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INTRODUCTION: 

 Interest in early warning systems or scores originated in the observation that 
catastrophic deterioration of patients in hospitals is frequently preceded by 
documented abnormalities of vital signs and other physiological parameters that 
were sometimes ignored by clinical staff (1-5). 

One solution to the problem of unrecognized patient deterioration on the floor was 
the medical emergency team (MET) concept, introduced in 1990 at Liverpool 
Hospital, New South Wales, Australia (6). 

The medical emergency or rapid response team is a multi-disciplinary team of 
intensive care unit nurses, respiratory therapists, and sometimes physicians who 
respond whenever floor nurses have a concern that their patient is deteriorating. 
While the basis for activation of the MET is quite broad, the original 
implementation used defined physiological parameters as calling criteria. (Also 
please note that pediatric patients will not be considered in this discussion).These 
included  

 

 

Temperature <35.3 degrees C > 39.5 degrees C 
Systolic blood pressure < 100 mm Hg > 200 mg Hg 
Respiratory rate < 10 bpm > 30 bpm 
Urine output (24 hrs) < 500 ml  
Level of consciousness Altered  
 

Most institutions that implemented a rapid response team have added heart rate and 
hemoglobin oxygen saturation (SpO2) as criteria. Currently the criteria for 
activation of the MET at Northeast Georgia Medical Center are 
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Heart Rate < 40 beats per minute 
 

> 130 beats per minute 

Systolic Blood Pressure < 90 mm Hg  
Respiratory Rate < 8 breaths per minute 

 
> 24 breaths per minute 

Hemoglobin oxygen 
saturation (SpO2) 

< 90%  

Temperature > 100.4 degrees F  
 

 

These MET criteria were the first early warning or track and trigger scoring 
systems. Note that these criteria are single parameter systems, i.e., any one 
parameter outside the defined limits will trigger the alert. In contrast to alerts based 
on more than one measure, which require abnormality of more than one vital sign 
to be triggered, single parameter alerts tend to be less specific. It is important to 
note that the selection of parameters, and more significantly, the threshold values, 
for the original MET criteria were based on expert opinion. And that approach has 
continued in most implementations of rapid response teams. 

Shortly after the introduction of the MET and the calling criteria, Morgan, 
Williams, and Wright developed a composite scoring system, the Early Warning 
Score, based on Systolic Blood Pressure (SBP), Heart Rate (HR), Respiratory Rate 
(RR), Temperature (Temp), and a simple mental status score called AVPU (Alert, 
responds to Voice, responds to Pain only, Unresponsive) (7). This was 
subsequently modified into the Modified Early Warning System or MEWS (8). 
This was a composite scoring system in which ranges for SBP, HR, RR, temp, and 
AVPU were given inter-parameter weights and a total score calculated. Once 
again, in this study, the selection of parameters, the threshold ranges, and the 
weights were selected by expert opinion. The authors of this publication 
demonstrate that a composite score of 5 or more (out of a maximum of 15) was 
associated with an increased risk of death or transfer to a higher level of care (9). 

Since the publication of these pioneering manuscripts, there have been multiple 
modifications of both the single parameter (in the sense that a single parameter out 
of several can trigger the alert) MET system as well as the composite EWS or 



5 
 

MEWS system. These have included retrospective studies focusing on the 
sensitivity and specificity of the alert for the prediction of clinical deterioration, as 
well as prospective studies examining the effect of an alert on adverse events. In all 
cases, the parameters initially selected for use are based on expert opinion and in 
most cases the thresholds were selected by expert opinion also. The use of expert 
opinion could be a potential shortcoming of the scoring systems. Ideally, the 
parameters and their thresholds, either for single parameter or weighted multiple 
parameter systems, would be a function of outcome data. Two examples of this 
data-driven scoring system are the publication of the Worthington physiological 
score and the more recent paper by Bleyer et al (10, 11) where the authors use 
multivariate logistic regression to determine odds ratios for clinical deterioration 
and then use the odds ratios to establish scoring parameters and thresholds. 

 

There have been multiple reviews (12- 18) of early warning systems as well as the 
publication of the conclusions of a consensus panel held in 2008 (19). These early 
warning systems are also referred to as “track and trigger” scoring, indicating that 
vital signs, as well as other clinical observations, are consistently monitored and 
tracked and when a threshold of abnormality is reached, a defined response by 
clinicians is instigated. Studies of whether track and trigger scoring systems 
actually improve outcomes such as reducing mortality or the incidence of cardiac 
arrest, have all been part of the larger question of whether a MET or rapid response 
team using a scoring system improve outcome. There have been a number of single 
centers, before-and –after studies of the MET/rapid response team outcomes (I 
have excluded studies at pediatric facilities) (20-34). The results of these studies 
are mixed. Bellomo et al (20), Buist et al (27), and Moon et al (32) each report a 
decrease in cardiac arrests as well as hospital mortality and Mitchell et al (31) 
reported a decrease in “unexpected” hospital deaths.  Paterson et al (33) report 
decreased mortality based on before-and-after (post introduction of a composite 
scoring system) 11 day audits.  Jones et al (21), Baxter et al (24), Dacey et al (25), 
and DeVita et al (28) reported a decrease in the incidence of cardiac arrest but no 
change in overall hospital mortality. The remainder of these references reported no 
change in either incidence of cardiac arrest or hospital mortality, although 
Kyriacos et al (18) reported a decrease in time to treatment. 
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 A 2009 Cochran review of all randomized controlled trials, controlled clinical 
trials, controlled before-and-after trials, and interrupted time series of outreach 
programs (MET and rapid response teams) with track and trigger scoring systems  
and identified only two studies (out of 16) that met pre-determined criteria for 
study design and rigor (35,36).   

One study was a prospective cluster randomized controlled trial of general patient 
wards in 23 hospitals over 12 months (35). This study found no difference in a 
composite score of death, cardiac arrest, or unplanned admission to the ICU. 
Mortality was a secondary outcome and this did not improve with the MET scoring 
system. In contrast, the second study was a prospective stepped-wedge randomized 
controlled trial of a phased introduction of critical care outreach (36). In this study 
there was a reduction in mortality, the primary outcome of the study.  

More recently, a meta-analysis of rapid response teams was published (37). In this 
meta-analysis it was found that rapid response teams decreased the incidence of 
cardiac arrests but had no impact on mortality. This review concluded that 
“although RRTs (rapid response teams) have broad appeal, robust evidence to 
support their effectiveness in reducing hospital mortality is lacking”. This 
conclusion initially seems counter-intuitive, however, there is a plausible 
explanation. Patients who suffer a cardiac arrest most commonly do so because of 
underlying disease, and often this disease is not reversible. Examples would be the 
patient with end-stage chronic obstructive pulmonary disease or heart failure. 
While the rapid response team may prevent an unexpected cardiac arrest, the 
activation of this team often results in a transfer to an intensive care unit. And in 
many of the studies, cardiac arrests in the intensive care unit were not included in 
the outcome measure. Furthermore, many patients with end-stage underlying 
disease who are transferred to the intensive care unit may ultimately be placed in a 
do-not-resuscitate status or palliative care. So fundamentally these studies may not 
have had adequate power to see a change in overall hospital mortality.  

 The above literature review indicates that while early warning systems have been 
in use for some time and have the potential to alert clinicians of clinical 
deterioration and possibly avert cardiopulmonary arrest, the impact of these 
systems is still not fully understood. The plethora of systems, the use of expert 
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opinion rather than outcomes-driven scoring tools, and the conflicting results are 
indicative of the need for further study. 

Optimization of any early warning system will require the capability to load large 
amounts of pertinent data from source systems (vital signs and also outcomes such 
as mortality, cardiopulmonary resuscitation, ICU transfer) and then perform 
analytics, ranging from the simple tasks of identifying the number of patients with 
various vital sign abnormalities to more complex tasks, such as multi-variate 
logistic regression to determine the variables that are correlated with clinical 
deterioration. This will require a business intelligence platform for the extraction, 
display, and analysis of early warning system data. Business intelligence is defined 
as “the ability of an organization to collect, maintain, and organize knowledge” 
(http://en.wikipedia.org/wiki/Business_intelligence). And just as major 
corporations use business intelligence to accumulate and analyze large amounts of 
information that can help develop new opportunities and provide a competitive 
market advantage so too healthcare is beginning to exploit the analysis of large 
datasets to improve quality of care and patient safety.  

In this capstone project, we will describe the development of a business 
intelligence platform for analysis of an early warning in use at Northeast Georgia 
Medical Center. The goal is to create a platform that accepts data in multiple 
formats (such as electronic nursing documentation, laboratory data, or even simple 
spreadsheets), that facilitates analysis along multiple dimensions so that questions 
such as which component of the alert or which combination of components is most 
often associated with clinical deterioration, what is the longitudinal (temporal) 
evolution of alert frequency or adverse events, or what is the relationship between 
interventions triggered by the alert and subsequent adverse events, can be readily 
answered, and that facilitate convenient visual display of the data.  
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METHODS: 

DATABASE 

Northeast Georgia Medical Center is a 557 bed tertiary care facility approximately 
50 miles north of Atlanta. In the fall of 2011, the nursing service system requested 
the generation of an electronic alert that was transmitted via email to the nursing 
supervisor on duty. This alert is currently triggered by any of the following vital 
sign abnormalities 

Heart Rate < 40 beats per minute 
 

> 130 beats per minute 

Systolic Blood Pressure < 90 mm Hg  
Respiratory Rate < 8 breaths per minute 

 
> 24 breaths per minute 

Hemoglobin oxygen 
saturation (SpO2) 

< 90%  

Temperature > 100.4 degrees F  
 

 

An example of the actual alert is demonstrated below 

MET TEAM ALERT - XXXXXXXXXXX  Systolic BP -  83.0  Code Status -  
Full 

 

Patient:  XXXXXXXXXXXXX         5/19/2012 5:27:40 AM 

Location:  S5E - 5431 Patient Type: I  

  

The Patient has the following Code Status: Full  

  

The patient's systolic blood pressure is less than 90 mmHg.   
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Systolic BP:  83.0  

Patient Vitals:   

  

Level of Consciousness   

  

Alert       05/19/12 01:18  

  

BP  

    

  

88/53 Ruparm       05/19/12 02:42  

  

85/47 Ruparm       05/19/12 03:10  

  

83/55 Ruparm       05/19/12 03:10  

  

  

O2 Saturation  

  

100% L2l       05/19/12 02:42  

  

100% L2l       05/19/12 03:10  
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99% L2l       05/19/12 05:26  

  

  

Temperature  

  

97.8F Oral       05/19/12 02:42  

  

98F Oral       05/19/12 03:10  

  

97.8F Oral       05/19/12 05:26  

  

  

Heart Rate  

  

79 Brachl       05/19/12 02:42  

  

76 Brachl       05/19/12 03:10  

  

96       05/19/12 05:26  

  

  

Respiration Rate  
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18 Visual       05/19/12 02:42  

  

18 Visual       05/19/12 03:10  

  

16       05/19/12 05:26  

 

Note that the alert not only indicates the specific time-stamped vital sign 
abnormality but also includes the three time-stamped prior measurements for all 
other vital signs as well as an assessment of level of consciousness (expressed as 
alert, delayed, lethargic, obtunded, or stuporous). Note that the timing of vital signs 
measurements are specific to the nursing unit and to the patient and are recorded at 
least once a shift. 

This alert has proven to be highly non-specific and, indeed, is triggered 
approximately 70-80 times a day a number significantly in excess of the number of 
patients who actually deteriorate (approximately 1-2 patients a day deteriorate to 
the point of activation of the medical emergency team, transfer to the intensive 
care unit, or cardiopulmonary arrest) raising concern that the low specificity will 
lead to the alert being ignored.  This alert is distinct from the actual activation of 
the medical emergency team and is simply a warning to the nursing supervisors, 
sent to them as email messages. Typically, the nursing supervisor will contact the 
nursing unit for more information and then intervene as they deem appropriate. 
While the nursing service believes it has been beneficial, facilitating early 
identification of patients who are clinically deteriorating, it has clearly not been 
optimized in any formal sense. Currently the record of these alerts is stored in an 
Oracle database table. Patient outcomes, such as mortality or transfer to the ICU, 
are stored in the administrative database, and occurrences of cardiopulmonary 
resuscitation or true hands-on MET calls are recorded in simple Excel 
spreadsheets. The alert records as well as these clinical outcomes provide the data 
necessary for development of a business intelligence tool for analysis of the 
efficacy of the alert. 
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Business Intelligence Platform 

 

The analysis of the early warning alert in use by the nursing service at Northeast 
Georgia Medical Center was implemented as a QlikViewTM (QlikTech 
International AB, Sweden) application. QlikViewTM is described as an “associative 
in-memory” business intelligence tool (38, 39). Qlikview applications hold all the 
analytic query data in memory (RAM versus a disk storage system) by a 
proprietary compression algorithm leading to minimal wait times for data query 
retrieval. The term associative is used to indicate that a Qlkview application will 
associate database fields that have the same name (precisely) facilitating 
associations over these fields. To get its user interface flexibility, QlikView 
implicitly assumes a “star/snowflake schema” (40), that is, there is no more and no 
less than one possible path between any pair of tables (41).  

QlikView has an associative search engine and by searching on a particular field, 
all other associated fields are displayed.  This is in contrast to traditional on-line 
processing (OLAP) tools query-based business intelligence tools that require 
hypercube development for query associations. With query-based tools creating 
associations among all available fields may require a high level of IT support or 
else result in delays in business intelligence development that compromise the 
enterprise. With QlikView there is immediate association of connected data. As an 
example cited in “QlikView Architectural Overview” is suppose a user wants to 
identify a sales representative but can’t recall the name only that the sales 
representative sells fish to customers in Nordic regions. By searching the sales 
representative list box for “Nordic” and “fish” all sales representatives who meet 
those criteria are listed.  

A good example of the table structure is shown below with five connected tables 
with three connected by PATIENT_ACCT, two connected by 
DIAGNOSIS_CONS, two connected by DIAG_LINK_DATE and another pair by 
ORDERING_ID. 
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Implementation 

 

 

The primary challenges implementing our QlikView application were that some 
patients had multiple adverse events (most typically medical emergency team 
activation) and that in many incidences there were at times no temporal 
relationship between the alert and the adverse event. For example, a patient may 
have had an alert on one day and an adverse event two days later. Or, as another 
example, the patient may have had an alert and then a medical emergency team 
activation 2 hours later but then a second medical emergency team activation the 
next day. This complicated simple “joins” on the patient ID.  The solution was to 
load data from the MET activation, cardiopulmonary resuscitation (referred to 
simply as a code or code “blue”), and ICU transfer tables into the alert table rather 
than trying to “join” tables. This workaround was efficient for us as the MET 
activations and code blues were recorded in spreadsheets and loading this data into 
QlikView is quite simple. The resultant table structure for this view is  
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Note that we have included in the application several free-standing tables, 
including codes, MET activations, and a “help” table. We have joined the original 
alert table (INL52F1) with a separate table (stored on a “SharePoint” site) where 
the nursing staff records any interventions triggered by an alert to the nursing 
supervisor. 

The most basic component of any QlikView document is a sheet and any 
application may have multiple sheets. Each sheet may contain multiple objects 
including 

 List boxes 

 Statistics boxes 

 Multi boxes 

 Table boxes 

 Charts (including pivot tables and straight tables) 
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 Input boxes 

 Slider objects 

 Current Selection boxes 

 Bookmark objects 

 Buttons 

 Text objects 

 Line/Arrow objects 

 

By right mouse clicking on the banner of a QlikView table one can access the 
properties tabs, which control the organization of the table. An example of one of 
the sheets in this application, “Dashboard-unique patient %” (a sheet that presents 
alert and adverse event data for unique patients), is shown below.  

. 
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While the “General” tab focuses on the color scheme, font, caption, etc. of the 
table, more relevant tabs include the “Dimensions” and “Expressions” tabs. In 
QlikView “Dimension” refers to how data is grouped while “Expression” refers to 
what is calculated. For example, consider a company that wishes to know the 
“sales per region”. The dimension is what comes after the “per” (in this case, 
region), while the expression is what comes before the “per” (in this case, sales). 
Shown below is the “Dimensions” tab for the “Dashboard-unique patient %” sheet. 
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For this sheet, the dimension is the name of the alert from the original alert table 
(INL52F1) described above. Thus the data is grouped by the name of the alert. The 
“Expressions” tab is now shown.  
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The definition of the expression, i.e., what is calculated, is shown in the 
“Definition” box. The full expression is  

=LEFT(MLMNAME,30) & ' 
Unique patients with alerts: ' & count(DISTINCT PATIENT_ID)  
 
and it should be clear that this expression calculates the number (“count”) of 
unique (“distinct”) patients who had an alert of the specified type (dimension). 
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We organized this “Early Warning Alert” application into 8 sheets, providing the 
following data 

1. Home page: describes the purpose of the application and the most recent 
data refresh time, and offers buttons to quickly navigate to the three primary 
sheets (unique patient tab, number of alerts tab, and alert details tab) 

2. Dashboard-unique patient %: this sheet contains a table that shows the 
percentage of unique patients who have a subsequent (within 12 hrs) MET 
activation, code, or transfer to the ICU and also the percentage of unique 
patients who had some intervention by the nursing supervisor triggered by 
the alert. This is classified by the type of alert (blood pressure, heart rate, 
respiratory rate, temperature and SpO2.  

3. Dashboard-Number of alerts: This tab shows the total number of alerts, 
classified by type, as well as the number of patients with an alert who had a 
subsequent MET activation, code, transfer to the ICU, and intervention 
prompted by the alert. 

4. Analysis: This tab presents the same data as found in the two prior tabs, 
however it presents all the data in a single table with more columns 

5. Alert Details: This tab presents specific data about the alert including patient 
identification, the type of the alert, and the subsequent outcome. 

6. Code Blue and MET details: This tab lists all patients who had a code in the 
time frame under analysis and indicates whether an alert was ever triggered 
for that patient. 

7. Interventions: Enumerates details of the interventions that were prompted by 
the alert 

8. Help: Provides access to QlikView help topics  

For each of these tabs, there are selection boxes at the top of the tab to select the 
time frame of analysis. Note that the data for MET calls and codes is entered 
monthly. 
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Programming 
  
The following programming code was used to create this application. Most of the 
following is QlikView scripting language although there are interspersed SQL 
statements. While this code is specific to the platform it is relatively transparent. 
 
//Load interventions triggered by alert from SharePoint site 
Qualify *; 
Interventions: 
LOAD PatientEncounter, Action, Alert_Type, ConvertToLocalTime([Date/Time], 
'Eastern Time (US & Canada)') as DateTimeValue,  
Date(Floor(ConvertToLocalTime([Date/Time], 'Eastern Time (US & 
Canada)')),'MM/DD/YYYY') as DateDay, 
Date(MakeDate(Year([Date/Time]),Month([Date/Time])),'YYYY-MM') as 
DateYM, 
ID, Known_Outcome, Room_Number; 
SELECT a.nvarchar1 AS PatientEncounter, a.int2 AS Action, a.int1 AS 
Alert_Type, a.datetime1 AS [Date/Time], a.tp_ID AS ID, a.nvarchar5 AS 
Known_Outcome,  
a.nvarchar3 AS Room_Number  
FROM dbo.AllUserData AS a WHERE (tp_ListId= 'c8a43710-ca93-47cc-b83f-
5f3e0e32e43b') AND a.tp_ID not in (SELECT ListItemId FROM RecycleBin 
WHERE ListId= 'c8a43710-ca93-47cc-b83f-5f3e0e32e43b'); 
  
UNQUALIFY *; 
 
// Build a quick xref from the alert type number to the alert name so that they can 
be joined 
LOAD * INLINE [ 
    Interventions.Alert_Type, MLMNAME 
    1, NGHS MET Team Alert HR 
    2, NGHS MET Team Alert Resp 
    3, NGHS MET Team Alert BP 
    5, NGHS MET Team Alert O2 Sat 
    6, NGHS MET Team Alert Temp 
]; 
  
 
///$tab PatientsInTrouble 
SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT'; 
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UNQUALIFY *; 
  
// First thing we want to do is load up the patient names so we have them as a 
master 
TRACE ===== Load the Patient List so we have master of SEQ, ID and NAME 
=====; 
PatientList: 
LOAD PAT_SEQ,  
  LAST_NAME&', '&FIRST_NAME&' '&MIDDLE_NAME as Patient_Name, 
     PATIENT_ID 
FROM [..\HCI\DataFiles\HCI_Patients.qvd] (qvd); 
  
// We need to qualify everything from now on so that only PATIENT_ID is the 
link 
Qualify *; 
Unqualify PATIENT_ID; 
UNQUALIFY PAT_SEQ; 
  
// Now load the temporary Transfers, CodeBlue, MetCall tables  
// Subtracting the .5 means take 12 hours from the value. This identifies transfers 
within 12 hrs of alert 
XFER_TO_ICU: 
LOAD REPLACE(LTRIM(REPLACE("AcctNumber",'0',' ')),' ','0') as 
PATIENT_ID, 
  EffectDateTime as PERFORM_DDT, 
  EffectDateTime-.5 as PERFORM_DDT_START 
FROM ..\HBI_Extracts\DataFiles\XFER_TOICU.QVD (qvd); 
  
CodeBlueCalled: 
LOAD PAT_SEQ,  
     PERFORM_DT as PERFORM_DDT,  
   PERFORM_DT-.5 as PERFORM_DDT_START 
FROM [..\HCI\DataFiles\HCI_ImporantPATResults.qvd] (qvd) 
WHERE LABEL_NAME = 'Code Blue' 
and RESULT_VALUE = 'Yes'; 
  
Left Join  
LOAD PAT_SEQ, 
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PATIENT_ID 
Resident PatientList; 
  
MetCalled: 
LOAD PAT_SEQ,  
     PERFORM_DT as PERFORM_DDT,  
   PERFORM_DT-.5 as PERFORM_DDT_START 
FROM [..\HCI\DataFiles\HCI_ImporantPATResults.qvd] (qvd) 
WHERE LABEL_NAME = 'Met Team Called' 
and RESULT_VALUE = 'Yes'; 
  
Left Join  
LOAD PAT_SEQ, 
PATIENT_ID 
Resident PatientList; 
///$tab HCI - Alerts 
OLEDB CONNECT TO [Provider=OraOLEDB.Oracle.1;Persist Security 
Info=True;User ID=ccdev;Data Source=HCILIVE;Extended Properties=""] 
(XPassword is SXULXRNMELZMHfA); 
  
Unqualify *; 
TRACE ===== Load the ALRTS =====; 
  
//Create a temporary alerts table 
Alerts_Temp: 
LOAD MLMACTIONLOG_SEQ,  
     MLMNAME,  
     MID(MLMNAME, 20) as MLM_ABBV, 
     URGENCY,  
     MESSAGE,  
     TRANSACTIONDTTM,  
     Date(FLOOR(TRANSACTIONDTTM),'MM/DD/YYYY') as AlertDay, 
  Date(MakeDate(Year(TRANSACTIONDTTM),Month(TRANSACTIONDTTM)
),'YYYY-MM') as AlertYM, 
     PAT_SEQ 
FROM [..\HCI\DataFiles\HCI_Alerts.qvd] (qvd) 
WHERE LEFT(MLMNAME, 19) = 'NGHS MET Team Alert' 
OR LEFT(MLMNAME, 15) = 'NGHS_VITAL_SIGN'; 
// Join in the field to the alert so that we can use Patient ID instead of pat seq  
LEFT JOIN 
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LOAD PAT_SEQ, 
PATIENT_ID 
Resident PatientList; 
  
// We need to use the interval match function to join the data with the actions 
// We are keying on the transaction date and time of the Alert and seeing when it is 
within the range 
// from the start time to the performed time.  
TRACE ===== Utilize the Interval Match function to join the alerts with the 
actions =====; 
Alert_CodeBlue_Facts: 
IntervalMatch (TRANSACTIONDTTM, PATIENT_ID) 
Left Join  
LOAD CodeBlueCalled.PERFORM_DDT_START, 
CodeBlueCalled.PERFORM_DDT, PATIENT_ID 
Resident CodeBlueCalled; 
Left Join Load * 
Resident CodeBlueCalled; 
  
 
Alert_MetTeam_Facts: 
IntervalMatch (TRANSACTIONDTTM, PATIENT_ID) 
Left Join LOAD MetCalled.PERFORM_DDT_START, 
MetCalled.PERFORM_DDT, PATIENT_ID 
Resident MetCalled; 
Left Join Load * 
Resident MetCalled; 
  
Alert_XferToIcue_Facts: 
IntervalMatch (TRANSACTIONDTTM, PATIENT_ID) 
Left Join LOAD XFER_TO_ICU.PERFORM_DDT_START, 
XFER_TO_ICU.PERFORM_DDT, PATIENT_ID 
Resident XFER_TO_ICU; 
Left Join Load * 
Resident XFER_TO_ICU; 
  
TRACE ===== Move the alerts from temp table to real table then drop alerts temp 
table =====; 
Alerts: 
LOAD * 
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,IF (Not IsNull( CodeBlueCalled.PERFORM_DDT), 1, 0) as Found_CodeBlue 
,IF (Not IsNull( MetCalled.PERFORM_DDT), 1, 0) as Found_MetCall 
,IF (Not IsNull( XFER_TO_ICU.PERFORM_DDT), 1, 0) as Found_XferToIcu 
Resident Alerts_Temp; 
  
DROP table Alerts_Temp; 
  
TRACE ===== Drop the action based tables because we don’t need them anymore 
=====; 
// Get rid of the underlying tables that fed our matches 
Original_CodeBlue: 
LOAD PAT_SEQ as OCB_PAT_SEQ, 
PATIENT_ID as OCB_PATIENT_ID, 
CodeBlueCalled.PERFORM_DDT as OCB_PERFORM_DDT, 
Date(MakeDate(Year(CodeBlueCalled.PERFORM_DDT),Month(CodeBlueCalled
.PERFORM_DDT)),'YYYY-MM') as OCB_PERFORM_YM, 
IF( ISNULL(Lookup('PATIENT_ID', 'PATIENT_ID', PATIENT_ID, 'Alerts')), 
'Not Alerted','Alerted') as OCB_Alerted 
Resident  CodeBlueCalled; 
  
Original_MET: 
LOAD PAT_SEQ as OMET_PAT_SEQ, 
PATIENT_ID as OMET_PATIENT_ID, 
MetCalled.PERFORM_DDT as OMET_PERFORM_DDT, 
Date(MakeDate(Year(MetCalled.PERFORM_DDT),Month(MetCalled.PERFORM
_DDT)),'YYYY-MM') as OMET_PERFORM_YM, 
IF( ISNULL(Lookup('PATIENT_ID', 'PATIENT_ID', PATIENT_ID, 'Alerts')), 
'Not Alerted','Alerted') as OMET_Alerted 
Resident  MetCalled; 
  
 
// Now that all tables have patient id we need to get rid of pat_seq since it would 
cause synthetic key 
drop Field PAT_SEQ; 
  
drop table CodeBlueCalled; 
drop Table MetCalled; 
drop Table XFER_TO_ICU; 
  
RESULTS: 
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The home page of this business intelligence application is shown below  
 

 
 

 

This sheet briefly explains the purpose of the application and provides buttons and 
tabs to access the sheets that summarize the data.  

 

The next sheet is the “unique patients” sheet and is shown below. 

 



27 
 

 

Note that we have selected data for October 2012 (highlighted in green at the top 
of the sheet).  This sheet (1st row) shows that in October 2012 there were 544 
unique patients for whom an alert was triggered (see column #1) and 6.99% (38, 
shown in smaller black number in column #2) of these had a subsequent MET 
activation, code, or transfer to the ICU. The breakdown into each of these 
categories is shown in columns #3-5. We also see that 51.47% of these patients 
(280) had an intervention by the nursing supervisor who received the alert. 
Subsequent rows show the statistics for the specific types of alerts (blood pressure, 
heart rate, SpO2, respiratory rate, and temperature). The most obvious conclusion 
one reaches upon examination of this sheet is that the alert is non-specific. Less 
than 10% of the unique patients for whom an alert was triggered go on to have an 
adverse event (defined as a MET call, code, or transfer to the ICU).  However, note 
that over 50% of the patients had some sort of intervention. What we cannot yet 
analyze is whether interventions result in a lower incidence of adverse events. This 
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reflects the fact that currently the interventions are recorded on paper and then 
transferred to an Excel spreadsheet, which is loaded into the QlikView application. 
The nursing service has not yet used a unique patient identifier for this record. This 
is under correction.  

We see that heart rate and blood pressure alerts led to more interventions than the 
other specific alerts. We also see that the heart rate alert and the respiratory rate 
alerts were most often associated with subsequent adverse events. Also note that 
when we total the number of unique patients for the various categories of alerts the 
sum (711) exceeds 544, implying that some patients have triggered multiple alerts. 

By clicking on the “Trend” icon the viewer can see a line graph illustrating the 
frequencies of adverse events in unique patients as a time series. This function 
should prove useful in the future, although of limited interest at this time as the 
data for months prior to October 2012 was not consistently collected and verified.  
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The sheet labeled “Dashboard-Number of Alerts” presents an alternative analysis 
of the early warning alert. This sheet presents the number of alerts rather than 
unique patients as shown below. In the first row, first and second columns we see 
that in October of 2012 there were 2013 total alerts and there were 112 alerts that 
had a subsequent adverse event, i.e., only 6% had a subsequent adverse event and 
this occurred in 38 unique patients (these latter two statistics are seen as smaller 
font black numbers surrounding the total number of alerts with a subsequent 
adverse event). The observation that the number of alerts with a subsequent 
adverse event was almost 3 times larger than the number of unique patients 
suggests that multiple alerts were triggered prior to the adverse event. The 
remainder of the table breaks these overall statistics into the various categories of 
alerts and also of adverse events. We also see that 560 interventions (6th column) in 
280 unique patients were stimulated by these alerts.  
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Both the “Dashboard-Unique Pts” and “Dashboard-Number of Alerts” show that 
the number of unique patients is much smaller than the number of alerts. There are 
multiple alerts that are triggered by some unique patients. We see that while 
roughly 50% of unique patients with one or more alert had some sort of 
intervention, in terms of raw numbers 27.8% (560/2013) of the alerts led to an 
intervention. The implication is that the nursing supervisor is intervening only 
when there are multiple alerts for a unique patient. 

We can see in the SpO2 and respiratory rate alerts are more likely to be associated 
with a subsequent adverse event. The heart rate and blood pressure alerts seem to 
have triggered the greatest number of interventions. 

One interesting question and concern is whether patient can experience a serious 
adverse event, defined as MET activation or code, and not have had a prior alert.  
The “Code Blue and Met Details” sheet has a simple table that indicates whether 
patients experiencing a code blue or MET activation had an alert at some point in 
the time frame under analysis. This is illustrated below.  
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For the month of October 2012 there were 9 cardio-pulmonary arrests (codes) and 
2 of this did not have an alert generated at some point in this time frame. There 
were 107 MET activations and of these 34 did not have an alert. At this point in the 
evolution of our application, there is insufficient data (particularly for codes) to 
draw conclusions. Furthermore, we currently aggregate data on a monthly basis 
and it will be more interesting to look at a shorter time interval since the number of 
patients who did not have an alert within a week (as an example) of an adverse 
event could be predicted to be greater than the number of patients who did not have 
an alert within a month period. In other words, the probability of an alert will, in 
general, increase with the time span of observation if only due to random variation 
in vital signs. A useful enhancement for the current application will be the option 
of aggregating data over a shorter time interval. By doing this we should learn 
more about patients who have an adverse event without a prior alert. 
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Further insight into early warning of cardiopulmonary arrests and MET calls can 
be found in the “Alert Details” sheet. As seen below one can determine by 
appropriate filtration of this sheet which alerts occur most commonly prior to 
either a cardiac arrest or a MET call. This screen shot shows 5 examples of cardiac 
arrests which were preceded by a respiratory rate alert. To date, the respiratory rate 
alert seems to be the one most commonly preceding a cardiopulmonary arrest, 
although we have not yet collected enough data to have confidence in this 
conclusion. 

 

 

 

Examples of the types of interventions by the nursing supervisors can be found in 
the “Interventions” sheet, shown below. As implied earlier, the documentation of 
interventions by our nursing supervisors is a relatively recent development and the 
documentation is often incomplete as our nursing supervisors adjust to a new 
workflow. The potential for interesting analytics is obvious, although further 
analysis of this type of data will be contingent on the nursing service using a 
unique patient identifier. And it will be facilitated by the nursing service using  
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structured data entries in addition to free text. For example, simple 0/1 (no/yes) 
entries could be used to stipulate that the patient’s physician was notified of a 
change in status or that supplemental oxygen was administered or that anti-
hypertensive medications were withhold in the case of a low blood pressure alert. 
Anecdotally, the nursing supervisors report that on occasion the alert triggers a 
conversation with the family that leads to a change in resuscitation status. This, 
too, could be recorded as a simple binary variable. Creating some structured data 
entries in the intervention record will enhance the business intelligence capabilities 
of the application. 
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DISCUSSION: 

A relational database is a two –dimensional object with rows (“records”) and 
columns (“fields”) with some column or combination of columns that uniquely 
identifies each row. Each field will contain information relevant to that record. For 
example, a company may want to keep sales records in which each row is uniquely 
identified by an invoice number in the first field with subsequent fields containing 
the salesperson identification, the product identification, the units of product sold, 
the total price of the sale, and the store location identification. Relational databases 
have been and still are extensively used for storing data. However, enterprises 
often want the ability to aggregate and summarize the data in order to achieve the 
goals of the organization. This endeavor is referred to as “business intelligence”. 
Using the simple example described above, the company may want to analyze their 
sales to understand which products are popular, which are profitable, which sales 
people are most productive, what is the relationship between store location and 
items sold, etc. While the relational database contains the information, it is not an 
efficient platform for this type of analysis. This has led to the development of 
business intelligence tools and alternate models for storing data, particularly in so-
called data warehouses. 

The data model most often used for business intelligence is a multi-dimensional 
representation rather than the two-dimensional representation of a relational 
database. Multi-dimensional representation simplifies data storage. For example, 
suppose a company records sales by product and location and that there are 5 store 
locations and 4 distinct products. This would require a two-dimensional table with 
3 columns recording the product, location, and total sales, and 20 rows for the 20 
permutations of location and products. Now suppose the company wished to 
follow sales over time by day. To do this in a two-dimensional table they would 
have to add a 4th column (time) and then add 7300 (20 product x location 
permutations times 365 days) more rows. Data storage in this case is more readily 
done by simply adding a time dimension to the two-dimensional table (42).  This 
multi-dimensional representation is often referred to as a “data cube” and is usually 
implemented as a star schema, with one central table, the fact table, at the center of 
the star linked to dimension tables. Using the same simple example, our company 
may want to store data along the dimensions of sales people, product, and store. An 
entity relationship diagram for this simple example is shown below 



35 
 

 

 

In this simple example, there are three dimensions and the data model could be 
viewed as a cube. This geometric concept may be extended; for example, in many 
cases businesses want to also analyze performance along a fourth (time) 
dimension. In the simple case above this would require 4 dimensions and we can 
view the data model as a hypercube. This type of multi-dimensional is a usable 
interface for the business analyst and there are multiple operations that can be 
performed (42) for data analysis. Furthermore, this representation can improve 
retrieval speed when data is stored on a disk. However, creation of the “fact” table 
requires discrete queries. For complex multi-dimensional data cubes, the effort to 
retrieve relevant facts requires a large time investment by information technology 
professionals. It becomes almost impossible to query for all possible associations 
between data elements and isolated queries lead to a loss of context between one 
query and another. 

The business intelligence tool we used for this project, QlikView, purports to avoid 
these limitations. QlikView stores data in memory in a compressed form with 
associations defined between data items rather than joins as used in traditional 
databases. These associations are derived automatically by Qlikview during the 
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data load process based on matching column names across tables. Even though 
QlikView touts its "unique patented in-memory associative technology", the 
underlying data structures are not associative at all but rather the data is stored in a 
regular tabular format. QlikView has a proprietary compression algorithm that 
facilitates storage of this tabular format in memory, i.e., not on disk. Furthermore, 
the associative model speeds queries. For example, the zip codes for clients would 
be stored in a table of unique zip codes rather than as a zip code in each client 
table. This reduction in redundant information creates efficiency. In general, the 
use of associated tables in contrast to table joins preserves normalization and 
reduces redundancy, contributing to efficiency. The tabular format permits direct 
and indirect searches and great flexibility associating data fields. Different tables 
are connected by fields with the exact same name. 

The construction of this particular QlikView application was complicated by the 
fact that a large number of individual patients had multiple alerts occurring at 
different times. This precluded our simply joining multiple tables in a 
star/snowflake schema. Consequently, we simply added data on adverse events 
(cardiopulmonary arrest, MET call, or ICU transfer) to the table comprised of the 
alert information, rather than attempting a join operation. This simplified the table 
structure for the application, but this table structure begs the question of how to 
organize the display to the user. We chose to include in our application one sheet 
that simply provided alert-number based statistics and another sheet that provided 
unique-patient statistics.  

At this early date in the development of this business intelligence tool, the database 
is relatively sparse and drawing conclusions must be done with caution. 
Nevertheless, it does appear that for unique patients, the heart rate alert and the 
respiratory rate alert seem to be most often associated with subsequent adverse 
events. The more interesting question is which combination of alerts is most 
predictive of subsequent adverse event. As noted above we have not yet 
accumulated enough data to provide a definite answer at this point, but we have 
taken the data for October 2012 and have found that the adverse rate when patients 
have two or more different alerts (for example, temperature and blood pressure) is 
13.3% (6/45) compared to 10.1% (49/483) for patients who only have one type of 
alert. This type of analysis can be extended to focus on specific pairwise alert sets 
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and then more extensive combinations. We eventually hope to identify an alert 
combination that is more specific, i.e., fewer false positives.  

When we analyze our alerts from the unique patient perspective, we see that 
approximately 5-10% of the alerts had a subsequent adverse event 
(cardiopulmonary arrest, MET call, or ICU transfer). Thus, we might conclude that 
the alert is overly sensitive. However, approximately 50% of the unique patients 
had some sort of intervention by the nursing supervisor. We would like to conclude 
that the interventions had some effect on the frequency of subsequent adverse 
events. At this juncture we cannot do this as our nursing supervisors have been 
incomplete in recording a unique patient identifier on their intervention report. 
However, this is being rectified and soon we hope to be able to compare adverse 
event rates in patients who had an alert with an intervention to patients who had an 
event without an intervention. 

When analyzed from the perspective of the number of alerts, our preliminary data 
indicates the criterion established at Northeast Georgia Medical Center for an early 
warning system alert (shown below) is quite non-specific. 

Heart Rate < 40 beats per minute 
 

> 130 beats per minute 

Systolic Blood Pressure < 90 mm Hg  
Respiratory Rate < 8 breaths per minute 

 
> 24 breaths per minute 

Hemoglobin oxygen 
saturation (SpO2) 

< 90%  

Temperature > 100.4 degrees F  
 

We observed multiple alerts for individual patients with the total number of alerts 
far greater than the number of unique patients. The incidence of adverse events 
(code blue, MET activation, or transfer to the ICU) subsequent to the alert is low, 
although this could reflect interventions by the nursing supervisor. It appears that 
adverse events are most common for the heart rate and respiratory rate alert, and 
the latter is in line with current literature (and somewhat ironic since respiratory 
rate documentation is often poorly done) (43). 
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Using the data from October 2012 (our most reliable data) we can see that the total 
number of alerts was approximately 4 times greater than the number of unique 
patients, i.e., there were multiple alerts for individual patients. This was also true in 
the subset of patients who had a subsequent adverse event. Approximately half of 
the unique patients had some sort of an intervention, although only 27.8% of the 
individual alerts led to some sort of an intervention. This leads to the question of 
whether interventions only occurred after multiple alerts, implying an element of 
alert fatigue. The primary conclusion that we have reached using this QlikView 
application is that the current alert is non-specific and hence, vulnerable to alert 
fatigue. 

Alert fatigue is a well-known phenomenon. In the clinical informatics literature, it 
has most often been discussed in the context of clinical decision support within an 
electronic health record (44-49). However, anyone who has spent time in the 
intensive care unit can readily observe alert fatigue as clinicians routinely ignore 
alarms. The available literature suggests that alarms that are 90% accurate are 
seldom ignored, and, in contrast, alarms that are 10% accurate are usually ignored 
(49). If we can extrapolate from this general observation, then given that only 6% 
of our total alerts have a subsequent adverse event, the risk of alert fatigue for the 
current early warning system alert is substantial. The sheer volume of alerts (close 
to 70 a day) alone is a factor that could promote alert fatigue and in the appendix 
we present a theoretical analysis of how volume of alert may impact defining an 
optimal alert threshold. This theoretical analysis presupposes a model for the 
probability of clinical deterioration that we have not established in our institution, 
but the theoretical model raises the key question of whether alert fatigue is a 
simple function of the alert volume. If so, the theoretical model suggests that 
there will be an optimal threshold for the alert, reflecting the balance between 
the efficacy of interventions and alert fatigue. 

Given our preliminary observations, the next steps in further development of this 
business intelligence application are the following. 

1. Mandating a specific and unique patient identifier for documentation of 
interventions undertaken in response to the alert. This is essential to 
determination of whether interventions are preventing subsequent adverse 
events. 
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2. Analysis of the patients who have interventions to determine if there is a 
common theme to the type or volume of alert that characterizes the patients 
who have an intervention vs. those who do not. An interesting question is 
whether interventions typically occur after a patient has had multiple alerts. 

3. Analysis of the different types of alerts to learn which are most predictive of 
specific adverse events, code blue, MET activation, or ICU transfer. 

4. Analysis of combinations of alerts to determine if specific combinations 
have better specificity. 

5. Preliminary analysis of alert fatigue by determining whether there is a 
correlation between the volume of alerts and the frequency of interventions. 
We will analyze the data on a 12 hour shift basis and determine whether the 
number of interventions is a linear function of the alert volume. 

6. Inclusion of laboratory values (white blood cell count and lactic acid are 
likely candidates) in the alert. This will require definition of the time frame 
of the laboratory value vis-à-vis the timing of the alert.  

7. Inclusion of structured assessment of level of consciousness (LOC) or 
changes in LOC in the alert using an ordinal scale. For example, some of the 
literature has scored LOC using a simple 4 point scale, where 3 is alert, 2 is 
responsive to voice, 1 is responsive to pain only, and 0 is unresponsive. This 
will require consistent documentation of LOC on the part of the nursing 
staff.  
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 APPENDIX 

 

BACKGROUND 

 

As noted earlier, interest in early warning for clinical deterioration was the impetus 
for the medical emergency team (MET) concept, introduced in 1990 at Liverpool 
Hospital (6). The original implementation used defined physiological parameters 
as calling criteria. These included  

Temp < 35.3 or > 39.5 

SBP <100 or > 200 

RR<10 or >30 

Urine output over 24 hrs < 500 ml 

Altered LOC 

These MET criteria were the first early warning or track and trigger scoring 
systems. Since then there have been multiple modifications of the criterion for the 
early alert of potential clinical deterioration. However, with two exceptions, the 
criteria for activation of an alert have been based on expert opinion and validation 
of the alert has relied on the demonstration that the alert discriminates between 
patients who subsequently deteriorate (typically as defined by cardio-pulmonary 
arrest or the need for transfer to the intensive care unit) and those who do not 
deteriorate. The exceptions to this methodology are the studies by Duckitt et al 
(10) and Bleyer et al (11) who used multi-variate logistic regression to identity 
predictors of clinical deterioration. The advantage of this approach is not only that 
it uses patient data, in contrast to expert opinion, to define the alert, but also it 
facilitates a probabilistic model for clinical deterioration. 
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THEORY 

 

Assume that we have an alert that predicts the probability of clinical deterioration, 
denoted P where P is a function of the observed variables (V), for example vital 
signs, select laboratory results, etc. Further assume that we trigger the alert when 

 

P > T 

 

where T is the alert threshold (as T increases the alert is more and more selective). 
We also assume that if the alert is triggered an intervention by clinicians may occur 
that changes the probability of deterioration to PI where PI is the conditional 
probability of deterioration given that an alert has been triggered 
[P(deterioration|alert)] and we assume it is a function of the probability of 
deterioration without intervention, i.e., PI = PI (P).  We will denote the number of 
patients who at any time have a probability of deterioration between P and P+dP as 
N(P).  Thus 

׬ ܰሺܲሻ݀ܲ
ଵ
଴  = C  where C is the hospital census at this time 

At any one time the census will be comprised of patients with varying probabilities 
of deterioration. The mean probability of deterioration across all patients assuming 
that we have not implemented an alert will be denoted as <P>no alert and is given by 

<P>no alert = (
ଵ

஼
׬ ( ܲܰሺܲሻ݀ܲ

ଵ
଴  = (

ଵ

஼
׬ ( ܲܰሺܲሻ݀ܲ

்
଴  + (

ଵ

஼
׬ ( ܲܰሺܲሻ݀ܲ

ଵ
்  

If we now implement an alert with alert threshold T, the mean probability of 
deterioration across all patients (denoted <P>alert)   will be given by  

 

<P>alert =   (
ଵ

஼
׬ ( ܲܰሺܲሻ݀ܲ

்
଴  + (

ଵ

஼
׬ ( ூܲܰሺܲሻ݀ܲ

ଵ
்  
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Thus with the alert implemented the change in the mean probability of 
deterioration is  

Δ<P> = <P>no alert - <P>alert = (
ଵ

஼
׬	( ܲ߂

ଵ
் (P)N(P)dP       

We will refer to CΔ<P> somewhat loosely as the number of patients who will be 
“rescued” by the alert, NR and note that   

 

NR =   ׬ ܲ߂
ଵ
் (P)N(P)dP      (1) 

where again N(P) is the number of patients with a probability of deterioration equal 
to P and ΔP = P-PI(P). Note that the maximum value of ΔP(P) = P. Since we 
assume that P ≥ PI (P) ΔP is always positive and equation (1) implies that in order 
to minimize the number of patients who deteriorate (or more correctly maximize 
the change in the mean probability of deterioration with alert implementation) we 
should set the threshold at 0, i.e., trigger the alert for all patients.  

However, alert fatigue does occur and if the alert were triggered for all patients a 
certain proportion of the alerts would be ignored. We will denote the alert success 
rate as f (by success we mean the frequency at which the alert generates an 
intervention rather than being ignored) and consider two situations, the first where 
f is a function of P only and the second where f is a function of T only.   

 

 

Considering the case where f = f(P)  

NR =   ׬ ݂ሺܲሻܲ߂
ଵ
் (P) N(P) dP       (2) 

 But again this equation implies (since ΔP ≥ 0) that the integrand is always positive 
and to maximize NR we would set T equal to zero. 

On the other hand, if f = f(T), i.e., the rescue rate is a function of the threshold only 

NR=   ݂ሺܶሻ ׬ ܲ߂
ଵ
் (P)N(P)dP       (4) 
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To identify the threshold that will maximize NR a necessary (but not sufficient 
condition, which requires that the solution to equation (5) is unique which shall be 
assumed) is that the derivative of the above expression be equal to zero, resulting 
in the following identity. 

 

ௗ௙

ௗ்
׬  ሺܲሻܰሺܲሻ݀ܲܲ߂
ଵ
்   - f(T)ΔP(P)P=TN(T) = 0      (5) 

 

Or 

 

ௗ௙

ௗ்
׬  ሺܲሻܰሺܲሻ݀ܲܲ߂
ଵ
்  = f(T)[T-PI(T)]N(T)      (6) 

 

With further manipulation 

 

T = (
ௗ௟௡௙

ௗ்
׬( ሺܲሻሾேሺ௉ሻܲ߂

ேሺ்ሻ

ଵ
் ሿdP + PI(T)        (7) 
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The optimal alert threshold can be determined by numerical solution of equation 
(7) although qualitative solutions can be identified by noting that the optimal 
threshold is the intersection of the graphs of the line of identity Z =T and 

Z =  (
ௗ௟௡௙

ௗ்
׬( ሺܲሻሾேሺ௉ሻܲ߂

ேሺ்ሻ

ଵ
் ሿdP + PI(T)      as a function of T. 

 

We anticipate that (
ௗ௟௡௙

ௗ்
) is a positive number, i.e., the alert is less likely to be 

ignored as the threshold increases and the alert is more selective. We infer that the 

optimal alert threshold will increase as (
ௗ௟௡௙

ௗ்
) increases since this will lead to 

larger values of the function Z(T) with a increased intersection with the line of 
identity  

Z =T.  

We also observe that if PI(P) = α P (α < 1) so that the probability of deterioration 
with alert is simply a fraction of the probability of deterioration without the alert it 
is easy to show that  

 

T = (
ௗ௟௡௙

ௗ்
׬( ܲሾேሺ௉ሻ

ேሺ்ሻ

ଵ
் ሿdP    (8) 

i.e., the optimal alert threshold is independent of α, i.e., the optimal alert threshold 
is the same whether the alert results in a large reduction of probability of 
deterioration (small α) or a small reduction in the probability of deterioration (large 
α). 

We can carry this further by expanding  ΔP(P) in a Taylor’s series. To second 
order 

ΔP(P) = [K0 + K1P + K2P
2 ](Θ(P-K0 - K1P - K2P

2 )) + P(1- Θ(P-K0 - K1P - K2P
2 )) 

 

where Θ is the Heaviside functions that serves to keep ΔP(P) ≤ P. Note also that 
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 K0 + K1P + K2P
2 must be greater than or equal to zero since ΔP(P) is assumed to 

be positive. 

 

Note that this approximation permits a non-linear relationship between P and ΔP. 

Substituting into equation (7) yields 

T = (
ௗ௟௡௙

ௗ்
׬( ሾܭ଴

ଵ
் ൅ ଵܲܭ ൅	ܭଶܲଶ ] [

ேሺ௉ሻ

ேሺ்ሻ
ሿሺΘሺP െ K଴	–	KଵP	 െ	KଶPଶ	ሻሻ	dP +  

(
ௗ௟௡௙

ௗ்
׬( ሾ1 െ Θ൫P െ K଴	–	KଵP	 െ	KଶPଶ	൯ሿPሾ

ேሺ௉ሻ

ேሺ்ሻ
ሿ	

ଵ
்  dP + (T - K0 - K1T - K2T

2) 

Θ(T-K0 - K1T - K2T
2 )      (9) 

 

In this case the optimal alert threshold depends on the efficacy of the intervention 
via K0, K1, and K2, although a solution to equation (9) is not guaranteed.  

 

Further inferences are realized by focusing on the term denoted above as Z 

 

Z = (
ௗ௟௡௙

ௗ்
׬( ሺܲሻሾேሺ௉ሻܲ߂

ேሺ்ሻ

ଵ
் ሿdP + PI(T)               

 

To make any inferences about this term we have to make assumptions about the 
quasi-distribution N(P).  If  N(P) were proportional to a normal distribution, there 
are a number of possible inferences. However, this is a strong assumption. A 
weaker assumption is to assume that some function of P has a normal distribution. 

For example, lnሺ ௉

ଵି௉
ሻ might be normally distributed. To be more general, we will 

assume that the existence of a normally distributed function g with mean ݃̅ and 
variance ߪ௚ଶ which has an invertible transformation involving P, that is, g(P). It is 

also assumed that after substituting the new variable g, ΔP(P)N(P) is transformed 
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to a normal distribution function h(g-1) NORM(݃̅, ߪ௚ଶ)dg where  h(g-1)  = h(P) = 

[	௱௉ሺ௉ሻ
ሺ
೏೒
೏ು
ሻ

].  Thus,   

 

Z = (
ௗ௟௡௙

ௗ்
)[

ଵ

ேሺ்ሻ
׬[ ݄ሺ݃ିଵሻ
௚ሺଵሻ
௚ሺ்ሻ NORM(݃̅, ߪ௚ଶ) dg + PI(T)    (10) 

 

Where NORM denotes a normal distribution with mean ݃̅ and variance ߪ௚ଶ over the 

distribution of values of  P. In general this type of transformation is useful only if 
g(1) = ∞ so we assume this and note  

Z = (
ௗ௟௡௙

ௗ்
ሻሾ ଵ

ேሺ்ሻ
׬[ ݄ሺ݂ሻ
∞

௙ሺ்ሻ NORM(݃̅, ߪ௚ଶ) df + PI(T)     

 

We can express the above integral in terms of the standardized normal distribution 

with the change of variables u = 
௚ି௚ത

ఙ
  

Z = (
ௗ௟௡௙

ௗ்
)[

ఙ

ேሺ்ሻ
ሿ ׬ 		݄ሺݑߪ ൅ ݃̅ሻ

ஶ
೒ሺ೅ሻష೒ഥ

഑
NORMS(u)du + PI(T)     

There are certain inferences that one can reach from this formulation. If ݄ሺݑߪ ൅ ݃̅ሻ 
is an increasing function of its argument and σ, the standard deviation of g 
increases as the standard deviation of N(P) increases [as would be the case if g(p)= 

ln(
௉

ଵି௉
) ] then Z will increase with increasing standard deviation of the 

distribution of probabilities,  as there is a direct factor of σ and also because the 
integral term, exclusive of the factor of ݄ሺݑߪ ൅ ݃̅ሻ, will increase with increasing σ. 
This implies that the optimal alert threshold will increase (the alert will be more 
selective). However, if ݄ሺݑߪ ൅ ݃̅ሻ is not an increasing function of its argument, 
one cannot reach this conclusion. 
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SIMULATIONS 

In order to confirm these qualitative predictions, we must make assumptions about 
the functions that describe  N(P), PI(P), and f(T). While there is no literature to 
establish a quantitative model our goal will be to create tractable models that are 
clinically plausible. 

We first consider N(P). Given that a rigorous approach for defining the criteria 
activating an alert is logistic regression, a plausible model for N(P) is to assume 

that lnሺ
௉

ଵି௉
) has a normal distribution.  This is consistent with the use of multi-

variate logistic regression used in the studies by Duckitt et al (10) and Bleyer et al 
(11) in which the model is 

lnሺ
௉

ଵି௉
) = A0 + A1V1 + A2V2 + ••• 

where Ai are coefficients and Vi are variables (systolic blood pressure, respiratory 
rate, etc) which we can typically assume are approximately normally distributed.  

If we assume that lnሺ
௉

ଵି௉
) is normally distributed, then the distribution of P is 

given by  

 

(
ଵ

√ଶగఙమ
) exp[-

ሺ௚ି௚തሻమ

ଶఙమ
]dg 

 

where g= lnሺ
ܲ

1െܲ
), ݃̅ is the mean value of lnሺ ܲ

1െܲ
), and σ is the standard deviation. 

Using a standard change of variable 

 

dg = 
ௗ௚

ௗ௉
 dP = 

ௗ௉

௉ሺଵି௉ሻ
  and  
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N(P) = 
ଵ

√ଶగఙమ
 exp[െ ሺ௚ሺ௉ሻି௚തሻమ

ଶఙమ
] 

ௗ௉

௉ሺଵି௉ሻ
    (10) 

 

An example of this distribution is shown below as a graph of N(P) vs. P (Figure 1) 

using as parameters ݃̅ = -1 and σ2 = 1. 

 

 

The distribution is clinically plausible, with a mode of  P = 0.14 for a distribution 
that is skewed to the right but nevertheless indicating that patients with either a 
very low or very high probability of deterioration are uncommon. 

 

To proceed further we need to postulate a functional form for ΔP(P).  As indicated 
earlier if we assume that PI(P) = αP, a particularly simple equation (8) is obtained. 
To allow for a more complex function we can expand ΔP(P) in a Taylor’s series, as 
illustrated to 2nd order. We note that if the probability of deterioration is low, ΔP(P) 
is limited by the fact that ΔP(P) ≤ P.  Thus at low values of P, ΔP(P)  is a linear 
function of P. Clinically, this is plausible since at low values of P we would expect 
to be able to “rescue” almost all patients. However, it is also clinically plausible to 
postulate that at very high values of P, i.e., when the patient has a very high 
probability of deterioration, our ability to rescue the patient may be limited.  This 
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is illustrated in Figure 2, a plot of  ΔP(P)  vs. P, for a second order expansion of 
ΔP(P) with the following parameters, K0 =  0.2, K1 = 0.5, and K2 = -0.5.  

 

 

 

Finally we consider f(T). The functional form of f(T) is truly unknown and to 
move forward with simulations we must assume a function that is biologically 
plausible. We anticipate that the success of the alert success rate will depend on the 
threshold indirectly and that alert success is directly determined by the number of 
alerts that are triggered, which in turn is a function of the threshold. We anticipate 
that as the alert load increases the success rate will decrease. This could be 
captured in a simple linear relationship 

      F(T) = 1 –βC(T) 

Where C(T) is the alert count, i.e.,  

C(T) = ׬ ܰሺܲሻ݀ܲ
ଵ
்  

where we  must constrain β such that f(T) ≥ 0. A more flexible formulation is to 
assume that  
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f(T) = A exp (-βC(T))         (11) 

 

Note that this implies a steady degradation in success as C(T) increases. An 
alternative model is to assume that the clinician has a finite capacity such that  f(T) 
= 1 if C(T) is less than some  critical value Cc and when the number of alerts 
exceeds this critical value the success rate is inversely related to C(T) 

 

f(T) = 
஼೎
஼ሺ்ሻ

                       (12) 

 

With equation 11(and the assumption that A does not depend on T) 

 

ௗ	௟௡௙

ௗ்
  =  -β 

ௗ஼ሺ்ሻ

ௗ்
 = β N(T) 

 

And for the model embodied in equation 12 

 

ௗ	௟௡௙

ௗ்
 = 0    C(T) < Cc 

 

ௗ	௟௡௙

ௗ்
 = 

ேሺ்ሻ

஼ሺ்ሻ
   C(T) ≥ Cc 

 

In order to confirm the inferences made earlier, simulations were performed 
assuming equation (10) as the model for N(P), both the simple linear model  
(equation 8) as well as the more complex second model (equation 9) to describe  
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PI(P) and ΔP(P), and both the monotonic and threshold models (equations 11 and 

12) for f(T). Note that this leads to models that are parameterized by ݃̅, σ2 
(describing the quasi-distribution N(P)), K0, K1, and K2 (for the model for ΔP(P) 
and recalling that the linear model proves to be parameter-free) and β and Cc from 
the two models for f(T).  

Integrals were evaluated using the trapezoidal method of numerical integration 
with a step size of 0.01with an Excel spreadsheet. The solutions to equation 8 or 9 
were first approximated from the intersection of the graphs of these equations with 
the line of identity T=T and then confirmed using the Excel “Solver” function. 

 

Initial simulations were begun using equation 11 for the function f(T). In the figure 

below we demonstrate the effect of changing ݂ ̅from -4 to 0 on the optimal 
threshold while assuming that σ2 = 1, K0 = 0.2, K1 = 0.5, K2 = -0.5, and β = 2. 
Series 1 refers to the results for equation 9 and series 2 to equation 8 (these are 

plots of optimal threshold as a function of ݂)̅. These simulations confirm the 

prediction that as ݂ ̅increases, the optimal threshold also increases (the alert 
becomes more selective). 
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Next simulations were performed for verifying values of σ2 assuming that ݂ ̅= -2 
and that K0 = 0.2, K1 = 0.5, K2 = -0.5, and β = 2. Again Series 1 refers to the 
results for equation 9 (second order model for ΔP(P)) and series 2 to equation 8 
(linear model for ΔP(P)). 

 

 

The figure confirms that as the standard deviation of N(P) increases, the optimal 
alert threshold increases. It is noteworthy that this effect is not as pronounced for 
the second order model for ΔP(P).  

 

We next consider the effect of varying the success rate of the alert using the model 
embodied in equation 11. We present below a graph of optimal threshold vs β 

assuming that ݂ ̅= -2, σ2 = 2, and K0 = 0.2, K1 = 0.5, K2 = -0.5.  
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We see that as the relationship between alert success rate and threshold becomes 
steeper (as β increases) the optimal alert threshold also increases. Alert fatigue can 
be encapsulated by β and this just reflects the obvious fact that as alert fatigue 
increases, the optimal threshold increases (the alert needs to be more selective).  

 

We repeated the same set of simulations using equation 12 as the model for f(T).  
Interestingly, this model, which has a discontinuity, implies that the optimal alert 
threshold is simply the critical value Cc. In the following two figures we illustrate 
the graphical determination of the optimal alert threshold as the intersection of  
equation 8 (series 1) or equation 9 (series 3) with the line of identity (series 2) for 
Cc = 0.3 (the critical value is 30% of total patients within the alert time frame). 
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It can be seen that with the second order model for ΔP(P) the line defined by 
equation 10 appears to be nearly coincidental with the line of identity in contrast to 
the line defined by the simple linear model (equation 8). When the same simulation 
is done with Cc = 0.5 we find the following  
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In this case the line for the second order ΔP(P) (series 3) does not appear to fully 
intersect the line of identity (series 2). We are unclear if this is simply a reflection 
of the approximate nature of numerical integration. 

 

CONCLUSIONS: 

1. If the alert success rate (the frequency at which the alert generates an 
intervention rather than being ignored) is a function of the alert threshold (as 
would be the case if the success rate depends on the alert load), there is an 
optimal alert threshold. This reflects the balance between the improvement 
in outcome with the alert (every time the alert fires it can improve outcome) 
and alert fatigue (but the more the alert fires the more likely the alert will be 
ignored). 

2. If the intervention triggered by the alert simply reduces the probability of 
deterioration linearly, the optimal threshold for the alert is independent of 
the efficacy of the intervention. This is counter-intuitive. 

3. As alert fatigue intensifies, the optimal alert threshold increases, i.e., the 
alert is more selective. 

4. As the mean of the distribution of the probability of deterioration increases, 
the optimal alert threshold increases. 

5. As the variance of the distribution of the probability of deterioration 
increases, the optimal alert threshold increases. 

6. If alert fatigue occurs only when the clinician is exposed to some level of 
alerts in excess of a critical value, the optimal alert threshold is equal to the 
probability of deterioration associated with that critical value. 
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