related terms and NeuroNames

terms, and methods-related terms and NeuroLex terms. For example, a full text

sentence like “Neurons in the Amygdala were investigated using standard histolog-

ical methods”, would have a 5-word methods/NeuroNames distance, and a 8-word

methods/NeuroLex distance.
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3.2.3.2 Full Text Features

Since full text data was available to us, we wanted to evaluate whether using

features derived from the full text document contributed performance gains over-

and-above those obtained from using the MEDLINE record alone. To use the full

text in our classification workflow, we needed to convert the .pdf representation

of the manuscripts to something plain text. For a full description of our approach,

see [12] (Chapter 2). Briefly, we processed the previously-obtained pdf records

using the pdftotext function in the xpdf library1, and cleaned up the resultant

plain text with a manually-constructed set of regular expressions.

In using our full text features, we wanted to investigate two hypotheses: that using

text-based and quantitative features derived from the full text of a manuscript (as

opposed to just the MEDLINE record) builds a more accurate classifier, and that

only using features derived from full text paragraphs that are likely to contain

important information leads to improved performance over-and-above using the

entire set o full text features. To investigate our first hypothesis, we conducted

a set of classification studies using a combination of feature types identified as

potentially useful in our previous experiments. For that latter, we hypothesized

that the text in table and figure captions of manuscripts would be more likely to

improve classification than that elsewhere in the manuscript. Using our training

data set, we examined which parts of the manuscript the annotatable information

was found. Table 3.2 summarizes these results. Here, the collection of annotated

information obtained from [12] (see Chapter 2) was manually verified by cross-

referencing all annotations with the original .pdf of the respective manuscripts.

1http://www.foolabs.com/xpdf/
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Most annotatable information in the training collection was obtained from pub-

lication abstracts–something already used in the classification systems not using

full text information. The next-most-common locations were the Results sub-

section and figure captions–neither of which are used in MEDLINE record-only

classification systems. Although more annotatable information was found in the

results subsection, the information density of a figure caption is likely to be

higher–that is, the ratio of useful text is likely to be higher here, which could

potentially lead to improved classification performance. Thus, we created a reg-

ular expression for extracting figure captions from our pre-processed plain text

manuscripts, and used the extracted text for a set of experiments mirroring the

full text ones described above.

Subsection Count
Abstract 58

Results 40
Figure Captions 34

Title 11
Methods 5

Table 3.2: Table describing the locations of annotatable information in the full
text. This table was manually-extracted from the annotation data obtained in
[12] (see Chapter 2), and the full text locations were individually verified by
cross-referencing with the original .pdf representation of the manuscript. As
we hypothesized, many annotations could be identified in the abstracts of the
documents we reviewed, with the Results sections and figure captions having
many annotations as well.

3.2.3.3 Quantitative Feature Modeling Approaches

The above-described quantitative features were modeled as set of features for a

binary feature vector using the AVSM and RPSM techniques.
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3.2.4 Train/Classify Experiments

We selected a group of classifiers and feature generation methods for further

evaluation against our hold-out testing data set. Classifiers were selected based

on performance and diversity of approach, while combinations of feature gener-

ation methods were selected solely based on performance both in the presence

or absence of full text information (i.e., Full text + MEDLINE record versus

MEDLINE record alone). Based on our classifier experiments, we selected five

classifiers to evaluate against the hold-out testing data: Linear SVM (C = 1.0),

Näıve Bayes, kIGNN, Random Forest (ntrees = 74, nfeatures = 32), and AdaBoost

with Decision Stumps (niterations = 300). We also selected seven groupings of fea-

ture generation methods–five for when full text is available, and two for when it is

not (Table 3.3). We evaluated these classifiers, with these feature configurations,

by training the model on the entire training collection, and classifying the hold-

out testing collection. We selected an overall best-performing system from all

classifier/feature generation method combinations based on system performance

(AUC), selecting one for the case where full text is unavailable, and one for the

case that it is available.

3.2.4.1 Determining the Effect of Training Data Set Size

To determine the contribution of training set size to performance–and to see

whether further performance gains could be achieved, we did a series of train/classify

experiments in which n-percent (where n=10-100, by 10s) of the training data

was randomly sampled for creating a classification model to use against the en-

tirety of the hold-out testing data collection. At each percent, we conducted 30
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Configuration Feature Generation Methods
1 Captions, NeuroLex, Abstract, Title, MeSH
2 NeuroLex, Abstract, Title, MeSH
3 NeuroLex, Abstract, Title (Trigrams), MeSH
4 Captions, NeuroLex, Abstract, Title (Trigrams), MeSH
5 Full text (Bigrams), NeuroLex, Abstract, Title (Trigrams), MeSH
6 NeuroLex (MEDLINE only), Abstract, Title, MeSH
7 Abstract, Title, MeSH

Table 3.3: Table of our feature generation method sets for the train/classify
experiments, using the hold-out testing data for classification. Feature sets for
full text availability are shown in black, while those for use against the MEDLINE
record only are in red. From these configurations, we selected two best-performing
systems–one for when full text is available, and one for use with MEDLINE
records alone.

train/classify experiments and averaged the AUCs, in addition to computing 95%

confidence intervals for our experiment.

3.3 Results

Initial classification experiments were done using five repetitions of 2-way cross-

validation on the hold-out training data, using a variety of classifiers built on

models constructed from a baseline set of features (word-based unigrams derived

from document titles, abstracts, and MeSH terms). Since many of these classifiers

had parameters that needed to be optimized, we first examined the range of pa-

rameter values that lead to good performance for each classifier, comparing each

classifier parametrization using AUC on five repetitions of 2-way cross-validation

using the above-described set of baseline features. In addition, since there were

a variety of implementations for the SVM algorithm, we also examined whether

there were performance differences between the SVMlight and Weka implementa-
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tions of the linear-kernel SVM classifier.

3.3.1 Selecting Classifier Algorithms

3.3.1.1 SVMlight v. Weka SMO

To determine which implementation of the SVM classification algorithm should

be used in our studies, we analyzed the performance of the SVMlight and Weka

SMO [149; 232] implementations across a range of C-parameter values. For our

C-parameter values, we selected and handful of values in the upper and lower

extremes (e.g., 1.0 x 10−8, 1.0 x 107), as well as a consecutive range of values in

the area of typical C-parameter settings. The results of this study are depicted in

Figure 3.1. As can be seen there, SVMlight consistently out-performed the Weka

implementation. Both implementations showed a step-like increase in AUC at

C-parameter values of 0.1, with the Weka implementation showing the largest

gains at this point. We selected C=1.0 for SVM systems studied from here on

out, as that value is in the middle of the range of best-performing configurations,

and will therefore be likely to generalize to other data sets.

3.3.1.2 SVMlight Radial Basis Function, Sigmoid, & Polynomial Ker-

nels

We examined a range of parameter values for the radial basis function (RBF) and

sigmoid kernels next. Besides the C-parameter, which we fixed at 1.0, the RBF

kernel has a γ parameter. We examined a range of values between 0.001 - 0.01,

0.01 - 0.03, 0.03 - 0.1, and 0.1 - 1.0. The results of this study are shown in Figure

3.2. As this figure shows, there is a range of acceptable parameter values, with
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Figure 3.1: Performance (AUC) of the SVMlight and Weka implementations of the
linear-kernel SVM classification algorithms. SVMlight consistently out-performed
the Weka implementation. Both implementations showed a step-like increase in
AUC at C-parameter values of 0.1.

0.02 being in the middle of that range, having an AUC of 0.862, showing a slight

performance gain over the linear kernel. We also examined a range of S-parameter

values (0.01 - 0.1, 0.1 - 1, and 1 - 5) for the SVMlight sigmoid kernel. The results

of this experiment are shown in Figure 3.3. As can be seen there, the best-

performing sigmoid kernel parametrization is with S = 0.01, achieving an AUC

of 0.839, a negligible improvement over the linear SVM. Finally, we examined

2nd−, 3rd−, 4th−, 5th−degree polynomial kernels across a range of S−parameter

values (0.01 - 0.1, 0.1 - 1, and 1 - 5). The results for this experiment can be seen in

Figure 3.4. Interestingly, each degree kernel had nearly the same maximum AUC

(0.855; the 2nd−degree kernel achieved the negligibly-different 0.854), but they

differed in the frequency with which their parameter tunings approximated peak

performance. The 2nd−degree kernel, for example, tended to score near this value

across the entire parameter range investigated, whereas the 5th−degree kernel had
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only a single parameter setting that lead to this performance. Figure 3.5 shows

another way of looking at these data. Here, we plotted the distribution of AUC

scores across S−parameter values by each kernel degree. Here, the 2rd−degree

kernel had the highest peak around the maximum AUC, meaning that, in the

absence of any prior knowledge about a specific S−parameter value, would would

be most likely to achieve peak performance with a value randomly selected in the

range investigated here with that kernel.

RBF Kernel by Gamma Values
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Figure 3.2: Performance (AUC) of the SVMlight radial basis function kernel across
γ parameter values. For reference, the best-performing linear kernel SVM is
shown in red. The RBF kernel tended to outperform the linear kernel, doing
so over a broad range of γ parameter values, but eventually degrading at more
extreme settings.

3.3.1.3 Adaboost with Decision Stumps & Random Forests

We examined two classification algorithms with parameters to optimize from the

Weka machine learning library [120]–Adaboost with Decision Stumps (AdaboostDS)[102;

103], and Random Forests (RF) [44]. The only parameter that has to be opti-
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Figure 3.3: Performance (AUC) of the SVMlight sigmoid kernel across S parameter
values. For reference, the best-performing linear kernel SVM is shown in red. The
sigmoid kernel only out-performed the linear kernel at one setting, but never did
so with a significant difference in performance.

mized in AdaboostDS is the number of iterations the algorithm has to run. Here,

we investigated a range of 1, 5, and 10, 10 - 100, and 100 - 700, shown in Figure

3.6. Here, we observed very poor performance with a single iteration, as would

be expected, which quickly jumps to 0.790 at 10 iterations. After this, although

performance gains are still seen by increasing the number of iterations, the gains

are modest with each increase, but eventually peak at 0.837 at 600 iterations.

We optimized the number of features and number of trees used by the RF al-

gorithm. The results of these experiments are shown in Figure 3.7. There were

several parametrizations for the number of trees that lead to acceptable perfor-

mance here. As one would expect, the performance of the system increases with

the more features that are added–with a single feature (solid red line), AUC is

almost uniformly lower than other configurations, and, as the number of features

allowed is increased, performance improves. To select a configuration of the RF
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Figure 3.4: Performance (AUC) of the SVMlight 2nd−, 3rd−, 4th−, 5th−degree
polynomial kernels across a range of S−parameter values. As the degree in the
polynomial kernel is increased, peak performance increases slightly, but does so
at the expense of the range of values at which the performance can be obtained.
The second-degree kernel, for example, had a broad range of peak performance
values, whereas the fifth-degree kernel had a very narrow range.

algorithm for our later experiments, we aimed for selecting a number of trees that

had a broad range of acceptable number of feature parameter values leading to

good performance. For this feature, however, since we hadn’t yet conducted our

feature generation experiments, we didn’t want to limit the number of features

given to the algorithm. Thus, since 16, 32, and 64 features all seemed to perform

in the same range, we selected 32 features, with 74 trees.

3.3.1.4 Comparison of Optimized Classifiers

We next compared the performance of the above-described optimized classifiers

along with that of several other classifiers that did not have parameters needing

to be optimized. A list of the classification algorithms investigated and their
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Figure 3.5: Distribution of AUCs across S−parameter values for each of the
SVMlight 2nd−, 3rd−, 4th−, 5th−degree polynomial kernels. The narrow range
of peak performance for the fifth-degree kernel is evidenced here by the broad
density of performance values.

origins follows:

1. k∗ (Star): a classification algorithm that makes judgements according to

the characteristics of the documents positioned around some to-be-classified

document within the feature space, using an entropy-based distance metric.[60]

2. IBK: the Weka implementation of the k-nearest neighbors algorithm. In

the experiments described here, we used the default settings1: 1 nearest

neighbor used in voting, votes unweighted by sample similarity.[2]

3. One Best Feature (OBF): makes predictions based on the single-most infor-

mative feature found in the training set, according to mutual information.

4. Complement Class Näıve Bayes (CNB) [239]

1http://www.cs.tufts.edu/ ablumer/weka/doc/weka.classifiers.IBk.html
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AdaBoost with Decision Stumps
by Number of Iterations
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Figure 3.6: Performance (AUC) of the Adaboost with Decision Stumps classi-
fication algorithm, by number of iterations. Iteration values between 100 and
700 were all investigated, but showed very little variability. For the purposes of
this figure, Iterations 100-600 have been withheld. Although there were many
parameter settings at which the Adaboost system performed well, it took many
hours for these experiments to run.

5. J48, Multiboost J48: The Weka implementation of C4.5 decision trees. For

the experiments here, we used the default parameter settings–0.25 confi-

dence threshold for pruning, a minimum of 2 instances per leaf, and three

folds used for reducing error pruning.[236]

6. Winnow: an algorithm similar to the perceptron, that is known to perform

well in high-dimensional, sparse data.[187; 188]

7. SMO (see above: 3.3.1.1). Weka’s implementation of Support Vector Ma-

chines is based on Platt’s sequential minimal optimization algorithm. [149;

232]

8. Auto Centroid: a classification algorithm that optimizes the number of

per-class sub-clusters by optimizing for the F1 performance metric.

9. CF Centroid [116]

10. Logistic Regression [174]
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Figure 3.7: Performance (AUC) of Weka’s implementation of the Random Forest
classification algorithm. Data are separately-plotted according to the number of
features used by the algorithm, over the number of trees. In the Weka imple-
mentation, the default number of features is set to log(M) + 1, where M is the
number of unique features identified, which is plotted here as a black solid line.
There were many decently-performing parameter configurations for this classifier,
with performance tending to level out around 40 trees.

11. Random Forest (see above: 3.3.1.3)

12. Adaboost with Decision Stumps (see above: 3.3.1.3)

13. Näıve Bayes [144]

14. Centroid [95]

15. kIGNN [9]

16. SVM (sigmoid kernel; see above: 3.3.1.2) [143]

17. SVM (2-degree polynomial kernel; see above: 3.3.1.2) [143]

18. SVM (3-degree polynomial kernel; see above: 3.3.1.2) [143]

104



19. SVM (RBF kernel; see above: 3.3.1.2) [143]

20. SVM (linear kernel; see above: 3.3.1.1) [143]

We compared the above-described algorithms by five-repetitions of two-way cross-

validation on the training set, selecting five algorithms to use moving forward,

for our feature generation experiments. We made our selections primarily based

on performance (AUC), but also diversity in approach. For example, the top-

five performing classification algorithms were all variants of the SVMlight support

vector machine implementation. Although these might be the best-performing

systems on the baseline feature set, it is possible that they would all respond

similarly to newly-introduced feature types. Thus, we selected five classification

algorithms: SVMlight (linear kernel), kIGNN, AdaBoost, and Random Forest. We

selected these classifiers based on their diversity, performance, and speed.
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Figure 3.8: Performance (AUC) of the classification algorithms investigated in
this study, using 5-repetitions of 2-way cross-validation on the hold-out training
data. Bars outlined in red show the best-performance observed during parameter
optimization, and bars shaded blue were selected for use in the feature generation
experiments.
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3.3.2 Feature Generation Methods Selection

To extend the feature types beyond that included in the baseline system config-

urations, we investigated a variety of binary and continuously-valued features.

Many of these features had to do with various ways of quantifying the presence

or absence or neuroscience- and experimental design-related terminologies. For

completeness, we also investigated the utility of n-gram representations of docu-

ments’ title, abstract, full text, and pre-processed full text, for identifying figure

captions. We’ll first review the results for our n-gram and full text experiments,

before turning to the results of the quantitative feature experiments. For all

experiments, we used the linear-kernel SVMlight classifier set to default param-

eter settings, before examining the synergistic effects of combining the selected

and optimized classifiers with the selected feature generation methods; methods

were selected based on performance (AUC) in five-repetitions of two-way cross-

validation.

3.3.2.1 n-gram Experiment results

We examined the efficacy of a classifier using unigram, bi-gram (with unigrams),

or tri-gram (with bi-grams and unigrams) representations of different parts of the

training documents. Full text features were obtained from the plain text output

of pdftotext, following cleaning up with the manually-constructed regular expres-

sions described in the Methods section. Caption-based features were obtained by

pre-processing the full text with a manually-constructed regular expression for

identifying figure and table captions. The results of these experiments are sum-

marized in Table 3.4. Here, it can be seen that adding bi-grams and tri-grams
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had mixed effects across feature types, but, in general, did not make a great

difference. Adding bi-grams and tri-grams to manuscript title unigrams led to a

small, but not insignificant, performance gain over using unigrams alone, while

abstracts were best-represented as unigrams. Full text bi-grams out performed

other representations of full text, included all those for caption pre-processing.

Feature Unigram Bi-gram Tri-gram
Title 0.736 0.741 0.743

Abstract 0.836 0.831 0.824
Full text 0.831 0.839 0.834
Captions 0.805 0.805 0.795

Table 3.4: Summary table of n-gram feature experiment results (in terms of
AUC). The best-performing configuration for each feature type is printed in red.
Representing title features as tri-grams gave a significant performance boost, but
uni-grams were best for Abstract and Caption features.

3.3.2.2 Evaluating the Contribution of Full text & Captions

We next investigated the contribution of adding full text to other feature gen-

eration methods. Although there would likely be many situations in which our

classification system would need to be used on documents for which full text data

is not available (i.e., just the MEDLINE record would need to be used), we hy-

pothesized that, in those situations where full text could be obtained, it might

add some important information over and above that provided by other feature

configurations. Thus, we ran a set of classification experiments in which full text

or captions were added to titles, abstracts, and MeSH, in a step-wise fashion.

The primary purpose of these experiment was to determine whether, on those oc-

casions where full text is available, it is better to use it as-is, or to pre-filter it for

text found in figure captions. Rather than simply compare the two configurations
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directly, we opted to also examine the unique contributions these feature sources

make to the classification model as the informative MEDLINE-based features are

added into the mix. We limited the present experiments to unigrams derived from

the respective sources. The results of these experiments are shown in Figure 3.9.

We observed that full text-based unigrams out-performed captions alone, but, as

MEDLINE-based features begin to be added in to the mix, the caption-filtered

full text systems began to out-perform the full text-based systems. Once titles,

abstracts, and MeSH terms are in the mix, the caption-based system is one point

better than full text. Comparing either group of systems to those not utilizing

full text at all, both perform better, once abstracts are added as a feature source.

3.3.2.3 Evaluating the Contribution of Continuously-Valued Features

We investigated a collection of derived features we collectively refer to as continuously-

valued features, to contrast them with the binary features that have already been

described. For each of the features categories, we examined the distribution of

values by class (Include v. Exclude), prior to examining their possible contri-

bution to a classification system. Thus, we present the distribution results first,

before turning to the classification results.

3.3.2.3.1 NeuroNames We examined the distribution of absolute NeuroN-

ames term counts and unique NeuroName term counts in the MEDLINE records

and full text of documents by their classes. The distributions of total NeuroN-

ames counts for each class are shown in Figure 3.10. For both classes, the peak

of the distribution is around 0–meaning no, or very few, NeuroNames terms were
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identified in both classes, implying that this feature alone may not be useful in

distinguishing the two classes of documents. The distributions of unique Neu-

roNames counts are shown in Figure 3.11. As with the total count distributions,

the peaks of these distributions center around 0, with a second, less extreme peak

around 1. For completeness, we examined the efficacy of these to quantitative

approaches combined with other features in a classifier system, although it does

not appear that there is much information here for the classifier to find.

3.3.2.3.2 Methods-related Terms We examined the distribution of total

methods-related term count and unique methods-related term counts, using our

manually-constructed term list, in the MEDLINE records and full text of docu-

ments by their classes. The distributions for total methods-related term counts

are shown in Figure 3.12. Here, there appears to be similar distribution peaks

between 0 and 5 counts, with the Include-class documents tending to have closer

to 5 counts than the Exclude-class ones. In contrast, Figure 3.13 shows much

more similar distributions between the two classes, implying that it will be diffi-

cult for a classifier to identify documents of interest based on this feature alone.

3.3.2.3.3 NeuroLex We examine the distribution of total number and unique

number of NeuroLex term occurrences in the training documents by class. As

was discussed in the methods section (see 3.2.3.1), these terms were quantified

by matching the MEDLINE and full text features against a set of manually-

constructed regular expressions. In the figures showing these data, the blue lines

correspond to the values the recursive partitioning modeler used to partition
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the continuous values into a set of binary values. We’ve included these here,

because the results of our final optimized classifier and feature generation meth-

ods cross-validation experiments (see 3.3.3) indicated that the NeuroLex features

were helpful to include in the final systems configurations to consider. The dis-

tributions of total NeuroLex counts by document class are shown in Figure 3.14.

As can be seen in this figure, there are some small differences between the two

distributions–the Exclude-class documents’ peak is centered around 0, with a base

that extends to near 10, meaning that they tend to have very few NeuroLex term

mentions, while the Include-class documents have a much broader peak, which

is nearer 10 at its apex. This implies that this feature type might be useful to a

classifier for distinguishing the two classes, but, it could be argued, there may be

better ways of looking at the data. The cuts made by the recursive partitioning

modeler, for example, tend to be between 1 and 10, and are all clustered together,

and are in places where the distributions don’t have a great deal of differences.

This means that, between repetitions of cross-validation, the recursive partitioner

didn’t have many different places to make helpful cuts in the data–it always made

the cuts where the distributions didn’t seem to have many differences. Thus, al-

though it may have found some helpful information here, the small differences

in the distributions imply that there may be a moderate amount of information

here that would be useful to a classifier.

Figure 3.15 shows the distribution of the unique number of NeuroLex occurances

identified in the training set documents by class label. As in Figure 3.14, the cuts

made by the recursive partitioning modeler across repetitions of cross-validation

are shown in blue. The Exclude-class distribution (black) is multi-modal, having
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peaks near 0, 1, and 2, with the highest being near 0. In contrast, the Include-

class documents have a broad distribution with the peak near zero. The recursive

partitioning modeler found a variety of places to make informative cuts in the

values, each of which appears to be located at a place where the two distributions

differ from one another. For example, the cut located near 0.75 is between two of

the Exclude class peaks, and where there is very little density in the Include-class

data. These results lend face validity to using NeuroLex term counts (total and

unique) in a classification system going forward.

3.3.2.3.4 The Contribution of Term Distances The final set of feature

types we studied had to do with term distances–the per-document mean and

minimum distance between a method-related term and a NeuroNames term. Our

original intention was to also create these features for the distances between

methods-related terms and NeuroLex terms, however, our initial experiments

for calculating distances between methods and NeuroNames terms yielded very

little, by way of benefit to the classifier. What’s more, calculating these features

throughout the full text of each document was so time-consuming (i.e., several

hours to complete a cross-validation run) that we decided these features would not

likely be useful in practice. The results of our experiments on using the distances

between methods-related terms and NeuroNames terms are shown in Figures 3.16

and 3.17. For both figures, the distribution of distances are similar between the

document classes. The peaks on the far right of each graph are created by the

default value of 1 x 1019 used by the generator on documents where both methods

and NeuroNames terms could not be found.
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3.3.3 Selection of the Best Classifier System Configura-

tion

Based on the results of the above experiments, and our desire to have a classi-

fication systems that can work quickly both in the presence and absence of full

text availability (non-full text configurations are shown in red below), we picked

seven sets of feature generation methods to evaluate in five repetitions of two-way

cross-validation with the best-selected classification algorithms.:

1. Caption, NeuroLex, Abstract, Title, MeSH

2. NeuroLex, Abstract, Title, MeSH

3. NeuroLex, Abstract, Title (Tri-grams), MeSH

4. Captions NeuroLex, Abstract, Title (Tri-grams), MeSH

5. Full text (Bi-grams), NeuroLex, Abstract, Title (Tri-grams), MeSH

6. NeuroLex (MEDLINE only), Abstract, Title, MeSH

7. Abstract, Title, MeSH

The results of these experiments are shown in Figures 3.18 and 3.19. Looking at

Figure 3.18, we can see that, overall, SVM tended to perform quite well (AUC ≥

0.85). Even in the absence of full text and quantitative features (configuration

7), SVM achieves an AUC of 0.863. Looking across classifiers within feature

configurations, SVM is only out-performed in configuration 2, by RF (δ = 0.002)

and configuration 5, by AdaBoost (δ = 0.02). Figure 3.19 shows the same data,

but reorganized to group the performance of the different classifiers together for
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each configuration. Here, we see that the feature configuration leading to the

best overall performance when full text is available, is configureation 2, which

lead to AUCs of 0.879 and 0.877 in RF and SVM, respectively. In the absence

of full text, configuration 7 appears to be the best, leading to AUCs of 0.863

and 0.861 in SVM and RF, respectively. Interestingly, the addition of full text

affected the classifiers differently. If we compare configurations 2 and 7, each of

which consists of Abstract, Title, MeSH, and NeuroLex (but either run on full

text, in configuration 2, or the MEDLINE record, in configuration 7), we see that

AdaBoost gained 0.029 from the addition of features derived from the full text,

while kIGNN lost 0.006.

3.3.4 Evaluation With the Hold-out Testing Data

To evaluate our system configurations, we trained classifiers on the entire train-

ing data set, and evaluated the hold-out testing set. Our goal was to identify

a best-performing classification system for use when full text is available, and

one for use when it is not. The results of this experiment are shown in Figure

3.20, and reorganized according to system configuration in Figure 3.20. Classifier

and feature configurations were almost uniformly improved over the respective

cross-validation performances, with the SVM systems showing some of the best

improvement. One classifier (Adaboost, configuration 1) ran for 24 hours without

finishing, so those data are missing here.

The overall best systems used SVM classifiers, with feature configuration 3 (C3;

full text available), and SVM with feature configuration 6 (C6; full text un-
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available). RF configuration 6 was a close second to SVM, coming in at 0.01

lower, implying that it may still be worth considering for future use. However,

the SVM classifiers were drastically faster than the RF classifiers (finishing in

seconds, rather than minutes), so they would likely be more desirable for deploy-

ment in the real world anyway. Thus, based on these results, we selected SVM

configurations 3 and 6 for use in future real-world deployment.

3.3.4.1 Train/Classify Learning Curve

To make sure that the performance of our selected systems was not held back

by insufficient training data, we examined learning curves for each system, down

sampling the training set at increasing percentages (from 10 - 100), and classify-

ing the hold-out testing set with the resultant model each time. The results of

this experiment is shown in Figure 3.22. As would be expected, the confidence in-

tervals narrow as the sampling percentage increases, and the C3 system performs

consistently better than C6, and both systems approximate their cross-validation

results at 50% sampling. Neither system appears to have plateaued in perfor-

mance by 100%, implying that further performance gains could be obtained from

adding more data to the training collection.

3.4 Discussion

Our recent work [12] (see Chapter 2) has put us in a unique position to study

the complications associated with developing a document classification system for

identifying publications containing information of interest for Neuroinformatics

databases, such as the NR. Here, we have examined a variety of possible classifi-
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cation algorithms and feature generation methods that have begun to give us a

good idea of what sorts of systems will be successful in this setting.

The studies described in this series of experiments were designed to identify a

classification algorithm that could be used for real-world biocuration problems

in Neuroinformatics. Based on this, we have succeeded: our classifiers are able

to accurately rank a set of documents, in terms of their likelihood of containing

information of interest to a database (here, the NR), and are able to do so very

quickly (on the order of seconds). Both best-performing systems used features

derived from our manually-created set of search terms based on the neuron branch

of the NeuroLex, an open source Neuroscience ontology–something that has not,

to our knowledge, been previously investigated as a source of feature types for

this type of classification problem.

Interestingly, between our cross-validation and train/classify experiments, the

best-performing system changed. This implies that, perhaps, our results are

somewhat subject to the amount of training data available for these experiments.

Since the train/classify experiment were conducted using more data, it is likely

that the results observed here are truer to those that would be observed on a

larger data set, but, to be sure, further experiments should be carried out when

more data is available. This conjecture is further supported by the results of our

learning curve experiments (Figure 3.22). Although the learning curves depicted

in these experiments indicate that our results have begun to stabilize, it is clear

that they have not completely done so. There were two other classification algo-

rithms that are likely to warrant consideration in the future–RF, and AdaBoost.
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Various configurations of the RF classifier tended to perform similarly to the best

SVM configurations, but only exceeded the performance of the best SVMs with

smaller amounts of training data. Possibly, the RF algorithm is more robust to

smaller data sets, whereas SVM may get mislead in these situations. Similarly,

AdaBoost tended to perform amongst the best classifiers. However, there are two

limitations to this algorithm that would likely prevent it from being used in a

real-world setting. First, it’s performance was very much linked to the number of

iterations allowed for the algorithm. Although the parameter settings used here

were selected because of they appeared to lie in the middle of a stable parameter

range, sensitivity to this parameter value may be triggered by using different data

or with smaller data sets. Second, the Adaboost classifier was extremely slow.

In fact, one of the train/classify configurations was allowed to run on a dual core

MacBook Pro for 24 hours and never completed. Even if it had out-performed

SVM, running for this long severely limits its deployment in the real world. In

contrast, the linear-kernel SVMlight ran very quickly and had only one parameter

to optimize that had low variability across parameter values. Even if SVM was

the third- or fourth-best-performing classifier, these characteristics would make

it a very reasonable choice for deployment in the real world.

We investigated a variety of features here, two of which were based on hand-

curated term lists. Although methods-related distance-based continuous-valued

features have been shown to be effective in similar tasks (e.g., the BioCreative

Protein-protein Interaction Document Task [9]), they did not here. Possibly, the

curation task the classifier created in Ambert, 2011 was more methods-centric

than the one here: the experimental detection of protein-protein interaction is
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limited to a handful of methodologies, whereas the scope of the NR is much more

broad, incorporating a variety of bench methods. One interesting finding here is

that, although features derived from the MEDLINE record (i.e., Abstract, Title,

MeSH) tended to lead to decently-performing classifiers, the addition of full text

often improved the best-performing systems. Although the information density

of the text in MEDLINE-related features is much higher, which, in general, can

lead to good performance for general-purpose document classification systems, it

is possible that the specific findings that are curated in the NR can only be rea-

sonably expressed in the full text, such as figure captions, or the results sections.

Both of our best-performing systems incorporated continuous-valued features de-

rived from the NeuroLex Ontology of Neuroscience. Despite the well-documented

text-mining problems associated with the heterogeneity of language in the Neuro-

sciences, it is interesting that the use of an expert-created adaptation of an open

ontology, here, lead to improved performance. Although further experiments are

necessary, we believe this demonstrates the utility of expert-curated term sets in

classification problems that are very narrow in scope, such as is common to the

field of biocuration.

Although the best-performing classifiers in the present set of experiments appear

to be accurate enough for use in the real world, further investigation is necessary

to verify that this is the case. In particular, an implementation study that exam-

ines how they can be best integrated into a biocuration workflow are important.

Even though our systems achieved very high AUCs, it is important that they

have an interface that is easily adopted by biocurators, and requires minimal

alteration of their workflow. Another limitation of this study is that the data
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it uses was manually annotated by one Neuroscientist [12] (see Chapter 2). To

better generalize to the field of Neuroscience in general, it would be beneficial to

incorporate data that has been annotated by other Neuroscientists into this data

set.

3.5 Conclusion

In this study we have demonstrated that an automated system can be used to

identify documents containing information of interest for databases being devel-

oped by the Neuroinformatics community. By training on a manually-curated

Neuroscience document set, we showed that two configurations of an SVM-based

classification system can be used to identify documents of interest, both in the

cases where full text articles are available, as well as those where they are not. In

the presence of full text, we were able to achieve an AUC of 0.925, while in the

absence we achieved an AUC of 0.917–both scores indicate these systems could

be realistically used by Neuroinformaticians and Biocurators. Future work will

need to focus on further quantifying the contribution of training data availabil-

ity to the observed scores (i.e., can scores be improved further with additional

data), and the actual implementation of a system such as ours into a biocuration

workflow.
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Performance of Full Text Features Using
Default Linear-kernel SVM

Feature Combinations

A
U
C

C CT CTA CTAM F FT FTA FTAM

0.5

0.6

0.7

0.8

0.9

1

No Full Text
Captions Only
All Full Text

Figure 3.9: Performance of various feature combinations with two full text-type
features. Combinations involving caption-derived features are shown in dark grey,
while combinations involving the full text extracted from the plain text represen-
tation of the manuscripts are shown in light grey, and the corresponding feature
combinations in the absence of either type of full text are depicted as a red dot.
The addition of full text features tended to lead to performance gains, especially in
the case of filtering the full text for figure captions. Abbreviations: C=Captions,
F=Full text, T=Title, A=Abstract, M=MeSH.
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Figure 3.10: Distribution of total NeuroNames counts by Include (red) and Ex-
clude (black) class label. The distribution of these terms did not differ greatly
between classes.
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Figure 3.11: Distribution of unique NeuroNames counts by Include (red) and
Exclude (black) class label. The distribution of these terms did not differ greatly
between classes.
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Figure 3.12: Distribution of total methods-related term counts by Include (red)
and Exclude (black) class label. The distribution of these terms did not differ
greatly between classes.

120



0 5 10 15

0.00

0.05

0.10

0.15

0.20

Distribution of Unique Method Term Counts by Document Class

D
en
si
ty

Include
Exclude

Figure 3.13: Distribution of unique methods-related term counts by Include (red)
and Exclude (black) class label. The distribution of these terms did not differ
enough to indicate this feature’s usefulness for classification.
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Figure 3.14: Distribution of total NeuroLex term counts by Include (red) and
Exclude (black) class label. The blue lines denote places the recursive partitioning
modeler made cuts during cross-validation.
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Figure 3.15: Distribution of unique NeuroLex term counts by Include (red) and
Exclude (black) class label. The blue lines denote places the recursive partitioning
modeler made cuts during cross-validation.
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Figure 3.16: Distribution of the per-document average distances between a
methods-related term and a NeuroNames term by document class. 1 x 1019

denotes the default value used by the feature generator when either a methods-
related term or a NeuroNames term were not found in a document.
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Figure 3.17: Distribution of the per-document minimum distances between a
methods-related term and a NeuroNames term by document class. 1 x 1019

denotes the default value used by the feature generator when either a methods-
related term or a NeuroNames term were not found in a document.
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Performance of Best Classifiers Using Configurations of the Best-performing Features
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Figure 3.18: Performance of the best-performing classifiers with configurations
of the best-performing feature types, during five repetitions of two-way cross-
validation on the training data. SVM tended to perform well for all feature
configurations, while kIGNN was more variable.
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Figure 3.19: Performance of the best-performing classifiers with configurations
of the best-performing feature types, during five repetitions of two-way cross-
validation on the training data, organized by configuration. Abbreviations:
C=Configuration, k=kIGNN, Ada=AdaBoost. Configurations 2, 3, and 6 tended
to perform well for all classifiers. Classifiers appear in this order: SVM, NB, K,
RF, Ada.
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Figure 3.20: Performance of the best-performing classifiers with configurations
of the best-performing feature types, after training on the training data, and
classifying on the hold-out testing collection.
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Figure 3.21: Performance of the best-performing classifiers with configurations
of the best-performing feature types, after training on the training data, and
classifying on the hold-out testing collection, organized by configuration. Abbre-
viations: C=Configuration, k=kIGNN, Ada=AdaBoost. Configurations 2, 3, and
6 tended to perform well for all classifiers. Classifiers appear in this order: SVM,
NB, K, RF, Ada.
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Figure 3.22: AUC Learning curve of the C3 (black) and C6 (red) systems. Train-
ing data was sampled 30 times at the percentages on the x-axis, to construct 95%
confidence intervals. Both systems responded similarly to increasing data, with
configuration 3 tending to be better than configuration 6.
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Chapter 4

Finna : A Paragraph

Prioritization System for

Biocuration in the Neurosciences

4.1 Introduction

The manual creation of discipline-specific knowledge bases is an expensive and

time-consuming process, requiring the effort of experts over an extended period of

time. Although some general-purpose tools have been developed for streamlining

the workflows of biocuration tasks [49; 53; 130; 146; 233; 237; 244; 296; 297], and

some work has been done on developing task-specific solutions using text-mining

(particularly for the curation of systematic reviews [13; 65; 65; 66; 66; 67; 292;

303]). Many of these approaches have focused on classifying documents in terms

of the likely relevance for the curation task at hand. This, however, only solves

one part of the problem–given a likely relevant document, curators must still read
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it, looking for the information of interest.

Here, we describe Finna, a system that, given a likely-relevant document, will

re-order its composite paragraphs in terms if the likelihood that they contain the

relevant information. This addresses an important bottle-neck in the curation

workflow depicted in Figure 1.4. As a part of the curation process, NR curators

will review any submissions to the knowledge base that they deem necessitate

review. Once an entry has been added, the publication associated with the infor-

mation is, by definition, a positive-class manuscript, even though the submission

may have been made in error. The previously-described system (Chapter 3) can

be used to determine the likelihood that such an error has been made, but, if fur-

ther review is still necessary, it may not be necessary for the curator to read the

entire manuscript in question to find and understand the new submission. Using

the system we describe here, curators may be able to spend less time reviewing

new submissions, leaving them more time to identify new sources.

4.2 Methods

To better address the typical workflow of biocurators at the NR, we extended our

document-level classifier to rank-order the paragraphs of positive-class documents

according to likelihood of containing information that is relevant to curators.

4.2.1 Constructing the Paragraph Document Collection

The gold-standard positive-class documents described in 3.2.1 were randomly-

assigned to either a new training set (128 documents), or a hold-out testing set
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(33 documents), and were broken up into their composite paragraphs. Because

the true structure of the .pdf -versions of the documents were somewhat altered,

following the previously-described pdftotext and regular expression text extrac-

tion procedure, we inferred paragraphs based on new-line-separation. Because

the original annotation of the data used here was done at the sentence level,

rather than at the document, we were able to identify which paragraph or para-

graphs in each document contained the information that lead to a positive-class

assignment. Thus, each paragraph was assigned either a positive- or negative-

class label according to whether it contained annotated information that lead to

a positive-class annotation for the document in which it was found. After this

procedure, the training collection had 9983 paragraphs (158 positive-class, 9825

negative-class), and the testing collection had 2026 paragraphs (35 positive-class,

and 1991 negative-class).

4.2.2 Paragraph Classifier System Design

Rather than run a full series of classifier experiments for this extension of our

previously-described system, we used the best-performing classification algorithm

identified in the document classification train/classify experiments 3.2.4.

4.2.2.1 Feature Methods

Since many of the types of document-level features used in those experiments (e.g.,

document title, abstract, and MeSH terms) can’t be used in the present task, we

investigated the NeuroLex quantitative feature described in our document-level

classification experiments 3.2.3.1, as well as using word-based n-grams (n =

1− 5). In addition, because previous work (3.2) showed that annotated informa-
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tion tended to occur in similar places between documents, we hypothesized that

a feature describing where in the document a particular paragraph is located

would be helpful for classification. Thus, we created a continuous-valued feature

indicating the absolute paragraph order number within a document. Since recur-

sive partitioning tended to be the most useful continuous-valued feature modeling

technique in the previous study, we used it here as well.

4.2.2.2 System Evaluation

Since this the classification task described in this study is fundamentally a rank-

ing task, we used AUC as our primary performance metric. System configurations

were done by performing five repetitions of 2-way cross-validation on the training

data set. The feature configurations that showed some usefulness were then used

in a train/classify experiment, in which a model is trained using the training data

set, and classified using the hold-out test data set.

As a secondary performance metric for our train/classify experiments, we ex-

amined the median number of paragraphs that would need to be read for each

publication in the hold-out classification set, in order to identify a paragraph

containing information that is relevant to the neuron registry. We re-examined

each the best-performing system in the train/classify experiments from this per-

spective. For the purposes of interpreting this metric, we compared this value to

the median number of paragraphs a reviewer would have to read, if they started

from the first paragraph, as published in the pdf version of the manuscript, and

stopped once they reached the sentence(s) leading to the manuscript being in-

cluded in the NR.
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4.3 Results

Our initial classification experiment was done using five repetitions of two-way

cross-validation on the training data collection. We examined two sets of system

configurations–n-grams, where n=1-5, with paragraph locations, and paragraph

locations alone. The results of this experiment are shown in Figure 4.1. From this

figure, it is clear that increasing the number of n in the n-grams improves perfor-

mance, which asymptotically approaches its peak by n = 5. Adding paragraph

locations give a small, but not insignificant, performance boost, with maximum

performance being achieved at 5-grams with paragraph location information. We
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Figure 4.1: Performance of two configurations of the Finna system across increas-
ing n-grams during five repetitions of two-way cross-validation. The n-gram with
paragraph location system was better than n-grams alone, but there was not a
great difference.

ran the same system configurations training on the entire training collection, and

evaluating the resultant models against the hold-out testing collection. The re-

sults of these experiments are shown in Figure 4.2. The results observed here

mirror those seen in the cross-validation experiments–a steady increase in per-

formance with increasing size of n-grams, and a small performance boost ob-

tained by adding paragraph location information. Interstingly, if we compare the
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performance increases between 4-gram and 5-gram in the cross-validation and

train/classify experiments, it appears that AUC has begun to level off in the

train/classify experiments, implying that investigating larger n-grams, or more

training data, may not show dramatic improvements in performance. Based on

these observations, we chose 4-grams with paragraph location information as our

best-performing system, since it performed negligibly worse than the 5-gram sys-

tem (0.906 v. 0.907), and was considerably faster. Finally, we looked at the
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Figure 4.2: Performance of two configurations of the Finna system across in-
creasing n-grams after training on the entire training data set, and classifying
the hold-out testing set. The n-gram with paragraph location system was better
than n-grams alone, but there was not a great difference.

median number of paragraphs in the best-performing system (4-grams, and para-

graph locations) that would have to be read in each document, in order to find the

paragraph containing the positive-class sentence, if they were read in order of the

system-generated rankings. We compared this value to the standard approach to

document review–starting from the first paragraph, and reading until the infor-

mation leading to a positive annotation has been identified. Based on looking at

the distribution of paragraph rankings and paragraph locations (the standard)

(see Figure 4.3), the proper measure of central tendency for these metrics appears
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to be the median. For the Finna approach, a median of 2 paragraphs in each

document have to be read by annotators, whereas in the standard approach, a

median of 6 paragraphs have to be read. The shape of these distributions high-

lights another interesting difference.

The Finna system tended to perform very well on the majority of documents (1-

Distribution of Positive Paragraph Rankings in the Testing Set
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Figure 4.3: Distribution of positive-class paragraph rankings in the hold-out test-
ing data set, after ranking based on a model trained on the training collection.
The distribution of the number of paragraphs an annotator would have to read
using the standard approach is shown in black, while the number of paragraphs
he or she would have to read is shown in red. The median number for each dis-
tribution is shown in blue (dotted for the standard approach, and solid for the
Finna system).

4 paragraphs needing to be read), while the standard approach was more variable

(sdFinna = 9.4 v. sdStandard = 15.4), resulting in many documents requiring over

20 paragraphs to be read. Although Finna yielded an average 7.4 paragraphs

savings in reading, over the standard approach, there were a few documents that

were outliers, in system performance. To delve into our results further, we exam-

ined Finna’s performance in terms of the document locations of the annotated

information (abstract, results, methods, & figure captions). Table 4.1 summarizes

the results of this analysis. Overall, the Finna system tended to out-perform the

standard approach, especially resulting in large reading savings for annotations
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Subsection Count Finna Standard Reading Savings (Finna)
Abstract 16 1.1 3.8 2.7

Title 3 5.0 2.0 -3.0
Results 7 11.1 28.7 17.6

Figure Captions 7 13.6 26.0 12.4
Methods 0 NA NA NA

Summary 33 2 6 7.4

Table 4.1: Table summarizing the results of the Finna paragraphs to read analysis,
broken down by the mean results for the document section in which the annotated
information was found. The Finna system tended to out-perform the standard
approach, unless the annotated information was found in the Title section. In
the Summary row, text appearing in black is a sum for that column, text in red is
the overall median performance for that system, and text in blue is the mean of
that column. Data for annotations found in the Methods section are not present
here, as, in the hold-out testing document collection, no annotatable information
was found in the Methods section.

found in the results section and figure captions. Annotations found in the docu-

ment title, however, tended to lead to a small loss in paragraphs needing to be

read.

4.4 Discussion

The present set of experiments describes a classification system that can be used

for rank-ordering the paragraphs within a manuscript, in terms of their likeli-

hood for containing information of interest to a Neuroscience biocuration task.

By training off of a subset of expert annotated documents known to contain

information that is relevant to the NR, [12] (see Chapter 2) we were able to

create a system that performed well, both in terms of AUC (0.906), and a new

metric, median number of paragraphs to read in a set of documents (median = 2).
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We observed some variation in system performance, depending on where the anno-

tatable information was found in the original document. In general, Finna lead to

a savings in the amount of reading needing to be done by annotators, as compared

with the standard approach, except in the case of information found in document

titles. Although the standard approach is a logical standard of comparison, in

terms of evaluating the practical utility of a paragraph re-ranking system, for un-

derstanding the performance from a machine learning perspective, this may not

be the best metric. For example, using our paragraph parsing method, the title

is always the first paragraph of the document, so any small changes in paragraph

rank by our system can result in apparent performance degradation. Results

sections, conversely, tend to occur toward the end of a manuscript, putting para-

graph re-rankers at an advantage, from the perspective of evaluating in terms of

the number of paragraphs reviewers have to read. Here, our system lead to a

mean savings of 17.6 paragraphs, for documents with annotatable information in

the results section. This is not to say that median paragraphs to read is a useless

metric. Rather, systems such as Finna, that need to be optimized in terms of

machine learning performance and practical performance alike should be evalu-

ated using more than one metric. Here, we’ve created a system that performs

well using standard machine learning metrics for document ranking (AUC), as

well as in terms of a new metric designed to measure performance for how the

system will actually be used. Future research should focus on ways to further

synthesize these two classes of performance metric, in a way that could be useful

for comparing systems that are being deployed to perform a specific task.

Based on our results, this system is ready for evaluation as a component of real-
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world biocuration workflow, likely working in consort with Flokka, our previously-

described document classification system[11]. In this situation, biocurators would

use the Flokka system to identify publications that are highly-likely to contain

information of relevance to a particular biocuration task, and the system would

automatically re-order the paragraphs of each predicted positive-class publication

in terms of their likelihood for having the information that lead to being assigned

a positive-class label. In order to be truly useful to a team of biocurators, such

a system we need to be evaluated within the context of their workflow–it would

need to be integrated in the least-obtrusive way, ideally allowing the curators to

focus on adding expert-annotated data to their databases, rather than on using

the system.

One limitation of our system is that the data it was trained on was generated

by a single Neuroscientist. Although the curator had graduate-level training in

the Neurosciences, it is not possible at this time to evaluate the extent to which

his annotations are generalizable to the larger population of Neuroscience-related

publications. To do this, a data set annotated by multiple experts would be

needed, so that inter-annotator agreement statistics could be computed. Since the

present set of experiments only used paragraph-level information for classification,

one possible extension of the Finna system would be to incorporate document-

level information into the classification workflow. For example, it may be possible

to use the MEDLINE-derived MeSH terms to adjust the prior probability of

certain paragraphs containing important information: the occurrence of certain

NeuroLex entries [11; 26] in the MeSH terms and certain paragraphs may imply

that paragraph is more likely to succinctly communicate the main finding(s) of
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the manuscript. Beyond this, another way to improve future systems would be

to model MEDLINE-related elements of the document (e.g., abstract and title)

separately, removing them from the document. This would likely improve Finna’s

handling of the Title paragraphs.

4.5 Conclusion

In this study we have demonstrated that an automated system can be used to

rank-order a publication’s paragraphs, in terms of their likelihood for containing

information that is of interest to a biocuration task in the Neurosciences. By

training on a manually-curated Neuroscience document set that has been pre-

filtered to only include documents that do, in fact, contain information of interest,

we showed that a simple configuration of an SVM-based classification system can

be used to identify paragraphs of interest. We were able to achieve an AUC of

0.906 with our selected system, which was able to complete the classification task

on the order of several seconds. Based on its level of performance and its speed,

this system could be integrated into a real-world biocuration workflow, and used

to streamline the process of curating a knowledge base.
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Chapter 5

Discussion

In this thesis we have presented a set of text-mining tools for making the process of

biocuration in the Neurosciences more efficient. More specifically, we’ve focused

our work on addressing several work-flow bottlenecks at the Neuron Registry

(Figure 1.4). Although our studies focused on one specific neuroscience database

more efficient, our approach is generalizable to any community-curated database

that has a workflow similar to the Neuron Registry (NR). As community-based

curation increases in popularity, in will become more important for the bottle-

necks in such a framework to have automated solutions. For example, if the NR

were receiving 100 submissions per week, that would require the curation staff

to manually verify the content in 100 documents per week, which is not likely to

be realistic for a relatively small group. By using the Flokka + Finna system,

the curation staff may be able to automatically weed out erroneous submissions,

while efficiently reading only the likely important paragraphs in predicted-positive

manuscripts.
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One of the most important contributions of this thesis is our general-purpose

approach to bootstrapping the startup of computationally-accessible knowledge

bases 2. In order to train the types of classifiers used in Chapters 3 and 4,

one needs to have access to sufficient training data to build a classifier that can

accurately carry out the task at hand. This is not a problem specific to the Neu-

rosciences, or even text-mining, rather, it is one which pervades the entire field

of supervised machine learning. Using our approach, we were able to create a

gold-standard data set for the training and evaluation of the classifiers needed

to help the NR, all while adding entries to the relatively small database. We

did this in up to 1
6

the time standard approaches to data set development would

have taken, more than doubling the number of entries in the NR during that time.

Although there is face validity to the tools we created being useful to real-world

biocuration tasks, the extent to which they can fit into existing biocuration work-

flows has yet to be evaluated. An observation in favor of them being success-

ful is that creating the data set described in Chapter 2 was itself a real-world

biocuration task. That said, it is likely that every team charged with creating

computationally-accessible knowledge bases will have their own particular work-

flow, some of which will have a more natural integration of our tools than others.

As a first pass at examining the utility of our tools outside of the biocuration

tasks performed here, we conducted a mock biocuration task that is a subset of

the types of tasks performed at the NR. To do this, in collaboration with the Allen

Brain Institute, we created a classification system specifically designed to identify

documents that are likely to contain information about neuronal gene expression,

and deployed our system to an OHSU web-server, using a simple XML-RPC inter-
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face. We publicly released the code for using this system onto github1, in addition

to including it in the Appendix of this dissertation (see Chapter 6). We created a

classification model based on performance (AUC) during five repetitions of 2-way

cross-validation, using a modified version of the data set described in Chapter 3

(modified such that documents associated with gene expression information in the

NR were positive-class, and all others were negative-class). The cross-validation

results of this study are presented in Figure 5.1. Based on the studies reported in

Chapter 3, we expected some configuration of SVM to perform best on this task,

however, the overall best-performing system used the kIGNN algorithm, title, ab-

stract, and MeSH, obtained from MEDLINE records, along with a quantitative

feature representing the number of Allen Brain Institute gene mentions [34; 85]

in the full text of the documents. These results imply that, while SVM may be

the overall best-performing classifier for the tasks investigated in this thesis, more

specific curation tasks may require differently-configured systems. This will be

an avenue for future investigation.

Although future studies will need to confirm this, implementing this gene expres-

sion classifier system as an XML-RPC service required minimal effort on the part

of the author, and one of the curators at the NR (personal communication). The

interface can take either a single PubMed Identifier (pmid), or a batch of pmids,

using the full text-based system (kIGNN) if full text can be easily found, and

the MEDLINE record-only system (SVM) if it cannot. Since the NR typically

request a pmid be associated with a new submission, it would be straightforward

for their server to simply pass the pmid through our web service, notifying the

1https://github.com/ambertk/NeuronRegistryCorpus.git
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Figure 5.1: Performance of three classification systems for identifying documents
gene expression-related information. kIGNN performed best for this problem, in
contrast to those described in Chapter 3.

curators if a new submission has been made that is associated with a confidence

value below some threshold they can determine.

Another avenue for future investigations lies in examining the change in Neu-

roscience terminologies over time. Concept drift [93] is a well-documented phe-

nomenon that has been investigated primarily in large corpuses of news reports

(e.g., the Reuters corpus), but has received very little attention in the context of

the Neurosciences. Neuroscience is a rapdily-changing field [260]; it is made up

of a variety of disciplines, each having their own way of communicating things,

and each having their own rates of concept change over time. As such, a multi-

discipline knowledge base, such as the NR, is likely to be affected by concept drift

in some interesting ways that will benefit from study.
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5.1 Conclusion

Here, we have presented a suite of text-mining tools that are useful for biocura-

tion tasks in general, and streamlining curation workflows in the Neurosciences, in

particular. They can be used in conjunction with one another, or individually–

each solving an important biocuration task in its own right. Virk, an active

learning system for bootstrapping the curation of knowledge bases, was able to

more than double the number of entries in the Neuron Registry, while simulta-

neously generating a gold-standard data set for the creation and evaluation of

neuroscience document classifiers, in 1
6

the time of standard approaches. Flokka,

a document classification system using Support Vector Machines and information

derived from the NeuroLex open-scource ontology of Neurosciences, achieved an

AUC of 0.925, showing great promise for its deployment in the real world. Finna,

a paragraph ranking system was a first approach at solving a relatively new prob-

lem in biocuration, achieved an AUC of 0.90, and, based on our results, would

require biocurators to read a median of 2 paragraphs for the NR curation task,

compared with 6 paragraphs, using the standard reading order. Taken together,

our results show that effective text-mining solutions for the neurosciences require

the effective use of the open-source resources available to neuroscientists today,

and a deep understanding of how neuroscientists communicate in publications.
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Chapter 6

Appendix 1: Neuron Registry

Data Set

In addition to releasing the data set generated over the course of our active learn-

ing experiments in Chapter 2, we have included our data set here. The data

are presented in two parts. First, we present the document-level judgements,

where documents are denoted by their PubMed ID, an INCLUDE judgement

indicates it was determined to contain relevant information for the Neuron Reg-

istry, and an EXCLUDE judgement indicates that it did not. Second, we present

the sentence-level annotations for the positive class documents. Documents are

again designated according to their PubMed ID, and the respective SUPPORT

column entries indicate the sentence span containing information leading to an

INCLUDE judgement. Importantly, because some documents had more than

one sentence leading to an INCLUDE judgement, some documents have multiple

rows.
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6.1 Document-level Annotations

JUDGEMENT PMID
EXCLUDE 19481585
EXCLUDE 19576959
EXCLUDE 19699275
EXCLUDE 19748564
EXCLUDE 19770192
EXCLUDE 19772906
EXCLUDE 19778592
EXCLUDE 19786083
EXCLUDE 19788920
INCLUDE 19796672
EXCLUDE 19804817
INCLUDE 19815003
INCLUDE 19815055
EXCLUDE 19818832
EXCLUDE 19818833
EXCLUDE 19818840
INCLUDE 19819309
EXCLUDE 19822542
EXCLUDE 19825395
INCLUDE 19833105
INCLUDE 19833108
EXCLUDE 19835848
EXCLUDE 19836361
EXCLUDE 19836362
INCLUDE 19837134
INCLUDE 19837136
EXCLUDE 19837137
INCLUDE 19837138
EXCLUDE 19837139
EXCLUDE 19840840
EXCLUDE 19846621
EXCLUDE 19850105
EXCLUDE 19850107
INCLUDE 19850111
EXCLUDE 19853029
INCLUDE 19853587
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EXCLUDE 19853643
EXCLUDE 19854241
EXCLUDE 19854242
EXCLUDE 19854243
EXCLUDE 19854244
EXCLUDE 19857467
INCLUDE 19857553
EXCLUDE 19857554
EXCLUDE 19857562
EXCLUDE 19874866
EXCLUDE 19874869
EXCLUDE 19874873
EXCLUDE 19878705
EXCLUDE 19878711
INCLUDE 19879331
EXCLUDE 19879335
EXCLUDE 19879860
EXCLUDE 19879921
EXCLUDE 19879926
EXCLUDE 19879927
EXCLUDE 19883739
EXCLUDE 19884315
EXCLUDE 19889845
EXCLUDE 19889850
EXCLUDE 19892005
EXCLUDE 19895868
EXCLUDE 19895870
EXCLUDE 19895872
EXCLUDE 19896521
INCLUDE 19897018
EXCLUDE 19900959
INCLUDE 19903514
EXCLUDE 19906874
INCLUDE 19906875
EXCLUDE 19906876
EXCLUDE 19906877
EXCLUDE 19906878
EXCLUDE 19906880
INCLUDE 19906884
EXCLUDE 19906885
INCLUDE 19906886
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EXCLUDE 19909731
INCLUDE 19909790
EXCLUDE 19909792
INCLUDE 19909793
EXCLUDE 19909794
EXCLUDE 19909796
EXCLUDE 19909797
EXCLUDE 19913606
EXCLUDE 19914223
EXCLUDE 19914335
EXCLUDE 19914337
EXCLUDE 19914353
EXCLUDE 19917566
EXCLUDE 19917569
EXCLUDE 19917570
EXCLUDE 19922772
INCLUDE 19923250
EXCLUDE 19925847
INCLUDE 19925852
INCLUDE 19925855
INCLUDE 19931229
EXCLUDE 19931230
EXCLUDE 19932692
EXCLUDE 19932735
EXCLUDE 19932740
EXCLUDE 19933754
EXCLUDE 19939956
EXCLUDE 19939958
EXCLUDE 19941837
EXCLUDE 19944141
EXCLUDE 19944736
EXCLUDE 19944742
EXCLUDE 19945444
EXCLUDE 19945511
INCLUDE 19948656
EXCLUDE 19948659
EXCLUDE 19948660
EXCLUDE 19958811
EXCLUDE 19958814
EXCLUDE 19958815
INCLUDE 19958820
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EXCLUDE 19961902
INCLUDE 19961903
INCLUDE 19961904
EXCLUDE 19961905
INCLUDE 19961906
EXCLUDE 19961908
EXCLUDE 19962370
INCLUDE 19962427
EXCLUDE 19962428
EXCLUDE 19962429
EXCLUDE 19963038
EXCLUDE 19963040
EXCLUDE 19963054
EXCLUDE 19968968
EXCLUDE 19969043
EXCLUDE 20004651
INCLUDE 20004700
EXCLUDE 20004702
EXCLUDE 20004709
EXCLUDE 20004713
EXCLUDE 20005920
EXCLUDE 20005922
INCLUDE 20005924
EXCLUDE 20006674
EXCLUDE 20006677
EXCLUDE 20006679
INCLUDE 20006972
EXCLUDE 20006975
INCLUDE 20018227
EXCLUDE 20018232
INCLUDE 20018832
INCLUDE 20018836
EXCLUDE 20025854
EXCLUDE 20025939
EXCLUDE 20026089
INCLUDE 20026091
EXCLUDE 20026180
EXCLUDE 20026181
EXCLUDE 20026246
EXCLUDE 20026247
EXCLUDE 20026250

146



EXCLUDE 20026251
EXCLUDE 20026266
EXCLUDE 20026315
EXCLUDE 20026383
EXCLUDE 20032230
INCLUDE 20032232
EXCLUDE 20032240
EXCLUDE 20032241
EXCLUDE 20034478
EXCLUDE 20034544
EXCLUDE 20034545
EXCLUDE 20035829
EXCLUDE 20036314
EXCLUDE 20036315
EXCLUDE 20036714
EXCLUDE 20036717
EXCLUDE 20036723
EXCLUDE 20038443
EXCLUDE 20038444
EXCLUDE 20040367
INCLUDE 20042702
INCLUDE 20043887
EXCLUDE 20043974
EXCLUDE 20043976
EXCLUDE 20045038
EXCLUDE 20045451
EXCLUDE 20045719
EXCLUDE 20045894
EXCLUDE 20045897
INCLUDE 20045899
EXCLUDE 20045901
EXCLUDE 20051233
INCLUDE 20053845
EXCLUDE 20053849
EXCLUDE 20056127
INCLUDE 20056129
EXCLUDE 20056130
EXCLUDE 20056131
INCLUDE 20056135
EXCLUDE 20056139
EXCLUDE 20059989
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EXCLUDE 20060032
INCLUDE 20060034
INCLUDE 20060035
EXCLUDE 20060436
INCLUDE 20060438
INCLUDE 20060460
INCLUDE 20060884
INCLUDE 20064491
EXCLUDE 20064853
EXCLUDE 20064855
EXCLUDE 20071623
EXCLUDE 20071625
EXCLUDE 20071632
INCLUDE 20074625
INCLUDE 20074632
EXCLUDE 20079337
EXCLUDE 20079346
EXCLUDE 20079403
EXCLUDE 20079808
INCLUDE 20080147
EXCLUDE 20080149
EXCLUDE 20080150
EXCLUDE 20080152
EXCLUDE 20089816
EXCLUDE 20093174
EXCLUDE 20096330
EXCLUDE 20096331
EXCLUDE 20096333
INCLUDE 20096335
EXCLUDE 20096669
EXCLUDE 20096750
EXCLUDE 20096752
EXCLUDE 20097264
EXCLUDE 20097279
EXCLUDE 20100739
EXCLUDE 20100741
EXCLUDE 20105451
EXCLUDE 20105453
EXCLUDE 20107118
INCLUDE 20107127
EXCLUDE 20107128
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EXCLUDE 20107129
INCLUDE 20107132
EXCLUDE 20109529
INCLUDE 20114035
EXCLUDE 20116415
EXCLUDE 20116419
EXCLUDE 20117173
EXCLUDE 20117174
EXCLUDE 20122901
EXCLUDE 20123000
EXCLUDE 20123002
EXCLUDE 20123120
EXCLUDE 20123783
EXCLUDE 20123784
EXCLUDE 20130038
EXCLUDE 20130040
EXCLUDE 20130041
INCLUDE 20130043
EXCLUDE 20132864
EXCLUDE 20132866
INCLUDE 20132867
EXCLUDE 20132869
INCLUDE 20138028
EXCLUDE 20138119
EXCLUDE 20138122
EXCLUDE 20138127
EXCLUDE 20138851
EXCLUDE 20138970
EXCLUDE 20138974
EXCLUDE 20141765
EXCLUDE 20142269
EXCLUDE 20142271
EXCLUDE 20142274
EXCLUDE 20142275
EXCLUDE 20144689
EXCLUDE 20144691
INCLUDE 20144697
EXCLUDE 20144699
EXCLUDE 20147417
EXCLUDE 20149783
INCLUDE 20149841
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EXCLUDE 20149842
EXCLUDE 20152880
EXCLUDE 20152881
INCLUDE 20152884
EXCLUDE 20152885
EXCLUDE 20153298
EXCLUDE 20153299
EXCLUDE 20153403
EXCLUDE 20153737
EXCLUDE 20153738
EXCLUDE 20153807
EXCLUDE 20156524
EXCLUDE 20164390
EXCLUDE 20167206
INCLUDE 20167256
EXCLUDE 20167258
EXCLUDE 20167259
INCLUDE 20167261
EXCLUDE 20176001
EXCLUDE 20176082
EXCLUDE 20178832
EXCLUDE 20178834
EXCLUDE 20181735
INCLUDE 20184943
INCLUDE 20184948
EXCLUDE 20184949
EXCLUDE 20188142
INCLUDE 20188149
EXCLUDE 20188152
EXCLUDE 20188154
EXCLUDE 20193738
EXCLUDE 20193741
EXCLUDE 20193743
EXCLUDE 20193750
EXCLUDE 20194124
EXCLUDE 20194125
EXCLUDE 20194127
EXCLUDE 20194131
EXCLUDE 20194133
EXCLUDE 20197064
INCLUDE 20206235
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EXCLUDE 20211154
EXCLUDE 20211609
EXCLUDE 20211610
INCLUDE 20211697
EXCLUDE 20211698
INCLUDE 20211700
EXCLUDE 20211704
INCLUDE 20211975
EXCLUDE 20211983
EXCLUDE 20219631
EXCLUDE 20219633
EXCLUDE 20219634
EXCLUDE 20219648
EXCLUDE 20220081
EXCLUDE 20223226
INCLUDE 20223280
INCLUDE 20223282
EXCLUDE 20226230
INCLUDE 20226232
INCLUDE 20226768
INCLUDE 20227462
EXCLUDE 20227464
EXCLUDE 20231147
EXCLUDE 20298684
EXCLUDE 20298749
EXCLUDE 20298759
EXCLUDE 20298762
EXCLUDE 20303337
EXCLUDE 20303338
EXCLUDE 20304030
INCLUDE 20307510
EXCLUDE 20307636
EXCLUDE 20308253
EXCLUDE 20332016
EXCLUDE 20338151
EXCLUDE 20338225
EXCLUDE 20338226
INCLUDE 20346391
INCLUDE 20347011
INCLUDE 20347939
EXCLUDE 20347945
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EXCLUDE 20350587
EXCLUDE 20350589
EXCLUDE 20351041
INCLUDE 20351049
EXCLUDE 20353762
EXCLUDE 20359525
EXCLUDE 20359526
EXCLUDE 20360027
INCLUDE 20362644
EXCLUDE 20371267
EXCLUDE 20371268
EXCLUDE 20371269
EXCLUDE 20371277
EXCLUDE 20371377
EXCLUDE 20375140
EXCLUDE 20380824
EXCLUDE 20381470
INCLUDE 20381473
EXCLUDE 20381586
EXCLUDE 20381587
EXCLUDE 20381588
EXCLUDE 20381589
EXCLUDE 20382134
EXCLUDE 20382135
EXCLUDE 20382206
EXCLUDE 20385204
EXCLUDE 20385205
EXCLUDE 20388498
INCLUDE 20394799
EXCLUDE 20394801
INCLUDE 20394802
EXCLUDE 20398736
EXCLUDE 20398738
EXCLUDE 20399252
EXCLUDE 20399253
EXCLUDE 20399256
EXCLUDE 20403413
EXCLUDE 20406669
INCLUDE 20416359
EXCLUDE 20417250
INCLUDE 20417252
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EXCLUDE 20417256
EXCLUDE 20417694
INCLUDE 20420813
EXCLUDE 20421283
EXCLUDE 20421284
EXCLUDE 20423699
INCLUDE 20430080
INCLUDE 20430082
INCLUDE 20430087
INCLUDE 20430089
EXCLUDE 20430090
INCLUDE 20433897
EXCLUDE 20433898
INCLUDE 20433901
EXCLUDE 20433905
EXCLUDE 20434522
EXCLUDE 20434528
EXCLUDE 20435099
EXCLUDE 20436038
EXCLUDE 20436041
EXCLUDE 20436042
INCLUDE 20438721
INCLUDE 20438805
EXCLUDE 20438808
INCLUDE 20438810
INCLUDE 20438814
EXCLUDE 20438823
EXCLUDE 20438824
EXCLUDE 20442265
EXCLUDE 20451504
EXCLUDE 20451507
INCLUDE 20451586
EXCLUDE 20452401
EXCLUDE 20452406
EXCLUDE 20457221
EXCLUDE 20457223
INCLUDE 20457226
EXCLUDE 20457238
INCLUDE 20460115
INCLUDE 20466037
EXCLUDE 20470764
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EXCLUDE 20470865
EXCLUDE 20470866
INCLUDE 20470874
INCLUDE 20471377
EXCLUDE 20471378
EXCLUDE 20472034
INCLUDE 20472035
EXCLUDE 20478276
EXCLUDE 20478278
EXCLUDE 20478356
INCLUDE 20478357
EXCLUDE 20478359
EXCLUDE 20478361
EXCLUDE 20478367
EXCLUDE 20478368
INCLUDE 20488168
EXCLUDE 20493176
EXCLUDE 20493235
EXCLUDE 20493242
EXCLUDE 20493932
EXCLUDE 20498227
EXCLUDE 20498228
EXCLUDE 20498233
INCLUDE 20498234
EXCLUDE 20501327
EXCLUDE 20510339
INCLUDE 20510892
EXCLUDE 20513366
EXCLUDE 20515664
EXCLUDE 20516339
EXCLUDE 20516340
EXCLUDE 20516342
EXCLUDE 20516344
EXCLUDE 20516349
EXCLUDE 20519317
EXCLUDE 20519318
INCLUDE 20519320
EXCLUDE 20537989
EXCLUDE 20538047
EXCLUDE 20538048
EXCLUDE 20540934
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EXCLUDE 20540989
EXCLUDE 20542089
EXCLUDE 20542092
INCLUDE 20542093
EXCLUDE 20542094
EXCLUDE 20546705
EXCLUDE 20546711
EXCLUDE 20547144
EXCLUDE 20547679
EXCLUDE 20547682
EXCLUDE 20553803
EXCLUDE 20553817
EXCLUDE 20558148
EXCLUDE 20561510
EXCLUDE 20561561
INCLUDE 20561573
INCLUDE 20561574
EXCLUDE 20566385
EXCLUDE 20570602
EXCLUDE 20570603
EXCLUDE 20570607
EXCLUDE 20570714
EXCLUDE 20570717
EXCLUDE 20573572
EXCLUDE 20580637
EXCLUDE 20580659
EXCLUDE 20580660
EXCLUDE 20580772
EXCLUDE 20580784
EXCLUDE 20580788
INCLUDE 20580801
EXCLUDE 20594945
EXCLUDE 20595020
EXCLUDE 20595050
EXCLUDE 20595051
EXCLUDE 20599476
EXCLUDE 20599478
EXCLUDE 20599586
EXCLUDE 20599592
EXCLUDE 20599821
EXCLUDE 20599833
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EXCLUDE 20599835
EXCLUDE 20599836
EXCLUDE 20600590
INCLUDE 20600592
EXCLUDE 20600595
EXCLUDE 20600600
EXCLUDE 20600601
EXCLUDE 20600607
EXCLUDE 20600609
EXCLUDE 20600612
EXCLUDE 20600618
EXCLUDE 20600620
EXCLUDE 20600623
EXCLUDE 20600639
EXCLUDE 20600640
EXCLUDE 20600644
EXCLUDE 20600647
EXCLUDE 20600648
EXCLUDE 20600649
EXCLUDE 20600654
EXCLUDE 20600655
EXCLUDE 20600656
INCLUDE 20600657
INCLUDE 20600667
INCLUDE 20600669
EXCLUDE 20600675
EXCLUDE 20600738
INCLUDE 20600740
EXCLUDE 20603183
INCLUDE 20603186
EXCLUDE 20603189
EXCLUDE 20603191
EXCLUDE 20603193
EXCLUDE 20603331
EXCLUDE 20603333
EXCLUDE 20603337
INCLUDE 20603338
EXCLUDE 20609381
EXCLUDE 20610036
EXCLUDE 20619318
INCLUDE 20620193
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EXCLUDE 20620197
EXCLUDE 20620199
EXCLUDE 20621161
EXCLUDE 20624375
EXCLUDE 20624377
INCLUDE 20624793
EXCLUDE 20624794
EXCLUDE 20630476
EXCLUDE 20630477
EXCLUDE 20633613
EXCLUDE 20634182
EXCLUDE 20634183
EXCLUDE 20634184
EXCLUDE 20637742
EXCLUDE 20637833
INCLUDE 20637834
EXCLUDE 20638442
EXCLUDE 20638447
EXCLUDE 20638463
INCLUDE 20638464
EXCLUDE 20638959
EXCLUDE 20639000
EXCLUDE 20639005
EXCLUDE 20643194
EXCLUDE 20643767
EXCLUDE 20643768
EXCLUDE 20643777
EXCLUDE 20650306
EXCLUDE 20650307
EXCLUDE 20654589
EXCLUDE 20654597
EXCLUDE 20654699
EXCLUDE 20654702
EXCLUDE 20655300
EXCLUDE 20655362
EXCLUDE 20659540
EXCLUDE 20660565
EXCLUDE 20660566
EXCLUDE 20660568
EXCLUDE 20673789
EXCLUDE 20674554
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INCLUDE 20674557
EXCLUDE 20674683
INCLUDE 20674684
INCLUDE 20674686
INCLUDE 20674687
EXCLUDE 20675813
INCLUDE 20678546
INCLUDE 20678549
EXCLUDE 20678553
EXCLUDE 20678554
EXCLUDE 20678556
EXCLUDE 20679351
INCLUDE 20679355
EXCLUDE 20685230
EXCLUDE 20685231
INCLUDE 20685388
EXCLUDE 20685612
EXCLUDE 20688135
INCLUDE 20691167
EXCLUDE 20691766
INCLUDE 20691767
EXCLUDE 20693292
EXCLUDE 20693294
EXCLUDE 20696148
EXCLUDE 20696211
EXCLUDE 20696214
EXCLUDE 20696229
EXCLUDE 20705061
EXCLUDE 20705119
INCLUDE 20707989
EXCLUDE 20708656
EXCLUDE 20709036
EXCLUDE 20709146
EXCLUDE 20709148
EXCLUDE 20709149
EXCLUDE 20709151
INCLUDE 20709153
EXCLUDE 20710039
EXCLUDE 20713023
INCLUDE 20713027
EXCLUDE 20723582
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INCLUDE 20724365
EXCLUDE 20727397
EXCLUDE 20727939
EXCLUDE 20727945
INCLUDE 20727947
INCLUDE 20727948
EXCLUDE 20727949
EXCLUDE 20728435
EXCLUDE 20728507
EXCLUDE 20728508
EXCLUDE 20732309
EXCLUDE 20732394
EXCLUDE 20735999
EXCLUDE 20736419
INCLUDE 20736420
EXCLUDE 20800646
INCLUDE 20800648
EXCLUDE 20800661
INCLUDE 20800662
EXCLUDE 20800664
EXCLUDE 20804821
INCLUDE 20807519
EXCLUDE 20807792
INCLUDE 20807794
EXCLUDE 20810359
EXCLUDE 20813167
INCLUDE 20813177
EXCLUDE 20813178
EXCLUDE 20816724
EXCLUDE 20816763
EXCLUDE 20816918
EXCLUDE 20816923
EXCLUDE 20816926
EXCLUDE 20817076
INCLUDE 20817079
INCLUDE 20819943
EXCLUDE 20819944
EXCLUDE 20828545
EXCLUDE 20833228
EXCLUDE 20833230
EXCLUDE 20837104
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EXCLUDE 20837105
INCLUDE 20837107
EXCLUDE 20837108
EXCLUDE 20837109
EXCLUDE 20837640
EXCLUDE 20837644
EXCLUDE 20840842
EXCLUDE 20843834
INCLUDE 20846512
EXCLUDE 20849913
EXCLUDE 20849921
EXCLUDE 20849931
INCLUDE 20850419
EXCLUDE 20851161
EXCLUDE 20851162
EXCLUDE 20851169
INCLUDE 20851170
EXCLUDE 20854877
EXCLUDE 20854880
INCLUDE 20854882
EXCLUDE 20855438
EXCLUDE 20858463
INCLUDE 20858468
EXCLUDE 20868728
EXCLUDE 20868730
EXCLUDE 20868734
EXCLUDE 20869350
EXCLUDE 20870010
EXCLUDE 20870012
EXCLUDE 20870014
EXCLUDE 20875798
EXCLUDE 20875840
EXCLUDE 20875843
EXCLUDE 20876203
EXCLUDE 20883673
EXCLUDE 20884323
INCLUDE 20884331
EXCLUDE 20884333
EXCLUDE 20888891
EXCLUDE 20889487
EXCLUDE 20889488
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EXCLUDE 20921195
EXCLUDE 20921201
EXCLUDE 20921202
EXCLUDE 20923697
EXCLUDE 20933576
EXCLUDE 20933580
EXCLUDE 20933583
INCLUDE 20937710
EXCLUDE 20937711
INCLUDE 20950672
EXCLUDE 20950673
EXCLUDE 20951682
EXCLUDE 20951774
EXCLUDE 20952374
EXCLUDE 20952375
EXCLUDE 20955770
INCLUDE 20961999
EXCLUDE 20962000
EXCLUDE 20962003
EXCLUDE 20965158
EXCLUDE 21037311
EXCLUDE 21037312
INCLUDE 21041525
EXCLUDE 21078598
EXCLUDE 21078602
EXCLUDE 21109037
EXCLUDE 21123203
EXCLUDE 21123204
EXCLUDE 21173085

6.2 Sentence-level Annotations

PMID SUPPORT
19796672 As for their immunohistochemical localization, the AQP-

2 protein is expressed on the basal side of the basal cells
of the SV, and proteins of AQP-3 and V2-R are expressed
on the apical side of the basal cells.
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19815003 In both the normal and epileptic hippocampus, aro-
matase was detected in numerous CA1-CA3 pyramidal
neurons, in granule cells of the dentate gyrus and in
interneurons that co-expressed the calcium-binding pro-
teins calbindin, calretinin or parvalbumin.

19815055 In the present study, the protein expression and the elec-
trophysiological characteristics of HCN channels were in-
vestigated in nodose ganglion (NG) afferent neurons (A-
fiber and C-fiber neurons) from sham and streptozotocin
(STZ)-induced diabetic rats.

19815055 Protein expression of HCN channel isoforms in nodose
ganglia from sham and diabetic rats, measured by West-
ern blot (A-D). Data are meanSE, n8 rats in each group.

19819309 A typical GABAergic AC had a soma larger than 10 m
in diameter with multiple long processes (left, Fig. 1A).
The cell was positive to the anti-GABA antibody (right,
Fig. 1A).

19833105 The SCG10 positive cells were scattered throughout the
neuronal layer in tissue from all ages analyzed but ap-
peared to be more numerous in young animals.

19833108 In the cerebellum, some labeled cells were observed in
the deep cerebellar nuclei and in the Purkinje cell layer.

19833108 LGI1 expression in the hippocampal formation was re-
stricted to the pyramidal and granular layers, whereas
scattered labeling was observed outside these areas (Fig.
2C).

19833108 Weak LGI4 labeling was observed in the pyramidal and
granular layers of the hipoccampal formation, whereas
scattered putative interneurons showed strong labeling
(Fig. 6B).

19837134 As is known, disinhibition in the CA1-region can cause a
depolarization of pyramidal cells.

19837136 Furthermore, as revealed by costaining with an antibody
against ChAT, the dendrites of these cells showed co-
stratification with the processes of starburst amacrine
cells (Fig. 1D).

19837136 In retinal vertical sections, the dendrites of these cells
were found to bistratify in the inner plexiform layer (IPL)
(Left panel in Fig. 1D).

19837136 The cell somas were located in both the inner nuclear
layer (INL) and GCL (Left panels of Fig. 2A, B).
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19837136 The cell somas were located in the ganglion cell layer
(GCL), and all of them were ganglion cells because each
of them displayed an axon, as indicated by an arrow in
Fig. 1C (Also see left panel in Fig. 1D).

19837136 These EYFP-positive cells were found to be starburst
amacrine cells, the only cholinergic cells in the retina.

19837138 Twenty-four hour NMDA (10 M) exposure produced
marked neurodegeneration (350% of control cultures) in
the CA1 pyramidal cell region that was significantly re-
duced by co-exposure to ifenprodil or DL-2-Amino-5-
phosphonopentanoic acid (APV).

19850111 The neurons inside the dorsal root ganglia of the lumbar
area express Cdh7 and Cdh20 weakly, but not Cdh19
(drg in Fig. 3S, U).

19853587 To determine the functions of the other family members,
4.1G and 4.1B, we observed their expression patterns in
developing stereocilia in mice inner ear hair cells. 4.1G
is expressed in the basal tapers of the stereocilia bundle
in early postnatal stages. 4.1B was specifically and con-
stantly expressed in the stereocilia tips during postnatal
development. Additionally, we found that 4.1B is ablated
in the hair cells of both myosin XV and whirlin mutant
mice at all stages in hair cell development.

19857553 No difference was detected in CB mRNA and protein
levels between aged and adult rats (P ¿ 0.05).

19879331 CFP-expressing cells in retinas with optic nerve transec-
tion.

19897018 In this report we use BK channels in frog (Rana pipiens)
hair cells to monitor dynamic changes in intracellular Ca2
concentration during transient influxes of Ca2, showing
that BK current magnitude and delay to onset are cor-
related with the rate and duration of Ca2 entry through
Ca2 channels.

19903514 All the OHC nuclei (red) were normal/intact, but prestin
staining in some OHCs was lower compared to the others.

19906875 LTP Based on the preceding data, we deduce that HFS
activates the NMDA receptors on spinal dorsal horn neu-
rons, which leads to endogenous ROS generation, and
then ROS leads tofEPSP slope (% of control) 0 20 40 60
80 Time (min) 100 120.
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19906884 BCs then release glutamate onto downstream ganglion
cells (GCs) and amacrine cells (Acs).

19906886 The pre-Bo - tC region was functionally identified in the
VRC, where I and E neurons were found, by the typi-
cal tachypneic response produced by DLH microinjection
into the left VRC.

19909790 The chemoanatomical organization of the visual sector
of the cat’s thalamic reticular nucleus (TRN)–that is at
the dorsal lateral geniculate nucleus (dLGN) and at the
pulvinar nucleus (Pul)–was investigated with two novel
cytoarchitectonic markers.

19909790 The labeled neurons showed typically fusiform morphol-
ogy with dendrites orienting in the plane of TRN.

19909793 Bright-field microautoradiographs from Cresyl Violet
stained brain sections showing BDNF mRNA labeled
cells (black grains) in the layers II of cerebral cortex
(CTX), in the CA3 pyramidal cell layer (CA3) and in
the dentate gyrus (DG) of the hippocampal formation.

19923250 Potassium current inhibited by 5 mM 4-Aminopyridine
treatment.

19925852 The VCA was negative, as was the DCN (Fig. 3d), in-
cluding the granule cell layer.

19925855 We found that excitatory postsynaptic currents (EPSCs)
of pyramidal neurons were rapidly depressed by 0.1 Hz
stimulation in acutely prepared slices from rats at 11-
12 postnatal days, while this phenomena disappeared in
slices from young adolescent rats (23-24 postnatal days).

19931229 The present study investigated the anatomical distribu-
tion of cannabinoid-1 receptor (CB1r) in the LC and its
association with mu-opioid receptor (MOR).

19948656 We show that the speed of ramp-like mechanical stimula-
tion determines the dynamics of mechanically activated
current responses and hence the type of DRG neuron
most likely to be activated.

19958820 Immunohistochemical study revealed a dense network of
amylin-immunoreactive (irAMY) cell processes in the su-
perficial dorsal horn of the mice.

19961903 Histological analysis method in pyramidal layer of hip-
pocampal CA3 region was performed following under
procedures (Sapolsky et al., 1985).
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19961903 In addition, we examined that serum Gc increased by re-
straint stress aggravated kainic acid (KA)-induced neu-
ronal death in hippocampal CA3 region.

19961904 In parallel, we observed a strong upregulation of pro-
dynorphin mRNA in the spinal cord after CCI, with no
changes in the expression of proenkephalin or pronoci-
ceptin.

19961906 Application of group I mGluR agonist (RS)-3,5-
dihydroxyphenylglycine (DHPG) reversibly suppressed
spontaneous inhibitory postsynaptic currents (IPSCs).

19962427 Furthermore, the differential expression of estradiol re-
ceptors in the dorsal and ventral MePD did not lead to
distinct spine number in these subregions when circulat-
ing ovarian steroids peak in proestrus.

20004700 SB significantly reduced threshold shift, central auditory
function damage, and cochlear function deficits, suggest-
ing that SB may protect auditory function in NIHL and
that the active constituent may be a flavonoid, baicalein.

20004700 This study examined the effects of baicalin, baicalein,
and Scutellaria baicalensis (SB) extract against NIHL in
a mouse model.

20005924 Acute spinal cord slices from 6 to 10 day old mice were
used to record EPSCs evoked in visually identified super-
ficial DH neurons by dorsal root primary afferent stimu-
lation.

20006972 In capsaicinsensitive DRG neurons from wild-type mice,
acid (¿pH 5.0) evoked [Ca2]i increases, but not in DRG
neurons from transient receptor potential V1 (TRPV1)
(/) mice.

20018227 Retrograde tracing using a patch loaded with Fast blue
(FB) was applied to all four chambers of the rat heart
and labeled cardiac spinal afferents were characterized
by using three neurochemical markers.

20018832 Group I metabotropic glutamate receptors (mGluRs) ac-
tivate median preoptic nucleus (MnPO) neurons and in-
duce an inward current.

20018836 A: application of nipecotic acid (1 mM), a nonselective
GABA transporter inhibitor, significantly increased the
amplitude of Itonic.

20026091 The D1 dopamine receptor (D1R) antibody-labeled small
cells resembling medium spiny neurons (black arrows).
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20032232 Phosphoinositide-3-kinase (PI3K) localizes to the olfac-
tory cilia and can be activated by odorants. A: Western
blot analysis of the catalytic p110 subunit using a pan-
specific PI3K antibody (p110pan) and antibodies against
p110 and p110 in rat spleen extract, deciliated olfactory
receptor neuron (ORN) membranes, and olfactory cilia-
enriched membranes.

20042702 Figure 4B shows that nearly all chopper units (5/7) of
our dataset had very different ISI statistics when only
their phase preference was maintained. This in turns
means that most units showed significant mode-locking
behavior.

20043887 These data reveal that the basal dendritic trees of cells
in A1 continue to grow for a much longer period, and
attain almost double the number of spines, as compared
with those in V1.

20045899 These two populations can also be discriminated by the
presence of pro-inflammatory peptides and by the expres-
sion of neurotrophin receptors; IB4neurones have high
levels of neuropeptides such as calcitonin gene-related
peptide and substance P, and express receptors for nerve
growth factor, whereas IB4+ neurones are neuropeptide
poor and express receptors for glial cell line-derived neu-
rotrophic factor.

20053845 Effects of thalamic neuromodulators on FS cells in barrel
cortex.

20056129 After facial nerve axotomy, TLR2 mRNA was signifi-
cantly upregulated in the facial motor nucleus and co-
immunofluorescence localized TLR2 to CD68+ microglia,
but not GFAP+ astrocytes.

20056135 Purkinje cells of the cerebellum are irSST.
20060034 Quantification of zif268- and Homer1a-labeled CA1 neu-

rons.
20060035 Properties of synaptic transmission from the reticular

formation dorsal to the facial nucleus to trigeminal mo-
toneurons during early postnatal development in rats.

20060438 Functional and in situ hybridization evidence that pre-
ganglionic sympathetic vasoconstrictor neurons express
ghrelin receptors.

20060460 Gentamicin is ototoxic to all hair cells in the fish lateral
line system.
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20060884 IK,n was blocked by the KCNQchannel blockers, linopir-
dine (100 lM) and XE991 (10 lM), but was insensitive to
both IK,f blocker, tetraethylammonium (TEA), and IK,s
blocker, 4-aminopyridine (4-AP).

20064491 At PND 8, Ucn 1-ir was present in pIIIu of all mice ex-
amined and had increased 3.2 fold from levels at PND 4.
Another 2.4 fold increase was observed at PND 12, with
mature cell counts leveling off at PND 16, as similar val-
ues were observed in the late juvenile/early adolescent
mice at PND 24.

20064491 Brightfield immunohistochemical staining for Ucn 1 and
CART showed that Ucn 1immunoreactivity (ir) was ab-
sent at PND 1, while CART-ir was already apparent in
pIIIu at birth, a finding indicating that although the pI-
IIu neurons have already migrated to their adult position,
Ucn 1 expression is triggered in them at later postnatal
stages. Ucn 1-ir gradually increased with age, approach-
ing adult levels at PND 16.

20064491 CART-positive cells were strongly labeled in pIII starting
at PND 1.

20064491 In contrast, CART is present in pIIIu and other brain
regions at both ages.

20064491 Representative sagittal sections showing postnatal devel-
opment of CART-ir in pIII at high magnification. CART-
positive cells in pIII at PND 1 (A), PND 4 (B), PND 8
(C), PND 12 (D), PND 16 (E), and PND 24 (F).

20064491 Representative sagittal sections showing postnatal devel-
opment of Ucn 1-ir in pIIIu at high magnification. Ucn
1-positive cells in the pIIIu at PND 1 (A), PND 4 (B),
PND 8 (C), PND 12 (D), PND 16 (E), and PND 24 (F).

20074625 CGRP positive neurons treated with riluzole showed a
significant increase in neurons with complex branching
(42.3.01.2%, Fig. 1C-E) compared with those with no
outgrowths (23.41.3%) and to complex outgrowths in ve-
hicle treated cultures (25.72.0%, Fig. 1A, B). Quanti-
tative analysis of the longest neurite per cell (Fig. 5)
showed that riluzole significantly increased neurite length
in CGRP positive neurons (310.622.3 m) compared to ve-
hicle treated cultures (192.536.5 m).
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20074625 Examples of CGRP positive neurons in vehicle treated
(A, B) and riluzole treated (C, D) cultures. Neurons
are stained with III Tubulin (A, C) to identify soma and
neurites and are co-stained with CGRP (C, D) to identify
the specific DRG subpopulation. (E) shows quantitative
analysis of neurite branch pattern in the CGRP positive
neurons.

20074625 Examples of IB4 positive neurons in vehicle treated (A,
B) and riluzole treated (C, D) cultures. Neurons are
stained with III Tubulin (A, C) to identify soma and
neurites and are co-stained with IB4 (C, D) to identify
the specific DRG subpopulation. (E) shows quantitative
analysis of neurite branch pattern in the IB4 positive
neurons.

20074625 This study explored the effects of exogenous adminis-
tration of 0.1 M riluzole on the neurite growth of spe-
cific subpopulations of adult rat dorsal root ganglion
(DRG) neurons in vitro. Neuronal branching and neu-
rite length were measured in calcitonin gene related pep-
tide (CGRP), Griffonia simplicifolia Isolectin B4 (IB4),
N52 and parvalbumin positive neuronal subpopulations.
Riluzole was found to enhance neurite branching in both
CGRP and IB4 positive neurons compared to vehicle
treated cultures. However, neurite length was only sig-
nificantly increased in CGRP positive neurons in riluzole
treated cultures.

20074632 The purpose of the present study was to examine the ef-
fects of E2 on gentamicin-induced apoptotic cell death
in outer hair cells. The basal turn organ of Corti ex-
plants from p3 or p4 rats were maintained in a tissue
culture and exposed to 100 lM gentamicin for 48 h.
The effects of E2 on gentamicin-induced outer hair cell
loss, JNK activation, and staining for terminal deoxynu-
cleotidyl transferase-mediated biotinylated UTP nick-
end labeling (TUNEL) were examined. E2 significantly
decreased gentamicin-induced outer hair cell loss in a
dose-dependent manner.

20080147 IL-1RI immunoreactivity was detected in some neurons
(particularly, CA1 pyramidal cells; Fig. 6C1) as well as
astrocytes.
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20096335 The results presented here show that the GABAA re-
ceptor population which is involved in tonic GABA me-
diated inhibition of cerebellar granule cells is relatively
insensitive to 1,5benzodiazepine as it is to ”classical” 1,4-
benzodiazepines.

20107127 Paraoxon enhanced the frequency and amplitude of spon-
taneous excitatory postsynaptic currents (sEPSCs). A
and B: representative sEPSC recordings obtained from
dentate granule cells before (control) and after applica-
tion of 3 M paraoxon (PXN).

20107132 Responses to only the four basic taste stimuli were in-
cluded in the cluster analysis for comparison with those
of our previous single unit investigations in the geniculate
ganglion (Breza et al. 2006, 2007; Lundy and Contreras
1999). Analysis of agglomeration by way of the screen
plot (data not shown) indicated that an abrupt upward
deflection occurs around 0.3, separating the neurons into
five groups, as indicated by the solid vertical line in the
cluster analysis.

20114035 Bath application of flunitrazepam (500 nM) altered the
properties of spontaneous GABAergic inhibitory postsy-
naptic currents (sIPSCs) in whole-cell recordings from
rat layer II/III pyramidal neurons (Fig. 2).

20130043 A CSD analysis reveals sinks and sources of Cl ions
in different layers. Sources of Cl were revealed in the
alveus/str. oriens and upper granule cell layer while
sinks were located in the stratum oriens and lacunosum-
moleculare and the hilus.

20132867 A slight decrease of current amplitudes was induced by
ischemia.

20138028 Newly delaminated ganglion mother cells still expressed
VDUP1 (yellow arrowheads).

20144697 Role for ionic fluxes on cell death and apoptotic volume
decrease in cultured cerebellar granule neurons.

20149841 In rats treated as neonates with anesthesia-only, Type II
neurons demonstrated increased spontaneous and UBD-
evoked activity following adult intravesical zymosan
treatment whereas Type I neurons demonstrated de-
creased spontaneous and UBD-evoked activity relative
to controls.

169



20152884 The pre-B-tzinger complex (pre-B-tC), a subregion of the
ventrolateral medulla involved in respiratory rhythm gen-
eration, contains intrinsically bursting pacemaker neu-
rons.

20167256 Compression was found to shorten the apical, but not
basal, dendrites of underlying layer III and V cortical
pyramidal neurons and reduced dendritic spines on the
entire dendritic arbor immediately.

20167261 Phenytoin concurrently increased background inhibition
(Ibg) but decreased background excitation (Ebg).

20184943 Cellular proliferation in the subgranular zone of the adult
male Syrian hamster.

20184948 Immunohistochemistry results showed that the Cx30.3
protein was clearly present in the ganglion cells of the
SG (Fig. 3a, arrows).

20188149 Properties of GABAergic inputs and glutamate receptors
of YFP and YFP CRc.

20206235 Cochleograms showing degree of outer hair cell (OHC,
dashed line) and inner hair cell (IHC, solid line) loss as
function of percent distance from the apex of the noise
exposed cochlea (126 dB, 100 Hz narrowband noise cen-
tered at 12 kHz, 2 h) in nine rats allowed to survive for
10 wk (B1, D3, E, F, C1, D1, C3, A4, B4).

20211697 Here we study the expression and localization of BKCa
channels and CGRP in the rat trigeminal ganglion (TG)
and the trigeminal nucleus caudalis (TNC) as these struc-
tures are involved in migraine pain.

20211700 Effects of D1R activation on membrane potential and
resting conductances of NAc MSNs. Representative
traces from two MSNs showing membrane depolarization
(A) and inward current (B) elicited by a 10-min bath ap-
plication of the D1R agonist, SKF-38393 (30 M).

20211975 BCT depolarisation evoked short-latency,
AMPA/kainate receptor-mediated EPSCs in connected
GCL neurons.

20211975 To address this, I have made paired recordings from BC
terminals (BCTs) and neurons in the ganglion cell layer
(GCL) in goldfish retinal slices.

20223280 Expression of R1 in the rat retina.
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20223282 TOOTH PULP INFLAMMATION INCREASES
BRAIN-DERIVED NEUROTROPHIC FACTOR EX-
PRESSION IN RODENT TRIGEMINAL GANGLION
NEURONS.

20226232 Despite the lack of interaction between GABA and glu-
tamate, blocking GABAA receptors significantly acceler-
ated the onset of the Purkinje cell ”ischemic” depolar-
ization (ID), as assessed with current-clamp recordings
from Purkinje cells or field potential recordings in the
dendritic field of the Purkinje cells.

20226768 Dopamine D5 receptor immunoreactivity is differentially
distributed in GABAergic interneurons and pyramidal
cells in the rat medial prefrontal cortex.

20227462 In addition, the induction of Hrd1 was concentrated on
the granular cell layer and the pyramidal layer, follow-
ing the distribution character as CA3 ¿ CA2 ¿ CA1 was
evaluation of OD value of Hrd1 immunolabelling (F =
26.163, p ¡ 0.001).

20307510 In agreement with the results from CA1 cells, we ob-
served increased GR-IR in the nuclear compartment af-
ter glucocorticoid treatment visualized with H300 (Fig.
5A, p ¡ 0.01), but not with M20 (Fig. 5B, p = 0.62).

20346391 Up-regulation of CCR2 receptor protein in the injured
DRG.

20347011 Transient forebrain ischemia induced by bilateral com-
mon carotid artery occlusion (BCCAO) for 20 min in-
creases cell proliferation in the dentate gyrus (DG) of
adult mice.

20347939 The stimulation of a dorsal root with rectangular pulses
of 0.5 ms at 0.1 Hz evoked monosynaptic (MSR) and
polysynaptic reflex (PSR) potentials in the segmental
ventral root.

20351049 Using extracellular recording and voltage-sensitive dye
imaging in rat and mouse Purkinje cells, we show that
both simple and complex spikes are generated in the
proximal axon, 15-20 m from the soma.

20362644 Kainate-induced delayed onset of excitotoxicity with
functional loss unrelated to the extent of neuronal dam-
age in the in vitro spinal cord.

20362644 Motoneurons were counted as large ventral horn cells im-
munopositive for SMI 32 in laminae VIII and IX.
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20381473 Photographic representation of the pyramidal neurons of
BLA stained with rapid Golgi method.

20394799 Cerebellar granule cells were prepared from 8-day-old
rats and cultured as described previously [11], with minor
modifications.

20394799 Dose-dependent effects of five compounds on histone H3
acetylation levels in cerebellar granule cells.

20394802 Immunohistochemical labelling obtained with mAChR
(M1R-M5R) antibodies on DRG sections, Cy3 conju-
gated secondary antisera.

20416359 Electrical stimulation of the dorsal root induced a repro-
ducible eEPSC in most of the SG neurons recorded (92%;
n = 65), 69.2% of them were monosynaptic or mono plus
polysynaptic (Fig. 1).

20417252 Using in situ hybridization and film autoradiography, an
obvious 2 mRNA signal in the TH-defined LC (Fig. 1A)
was revealed by the two antisense probes designed to hy-
bridize to different locations of human GABAA receptor
2 subunit mRNA.

20420813 Modulation of NMDA and AMPA-mediated synaptic
transmission by CB1 receptors in frontal cortical pyra-
midal cells.

20430080 Cochleograms revealed no gross destruction of hair cells
in the non-diabetic groups or the Diabetes-NAC group;
however, a significant number of outer hair cells (OHCs)
were lost in the Diabetes-Saline group.

20430082 Immunopositive layer V pyramidal cells are observed in
all areas of auditory cortex and are consistently the most
intensely reactive cells.

20430087 The expression of purinergic receptors (P2X) on rat
vestibular ganglion neurons (VGNs) was examined using
whole-cell patch-clamp recordings.

20430089 In contrast, salicylate had no effect on the spontaneous or
evoked firing of cartwheel cells indicating that salicylate’s
suppressive effects are specific to fusiform cells.

20433897 Co-localization of cyclin B1- and CDK4-
immunoreactivities in cerebellar Purkinje cells labeled
with calbindin.

20433901 Muscarine induced firing of BCs.
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20438721 In the chicken retina, protocadherin-19 was expressed as
early as embryonic day 5 and was localized in the gan-
glion cell layer, inner plexiform layer, and optic nerve
layer.

20438805 Our results indicate that the co-cultures of OECs and
SGCs can be successfully established and that both
OECs and OEC-CM promote SGCs survival in vitro.

20438805 SGCs survival was most enhanced when co-cultured with
OECs. Both Olfactory bulb (OB) and OECs were proved
to express BMP-4 and NCAM while BMPR-1A and a7
integrin were also detected in cochlea and SGCs.

20438810 5HT1A receptor density was increased by 23% in the CA1
region of the hippocampus of adult rats treated with 100
g/kg HU210 for 4 days compared to vehicle treated con-
trols. The same treatment increased mRNA expression
by 27% and by 14% in the CA1 region and dentate gyrus
of the hippocampus.

20438814 Thus, in the presence of CNP the threshold for LTP
induction was shifted to higher stimulus frequencies, a
modulation that showed layer-specific differences in area
CA1. Effects of CNP were prevented by the NPR-B an-
tagonist HS-142-1.

20451586 Most retrogradely labeled cells were located in the ip-
silateral medial nucleus of the trapezoid body (MNTB)
and contralateral anteroventral cochlear nucleus.

20457226 Recording of evoked fEPSPs was performed by extracel-
lular glass microelectrode (0.6 -1.0 M resistance) using
Axopatch-1D amplifier (Molecular Devices, Axon Instru-
ments, Inc., CA, USA) from the hippocampal CA1 pyra-
midal neurons at the apical dendritic layers.

20460115 In these motoneurons, EPSCs and GABAergic IPSCs
were blocked by the application of CNQX, AP-5 and
bicuculline.

20466037 A moderate concentration of NE (10 M) and the 1 re-
ceptor agonist phenylephrine (10 M) depolarized and in-
creased spontaneous or current injection-evoked spiking
in GCs. By contrast, low NE concentrations (0.1-1.0 M)
or the 2 receptor agonist clonidine (Clon, 10 M) hyper-
polarized and decreased the discharge of GCs.
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20470874 Histological analysis of cochleas showed that hair cell le-
sions are most severe in Sod1-/- Cdh23ahl/ ahl mice fol-
lowed closely by Sod1-/- Cdh23ahl/ahl mice and much
smaller in Sod1-/- Cdh23-/- and Sod1-/- Cdh23-/- mice.

20471377 In addition, PSD reduced the Ih amplitude and the re-
bound excitability of CA1 pyramidal neurons.

20472035 We observed immunoreactivity for CGRP, CLR and
RAMP1, in the human trigeminal ganglion: 49% of the
neurons expressed CGRP, 37% CLR and 36% RAMP1.

20478357 In the current study, we explored whether chronic sal-
icylate exposure could induce apoptosis in outer hair
cells (OHCs) and spiral ganglion neurons (SGNs) of the
cochlea.

20488168 It was shown that the potentiation effect that low con-
centration Zn2+ (10 -M) exerted on the amplitude of
the current mediated by Ca2+permeable AMPA recep-
tors was more remarkable in the presence of moderate
concentration of CTZ (20 -M).

20498234 As the GABAergic system is critical for retinal develop-
ment, we then performed in vivo gramicidin perforated-
patch whole-cell recording to characterize the develop-
mental change of GABAergic action in RGCs.

20510892 A sizable population of large spiny neurons in the amyg-
dala and their axons are intensely eYFP+ (Fig. 5, Sup-
plemental material Fig. SM5).

20510892 Again, virtually all of the labeled cells had the morphol-
ogy of projection neurons; they were either granule cells
in dentate gyrus (DG) or pyramidal cells in Ammon’s
horn fields (CA1, CA2 and CA3) and subiculum (Fig.
1B, Supplementary material Figs. SM1-SM5).

20510892 Substantial numbers of pyramidal neurons in all neocor-
tical areas were eYFP+; we did not observe labeled neu-
rons with a non-pyramidal morphology.

20519320 Interestingly 100 m picrotoxin or BIC potentiated the
MSR, depressed the DRP, and produced a long lasting
motoneurone after-discharge. Furosemide, a selective an-
tagonist of extrasynaptic GABAA receptors, affects re-
ceptor subtypes with 4/6 subunits, and in a similar way
to higher concentrations of PTX or BIC, also potenti-
ated the MSR but did not affect the DRP, suggesting
the presence of 4/6 GABAA receptors at motoneurones.
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20542093 Note the tonic irregular firing of NA-LC neurons during
episodes of sniffing (A) and grooming (B, C), character-
ized by sustained theta waves on the cortical EEG.

20561573 Aminoglycosides are known to enter hair cells via apical
endocytosis or permeation of the mechanotransduction
channels on the apical surface of hair cells, and presum-
ably from endolymph in vivo.

20561574 We investigated the contribution of systemic inhibition
on spike timing in SBCs by iontophoretic application
of glycine- and GABA-receptor antagonists (strychnine,
bicuculline). Discharge rate increased in one-third of the
units during antagonist application, which was accompa-
nied by a deterioration of phase-coupling accuracy in half
of those units.

20580801 The cochlear implant electrode array is located in the
inner region and the SG neurons lie in the outer region.

20600592 NMDA exposure produced a significant increase in PI
uptake in the pyramidal cell layer of the CA1 in METH-
naive tissue.

20600657 We found peaks in spike cross-correlograms indicating
correlated activity on both fast (peak width 1-50 ms)
and slow (peak width¿50 ms) time scales, only in pairs
with convergent glomerular projections.

20600667 The improvement of auditory function by FA was paral-
leled by a significant reduction in oxidative stress, apop-
tosis and increase in hair cell viability in the organ of
Corti.

20600669 Perfusion of slices with SR101 (1 M) for 10 min induced
long-term potentiation of intrinsic neuronal excitability
(LTP-IE) and a long-lasting increase in evoked EPSCs
(eEPSCs) in CA1 pyramidal neurons in hippocampal
slices.

20600740 In conclusion, amplitude-modulated chronic electrical
stimulation with a high pulse rate does not affect sur-
vival, morphology and functionality of spiral ganglion
cells with the exception of eABR latencies.

20603186 However, TBI significantly decreased the number of
Purkinje neurons (P ¡ 0.05), whereas treadmill exercise
significantly alleviated reduction of Purkinje neurons by
the TBI (Fig. 1B arrows, P ¡ 0.05).
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20603338 The experiments described above with photolytic re-
lease of L-glutamate indicate that the facilitation of the
mGluR1 current seen with AMPA receptor antagonists
at the PF-Purkinje cell synapse is a postsynaptic phe-
nomenon, involving cross-talk between AMPARs and the
mGluR signalling pathway.

20620193 Pacemaker currents in mouse locus coeruleus neurons.
20624793 To examine the temporal tuning of the DSGCs, the cells

were stimulated with either a grating drifted over the
receptive-field centre at a range of velocities or with a
light spot flickered at different temporal frequencies.

20637834 Moreover, spontaneous excitatory postsynaptic currents
(sEPSCs) were increased by isotonic increases in [Na+ ]o
in the parvocellular neurons. Bath application AMPA re-
ceptor antagonist CNQX or non-selective glutamate an-
tagonist kynurenic acid almost completely blocked the
sEPSCs.

20638464 A two way ANOVA (strain, age) showed that hair cell
number was not significantly affected by strain (F(1,22)
- 2.87, p ¿ .05) but was significantly affected by age
(F(2,22) - 23.98, p ¡ .0001), with a significant interac-
tion between strain and age (F(2,22) - 9.045, p ¡ .01).

20674557 Expression of ORC3 and ORC5 in cerebellar granule cells
differentiating in culture.

20674684 Following SE, IL-18 immunoreactivity was increased in
CA1-3 pyramidal cells as well as dentate granule cells.

20674686 Here, we use a different approach to identify and quan-
tify the subpopulations of SPN that contain the mRNA
for pituitary adenylate cyclase activating polypeptide
(PACAP) or enkephalin.

20674687 Hypoxia (2% O2 for 24 h) also promoted death of DRG
neurons, and was further enhanced when mechanical
strain and hypoxia were combined.

20674687 Mechanical injury (20% tensile strain) led to significant
neuronal cell death (assessed by ethidium homodimer-1
labelling), which was proportional to strain duration (5
min, 1 h, 6 h or 18 h).
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20678546 Direction-selective ganglion cells (DSGCs) respond with
robust spiking to image motion in a particular direc-
tion. Previously, two main types of DSGCs have been
described in rabbit retina: the ON-OFF DSGCs respond
to both increases and decreases in illumination, whereas
the ON DSGCs respond only to increases in illumination.

20678546 Two types of ON direction-selective ganglion cells in rab-
bit retina.

20678549 The GABAergic projection from the basal forebrain
ends selectively on interneurons, specifically on type 1
periglomerular cells and granule cells, and is likely to con-
trol the activity of the olfactory bulb via disinhibition of
principal cells.

20679355 For example, cerebellar granule neurons cultured for 16
days undergo reproducible inactivating inward sodium
current and non-inactivating outward potassium current
upon repeated voltage clamped cycles of 0 mV depolar-
ization (Fig. 5A and Suppl. Table 5).

20685388 Inner hair cells compress and rectify the signal.
20691167 Purkinje cell numbers in the female rat cerebellum
20691767 Immature GC were sparsely distributed in the sub gran-

ular zone of the DG or the inner third of the granular
layer.

20707989 Microstimulation of the granule cell layer of both trans-
verse or sagittal slices evoked a local membrane depo-
larization restricted to a radial wedge, but these radial
responses did not activate measurable molecular layer
beams in transverse slices

20709153 Effect of ceramide on cochlear hair cells. Representative
microphotographs of hair cells cultured with 10, 100, or
200 M ceramide (without gentamicin) (upper, phalloidin
staining). Quantitative analysis of hair cell loss in ex-
plants treated with ceramide (without gentamicin) for
48 h (lower). Ceramide itself induced hair cell loss at 150
and 200 M (*one-way ANOVA and Bonferroni test: p ¡
0.05).

20713027 Within the CA3 the CnB1 and CnB2 isoforms (Sham
Figs. 1 and 3) appear to be predominantly in the stra-
tum pyramidale with little expression within the den-
dritic and axonal layers of the stratum radiatum and
stratum oriens.
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20724365 The cerebellar cortex is crucial for sensorimotor integra-
tion. Sensorimotor inputs converge on cerebellar Purk-
inje cells via two afferent pathways: the climbing fibre
pathway triggering complex spikes, and the mossy fibre-
parallel fibre pathway, modulating the simple spike ac-
tivities of Purkinje cells.

20724365 We show that most Purkinje cells in ipsilateral crus 1 and
crus 2 of awake mice respond to whisker stimulation with
complex spike and/or simple spike responses.

20727947 Population based quantification of dendrites: evidence
for the lack of microtubule-associate protein 2a,b in Purk-
inje cell spiny dendrites.

20727948 Identification of PTEN in the differentiating HCs of inner
ear.

20736420 We found that a direct microinjection of AAV vectors into
the vagal nodose ganglia in vivo leads to selective, effec-
tive and long-lasting transduction of the vast majority of
primary sensory vagal neurons without transduction of
parasympathetic efferent neurons.

20800648 DRGs co-cultured with mechanically injured ASTs from
C3-deficient mice also showed improved neurite out-
growth.

20800662 In adult rat nodose ganglion neurons, application of 1
M THC caused a significant inhibition of 5-HT3 recep-
tors, extent of which correlated with the density of 5-
HTinduced currents, indicating that the observed THC
effects occur in mammalian neurons.

20807519 These results indicate that cannabinoid inhibition of no-
ciceptive reflexes produced by WIN-2 and THC may re-
sult from inhibition of dorsal horn neurons through a
KOR-dependent mechanism.

20807794 Confocal imaging of sEAAT2B labelling in retina A,
sEAAT2B labelling (red) with and without background
Acridine Orange (AO) (green) nuclear stain in a retinal
section. sEAAT2B labels both regular and displaced Off-
bipolar cells located in the INL and ONL, respectively.
B, single scanning imaging from a double-labelled flat-
mounted retina, in which SV2 and sEAAT2B are sepa-
rately located at photoreceptor terminals and the post-
synaptic dendrites, respectively, in the distal OPL.
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20807794 DHKA causes a large enhancement in the light-offset cur-
rent.

20807794 DHKA enhances the light-offset response.
20807794 DHKA-elicited currents in rodand cone-dominated bipo-

lar cells in dark-adapted retinal slices at holding voltage
-60 mV, E Cl = -60 mV Aa, DHKA elicits an inward cur-
rent, which can be blocked by CNQX, in cone-dominated
Off-bipolar cells (n = 15).

20807794 Off-bipolar cell synapses (Fig. 4Ab), only EAAT2B up-
take is blocked

20807794 The contribution of sEAAT2A to light responses in ro-
dand cone-dominated bipolar cells A, cone-dominated
Off-bipolar cells display a transient inward current at the
offset of a 2 s light stimulus.

20813177 Two clear populations were identified consistent with:
principal neurons which are involved in detecting inter-
aural intensity differences (IIDs) and efferent neurons of
the lateral olivocochlear (LOC) system which project to
the cochlea.

20817079 The effects of cocaine on BrdU labeling in the SGZ:
the effects of chronic cocaine exposure on the number
of BrdU+ cells in the SGZ (A), at 1, 3 and 5 days post-
labeling (A), and according to spatial distribution along
the dorso-ventral axis (B). Chronic cocaine treatment re-
sults in a significantly greater number of BrdU+ cells in
the SGZ and the total number of BrdU+ cells signifi-
cantly decreased as the post-labeling time increased from
1 day to 3 days and 1 day to 5 days postlabeling/cocaine
abstinence (A).

20819943 Light increases the gap junctional coupling of retinal gan-
glion cells.

20837107 Postnatal development enhances the effects of cholinergic
inputs on recruitment threshold and firing rate of rat
oculomotor nucleus motoneurons.

20846512 In 1-month-old Bax-deficient (Bax-/-) mice, distinct sub-
sets of DRG neurons that were immunopositive for TrkA,
CGRP, TRPV1 or TrkC, were all increased in number
and exhibited cell atrophy compared to wild type DRG
neurons.
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20850419 In the CA3 region and dentate gyrus the range of varia-
tion in mRNA expression was significantly reduced grad-
ually.

20851170 5-Lipoxygenase in mouse cerebellar Purkinje cells.
20854882 The results revealed an agerelated decrease in macular

axo-spinous synapses that was not reversed by CR that
occurred in the absence of changes in the size of synapses
or spines.

20858468 Results showed that application of rat recombinant TNF-
(rrTNF) into the cultured normal adult rat DRG neurons
increased the immunoreactive (IR) of Nav1.3 localized
mainly around the cell membrane and pre-treatment with
PDTC blocked the change dosedependently.

20884331 We analyzed the long-term consequences of asphyx-
ial cardiac arrest for hippocampal cell proliferation in
rats to evaluate if the ischaemia-induced degenerated
CA1 region may be repopulated by endogenous (stem)
cells. Analysis of BrdU-incorporation demonstrated an
increase at 7, 21 as well as 90 days after global ischaemia
in the hippocampal CA1 pyramidal cell layer.

20937710 Vagal sensory neurons are situated in the nodose (placode
derived) and jugular ganglion (neural crest derived).

20950672 S1P significantly increased the rate of AMPA-mEPSCs
recorded from CA3 pyramidal neurons, without affecting
their amplitude (P0.01, Kolmogorov-Simirnov test) (Fig.
1A).

20961999 The intrinsic membrane and firing properties of the pyra-
midal neurons were not changed by the lesion.

21041525 Western blot data showed that P2X3 receptors were sig-
nificantly upregulated in doral root ganglion (DRG) of
CHF rats whereas VR1 receptors were significantly down-
regulated.
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