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Abstract 

 

Single-cell methods have proven to be a powerful tool in the interrogation of complex 

biology. One such biological system in which single-cell methods have been paramount to the 

discovery of complex disease and cell development is in the mammalian cortex. In this thesis I 

present an overview of single-cell method development for chromatin accessibility, chromatin 

conformation, whole genome sequencing, and whole methylome sequencing. I then proceed to 

describe the development and application of novel single-cell methylome methods, and apply this 

to a murine cortical sample to study neuronal methylomes. I present a new generalized chemistry 

to improve upon the established single-cell combinatorial indexing (sci) flow-through. This leads 

to substantial improvements of information garnered per cell for chromatin accessibility, 

chromatin conformation, and whole genome sequencing. I also apply a method to combine two 

prominent methods for single-cell chromatin accessibility to increase cellular throughput by over 

15-fold. I apply this new method for a survey of murine and human mature cortex. Finally, I 

demonstrate the use of single-cell chromatin assays on the study of chromatin dynamics during 

corticogenesis in a model system of human forebrain development. Within this system, dynamic 

changes of enhancer usage for promoter, as well as the transcription factor usage changes as 

cells develop and mature into the mid-gestation cortex. This body of work bolsters the field of 

single-cell genomics by introducing novel strategies which address several key hurdles. Further, 

this work presents the generation of cell type and state atlases of human and mouse cortices.
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Introduction 
 

In 1956, the evolutionary biologist 

Conrad Waddington posited the concept of 

an epigenomic landscape. He depicted a 

ball moving in an uneven landscape, 

cutting a path through hills and valleys 

(Figure 1). Just as in this visual aid, a cell follows paths in a contiguous epigenomic landscape, 

subject to external and internal forces1. Coordinated expression of transcription factors, 

accessibility of promoters and enhancers, covalent tagging of modifying moieties, and genomic 

compartmentalization all inform cell state and are reflected in the abstract epigenomic landscape. 

Our understanding of how these forces act in concert is critical for interpretations of development 

and disorders. One such system where all factors collide is early cortical development2. The cortex 

is the seat of cognition, motor control and sensory perception. It forms in a stereotyped, layered 

pattern. Early neuronal precursor cells known as radial glia (RG) rapidly and asymmetrically divide, 

with each division either replenishing the stem cell pool or generating newborn neuronal or glial cell 

types. The balance between maintaining the progenitor pool and terminal differentiation of neurons 

and glia is critical3. Changes in this balance has been implicated in the roughly three-fold expansion 

of volume in the human cortex beyond that of other great apes4; with the difference apparent as 

early as mid-gestation5. Further, neurodevelopmental disorders such as schizophrenia and autism 

spectrum, have implicated dysregulation of cortical migration, differentiation, and layering6–8. All of 

this points to the need for a nuanced understanding of cellular diversity across the cortex and 

epigenomic changes occurring during corticogenesis. Single-cell methods for RNA sequencing 

have become commonplace for assessing cellular heterogeneity in complex tissues. Just as in bulk 

assays, RNA is reverse-transcribed, captured and amplified to generate sequencing libraries. This 

method has cataloged cell types and transcriptomic dynamics through cortical development9–11. 

However many of the genomic sites implicated in human cortical expansion12 and 

Figure 1 Abstracted landscape of cellular heterogeneity (a.) and 
differentiation (b.) through Waddington’s model. 
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neurodevelopmental disorders13–15 are non-coding, necessitating a deeper understanding of the 

epigenomic landscape. These lines of inquiry are lost in the limited scope of the transcriptome. To 

further our understanding of the cortex and its development, it is the goal of this thesis to develop 

new methods to discretely measure the epigenomic landscape – cognizant of cortical complexity – 

and thus at single-cell resolution. 

Why single-cell analysis?  

Bulk methods to capture chromatin accessibility16, chromatin conformation17, DNA 

methylation18 and others have increased our understanding of cell state diversity and the interplay 

between these features19,20. In actively developing samples, or on samples of complex tissue, bulk 

assays fall short. By capturing and processing thousands to millions of cells together, signals are 

merged to an average, covering up cellular diversity and genomic decision points. To specify the 

region, cell type, or developmental stages linking neurotypical cortical development with disorders, 

efforts have been made to take sequential samples for a time-course analysis, or to perform micro-

dissections of the cortex21,22. These two approaches, while able to garner critical information, still 

lack the granularity to catalog a causative string of events for cell fate decisions, leaving the 

development of new single-cell methods as a promising recourse. 

Single-cell applications, the assessment of genomic or epigenomic profiles from discrete 

single cells, exists to address the shortcomings of those previous experimental designs. Sampling 

one cell at a time has two major benefits. The first is a less biased count of heterogeneity in a 

sample. For instance, previous post-mortem analysis demonstrated a large variance of cell type 

proportions across individual cortical samples. This heterogeneity has been known to skew analysis 

in bulk samples23. A second approach would be to isolate cells through a marker. However this 

approach can introduce bias into systems, especially when studying cell state transitions24. 

Through capturing cells in an unbiased manner and subsetting data to cells of interest post hoc, 

this effect can be mitigated and assumptions before data acquisition are limited — isolation of a 

single cell type allows for a more powerful case-control comparison. For instance, single-cell RNA 

libraries generated from 48 individuals with Alzheimer’s disease pathology uncovered many more 
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differences using pairwise 

comparisons respective of 

cell types than have been 

previously uncovered in bulk 

data sets, which compare 

across all cell types at once. 

This was driven by the direct 

comparison between 

relatively sparse glial 

subtypes, which are 

masked in bulk libraries25. This same method has been applied to other disorders including major 

depression13, autism spectrum14, and multiple sclerosis15.  Secondly, single-cell analysis is used 

for a higher resolution view at dynamic processes. Time course experiments done in bulk are 

limited by sampling rate, and generally share the same problem with averaging across many cells, 

or having to synchronize cell cycle or conditional responses prior to sampling. By using a single-

cell approach one can capture and order cells through their progression of a state change26. Single-

cell analysis allows for a higher resolution view into dynamic processes, and the regulatory 

landscape across complex tissue (Figure 1). 

Single-cell methods have been developed for many epigenomic and genomic assays, 

however the analyses share a common through-line. Cells are independently, and specifically 

labelled with a DNA oligonucleotide index that is shared in every sequence read out generated 

from that cell, such that each read can be assigned back to a specific reaction condition. Single-

cell assays work through isolation; tissue or cell cultures are dissociated and single-cells are placed 

into a reaction vessel. In its simplest form, the reaction vessel is a single tube (Figure 2a). While 

this strategy tends to perform well on information captured per cell, a “one cell, one well” strategy 

is limiting in terms of both cost and effort, and these experimental designs tends to suffer from low 

cell counts. To address this, commercialized products have been developed to increase 

throughput. Nanowell platforms increase the throughput of the “one cell, one well” strategy by 

Figure 2. Schematized methods of single-cell isolation. a.) Single-cell single tube 
isolation, b.) nanowell isolation, c.) microfluidic droplet separation, d.) split-pool 
labelling (e.g. sci- chemistry). Cells (green) are isolated by various means and co-
occupy a space with either DNA oligonucleotide indexes (purple line), oligonucleotide-
coated beads (blue, purple, and orange stippled circles), or undergo combinatorial 
indexing. 
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shrinking the well and using specialized means of dispersing the dissociated cell suspension and 

decreasing reagent cost per cell by limiting volume27 (Figure 2b).  Alternatively, microfluidic droplet 

devices use water-oil emulsions as a means to isolate cells into their own partitioned reaction 

vessels28–30 (Figure 2c). In these commercialized reactions, each reaction vessel also contains a 

microbead coated with a single index identifier that is unique, thus labelling the one cell present 

within the microfluidic droplet uniquely. A limitation that persists is each assay is that they are still 

bottlenecked by the one cell, one well strategy. This limits throughput and puts a burden of effort 

and cost on the experimenter. An alternative to these strategies, popularized by us and others, is 

the use of a split-pool indexing strategy called combinatorial indexing (Figure 2d). Cells can be 

uniquely labelled without ever being physically isolated. Instead of a single round of uniquely 

labelling cells, we perform multiple rounds of labelling, with random sampling in between. In this 

approach, the combination of indexes becomes the unique identifier for each cell. This process is 

empirically tailored to account for the random chance that multiple cells may follow the same path 

through library preparation. This is done by limiting the number of cells in the second round of 

indexing such that the likelihood of any two cell occupying the same well in the first and second 

round of indexing is sufficiently low31. This allows for multi-cell reactions without physical isolation 

of single cells. This strategy addresses both low cell count, and low assay efficiency concerns at 

once, driving down experimental cost and effort.  

Regardless of epigenomic or transcriptomic assay, each single cell captured tends to have 

low information content, with a non-trivial amount of drop-out32 due to inefficiency in information 

capture and inherently low input per reaction. To overcome information drop-out, cells are grouped 

together based on similarities across the measured moiety. Cells are then aggregated together 

making multiple “pseudo-bulk” libraries of pure cell types or states — agnostically grouping cells 

for unbiased analyses. The process of single-cell aggregation also highlights a key concern about 

experimental design: they must balance information per cell with number of cells sampled. Low 

information content per single cell requires assumptions to be made about cell grouping, as there 

is high noise in low-information content system. By having low cell count, there is a risk of losing 

rare cell types, or having insufficient power for pairwise analyses. This key concern informs the 
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strategy of single-cell capture and the assay used. In the case of cortical development, multiple 

cellular subtypes are differentiating in parallel, leading to a need for both breadth of cell count and 

high information per cell to make the most of captured rare events.  

Cortex topology and taxonomy 
 

The mature cortex consists of billions of neurons organized into a six-layered (L 1-6) 

structure. These neurons interact via short and long-range connections to form the complex 

circuitry which results in the emergent property of cognition. This cortical layout is highly 

conserved across mammals33,34. The neurons of the cortex occupy two major classes, GABAergic 

(inhibitory; iN) and glutamatergic (excitatory), and from those two major classes, dozens to 

hundreds of subtypes form, identified through distinct neuronal processes, circuit membership 

and gene expression patterns22. Glutamatergic excitatory neurons possess axonal projections 

which synapse at various brain regions, and projection properties dominate cell type grouping in 

single-cell RNA data22. These neurons form circuits with their inputs serving to promote action 

potential firing and downstream neural activity. Typography and topography (i.e. cell type and 

location) inform neuron function. For instance, glutamatergic pyramidal tract neurons are most 

common in deep layer L5 (ventrally located) and are associated with executing voluntary 

movements and planning. These project to subcortical targets like the striatum, thalamus, tectum 

and pons35. In contrast, glutamatergic intratelenecephalic trajectories connect excitatory neurons 

between cortical layers or cortical brain regions, and span most layers22. GABAergic inhibitory 

neurons have two major subclasses which reflect their point of origin36. Adenosine Deaminase 

RNA Specific B2 (ADARB2+) expressing inhibitory neurons are formed in the caudal ganglionic 

eminence, whereas LIM Homeobox 6 (LHX6+) neurons form in the medial ganglionic eminence 

(CGE and MGE, respectively). Inhibitory neurons produce the small molecule GABA, and 

modulate neuronal circuitry through dampening neuronal firing. Glia, which have previously been 

considered to be connective cells, have been found to serve critical roles in maintaining synapse 

integrity and cortical function. Astrocytes mediate blood brain barrier and have been shown to 

mediate synapse formation, elimination, and plasticity. Oligodendrocytes enable salutatory 
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conduction of actionable potentials throughout the brain. Microglia are resident immune cells, 

participate in phagocytosis and inflammation response. Neuronal circuitry is an active field of 

study – which benefits from understanding the unique states and types of neurons and glia37.  

The generation of cortical circuitry is critical. Dysfunction during corticogenesis has been 

implicated in multiple neurodevelopmental disorders6–8, and evolutionary changes between 

humans and other apes have been linked to the rapid expansion of the human cortex4. In early 

embryonic development (GW4 in humans; E10 in mice; where “E’ is embryonic day post conception 

and “GW” is gestational week), the ectodermal neural tube expands and compartmentalizes into 

the prosencephalon (forebrain), the mesencephalon (midbrain) and the rhombencephalon 

(hindbrain)38. The maturing forebrain subdivides along the dorsal-ventral axis into the pallium and 

subpallium, respectively. The pallium generates the bulk of the cerebral cortex and the subpallium 

forms the MGE and CGE (Figure 3)39. As the pallium develops, neuroepithelial cells differentiate to 

RG, named as such for their radial projection from the ventricular zone (VZ) towards the dorsal 

surface of the pallium, and for their combined marker set of neuroepithelial and astroglial 

expression patterns40. RG divide asymmetrically, both producing newborn RG to replenish the pool 

of stem cells, as well as forming intermediate progenitors (IPs) and a subset newborn Cajal-Retzius 

neurons (CR) directly. However most CR neurons are born exterior to the developing pallium and 

migrate tagentially into the marginal zone (MZ). IPs move dorsally to populate the subventricular 

zone (SVZ) while CRs migrate further to develop in the cortical plate (CP). RG continue to 

mitotically cycle while their nuclei rhythmically move dorsally up the VZ during G2/M phase (basal 

RG or bRG), and ventrally for/during/in S-phase along cellular projections in a process known as 

interkinetic nuclear migration (ventricular RG, or vRG; IKNM)40. This process continues through 

cortical development, with the self-replenishing pool of RG generate IPs and expand the VZ. The 

process of self-replenishing symmetric divisions and asymmetric neuron generation is partially 

regulated through the balance of key epigenetic regulators of cells, transcription factors PAX6 and 

EMX2, respectively41,42. IP cells, not anchored to the apical VZ, populate an outer area of the SVZ, 

split by an inner fiber layer (IFL), forming outer RG cells (oRG). IPs continue to divide and 

differentiate forming the cortex in an inside out manner, generating deep layer neurons, then the 
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more superficial layers43. Notably, RG and IPs are known to express messenger RNA (mRNA) 

associated with deep and superficial layer neurons markers prior to differentiation, though they 

don’t express the resultant proteins. This is regulated through post-transcriptional repression 

mechanism and suggests a priming of RG/IPs throughout maturation44. A mature subset of IP, oRG 

cells form non-neuronal glial cells, such as oligodendrocytes, and astrocytes which permeate 

across the cortical layers45. In humans, these oRG cells are abundant and self-renew, a 

characteristic that has been postulated to lead to the human specific cortical expansion9,46,47. In 

recent work, differential gene expression of the transcription factor FOXO3  and genes a part of the 

Figure 3. Schematic of human corticogenesis. a) Anatomical view of mid-gestational (GW13) human cortex, adapted from 
Allen Brainspan imaging (Ziller et al. 2015). CP: cortical plate; SP: subplate; SVZ: subventricular zone; VZ: ventricular 
zone; MZ: marginal zone; VTL: lateral ventricle; CGE: caudal ganglionic eminence; MGE: medial ganglionic eminence.b) 
Schematic of cell type transistion, lamination and differentiation through corticogenesis. Radial glia (RG) both self-renew 
and differentiate to Cajal Retzius (CR) or intermediate progenitors (IP). IPs maintain the ability for self-renewal and 
differentiate to corticothalamic projecting neurons (CThPN) primarily in layer (L6), subcerebral projecting neurons (SCPN) 
primarily in L5, stellate neurons (StN) primarily in L4, and cortical projecting neurons (CPN) primarily in L2-3. Later born 
RG may migrate dorsally into the outer subventricular zone (OSV) where they are known as outer RG (oRG) and develop 
potential to generate glial cells such as astrocytes (Ast) or microglia (Mic), or remain more ventricular in the inner 
subventricular zone (ISVZ). Estimated timing of corticogenesis in shown below, with mouse corticogenesis timing in shown 
on top, and human coticogenesis timing on bottom. 
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mTOR pathway have been implicated in oRG formation and self-renewal48,49. After cortical layer 

formation, RG eventually self-consume into pairs of neurons.  

To fully dissect the epigenomic dynamics of corticogenesis, a robust model system is needed. 

A model system must be both faithful to the subject of study, as well as mutable. Major 

considerations persist in our ability to understand cortical development both in terms of what may 

go awry in neurodevelopmental disorders, and what leads to the human-specific expansion of the 

cortex.50. However, the necessary reductionist study to uncover the epigenomic landscape 

responsible for cortical layer stratification faces major hurdles. First and foremost is sample rarity; 

human and non-human primate fetal tissue is difficult to obtain. Mouse models lack several key 

cortical sub-regions and cell types, including the more elaborate organization of progenitors — 

namely the OSVZ and the oRG found within45. In addition, the developing human cortical plate and 

subplate, containing CR cells, have distinct cell subtypes missing in mouse33,34. Regions of 

accelerated mutation since human divergence from chimpanzees reveal the importance of non-

coding regions. 92% of human accelerated regions (HARs; 663/721 HARs) fall outside of 

transcribed sites, and are enriched for enhancer-like activity or transcription-factor binding motifs12. 

Further, these sites are seen to be active in early embryonic forebrain development12,51. Secondly 

there is also the need for genetic manipulation. Necessity and sufficiency are largely determined 

through gene knockout and rescue experiments — corticogenesis is no different. An emerging 

model system must allow for both genetic manipulation and recapitulate human-specific aspects of 

development.  

Cortical organoids as a model of corticogenesis 

Cortical organoids are self-organizing three-dimensional cultures that model features of the 

developing human cerebral cortex52. They are an adaptation of a 2D cortical “rosette” method that 

modelled early polarization of neuroepithelial cells and neural tube formation. Induction of human 

embryonic stem cells (hESC), or induced pluripotent stem cells (iPSCs) to the ectodermal lineage 

generates cellular aggregates called embryoid bodies (EBs). Neuroectodermal lineage priming is 

done through in vitro differentiation of stem cells in decreased basic fibroblast growth factor (bFGF) 

and a high dose of ROCK inhibitors to limit cell death53,54. From here the protocol deviates from the 
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2D cortical rosette method to allow for three-dimensional cortical layering. EBs aggregate and are 

cultured in suspension in a Neurobasal medium with additives to support neural progenitors and 

their progeny. Shortly thereafter, EBs are embedded into matrigel, an artificial extracellular matrix, 

which acts as a scaffold for cell migration. EBs expand in the matrigel to form organoids containing 

fluid-filled cavities reminiscent of brain ventricles, and buds of neuroepithelium that replicate early 

to mid-gestation of cortical development. Cortical organoids do not form blood vessels and thus as 

they expand to up to 4 mm in diameter, the diffusion of oxygen and nutrients to the core decreases. 

This leads to necrotic centers if grown in culture for multiple months. To mitigate necrosis, cortical 

organoid protocols all feature a form of agitation to facilitate movement of nutrient rich media 

through the organoids. To achieve this agitation, organoids are cultured in spinning bioreactors55, 

or on orbital shakers, and previous groups have reportedly maintained organoids in culture for 

excess of 18 months56. The original organoid protocol did not include cortical region specification 

and was largely undirected, showing arealization of both the forebrain (FOXG1+), mid brain 

(OTX1/2+), ventral forebrain (NKX2.1+) and even retinal tissue. Developments in cortical organoids 

differentiation have revealed that they can be selectively induced to form different brain regions 

based on small molecule addition to the culture media. For instance, SMAD inhibitors such as 

dorsomorphin and SB-4321542 induce rapid neural differentiation to the dorsal forebrain state, 

while retinoic acid presence in early organoid induction is caudalizing55.  

Cortical organoids develop in a shorter time frame than native corticogenesis occurs, yet they 

follow the same cell differentiation progression. Exact times vary by protocol, however a 

generalized timing is as follows. Within 15-20 days in vitro (DIV15-20, where DIV0 is the original 

induction of stem cells to ectodermal lineage), cells form continuous neuroepithelia, surrounding 

fluid-filled cavities (similar to neural rosettes). Pluripotency markers OCT4 and NANOG begin to 

diminish, while neural identity markers SOX1 and PAX6 increase57,58. By DIV30, a radially 

organized CP begins to form. This region is positive to pre-plate marker TBR1, and contains RELN 

expressing CR cells57. Bulk RNA analysis shows at this point that organoids closely resemble 

prefrontal cortex at GW (gestational week) 8-955. Around DIV60-75, organoids exhibit rudimentary 

separation between early-born deep layer corticofugal neurons (BCL11B+) and late-born 
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superficial layer (SATB2+, POU3F2+), depending on protocol52,55,56,59. Additionally, it is around this 

time that the human-specific oRG cells (SOX2+,HOPX+) begin to populate52. Around DIV90-100, 

organoids become more closely correlated to fetal prefrontal cortex at GW17-2555. Progeny of oRG 

begin to form astrocytes (GFAP+)55. As organoids age further we begin to see the formation of 

dopaminergic neurons (TH+) and mature astrocytes (DIV180)60. Organoids in directed protocols 

that lack a ventral (NKX2.1+ region) did not exhibit interneuron formation52,55,56. However those with 

the ventral marker showed late formation of interneurons. This is expected, given that interneurons 

are known to migrate from the ventrally located LGE/MGE during corticogenesis. 

When cerebral organoids are generated from mouse embryonic stem cells, they lack both the 

IFL and oRG56. Further supporting evidence that organoid models can recapitulate RG behavior, 

is a study in which GFP was electroporated, followed by a pulse of BrdU to track lineage divisions 

in proliferating cells. The authors reported that daughter cells formed after the BrdU pulse chase 

included both RG and IPs, suggesting this cerebral organoids capture the asymmetric division 

potential of RG45.  

Organoid cortical models are not without limitations. In RNA comparisons between organoids 

and primary fetal tissue samples, organoids consistently enrich for genes associated with cellular 

stress, glycolysis, and electron transport pathways48,50,52. However, it has been demonstrated that 

this can be alleviated with culturing alterations and is likely induced in the early stages of ectodermal 

lineage priming of pluripotent stem cells. Organoids transplanted into a mouse cortex appropriated 

mouse oligodendrocytes and astrocytes, which led to decreased cellular stress signals52. New 

protocols have introduced vascularization processes to address glycolysis concerns as well61. 

Xenografted organoids show a higher correlation of radial glia maturation to primary sample age 

over organoid age48. Further the directed differentiation of organoids is not perfect. Mesodermal 

linage cells have been uncovered, despite early patterning to the neuroectodermal fate60 and 

organoids are not homogenous in forebrain cortical area, with many showing both primary visual 

cortex (V1-like) and prefrontal cortex (PFC-like) signatures48,52. This is partially to be expected 

given the belief that thalamic input helps define areal signature62,63. Organoids tend to lack the 

diversity of cell subtypes that form over time in the human cortex52. Despite nuances in organoid 
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differentiation when compared to native human corticogenesis, this model system remains 

extremely promising for a battery of previously untestable hypotheses and closely resembles early 

corticogenesis. In Chapter 4 of this thesis, survey the changing epigenomic landscape of maturing 

organoids and provide comparisons to what is understood about the epigenome of fetal cortical 

development. 

Single-Cell Chromatin Accessibility Assays 

Motivation 

The diploid human genome contains roughly 6.4 billion base pairs, totaling a distance of 

over 3.84 meters of linearized DNA per nucleus. To maintain nuclear integrity and limit search 

space for DNA binding proteins, cells compact their genomes such that only 1-4% of it is accessible 

at a given time64. This is achieved by the coiling of DNA around histone proteins and condensation 

of those resultant nucleosomes into larger macromolecular structures. The regions which remain 

accessible are highly enriched in genomic content relevant to regulating transcription and defining 

cell type and state, including gene promoters and enhancers65. A single-cell approach to measuring 

chromatin accessibility shares the same two previously stated benefits of single-cell analysis over 

bulk approaches. Namely, i) single-cell approaches allow for the unbiased interrogation of multiple 

cell types within a complex tissue sample, and ii) single-cell approaches provide a higher resolution 

of chromatin reconfiguration in actively differentiating systems than in bulk assays. Most variants 

uncovered in GWAS studies of neurodevelopmental disorders are located in non-coding regions, 

thus demonstrating the significance of assessing non-coding regulatory elements.66. Using a 

single-cell chromatin accessibility assay, we are able to uncover which cell types express these 

non-coding regions that are associated with disease states67. By tracking accessible sites in single-

cells one can infer the activity of transcription factors, track the opening of enhancers, and infer 

their recruitment to promoter regions.  

Method 

In order to catalog the small sections of the genome that are accessible in each cell, several 

strategies have been developed. All strategies share the common through-line of leveraging the 

susceptibility of exposed DNA to insult when compared to compacted DNA. All assays are based 
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on the premise of fragmenting the more vulnerable DNA and the subsequent capture of fragments 

for sequencing library preparation. 

DNase-based methods were until recently the most prominent method, being used in the 

Encyclopedia of DNA Elements (ENCODE) project. In this approach, the genome, while in its native 

state, is treated with DNase I, a protein that can digest both single and double stranded DNA (Figure 

Figure 4. Single-cell chromatin accessibility assays. a) Single-cell DNase-seq uses DNAse I (purple) digests open 
chromatin, adapters are subsequently added. b) Single-cell transposome hypersensitive site sequencing (scTHS-seq) uses 
a transposase (green) to introduce a T7 bacterial promoter region to open chromatin and amplify DNA through an RNA 
intermediate via in vitro transcription (orange). c) Single-cell assay for transposase accessible chromatin (scATAC) uses 
two species of transposase to introduce i5 and i7 adapter sequences. Cells are then encapsulated in droplets with an 
oligonucleotide coated gel bead to uniquely index each cell. d) Single-cell combinatorial indexing assay for transposase 
accessible chromatin (sci-ATAC) uses two species of transposase (purple and orange) to introduce two adapters directly 
into open chromatin. e) Symmetrical strand sci-ATAC uses a single species of transposase and subsequent adapter 
switching strategy to amplify open regions, further detailed in Chapter 2. Labeled DNA oligonucleotide colors are consistently 
colored across panels. 
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4). Enzymes are limited by their protein footprint so condensed heterochromatic regions are 

sterically protected from enzymatic action. The fragmented DNA can then be captured, and 

sequencing adapters appended for massively parallel sequencing (Figure 4a)64. While DNase 

approaches have been adapted to a single-cell format, this method remains difficult to titer. 

Changes in DNase I concentration or incubation greatly affect library quality68.  An alternative 

method is THS-seq, wherein hyperactive transposase (the protein Tn5) is loaded with a bacterial 

T7 promoter region and tagmented into regions accessible to the Tn5, again using steric hindrance 

to select for open regions (Figure 4b). Tagmented DNA is isolated and in vitro transcription is used 

to amplify regions via the added T7 promoter region. RNA intermediates reflecting the open regions 

of chromatin are then reverse transcribed and sequencing adapter are added32.  

By far the most widely used assay for accessible chromatin is ATAC-seq (Assay for 

Transposase Accessible Chromatin using 

sequencing)16. This method uses the same Tn5 protein 

used in THS-seq, but uses a simplified workflow. The 

Tn5 enzyme is, as previously mentioned, sterically 

limited to regions of open chromatin. ATAC-seq 

involves loading the enzyme with adapters necessary 

for PCR and sequencing. At open regions, the Tn5 

enzyme both fragments the genomic DNA and appends 

the PCR adapters in the same reaction (Figure 4c). 

The excised accessible DNA can then be amplified 

selectively by using complementary primers. This 

assay is far more efficient at the capture of open 

genomic regions than the other approaches and has been adapted to optimize cell isolation and 

tagmentation conditions69. Recently commercialized versions of single-cell ATAC was made 

available which encapsulates cells or nuclei within microfluidic droplets29,30. Another means of 

single-cell ATAC popularized by us and others is sci-ATAC which uses the aforementioned split-

pool barcoding approach (combinatorial indexing) (Figure 4d)31,67. Combinatorial indexing is 

Figure 5. Tagmentation with two separate adapter-
loaded Tn5 species has loss in effiency. In a 
captured molecule, i5 and i7 adapters must be added 
in the proper orientation for PCR. i5-i5 (top left) and 
i7-i7 tagmentations (bottom right) are not 
sequencable, despite the genomic regions being 
open. 
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performed through the addition of indexes both at the 

multiplexed tagmentation stage, and at the final PCR 

stage. This method is beneficial in that the number of 

assayable cells per preparation scales exponentially 

with increasing index combinations. In Chapter 3, I 

describe our adoption of both sci- and microfluidic 

platforms to greatly increase the throughput of both 

systems, essentially capturing multiple cells per 

droplet leveraging indexed tagmentation. sci-ATAC 

libraries have uncovered a trove of regulatory 

information, however the number of captured 

fragments is inherently limited. To successfully 

capture a fragment in PCR, it must have the proper 

tagmentation of both i7 and i5 adapters. This means 

that ~50% of fragments are lost as i5-i5 or i7-i7 

tagmentations (Figure 5). In Chapter 2, I describe a 

correction to this strategy through the use of single 

Tn5 species and an adapter switching strategy, 

named symmetrical strand sci (“s3”, Figure 4e). The 

above summary demonstrates that all protocols show 

a commonality in the generalized goals of both the 

fragmentation and capture of unprotected genomic 

regions. Consequently, the information gathered by 

all assays is similar in that it is essentially a count of 

Figure 6 Flow-through of single-cell ATAC-seq data analysis. Reads are generated through sequencing, aligned 
to a reference, de-duplicated and filtered based on quality control metrics, read pile-ups along the genome are 
called, then a counts matrix of cell identifier by read count per peak is generated. This counts matrix is then 
reduced in dimensionality, and clustered and projected into 2D space. From there cluster aggregates (all cells 
combined within a cluster) have the power for differential accessibility analysis, and can be used for trajectory 
analysis, transcription factor motif usage and the assessment of cis-coaccessible networks for promoter-enhancer 
interactions. 
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captured genomic regions overlapping with a reference genome. 

Analysis 

Single-cell chromatin accessibility data is count data. Single-cell ATAC-seq methods are 

by far the most widely used and their analysis will be detailed below; however, similar analysis can 

be performed with any of the above listed alternative protocols. Genomic DNA fragments captured 

in the assay are sequenced and aligned to a reference genome by an alignment algorithm (Figure 

6)70,71. Reads which overlap in alignment (“pile-ups”) are used to define discretized regions of open 

chromatin, essentially assuming that the chromatin accessibility protocol is biasing sequence 

capture to unprotected regions. The calling of discrete open chromatin regions, or peaks, is done 

with an peak-calling algorithm, like MACS272, which uses a Poisson distribution of reads across the 

mappable genome in a sliding window of bins. If there are more read counts in a region than 

expected by this null hypothesis, a peak region is called and an open region of the genome is 

uncovered72. These peaks are then used to “bin” the genome into sites with evidence of 

accessibility. Single-cell ATAC-seq methods apply peak-calling on the full data set, not accounting 

for single cells, since any given diploid cell can have at most four captured reads at a given base 

(two copies of each top and bottom DNA strands). Once peaks are called on the entire data set, 

cell identity is mapped back to individual reads via the cell identifier (the unique combination of 

indexes) to generate a sparse cell x peak matrix31,67, populated by the number of reads per cell 

aligning to an open region. 

Cells are then grouped together based on similarity of peak coverage to overcome single-

cell data sparsity. Natural language processing approaches like latent semantic indexing (LSI) 

apply a weighting schema where peaks more commonly used are decreased in importance73. 

Alternatively, machine-learning approaches such as the latent Dirichlet algorithm (LDA) is used to 

generate “topics” or groups of peaks commonly seen together within the data. From there the cell 

x peak matrix is reduced from hundreds of thousands of peaks to a couple of dozen topics, where 

the number of topics scales with the complexity of the data set. This addresses both the data 

sparsity of single cells and captures biological information within peaks, wherein shared open sites 

tend to be enriched in common transcription factor motifs or linked to biological ontology74. 



24 
 

Following dimensionality reduction, cells are grouped together based on their shared topic 

weighting by Louvain based clustering algorithms75. Cells are projected into two dimensional space 

via a machine learning algorithm like uniform manifold approximation and mapping (UMAP) or t-

distributed stochastic neighbor embedding (tSNE)76. 

Following the unbiased clustering of cells, differences in peak usages between clusters are 

assessed by use of logistic regression tests. Additionally, the activity of transcription factors can be 

inferred per cell, based on the expression of transcription factor specific DNA binding motifs. If each 

peak with reads for a cell is binarized, transcription factor activity can be inferred based on the 

overrepresentation of motifs present in open sites77,78. Given that enhancers and promoters are 

recruited in a concerted effort to drive transcription, this implies that the accessibility of both 

promoters and enhancers should co-occur if a site is acting in an enhancer-like function. To assess 

this agnostically within a data set, we look for the co-occurrence of accessibility in local enhancers 

linked to a peak region overlapping a known promoter. Cis-co-accessible networks (CCANs) are 

anchored at the promoter peak, and generated through correlation to other accessible nearby 

peaks for each cells with proper coverage. This network of enhancers and gene promoters better 

correlate with gene transcription as compared to either promoter accessibility alone or average 

gene body accessibility20,79. This is possible through the statistical power generated by so many 

independent samples made in single-cell library preparation. In order to leverage single-cell data 

to assess cell differentiation or epigenomic shifts, we can order cells in reduced dimensionality 

space and calculate a minimal spanning tree, or L1-graph, which traverses across cells, minimizing 

the residual distance from the tree. This allows for ordering of cells in order to infer programmatic 

shifts in the epigenome during cell state shifts26.  

In recent works, whole organism atlases have been generated on human and mouse 

development67,80. While not focused directly on corticogenesis, these data sets reveal the waves 

of transcription factor motif accessibility changes as stem cells progress towards maturing neurons. 

As excitatory neurons mature in the human cortex, there is a marked opening of Rfx and Tal-related 

transcription factor binding sites (e.g. RFX2, TWIST2, NEUROD1) and a closing of early radial glial 

marker sites like SOX2 and POU factors (e.g. POU2F1), reflecting a concordance with known 
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transcriptomic changes67. Further, chromatin accessibility across cortical neurons reflects the 

spatial organization of cortical layering in the murine brain80. However, many questions of chromatin 

dynamics, RG division, fate specification, and regulatory network formation persist that require a 

focused approach. In Chapter 4, I detail epigenomic changes during the maturation of cortical 

organoids as a model system of early human cortex development. 

Single-cell Whole Genome Sequencing 

Motivation 

The genome contained within each nucleus of an organism is exceedingly static, with an 

estimated frequency of mutation in somatic cells around 5x10-10 single nucleotide variants per bp 

per division. This rate of genomic change is bolstered by transposable elements and microsatellite 

instabilities81. However, cancers such as pancreatic ductal adenocarcinoma (PDAC) and triple 

negative breast cancer (TNBC), undergo marked genomic instability and may possess 

hypermutator phenotypes that can generate subclonal mutations during a tumor’s lifetime82. These 

phenotypes form when DNA repair mechanisms are disrupted. Single-cell whole genome 

Figure 7. Pre-amplfication based single-cell whole genome sequencing (WGS). a) Multiple displacement amplification 
(MDA) is performed through the random priming across the whole genome, with subsequent random priming and 
amplification through a highly-processive polymerase. b) Degenerative random primed PCR, uses random priming to 
amplify the genome prior to PCR. c) Multiple annealing and looping based amplification cycles uses a random priming 
strategy with a specialized adapter which will self-hybridize to form intra-molecular hairpins. This self-annealing 
sequesters these molecules from further amplification. These hairpins are then PCR amplified. d) Linear amplification via 
transposon insertion (LIANTI) uses a Tn5 enzyme (shown in tan) to tagment DNA and insert a T7 promoter. This promoter 
is then used to in vitro transcription with an RNA T4 polymerase (shown in orange) to amplify the genome through RNA 
intermediates, which are then processed by reverse transcription, second strand synthesis and adapter ligation prior to 
PCR. Molecule coloring is consistent across panels. 
 



26 
 

sequencing is useful in these cases83. Heterogeneity in the tumor genome, such a copy number 

aberrations (CNAs, amplification or deletions of genomic regions) can be used to order the events 

of cancer progression, identifying prognostic markers and secondary mutations83. Darwinian 

selection can work within rapidly expanding neoplastic tumors, selecting for favorable mutations. 

Likewise, hypermutator phenotypes have been seen to be lost once cancer cells find local optima 

in fitness82. Additionally, single-cell analysis accounts for tumors with low cancer cell fraction or 

impure biopsy results, allowing for the distinction between tumor and unaffected somatic cells. 

Method 

Single-cell whole genome sequencing (scWGS) methods have three major criteria for 

success. They must capture the genome with high fidelity such that mutations can be faithfully 

called. They must have high coverage of the genome, in order to provide the statistical power to 

call copy number changes at high resolution. They must have unbiased coverage, such that there 

is a large signal-to-noise ratio. With these criteria in mind, the existing methods for scWGS are 

summarized below. Early protocols were focused on amplifying genomic DNA prior to library 

generation. Multiple-displacement amplification (MDA) uses random priming via degenerative 

nucleotides in an attempt to capture the genome in an unbiased fashion (Figure 7a). Amplicons 

captured across the genome are further amplified by the use of a highly processive polymerase 

like phi-29 with the generation of 1-2 μg of DNA (far exceeding the 6 pg contained within a cell)84. 

Despite the exceptionally high coverage, MDA produces significant biases due to the multiple 

rounds of PCR, making the detection of small CNAs difficult. Early examples of MDA were used to 

support a hypothesis of punctuated evolution in tumor progression in triple-negative breast cancer. 

This was done by measuring both the cells within the primary tumor and a subsequent liver 

metastasis83. Degenerative oligonucleotide primed polymerase chain reaction amplification (DOP-

PCR) is a similar attempt at a random-priming strategy, with limited run-away amplification (Figure 

7b). However, this method suffers from low coverage and substantial dropout. A mixture between 

these two methods, MDA and DOP-PCR, emerged in which PCR amplicons self-sequester after 

amplification by formation of a thermodynamically stable intramolecular loop in a method named 

MALBAC (multiple annealing and looping based amplification cycles). This makes PCR 
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amplification “quasilinear” rather than exponential and leads for high coverage and less capture 

bias. However, MALBAC is not without limitations, the enzyme used for amplification (Bst large 

fragment) is error prone and the multiple rounds of linear amplification limit cellular throughput and 

increase cost (Figure 7c)85. LIANTI (linear amplification via transposon insertion) uses a 

transposase to introduce a T7 bacterial promoter region across genomic DNA. The T7 promoter is 

used for in vitro transcription genome wide, increasing the amount of material that can be generated 

per cell (Figure 7d). The RNA intermediate is then captured and converted to DNA libraries to be 

sequenced. While this method matches MDA in the amount of library material generated per cell, 

it has the shared limitation of uneven coverage. Further, error prone transcription exacerbates 

library quality, lowering the ability to call exacerbating library quality is the error prone intermediate 

states which decrease fidelity to the genome. This method has been developed for sci-compatibility 

as well wherein indexes are incorporated with a Tn5 tagmentation step86. 

Direct library preparation (DLP) avoids intermediate molecules by using Tn5 tagmentation 

to fragment the genome and introduce adapters for PCR, much like ATAC-seq (Figure 8a). In DLP, 

Figure 8. Tagmentation-based strategies of single-cell whole genome sequencing. a) Direct library preparation isolates 
single-cell genomic DNA in a well prior to full protein degradation. Purified genomic DNA is then tagmented with Tn5 
enzymes loaded with i5 and i7 sequencing adapters (tan and purple respectively). b) Single-cell combinatorial indexing for 
WGS (sci-WGS) performs a fixation and nucleosome disruption in situ to render the genome accessible to tagmentation 
while maintaining nuclear integrity. The resulting tagmented DNA is then PCR amplified. c) Symmetrical strand sci-WGS 
uses similar pre-processing steps to sci-WGS, with the modification of Tn5 tagmentation such that library capture 
efficiency is higher (Chapter 2). 
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proteins associated with the genome are first denatured or digested prior to tagmentation, allowing 

for full accessibility. This method is simple and does not require pre-amplification, meaning a low 

rate of error introduction, and even coverage87,88. Evolutionary dynamics are prevalent in tumor 

samples, with known driver mutations often fixed in cancer cells. In parallel our group developed a 

similar method for higher cell count throughput. In this, we applied a similar approach to DLP using 

Tn5 for a sci-WGS. In order to denature genomic-associated proteins while maintaining the nuclear 

integrity needed for split-pool indexing, we used formaldehyde-based cross-linking and denatured 

with the detergent sodium dodecyl-sulfate (SDS; Figure 8b)89.  The formaldehyde fixation 

maintained nuclear integrity while SDS denatured proteins, allowing for even tagmentation across 

the genome. In Chapter 2, I detail and adaptation to this strategy using the same s3- adapter 

switching strategy, increase genomic capture rate per cell to over 25% (Figure 8c). This increase 

in coverage allows for higher resolution assessment of copy number changes, and greater insight 

into which genes are driving cancer progression. 

Analysis  

 scWGS has the potential to capture both single-nucleotide variants (SNVs) between cell 

lineages as well as copy number aberrations (CNA). The read out for scWGS, just like scATAC, is 

count data. Reads captured are aligned to a reference genome (Figure 9). Depending on read 

count, the genome is then commonly segmented into “bins” or non-overlapping windows. Bins are 

used to aggregate data, allowing for enhanced statistical power in determining shifts in read counts, 

as well as to account for genomic biases. In the simplest form bins are a set length90. In other 

approaches bins are defined by a read count threshold, meaning each bin has the same number 

of reads by different lengths91,92. One common instance of genomic bias is the uneven dispersion 

of Guanine-Cytosine (GC) content. This is known to affect PCR efficiency and thus could bias 

results if left unaccounted. scWGS CNA callers work to normalize bins by one of two procedures. 

Either they use a set of cells known to be without CNAs to build a model for expected read counts 

per bin such as seen in SCOPE90, or they perform a normalization procedure to estimate ploidy. 

Normalization procedures include locally weighted linear regression (LOESS), or a modal 

regression followed by a post hoc means to estimate ploidy like in the tools Ginkgo91 and 
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HMMcopy87. Following normalization 

across bins, the genome is then 

segmented to find where CNAs occur. 

Segmentation across bins occurs 

through either circular binary 

segmentation (CBS)90,91 or hidden 

Markov model (HMM)87. Both methods 

generate breakpoints, wherein bins shift 

from one state (e.g. diploid) to another (a 

deletion of amplification). Following this, 

cells can be hierarchically clustered to 

infer the phylogeny of CNAs. Further, 

SNVs can be attained per cell using 

variant-call tools, such as GATK93. From 

this data, haplotypes can be generated 

by shared changes. CNAs can be 

supported by observing shifts in the 

minor allele fraction; for instance if the 

minor allele fraction in a clonal population 

goes to 0, that supports a loss of 

heterozygosity event.  Additionally 

clones can be hierarchically clustered by 

shared SNVs, similarly to CNAs87. In a 

breast cancer sample, Laks et al. 

uncovered a fixed amplification of 

oncogenes MYC, MCL1 and CCNE1, clonal loss of heterozygosity of BRCA2, and subclonal 

amplifications of RAD18 and RAB18. Subclonal alterations in tumor suppressors and oncogenes 

has the potential to inform precision medicine and our understanding of metastases87. Though 

Figure 9. Analysis of copy number aberrations (CNAs) through 
single-cell whole genome sequencing. Reads are aligned to a 
reference genome after sequencing. Reads then undergo a quality 
control filter wherein low confidence mapping of reads and PCR 
duplicates are filtered out. For each cell, reads passing quality control 
are then counted within bins across the reference genome. Read 
count per bin in corrected for confounding factors such as GC 
content. After that normalization step, genomic bins undergo a 
segmentation where copy number changes are called based on 
changes in bin read count. Finally cells are grouped together based 
on shared CNAs to infer a lineage. 
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single-cell methods are not necessary to detect these mutations, per se, the accuracy of population 

frequency and the co-occurrence of mutations within cells, provides a more confident picture of 

cancer progression.   

Single-cell Chromatin Conformation Capture 

Motivation 

 Compaction of the human genome is known to play an important role in regulation of 

transcription. Genomes form a hierarchy of three-dimensional organization, including chromosome 

territories, A/B compartments associated with epigenomic markers, to smaller topologically 

associated domains and single chromatin loops94–96. Bulk assays for the capture of genome-wide 

conformation generate contact probabilities – averaging interactions over millions of cells97. 

However, it is now known through FISH that cells display variable genome and chromosome 

conformations, even when cells are genotypically and phenotypically identical98. Additionally, FISH 

and spectral karyotyping (SKY) remain the most common single-cell methods for uncovering 

genomic mutations such as translocations and inversions, which are hard to uncover with count 

data from whole genome sequencing or microarray. Efforts to advance single-cell chromatin 

conformation capture assays are being made to breach this gap99. Therefore, chromatin 

conformation assays have promising insight to both genomic rearrangement and genomic 

regulation.  

Method 

 Two critical components for the unbiased capture of chromatin conformation within single-

cells are paired-end sequencing and proximity ligation. The majority of single-cell chromatin 

conformation capture techniques are based on the principles of a bulk implementation of a method 

termed Hi-C, with adaptations for capture efficiency. In a bulk chromatin capture experiment, the 

chromatin of a sample is isolated and DNA is cross-linked with genome-associated proteins via a 

fixative such as formaldehyde100. Once covalently linked, the DNA is digested with a promiscuous 

restriction enzyme leaving “sticky-end” DNA 5’ or 3’ overhangs. Enzymes used are selected for a 

high frequency of occurrence across the genome and usually have small (and thus more likely 

occurring) recognition sites.  These exposed base pairs are complemented with the addition of 
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biotinylated nucleotides and the filled-in blunted ends of are ligated together via a ligase. Since 

DNA is fixed, it is essentially pinned to proteins and nearby DNA, therefore, the ligation of digested 

DNA is biased towards other strands nearby in three-dimensional space. Following ligation, DNA 

is fragmented, purified through a streptavidin-biotin purification, and prepared for sequencing17,101. 

Paired-end reads, allow for the mapping of the two ligated chimeric DNA fragments independently. 

From this, the two fragments are mapped to separate regions of the genome reflecting their 

physical proximity in three-dimensional space. Increases in the efficiency of Hi-C reactions lowered 

necessary genomic input, eventually to down to single-cell level. In early proof-of-concept reports 

of this assay, the reactions for fixation, restriction digestion and ligation were performed in situ 

within nuclei102. Use of the nuclear compartment led to increased signal-to-noise as compared to 

early Hi-C strategies97. This was then followed by a purification and second digestion to linearize 

DNA, prior to a blunt end adapter ligation and PCR103 (Figure 10a). sci-Hi-C was developed in order 

to improve on the cell count throughput of chromatin confirmation capture assays. This was done 

by introducing combinatorial indexing into the sample processing at gap-fill in biotinylation 

stage104,105 (Figure 10b). An alternative method, named Dip-C, is aimed at the capture of haplotypes 

within single cells106 (Figure 10c). Dip-C omits the biotin-streptavidin pull-down and adds a whole-

Figure 10. Schematic of single-cell chromatin conformation assays. a) Single-cell Hi-C protocol, including in situ fixation 
and multiple rounds of restriction digest to generate libraries. A biotin-fill in (yellow circles) is performed to allow for both 
proximity ligation (a low temperature blunt end ligation of nearby fragments) and the selective pull-down of biotinylated 
DNA during a subsequent clean-up step. Adapters are then blunt-end ligated prior to PCR. b) Single-cell combinatorial 
indexing Hi-C (sci-HiC) uses in situ fixation to set chromatin conformation and restriction enzyme digestion to introduce 
sticky ends. After biotin fill-in and purification, DNA is then tagmented and PCR amplified. c) Diploid conformation capture 
(Dip-C) uses a similar strategy without a biotinylation pull-down. d) Symmetrical strand sci- genome conformation capture 
(s3-GCC) uses a shared strategy with Dip-C wherein there is no selective pull-down for restriction digested DNA. 
However the more efficient s3 chemistry is used to increase information content garnered per cell (Chapter 2). Color 
labeling is consistent across panels. 
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genome amplification similar to LIANTI107. This 

approach captures more of the genome and 

more contacts per cell than sci-Hi-C, but is 

limited in cell count throughput. A low cell count 

but high coverage adaptation of Dip-C has been 

used to analyze contact maps in murine olfactory 

bulb and retinal rod receptors. In this study 

authors used few cells (409) with a relatively 

high number of chromatin contacts (median of 

252,000) to separately cluster gross cell types. 

By leveraging additional epigenomic knowledge 

such as methylated regions, they uncovered that 

methylation frequency correlates to distance 

from nuclear center. This phenomenon inverts 

as retinal rod cells mature. Interestingly, 

because this data was generated on single cells, 

the authors were able to uncover some of the 

enhancer-promoter recruitment and variability in 

the developing population, and track the 

progress of euchromatic inversion. While 

promising for insight into gene regulation and 

chromatin conformation through development, 

this method is still in its infancy with a need to 

improve both cell count and contact captures per 

cell for greater statistical power106. 

Analysis 

 In chromatin conformation data analysis, each end of paired-end reads are mapped 

independently to the reference genome and uniquely captured molecules are counted (Figure 11). 

Figure 11. Analysis flow-through for single-cell HiC-like 
data. Chimeric library molecules are aligned to the 
genome with read 1 and read 2 (two reads generated 
through paired end sequencing) are aligned separately. 
Following alignment, reads are filtered for quality both in 
alignment confidence and the removal of any PCR 
duplicates. After this, a square matrix is made per cell for 
contact frequencies. The position of read 1 and read 2 
determine the x and y axis of the matrix, and the resultant 
bin is the count of occurrences. Cells are then grouped 
together and projected into 2D space based on the 
normalized contact frequency matrices through a 
machine learning algorithm. From this grouped cells are 
combined for statistical power. Higher resolution 
ensembles are then used to determine pairwise changes 
in topological domains, reflecting regulatory changes or 
large-scale mutations. 
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The genome is binned as in single-cell whole genome processing. A square counts matrix of 

contact frequencies (read 1 alignment locus X read 2 alignment locus) is then generated per cell. 

This matrix is sparse, leading to the construction of algorithms for imputation. Two current methods 

built specifically for grouping single cells based on their contact frequency matrix, are scHiCluster 

and HiCRep/MDS108. Contact frequency bins are locally aggregated via a linear convolution or 

sliding window. In scHiCluster, this is then smoothed by a random walk algorithm being treated as 

weighted network. Alternatively, for HiCRep/MDS, the smoothed contact matrices are summarized 

as weighted similarity measures as in HiCRep108. The resulting matrices are clustered and 

projected by dimensionality reduction (with an approach such as multidimensional scaling, MDS) 

into two dimensional space109. Following this topological domain boundary differences between 

clusters can be attained through merging similar cells and analyzing the “pseudobulk” data through 

TopDom110. Similar to HiCRep, TopDom uses a sliding window of up and downstream bins to define 

genomic regions with fewer locus-locus interactions than other regions around the local genome. 

This faithfully recapitulates the A/B chromatin compartments seen in bulk data109. The variability in 

topological domains within cell populations requires further study. Early work suggests interesting 

mechanisms of genomic reconfiguration within 3D space that could provide insight into 

transcriptional recruitment machinery and the interaction of different epigenomic markers in 

physical space106. To improve on this method, and to provide a means of improved CNA detection, 

I developed a method of single-cell genome conformation capture using the s3 chemistry described 

previously in this thesis (s3-GCC, Figure 10c). In Chapter 2, I describe the methodological 

improvements that lead to both whole genome and HiC-like read-outs from the same cell. This 

allowed us to identify subclonal translocations in patient-derived cancer cell lines. 

Single-cell Methylation 

Motivation 

 DNA methylation, the covalent addition of a methyl group to cytosine, is known to have 

critical roles in gene regulation and modifying transcription factor binding affinity. Its role in gene 

silencing and genomic imprinting is also well studied111,112. Genomic methylation occurs primarily 

on the  approximately 1 billion cytosines in the genome almost exclusively in the context of cytosine-
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guanine dinucleotides (mC, CG) for most cell types111. DNA methylation is correlated to gene 

expression113,114 and reflects cellular identity115. DNA methylation has also been linked to 

neurodevelopmental disorders in the human frontal cortex116. Notably, methylation also occurs at 

non-CG dinucleotides and is referred to as CH methylation (mCH, H = adenosine, thymine, or 

cytosine). This is occurs at high levels in embryonic stem cells and mature neurons, though at 

different trinucleotide patterns, namely CAG for stem cells and CAC for neurons111,117. In mature 

neurons the amount of mCH exceeds that of mCG during synaptogenesis, roughly four weeks after 

birth in mice or two years after birth in humans114,118,119. Remarkably, gene body mCH levels in 

neurons negatively, yet strongly, correlates with transcriptomic expression and are useful for cell 

type identification19. In bulk methylation profiling of cortical organoids, Luo et al. were able to 

capture the transition of dominant mCH from CAG to CAC during the transition from neuroepithelial 

cells to mature neurons, suggesting a point of methylome transition from stem-like to neuronal-

like118. This provides both a model system and a key time-point for future analyses of mCH levels 

and their regulation120. Organoids were observed to have changes in methylome profiling from fetal 

cortex. These changes manifest as differential methylation across extracellular matrix  genes 

(possibly due to the inclusion of matrigel in culture) and hypomethylation around pericentromeric 

regions (a previously reported phenomenon for induced pluripotent stem cells)120.  

In the native methylation, reduction of mC is catalyzed by the Tet family of mC hydroxylase 

proteins, converting the methyl- moiety to hydroxymethyl-, formyl-, and carboxyl- progressively. 

Hydroxymethylation (5hmC) occurs almost exclusively in the CG context and accumulates in 

mature neurons. In neurons, 5hmC is known to be enriched near constitutively expressed promoter 

regions114. To this day the role of 5hmC is understudied, likely due to the inability to distinguish mC 

and 5hmC by the most commonly used assay for methylation, bisulfite conversion. Two reports 

through alternative assays demonstrate a ratio of 5hmC to mC of 30-50% in mature excitatory 

neurons114,121. Alternatively, new enzymatic methods have been described in which APOBEC3A, a 

natively expressed deaminase induces direct cytosine deamination in an in vitro reaction122. To 

date, this method has not been published as a single-cell protocol, however, it does have a 

promising adaptation for assaying the understudied moiety 5hmC121.  
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Method  

Methylation profiling genome-wide is achieved by the selective mutation of non-methylated 

cytosines. Sodium bisulfite is applied to genomic DNA which effectively deaminates non-

methylated cytosine to uracil, through a three-step reaction. Importantly, uracil complements with 

adenine, which means subsequent library amplification will report non-methylated cytosines as 

thymine. Through this point mutation in the reference genome, namely thymine where cytosines 

were expected, methylation profiles can be inferred (bisulfite-sequencing, BS-seq)18. The first 

reported protocol for single-cell methylation was scRRBS (reduced representation bisulfite 

sequencing, Figure 12a). This method uses a methylation-insensitive restriction enzyme (MspI) to 

digest genomic DNA prior to bisulfite conversion. MspI is used to enrich for CG-rich regions across 

the genome, via its cut site (5’C|CGG). The resulting sticky ends enriched at CG-rich genome 

regions are then adapter ligated, DNA is bisulfite converted, and sequencing libraries are 

prepared123.  

Figure 12. Methods for the generation of single-cell methylomes. a) single-cell reduced representation bisulfite 
sequencing (scRRBS-seq) digests purified genome DNA with restriction enzyme MspI. This enzyme cuts at a CCGG 
target sites, fragmenting DNA that is in CG rich regions. Y-adapters (pre-annealed i5 and i7 adapters) are then added 
on by ligation and the molecule is bisulfite converted. Following this, the DNA is then PCR amplified. b) Single-cell 
bisulfite sequencing bisulfite converts purified genomic DNA and then uses random priming for post-bisulfite adapter 
tagging. Prior to the second round of random priming, the reaction is incubated with exonuclease I (exoI) which digests 
single-stranded DNA. This removes excess primer from the reaction. Following this a second round of random priming 
is used to introduce the next adapter and the molecules are PCR amplified. c) Single-nucleus methylome sequencing 
(snmC-seq) is similar to scBS-seq but uses a blunt-end adapter tagging strategy. d) Single-cell combinatorial indexing 
for methylation (sci-MET) uses a C-depleted oligonucleotide loaded onto a Tn5 enzyme to tagment nucleosome 
depleted nuclei. Following this, cells are lysed, bisulfite converted, and a post-bisulfite adapter tagging strategy is used 
prior to PCR amplification (Chapter 1). 
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 BS-seq is harsh and fragments 

genomic DNA. This is of high concern for 

scaling the assay to single-cell resolution. 

To avoid heavy losses of genomic capture, 

post-bisulfite adapter tagging (PBAT) is 

used. In PBAT library adapters necessary 

for PCR and sequencing are added to 

genomic DNA after BS conversion (Figure 

11b)19,115,124. In this order of events, BS 

conversion fragments the genome and 

denatures DNA to a single-stranded state. 

Single-cell PBAT strategies such as scBS-

seq introduce adapters after conversion 

through random priming, similar to the 

single-cell whole genome method DOP-

PCR124,125. Secondary adapters are then 

added and libraries can be sequenced. An 

alternative approach, single-nucleus 

methylome sequencing (snmC-seq), uses 

a blunt-end adapter tagging strategy 

(Figure 12c)19. Cells are fully lysed by the 

bisulfite conversion chemical reaction, 

making this protocol difficult but not 

impossible to adapt to higher cell count strategies. In Chapter 1, I detail a new method for high 

throughput single-cell methylome library generation (sci-MET). In this method I use custom 

sequencing adapters and indexes depleted in cytosines. The lack of cytosines prevents BS 

conversion changing the indexes, allowing for the split-pool indexing necessary for sci- chemistry 

(Figure 12d).  

Figure 13. Simplified flow through of single-cell methylation 
analysis. Bisulfite converted and PCR amplified DNA is sequenced 
and aligned to pre-converted reference genomes. C-to-T and G-to-
A conversions are performed to account for bottom and top strand 
library capture. For the most confident mapping location and 
strand, cytosines (C) and methylated cytosines (mC) are called 
based on point mutations induced in bisulfite conversion. 
Methylation profiles for cytosines are aggregated over genomic 
regions and used to group single-cells into clusters. Cells are 
combined within clusters for increased power and changes in 
methylation across the genome are calculated.  
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Analysis 

 Analysis of single-cell methylation profiles leverage the point-mutations induced through 

BS conversion. These mutations lead to decreased library complexity and can make reference 

alignment difficult. To account for this, special considerations must be taken. In one approach, the 

tool Bismark126 generates four pre-converted reference genomes to account for the full bisulfite 

treatment of each possible strand of genomic DNA prior to running the short read sequence aligner 

Bowtie127. From this, base specific methylation of cytosines can be ascertained. Alignments with 

greater than 70% methylation of non-CG cytosines reported as methylated are generally removed 

from analysis as this suggests a read-specific failure of bisulfite conversion19. Following filtering, 

methylation rates (% methylated CG/all CG) are generated across genomic bins and used for 

dimensionality reduction and clustering. To account for depth of coverage, some strategies apply 

a post-hoc probabilistic binomial model, wherein region methylation rates are weighted by 

coverage124. Notably, for neuronal data, CH methylation rates performs better for discrimination of 

cell types than CG methylation rates19. Differentially methylated regions have been implicated as 

diagnostic biomarkers128, and can be calculated between cellular clusters via two-sided t-tests 

(Figure 13)129. High throughout single-cell methods will allow for exploratory analyses of methylome 

changes across complex systems such as neurodevelopment or tumor progression. It is with this 

motivation in mind that we developed sci-MET. 
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Chapter 1: Highly scalable generation of DNA 
methylation profiles in single cells 
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Abstract 

We present a highly scalable assay for whole-genome methylation profiling of single cells. We 

use our approach, single-cell combinatorial indexing for methylation analysis (sci-MET), to 

produce 3,282 single-cell bisulfite sequencing libraries and achieve read alignment rates of 68 ± 

8%. We apply sci-MET to discriminate the cellular identity of a mixture of three human cell lines 

and to identify excitatory and inhibitory neuronal populations from mouse cortical tissue. 

Main 

DNA methylation at cytosine-guanine dinucleotides (CG) and non-CG sites (CH) have 

cell type-specificity and are subject to active modification during development130. This motivates a 

single-cell approach, which can assess cell-type and developmental-state specificity in complex 

tissues through methylation profiles. DNA methylation can be probed at base-pair resolution at 

the whole genome scale using bisulfite sequencing (WGBS)131. Recent work optimized whole 

genome bisulfite sequencing to enable assessment at the single-cell level 

(scWGBS)19,115,124,132,133; these assays provide unique insights into methylation patterning. 

However, the scWGBS protocol processes each cell in its own reaction vessel, severely limiting 

cell count throughput. Furthermore, alignment rates for traditional scWGBS libraries are much 

lower (on the order of 25 ± 20%) than for the equivalent bulk protocol19,110,119,126, which increases 

the cost of obtaining sufficient information. A recent study achieved an alignment rate just over 

50%, for over 6,000 single cells; however, the study relied on a brute-force strategy that still 

required an individual reaction well for each cell produced19. 

We have described a strategy for combinatorial indexing that has been extended to 

multiple applications73,134–137. In this platform, DNA (or RNA) within nuclei or cells is modified with 

an indexed adaptor corresponding to one of 96 (or 384) wells while nuclear integrity is 

maintained. Reactions are pooled, and a limited number of pre-indexed nuclei are redistributed 

into each of a new set of wells, such that the probability of two nuclei harboring the same initial 

index ending up in the same well is low. PCR is then used to incorporate a second index and 

generate a cell-specific barcode composed of the unique index combinations. We adapted our 
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single-cell combinatorial indexing strategy, (sci-) to WGBS methylation analysis (sci-MET, Figure 

14a) using transposomes with adaptors depleted of cytosines, and thus unaffected by bisulfite 

treatment (Appendix Tables 1–3). The second adaptor is incorporated after pooling, redistribution, 

bisulfite conversion, and cleanup by performing multiple rounds of random primer extension, as in 

traditional scWGBS protocols124. This workflow enables the first stage of library construction in 

one set of wells, followed by the second stage, where each well contains a number of pre-

indexed nuclei. We refer to the number of single-cell methylation libraries we expect per 

experiment as N × D, where N is the number of wells in the second stage of library preparation 

and D is the number of pre-indexed nuclei in each well (Appendix Fig. 1).  

From a 96 × 22 experiment on a B-lymphoblast cell line (GM12878), we generated 

libraries for which we could identify barcodes corresponding to 708 single cells (33.5% efficiency, 

defined as the number of libraries generated out of the number expected). Sequencing this library 

to a low depth (mean 55,129 unique reads per cell; Appendix Figs. 2 and 3) produced methylation 

profiles that closely matched expectation for the GM12878 cell line (Figure 14b). We next 

performed sci-MET on a mix of human and mouse cell lines using two alternative nucleosome 

depletion strategies to estimate the barcode collision rate (i.e., two nuclei of the same 

transposase barcode ending up in the same PCR well136). We observed a high collision rate 

using a lithium-based approach (22%); however, crosslinking and SDS treatment (xSDS) 

produced a low collision rate, in line with other combinatorial indexing strategies73,136,137 at 7.3% 

(Figure 14c and Appendix Figs. 1–4). We note that the collision rate is tunable by the number of 

nuclei sorted into each well during the second stage of indexing. 

We next profiled pure populations and an uneven artificial mixture of GM12878, primary 

inguinal fibroblast (Primary Fibro., GM05756), and HEK293 cell lines. In a 40 × 22 experiment 

using xSDS nucleosome depletion, we characterized genome-wide methylation in 691 single cells 

passing quality filters (78.5% efficiency; Appendix Figs. 1–3). We achieved a mean alignment rate 

of 68 ± 8% (Figure 14d), approaching bulk-cell levels, likely due to the efficiency of transposase-

based adaptor incorporation69, and a mean unique aligned read count of 403,265 per cell, with 48 

cells producing over one million uniquely aligned reads (Appendix Fig. 2). These data translate to 
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coverage of mappable138 CG dinucleotides ranging from 0.05% to 7.0% (mean 1.1 ± 0.9%). Both 

increased sequencing effort and additional rounds of linear amplification are likely to increase 

coverage, as libraries were not near saturation (Appendix Fig. 5 and Figure 14e). Based on our 

projections, sci-MET, in its current form, produces lower per-cell coverage percentages than 

others have produced113; however, sufficient coverage per cell is achievable for cell-type 

discrimination in a mixed population—the intended goal of low-coverage, high-cell-count 

strategies. 

We next summarized methylation status124 for each cell across autosomal loci of the 

Ensembl Regulatory Build139, which contains known transcription factor binding and other 

regulatory sites. We performed non-negative Matrix Factorization (NMF) followed by t-distributed 

Stochastic Neighbor Embedding (tSNE) to project cells in two-dimensional space, producing 

Figure 14. (a) The sci-MET workflow. (b) Methylation rates for single GM12878 cells (n = 283 cells) over CG islands 
(left) and gene bodies (right). (c) sci-MET of mixture of mouse and human cells using xSDS nucleosome depletion to 
estimate barcode collisions. n = 566 cells. (d) Mapping efficiency, global CG methylation, and global CH methylation 
for a mix of human cell lines (n = 641 cells). (e) The number of CG dinucleotides covered by the total aligned reads 
per cell. Amp., amplification. (f) Methylation rates for GM12878 cells. Purple typeface: generally activating features; 
red typeface: generally repressive features. (g) Methylation rates for the three cell types over annotated genes. (h) 
Methylation rates over GM12878 and Primary Fibroblast ENCODE H3K4me3 ChIP-seq peaks. Arrows indicate the 
mean for the feature set. Key applies to panels g and h. 
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clearly defined clusters that were identified using density-based methods (Figure 15a). We 

correlated the methylation rates of collapsed clusters with publically available WGBS data 

sets64,140 for the top 1,000 most-variable regulatory regions. For each merged cluster, the two 

most highly correlated samples were of the same cell type, or the most similar cell line in the case 

of HEK293 (Figure 15b,c and Appendix Figs. 6 and 7).  

To test whether cell type discrimination is possible in an in vivo model, we performed a 

96 × 10 preparation from primary cortical tissue of three mice, for a total of 606 single-cell 

libraries. A subset of the second-stage indexing wells were sequenced to a higher depth than the 

rest of the plate (186 cells), with the remainder to enough depth to define them as true single-cell 

libraries (420 cells; Appendix Figs. 1–3). Overall, this preparation produced a mean alignment 

rate of 59.9 ± 11.9%. In total, 285 cells met a read depth threshold of 30,000 uniquely aligned 

Figure 15. (a) NMF-tSNE projections of single-cell methylomes. Clusters are indicated by a shaded background. (b) 
Single-cell methylomes (n = 641 cells) were aggregated over the three clusters and then correlated with publically 
available WGBS data. Closely matched cell types are in color. (c) Hierarchical clustering on the Pearson correlation 
values of HEK293, GM12878, and Primary Fibro. (d) NMF-tSNE projection of cortical cells based on CG and CH 
methylation. Clusters are indicated by a shaded background and grouped by class using dashed lines. (e) Methylation z-
score heatmap of aggregate cell clusters over previously described DMRs (n = 285 cells). 
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reads (mean 186,710) and were carried through subsequent analysis, with the percent of CGs 

covered genome-wide ranging from 0.10% to 4.5% (mean 0.82 ± 0.85%). 

We assessed methylation in the CH context, which has been previously observed at 

elevated levels and in a distinct patterning in neuronal lineages (Appendix Figs. 8 and 9)119,141, as 

well as in the CG context. We processed each matrix (CH over 100 kbp windows, CG over the 

Ensembl Regulatory Build) individually and combined through NMF-tSNE and clustering 

(Online Methods and Figure 15d). Two clusters were determined to be likely non-neuronal cell 

populations, and the remainder neuronal (Appendix Fig. 10). We then aggregated the coverage of 

each cluster and calculated the methylation percentage over previously described cortical 

differentially methylated regions (DMRs; Figure 15d)19. This revealed a distinct enrichment for 

each neuronal cluster within sets of excitatory and inhibitory DMRs and allowed us to classify sets 

of clusters (Figure 15d). 

Inherent in our protocol is the ability to scale up to far greater numbers by expanding the 

number of indexes (Appendix Fig. 11). In addition to the increased throughput, we achieved 

substantially improved read-alignment rates when compared to existing lower-throughput 

approaches, dramatically reducing the sequencing burden. Our platform achieves both the 

throughput and cost-effectiveness (Appendix Table 4) that is required to scale single-cell DNA 

methylation assessment to levels comparable to other epigenetic and transcriptional properties. 

Methods 

Preparation of unmethylated control DNA. 

100 ng of unmethylated Lambda Phage DNA (Promega, Cat. D1521) was treated with 4 

μL of 500 nM transposase-adaptor complex (transposome) pre-loaded with cytosine-depleted 

custom oligonucleotides in 10 μL of 1× Nextera Tagment DNA (TD) buffer from the Nextera DNA 

Sample Preparation Kit (Illumina, Cat. FC-121-1031) diluted with nuclei isolation buffer (NIB) to 

simulate reaction conditions for nuclei. Following incubation for 20 min at 55 °C, this reaction was 

cleaned with QIAquick PCR Purification Kit (Qiagen, Cat. 28104) and eluted in 30 μL of 10 mM 

Tris-Cl solution (pH 8.0). The tagmented, cleaned DNA was then quantified via Qubit 2.0 

Flourometer dsDNA High Sensitivity Assay (Thermo Fisher, Cat. Q32854). 
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Tissue culture. 

Tissue culture cell lines (GM12878, Coriell; NIH/3T3, ATCC CRL-1658; HEK293, ATCC 

CRL-1554; Primary Fibro., inguinal fibroblast, GM05756, Coriell, passage 7) were cultured in 5% 

CO2 at 37 °C. GM12878 cells were grown in Roswell Park Memorial Institute media (RPMI, 

Gibco, Cat. 11875093) supplemented with 15% (v/v) FBS (FBS, Gibco, Cat. 10082147), 1× L-

glutamine (Gibco, Cat. 25030081), 1× penicillin-streptomycin (Gibco, Cat. 15140122), and 

gentamicin (Gibco, Cat. 15750060). HEK293 cells were grown in Dulbecco's Modified Eagle's 

media (DMEM, Gibco, Cat. 11995065), supplemented with 10% FBS (v/v), and 1× L-glutamine. 

NIH/3T3 cells were grown in the same preparation of DMEM as HEK293 cells. Primary fibroblasts 

were cultured in a growth medium comprised of DMEM/F12 (with GlutaMax; Thermo Fisher), 

10% FBS (FBS; Thermo Fisher, v/v), 1% MEM Non-Essential Amino Acids (Thermo Fisher, v/v), 

and 1× penicillin-streptomycin (Gibco). Adherent cell lines were grown to ∼90% confluency at the 

time of harvest. 

Mouse samples. 

All animal studies were approved by the Oregon Health and Science University 

Institutional Animal Care and Use Committee. C57BL/6J mice were obtained from Jackson 

Laboratory (stock number 000664). Sixty-day-old C57BL/6J female mice were deeply 

anesthetized using isoflurane. After decapitation the brain was removed and the entire cortex 

isolated and placed in ice-cold PBS. 

Sample preparation and nuclei isolation. 

For library preparation, cells were pelleted if cultured in suspension, or trypsinzed (Gibco, 

Cat. 25200056), if adherent. Cell were washed once with ice-cold PBS and carried through cross-

linking (for the xSDS method) or directly into nuclei preparation using nuclei isolation buffer (NIB, 

10 mM Tris HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Igepal (v/v), 1× protease inhibitors 

(Roche, Cat. 1187358001)). Cortical samples were cut with a sterile razor blade and 

resuspended in a chilled 5 mL modified nuclei isolation buffer (NIB-HEPES, 20 mM HEPES, 10 

mM NaCl, 3 mM MgCl2, 0.1% Igepal, 1× protease inhibitors). Cells were given 5 min to equilibrate 

to the salt solution before five loose strokes in a Dounce homogenizer, another 5 min to 
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equilibrate, and another five loose strokes and ten tight strokes. Nuclei were then spun in a pre-

chilled 4 °C centrifuge for 5 min at 600g. 

Nucleosome depletion. 

Nucleosome depletion and combinatorial indexing strategies were performed similar to 

previously described, with some variations136. 

Lithium-assisted nucleosome depletion (LAND). Land was performed for generation of GM12878-

only and human/mouse libraries. Prepared nuclei were pelleted and resuspended in NIB 

supplemented with 200 μL of 12.5 mM lithium 3,5-diiodosalicylic acid (Sigma, Cat D3635) for 5 

min on ice before addition of 800 μL NIB and then taken directly into the combinatorial indexing 

protocol. 

Cross-linking and SDS nucleosome depletion (xSDS). Cells were cross-linked by 

incubation in 10 mL of media with 1.5% formaldehyde (v/v) and incubated at room temperature 

for 10 min with gentle agitation. Cross-linking was quenched with 800 μL 2.5 M glycine and 

incubated on ice for 5 min. Cells were then spun down, washed with ice-cold PBS, and 

resuspended in ice-cold NIB for a 20-min incubation on ice with gentle agitation. Cells were then 

pelleted, washed with 900 μL of 1× NEBuffer 2.1 and resuspended in 800 μL 1× NEBuffer 2.1 

with 0.3% SDS (v/v, Sigma, Cat. L3771) and incubated at 42 °C with vigorous shaking for 30 min 

in a thermomixer (Eppendorf). 200 μL of 10% Triton-X was added to quench, and the solution 

was incubated at for another 30 min at 42 °C with vigorous shaking. Nuclei were then taken into 

the combinatorial indexing protocol. We were concerned that the crosslinking might affect the 

bisulfite conversion reaction; however, based on the methylation rates (particularly for those of 

nonCG methylation which were very low in concordance with expectations), we determined that 

not to be the case. 

Combinatorial indexing via tagmentation. 

Nuclei were stained with 8 μL of 5 mg/mL DAPI (Thermo Fisher, Cat. D1306) and passed 

through a 35-um cell strainer. A 96-well plate was prepared with 10 μL of 1× TD buffer diluted 

with NIB in each well. Fluorescence-assisted nuclei sorting (FANS) was performed with a Sony 

SH800 flow sorter to sort 2,500 single nuclei into each well in fast-sort mode (Appendix Fig. 12). 4 
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μL of 500 nM transposome, pre-loaded with cytosine-depleted, uniquely indexed, custom 

oligonucleotides were placed in each well (transposomes assembled as described previously142). 

This cytosine-depleted approach improved downstream PCR amplification and decreased library 

generation costs compared to previous methylated adaptor attempts136. Reactions were 

incubated at 55 °C for 20 min. All wells were then pooled and stained with DAPI as described for 

the first FANS sort. A second 96-well plate was prepared with each well containing digestion 

reagents as described by the manufacturer's protocol for the EZ-96 DNA Methylation MagPrep 

Kit (Zymo, Cat. D5040) at one-fifth the volume (for a total of 5 μL per well). 22 post-tagmentation 

nuclei from the pool of all reactions were sorted into each well using the single-cell sorting setting. 

Some wells were randomly selected to receive only ten nuclei, to allow for unmethylated controls. 

The plate was then spun down at 600g for 5 min at 4 °C. 

Library preparation. 

Prior to bisulfite conversion, several wells, which only received ten nuclei in the final sort, 

were spiked with ∼35 pg of the prepared unmethylated control DNA, to keep DNA mass constant 

per well. Nuclei were then processed following manufacturer's protocol for the EZ-96 DNA 

Methylation MagPrep Kit, with volumes reduced to one-fifth those described by the manufacturer 

to allow for single-well reaction processing, and other slight modifications. Following the final 

post-bisulfite library cleanup, each well was eluted in 25 μL of Zymo M-Elution Buffer and 

transferred to a well in a 96-well plate prepared with the following reaction mixture for linear 

amplification: 16 μL PCR-clean ddH2O, 5 μL 10× NEBuffer 2.1 (NEB, Cat. B7202), 2 μL 10 mM 

dNTP mix (NEB, Cat. N0447), and 2 μL of 10 μM random nonamer primer with a partial sequence 

of the Illumina Standard Read 2 sequencing primer (9NP, 3′-

NNNNNNNNNAGATCGGAAGAGCACACGTCTG-5′). To render libraries single-stranded before 

linear amplification, reactions were heat-shocked at 95 °C for 45 s and then flash-cooled on ice. 

Following cooling, 10 U Klenow (3′->5′ exo-) polymerase (Enzymatics, Cat. P7010-LC-L), was 

added to each reaction, followed by incubation at 4 °C for 5 min, then a slow ramp of +1 °C/15 s, 

and 37 °C for 90 min. This was repeated for two to four times, depending on library and in 

accordance with previously described scWGBS protocols (Appendix Fig. 1)124. For each 
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repetition, 1 μL 10 μM 9NP, 1 μL 10 mM dNTP mix, 1.25 4× NEBuffer 2.1, and 10 U Klenow (3′ -> 

5′ exo-) polymerase was added after the heat shock and cooling. Following completion of linear 

amplifications, wells were cleaned with 1.1× (by volume) of 18% PEG SPRI Bead mixture (Sera-

Mag SpeedBeads (GE, Cat. 65152105050250) washed and resuspended in 18% PEG 8000 (by 

mass), 1 M NaCl, 10 mMTris-HCl, pH 8.0, 1 mM EDTA, 0.05% Tween-20), with a 5 min room 

temperature incubation, then placed on a magnetic rack until the supernatant was cleared. The 

supernatant was discarded, and beads were washed with 80% ethanol while held in place by 

magnets. Beads were then dried and libraries were eluted in 21 μL 10 mM Tris-Cl (pH 8.5). The 

full 21 μL eluate was then placed into a 96-well plate prepared with a PCR reaction mixture 

containing 25 μL 2× KAPA HiFi HotStart ReadyMix (Kapa, Cat. KK2602), 2 μL each of 10 μM 

forward and 10 μM reverse uniquely indexed primers (each introducing a 10-nt indexing 

sequence), and 0.5 μL of 100× SYBR Green I (FMC BioProducts, Cat. FC-121-1031). Real-time 

PCR was performed on a Bio-Rad CFX thermocycler with the following conditions: 95 °C for 2 

min, (94 °C for 80 s, 65 °C for 30 s, 72 °C for 30 s [Image]) for 18–22 cycles. PCR was stopped 

once libraries reached the inflection point of measured SYBR green fluorescence. Following 

PCR, libraries were then pooled by column (10 μL/well) and with 0.8× (by volume) 18% PEG 

SPRI Bead Mixture as described previously. Libraries were eluted off the magnetic beads in 25 

μL of 10 mM Tris-Cl (pH 8.5 

Library quantification and sequencing. 

Libraries were pooled and quantified between the range of 200 bp and 1 kbp using a 

2100 Bioanalyzer DNA High Sensitivity kit (Agilent, Cat. 5067-4626; Appendix Fig. 13). Pools 

were sequenced on either an Illumina NextSeq 500, HiSeq 1000, HiSeq 2500 or HiSeq X, loaded 

at 0.9 pM, with a 5%, 12%, or 30% PhiX spike-in to improve complexity for the HiSeq 2500, 

HiSeq 1000 or HiSeqX, and NextSeq 500, respectively. All sequencing runs used a custom 

locked-nucleic acid (LNA) oligonucleotides for custom sequencing primers to match the standard 

chemistry temperatures (Appendix Table 3). With the exception of the first GM12878-only library 

pool, libraries were sequenced with a custom sequencing chemistry protocol (Read 1: 100 
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imaged cycles; Index Read 1: 10 imaged cycles, 27 dark cycles, 11 imaged cycles; Index Read 2: 

10 imaged cycles). 

Sequence read processing. 

Reads were processed using bcl2fastq (Illumina Inc., v2.19.0) with the “–create-fastq-for-

index-reads” and “–with-failed-reads” options to produce fastq files. Fastq reads were then 

identified by indexes, requiring each index (the two 10-nt indexes introduced by PCR, and the 11-

nt index introduced by tagmentation) to independently be within a Hamming distance of two from 

the expected reference sequences. Reads with all three indexes assigned had the respective 

reference index sequences concatenated to a barcode and appended to the read name, which 

served as the barcode identifier. Reads were then trimmed using TrimGalore! (v0.4.0) with option 

“-a AGATCGGAAGAGC” to identify adapters. Trimmed reads were quality-checked using FastQC 

(v0.11.3) for adaptor content, percent base across reads for bisulfite conversion biases, and k-

mer bias. Alignment to the human (GRCh37), mouse (GRCm38), or a combined human–mouse 

hybrid genome was performed with Bismark (v0.14.3) using “–bowtie2” and “–unmapped” 

options143. Aligned reads were then de-duplicated based on barcode, chromosome, and starting 

position. 

GM12878-only library development. 

GM12878-only libraries were generated as described above with 

alterations/specifications as follows: library were generated using the LAND method for 

nucleosome depletion, libraries were generated using four rounds of linear amplification, and 

were sequenced in a paired-end manner. For the paired-end sequencing strategy the following 

custom sequencing chemistry protocol was used (Read 1: 50 imaged cycles; Index Read 1: 10 

imaged cycles, 27 dark cycles, 11 imaged cycles; Index Read 2: 10 imaged cycles; Read 2: 50 

imaged cycles). Sequencing reads were processed using slightly modified read processing 

pipeline. Trimming was performed with TrimGalore! using the “-paired” option, we observed 

biases at the start of both read 1 and read 2 sequences, likely due to the random priming 

strategy, and consequently trimmed the reads with options “–clip_R1 6”, “–clip_R2 9”. We aligned 
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reads to the GRCh37 reference genome with Bismark with an added “-p” option for the paired-

end alignment. 

Human–mouse library development. 

Human (GM12878) and mouse (NIH/3T3) cell lines were mixed following nuclei isolation, 

but before nucleosome depletion in a roughly equal ratio. Nucleosomes were then depleted using 

the LAND technique and processed as described above. Reads were aligned to a hybrid human–

mouse genome. To estimate barcode collision rate we identified putative single-cell libraries with 

<90% of reads that aligned to a single species which represents approximately half of the total 

collision rate (Appendix Fig. 4). We also generated a second human–mouse library using a 

mixture of human (HEK293) and mouse (NIH/3T3) cells which underwent xSDS nucleosome 

depletion. The human-mouse xSDS library was processed as described above (Figure 14c). 

Cell line discrimination library development. 

To assess the ability of sci-MET to separate out different cell types using a low-coverage, 

high-cell count approach, we selected three cell lines: GM12878 (a B-lymphoblastoid cell line), 

HEK293 (a kidney epithelial cell line), and GM05756 (primary inguinal fibroblast line). We 

prepared a sci-MET library using xSDS nucleosome depletion that included each cell line on their 

own in addition to a mix comprised of 40% GM12878, 40% GM05756, and 20% HEK293 where 

they were combined after nuclei isolation. We suspect that this ratio was dramatically altered 

owing to the FANS gating that we performed, which likely excluded the majority of the aneuploid 

HEK293 cells which are difficult to distinguish from euploid doublets (Appendix Fig. 12). 

Furthermore, for the majority of wells in which the cell identity was known, the cells were 

GM129878, thus likely favoring the FANS gating to that cell's profile. It is important to note that 

this challenge would persist for any method of single-cell profiling that requires single-cell sorting, 

such as all of the existing single-cell methylation assay platforms, and is an important item to 

consider. Libraries were processed as described above. 

Mouse cortex library development. 

Mouse cortical samples were brought through the sci-MET protocol via xSDS as 

described above. Notably, we used a modified NIB (NIB-HEPES; described under “Sample 
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Preparation and Nuclei Isolation”), which substituted the early use of Tris-HCl with HEPES, to 

avoid quenching formaldehyde during fixation. Three mouse cortical samples were processed in 

parallel before tagmentation, such that sample identity was maintained. Following this, all nuclei 

were pooled for downstream library generation. Downstream library construction was processed 

as described above. Mouse cortex libraries underwent the same quality-control filters, omitting 

that which removed cell libraries with 5% nonCG methylation. 

Single-cell discrimination by unique read count. 

We sought to use the unique aligned read count to stratify individual cells from noise 

(Appendix Fig. 3). First we performed k-means clustering (k = 3) based on the log10 number of 

unique aligned reads per barcode (the three indexes assigned to a read). We fit a normal 

distribution to the cluster containing the barcodes with the highest number of unique aligned 

reads. In case the cluster with the highest aligned reads contained multiple peaks due to low 

coverage (as in the GM12878-only prep) we used an alternative approach to fitting a normal 

distribution and fit mixed normal distributions to the clustered data. From the fit distributions, the 

threshold was then defined based on the 95% confidence interval (CI) of the fitted normal 

distribution with the highest number of unique reads (mean-(1.96 × s.d.)). We used the kmeans 

function in R (v. 3.4.2) for clustering and the MASS (v. 7.3-45) and mixtools (v. 1.1.0) packages 

for fitting the normal and mixed normal distributions. 

Methylome coverage estimation. 

To provide an accurate measurement of CG dinucleotides covered by sci-MET, we 

collapsed CG measurements to a single haploid strand using Bismark (v.0.18.2) 

coverage2cytosine command using the “–merge_CpG” option. We used the recently reported 

Bismap138 tool to estimate uniquely mappable regions of the mm10 and hg19 reference genomes. 

Through this, we determined a total of 27,003,976 CG sites for the haploid hg19 reference and 

19,788,681 CG sites for the haploid mm10 reference. These numbers were used for all CG 

coverage estimates. 
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Quality control. 

We assessed bisulfite conversion efficiency in our preparations through spike-in of 

unmethylated lambda phage DNA. We aligned fastq reads with the respective 11-nt tagmentation 

index to the lambda genome (GenBank: J02459.1) using Bismark. We de-duplicated reads, and 

filtered to high-quality alignments (≥Q30). We observed a highly efficient bisulfite conversion 

across sci-MET library constructions (>99%; Appendix Table 5). 

Individual barcodes per library were assessed for mapping efficiency (calculated as aligned 

reads/fastq reads assigned to a barcode), and complexity (calculated as de-duplicated, aligned 

reads/aligned reads assigned to a barcode). Our protocol for library construction both increased 

the throughput of single-cell generation, and largely increased mapping efficiency compared to 

previous methods19,113,115,124,132,133. Barcodes were filtered by unique read cutoffs (described in 

“Single-cell discrimination”) and subsequently filtered. We required cells which met read threshold 

cutoff to have a mapping efficiency of ≥5%, a nonCG methylation of ≤ 5% for downstream 

clustering analysis. We further stratified our library pool to assess the effect of various rounds of 

linear amplification on single-cell library quality. We found that four rounds of linear amplification 

significantly increased mapping efficiency (P-value = 7.83 × 10−16, t = 8.27, Student's two-sided t-

test. Transposase complexes showed differences in library construction efficiency (Appendix Fig. 

14). Alignment rates and coverage did not correlate strongly with percent methylation per cell 

(Appendix Fig. 15). 

To estimate average library saturation, we fit two-factor saturation curves to single-cell 

libraries within the human cell line mix experiment using the drc (v3.0-1) package's drm function 

in R dependent on rounds of linear amplification. For three and four rounds of linear amplification, 

our projected upper asymptotes (full sequencing saturation) were 1.66 × 106, and 2.51 × 106, 

unique CGs per single-cell library, respectively (Figure 14e). All quality assessment data are 

reported as mean ± s.d. where appropriate. 

Individual cell saturation (Appendix Fig. 5) was carried out by projecting the estimated 

unique read counts per cell to decreasing complexity increments as described previously136. We 
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then calculated the expected CG percent coverage based on the linear relationship between the 

percent of CG sites covered by the unique read count (Appendix Fig. 16). 

Coverage bias across annotations. 

We calculated the coverage bias in individual cells across DHS, CG islands, and histone 

(H2AFZ, H3K27ac, H3K36me3, H3K4me1, H3K4me3, H3K4me3, H3K79me2, H3K9ac, 

H3K9me3, H4K20me1, H3K27me3) sites using annotated DNase, methylation profiling and 

CHIP-seq peak data from the publically available UCSC and ENCODE databases64,140. We used 

bedtools multicov (v. 2.22.0) to determine the coverage for each cell across all sites of each 

annotation bed file. We then determined the fraction of total reads per kilobase pair (kbp) by 

summing the coverage across all sites in a cell and normalizing by the reads per cell and by the 

sum of the genomic distance of the peak sites (Appendix Fig. 17). 

CG sites covered per n cells analyzed. 

We simulated the number of unique CG sites covered in an experiment by an arbitrary 

number of cells using sci-MET (human cell line experiment data) by performing 100 iterations of 

sampling of n = (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200,250, 300, 350, 400, 450, 500, 

550, 600, 650) cells. We then calculated the aggregate number of unique CG sites covered 

across all cells for each sampling and fitted a LOWESS curve (using R package ggplot v.2.2.1) to 

the unique CG sites per n cells sampled saturation plot (Appendix Fig. 18). 

Non-negative matrix factorization, tSNE, and clustering. 

We quantified methylation rate across Ensembl Regulatory Build windows using a 

previously described method124. Non-negative Matrix Factorization (NMF) is an unsupervised 

data decomposition technique and was performed on the summarized windows. Here we used 

NMF to learn new feature representations144. NMF is mathematically approximated 

by: , where A is the matrix representing the single-cell methylation profiles 

of n samples across m features. W is a dictionary matrix with a much smaller k than m. H is the 

activation coefficients on the new basis. All the three of them are non-negative. The column 

vectors in W are called meta-feature, which are higher-level abstraction of the original methylation 

levels and each column in H is meta-expression on the new basis of each sample. Here we 
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set k = 12 to get matrix A factorized into low-rank matrix W and H. In this way, we extracted the 

uncorrelated basis and the coefficient matrix H of the new basis by significantly reducing the 

dimension of the features. Since relatively few basis vectors are used to represent many data 

vectors (k << m), good approximation can be achieved only if the basis vectors discover structure 

that is latent in the data, which will aid sample clustering and visualization. Then, given the 

learned feature representation, Student's t-distributed stochastic neighbor embedding (t-SNE) 

package Rtsne (v.0.13) for R is used to plot the meta-expression matrix Hk×n with default 

parameters. Clustering on the NMF-tSNE coordinates was performed using the Density Based 

Clustering of Applications with Noise (DBSCAN; v.1.1-1) with an epsilon value of 4 and a minimal 

cell seed threshold of four145. This process was performed for cells with ≥30,000 unique aligned 

reads (Figure 15b). Clusters were assessed for read count and alignment rate bias, as well as 

validated through Y chromosome read count (Appendix Fig. 19). 

Methylation over genomic annotations. 

Methylation rates plotted over ChIP-seq and other genomic annotations were generated 

by aggregating the methylation fractions in percentile windows for 5,000 bp upstream of the 

feature, through the feature set, and 5,000 bp downstream of the feature and smoothed over 

three percentile window groups. Methylation rates were carried out for each individual cell as well 

as for the combination of cells of each specific sample type in the case of the human cell type mix 

experiment (Appendix Fig. 20). 

mCH periodicity. 

Two approaches were undertaken to estimate the patterning of CH methylation. First, 

leveraging our read length (>70 bp on average), we estimated the cis-mCH patterning. For all 

mCH measurements with both up- and downstream mCHs within the same read, we calculated 

the distance between the nearest mCH sites. This was performed with a custom Python script on 

the Bismark alignment file (v. 2.7.9). The minimal distance up or downstream of each mCH site 

was then plotted using ggplot2 geom_histogram function (v. 2.2.1) in R (v 3.4.2). Second, we 

assessed all CH measurements around annotated CTCF motif sites (described in more detail in 

methods section 'Transcription Factor Methylation') to act as a centering point for nucleosome 
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position. We then normalized the annotated CTCF windows annotated previously146 and plotted 

both percent CH methylation using the R packages GenomicRanges (v. 1.28.4) 

and genomation (v.1.8.0; Appendix Fig. 9). 

Window summaries and correlations over Ensembl regulatory regions. 

Using ENCODE and Epigenome Roadmap bulk WGBS samples, we quantified a 

weighted methylation rate and variance across samples using the Ensembl Regulatory Build 

loci16. We next took the top 1,000 most variable loci across the bulk samples and summarized 

methylation rates within single-cell clusters identified above. We performed a Pearson correlation 

of methylation rates with the bulk WGBS samples using base R cor function. Biclustering was 

performed using the R package gplots (v. 3.0.1) heatmap2 function (Appendix Fig. 21). 

Transcription factor methylation. 

Transcription factor motifs across the hg19 reference genome were taken from Homer146. 

All sites with a shared transcription factor motif were assumed to be co-regulated, as 

described115. CG sites per cell within the human cell line mix experiment were collapsed and 

summarized, using bedtools intersect and groupby commands (v2.22.0). Transcription factor 

annotations with less than 30 CG measurements were excluded on a per-cell basis. Transcription 

factor annotations with more than 20% of cells missing a value were excluded, leaving a final 

count of 237 annotations. The matrix was then clustered using tSNE with package Rtsne (v.0.13) 

in R (Appendix Fig. 22). Additionally, a hierarchical biclustering approach using the R 

package ComplexHeatmap (v1.14.0) was used on the same cell X transcription factor matrix 

before Z-scoring, which failed to appropriately separate out cell types (Appendix Fig. 23). 

Non-binary CGs methylation analysis. 

To assess CG dinucleotide methylation variability, we collapsed all cells within the 

GM12878 cluster in the human cell line mix experiment. We defined CG sites with two or more 

measurements sourced from different cells as either binary (fully methylated or unmethylated 

across cells) or non-binary (differentially methylated across cells). We then calculated the 

enrichment of non-binary CG sites overlapping genomic features (chromatin marks, DNase 

https://www.nature.com/articles/nbt.4112#ref-CR16
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hypersensitivity regions, CG islands) using bedtools intersect (v2.22.0). We compared this 

enrichment to binary CG sites, calculated in the same manner. 

 

We observed a significant relative enrichment of non-binary sites in repressive marks 

(H3K27me3) and depletion in activating marks including DNase hypersensitivity regions and CG 

islands (Appendix Fig. 24). We repeated this analysis on transcription factor motifs described 

above (Appendix Fig. 25). Finally, we performed a Pearson's chi-squared test for significance of 

these enrichments (R base function chisq.test). False-discovery rate estimation was performed 

with R package qvalue (v.2.8.0). 

Clustering of mouse cortex. 

NMF was performed as described above for CG methylation over the Ensembl 

Regulatory Build as well as for methylation in the CH context over 100 kbp windows. We then 

carried out tSNE and density-based clustering145 for each of these NMF matrixes independently 

and then an additional tSNE projection that included a combination of both NMF matrixes 

weighted equally to produce the projection presented in Figure 15d and then an additional round 

of density-based clustering (Appendix Fig. 10). The clusters for each case largely agreed with 

several exceptions where we decided to split the clusters in the joint CG and CH tSNE projection 

to provide increased granularity. 

DMR methylation calculation for mouse cortical clusters. 

To identify rudimentary cell types within our low-coverage clustered mouse cortical 

samples, we collapsed all reads within a respective cluster to increase CG coverage. CG 

methylated and unmethylated counts which overlapped with neuronal DMRs described by Luo et 

al. 2017 were summed. This was done with the bedtools intersect and groupby commands 

(v2.22.0). Percentage methylation of overlapping CG sites was calculated for each Luo et al.-

defined neuronal subtype. The collapsed neuronal subtype DMR × cluster matrix was Z-scored 
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using the base R scale function. This was then plotted with the R 

package ComplexHeatmap (v1.14.0) with default parameters (Figure 15e). 
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Abstract 

Single-cell genomics assays have emerged as a dominant platform for interrogating complex 

biological systems. Methods to capture various properties at the single-cell level typically suffer a 

tradeoff between cell count and information content, which is defined by the number of unique 

and usable reads acquired per cell. We and others have described workflows that utilize single-

cell combinatorial indexing (sci)147, leveraging transposase-based library construction135 to assess 

a variety of genomic properties in high throughput; however, these techniques often produce 

sparse coverage for the property of interest. Here, we describe a novel adaptor-switching 

strategy, ‘s3’, capable of producing one-to-two order-of-magnitude improvements in usable reads 

obtained per cell for chromatin accessibility (s3-ATAC), whole genome sequencing (s3-WGS), 

and whole genome plus chromatin conformation (s3-GCC), while retaining the same high-

throughput capabilities of predecessor ‘sci’ technologies. We apply s3 to produce high-coverage 

single-cell ATAC-seq profiles of mouse brain and human cortex tissue; and whole genome and 

chromatin contact maps for two low-passage patient-derived cell lines from a primary pancreatic 

tumor (Table 1). 

Table 1. Summary of s3 protocols. 

Assay Information Capture Innovation Sample 

s3-ATAC 
Single-cell chromatin 

conformation 
Adapter switching 

method 
Mouse whole brain and 

human cortex 

s3-WGS 
Single-cell whole 

genome 

Above, and in situ 
nucleosome depletion 

optimization. 

Patient-derived 
pancreatic cancer cell 

line and diploid control 
line. 

s3-GCC 

Single-cell whole 
genome, and 

genome 
conformation 

Above, and in situ 
genome fixation, 

digestion and proximity 
ligation 

Patient-derived 
pancreatic cancer cell 

line 
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Main 

The core component of many sci-assays, as well as ATAC-seq, is the use of 

transposase-based library construction. While the transposition reaction itself (tagmentation) is 

highly efficient, viable sequencing library molecules are only produced when two different 

adaptors, in the form of forward or reverse primer sequences, are incorporated at each end of the 

molecule. This occurs only 50% of the time (Figure 16a, left). To combat this inefficiency, 

strategies including the use of larger complements of adaptor species99, incorporation of T7 

promoters to enable amplification via in vitro transcription148–150, or reverse adaptor introduction 

through targeted151 or random priming152 have been developed; however, these methods are 

often complex and result in limited efficiency improvements. Here, we present a novel means of 

adapter replacement to produce library molecules tagged with both forward and reverse adaptors 

for top and bottom strands, overcoming this efficiency bottleneck. This format permits the use of a 

DNA index sequence embedded within the transposase adaptor complex, enabling single-cell 

combinatorial indexing (sci) applications, where two rounds of indexing are performed — the first 

at the transposition stage, and second at the PCR stage73,136,152. 

Our strategy, symmetrical strand sci (s3; Figure 16b, right) uses single-adapter 

transposition to incorporate the forward primer sequence, the Tn5 mosaic end sequence and a 

reaction-specific DNA barcode. As with standard tagmentation workflows, extension through the 

bottom strand is then performed to provide adaptor sequences on both ends of each molecule; 

however, the s3 transposome complexes contain a uracil base immediately following the mosaic 

end sequence. Use of a uracil-intolerant polymerase therefore prevents extension beyond the 

mosaic end into the DNA barcode and forward adaptor sequence. A second template oligo is 

then introduced that contains a 3’-blocked locked nucleic acid (LNA) mosaic end reverse 

complement sequence with a reverse adaptor sequence 5’ overhang. This oligonucleotide 

favorably anneals to the copied mosaic end sequence, due to the higher melting temperature of 

LNA, and acts as a template for the library molecule to extend through and copy the reverse 

adaptor. This results in all library fragments having both a forward and reverse adaptor sequence. 

The LNA-templated extension is carried out over multiple rounds of thermocycling to ensure 
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maximum efficiency of reverse adaptor incorporation. Furthermore, adapter sequences are 

designed such that standard sequencing recipes can be used instead of the custom workflows 

and primers that are required for current indexed transposition technologies (Appendix Tables 6-

10)134,153. 

We first sought to establish the s3 technique to assess chromatin accessibility. In s3-

ATAC, nuclei are isolated and tagmented using our single-ended, indexed transposomes and 

carried through the adaptor-switching s3 workflow (Figure 16a). To ensure we attain true single-

cell libraries without contamination from other nuclei, and minimal barcode collisions, we 

performed a mixed-species experiment on primary frozen human cortical tissue from the middle 

frontal gyrus and frozen mouse whole brain tissue (Figure 16b). We elected to perform this test 

on primary tissue samples instead of an idealized cell line setting to more accurately capture the 

rates of cross-cell contamination. Levels of crosstalk were assessed at both points of possible 

introduction: the tagmentation and PCR stages; by mixing nuclei from the two samples before 

tagmentation as well as after. Additionally, pure species libraries were produced by leveraging the 

inherent sample multiplexing capabilities of sci workflows. In the experimental condition where 

nuclei were mixed prior to any processing, i.e. pre-tagmentation, we observed a total estimated 

collision rate of 5.53% (Figure 17b,c; 2 × 2.77% detected human-mouse collisions), comparable 

to existing methods and tunable based on the number of nuclei deposited into each PCR indexing 

reaction. Zero collisions were observed in the post-tagmentation experimental conditions, 

suggesting no molecular crosstalk during s3 adapter switching or PCR. 

In total, we generated 2,175 human and 837 mouse single-cell ATAC-seq profiles 

passing quality filters (Methods, Appendix Table 11) across four PCR indexing plates (Figure 

16b). We then assessed the total unique sequence reads obtained per cell as a function of the 

total aligned reads, i.e. the library complexity. One of our mixed species plates was sequenced to 

beyond 50% saturation (duplicate reads / total reads), to represent the sequencing depth 

obtained where diminishing returns of increased sequence depth become excessive136. For the 

mouse cells, the mean sequencing saturation per cell was 63.6% and resulted in a median 

unique read count per cell of 178,069 (mean = 258,859). The human cells reached a mean 
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sequencing saturation of 56.6% with a median unique reads per cell of 99,882 (mean = 175,361). 

We additionally sequenced a plate that contained only human cells to a mean sequencing 

saturation of 70.4% which produced a median of 100,280 (mean = 146,937) unique reads per 

cell. When compared to other single-cell ATAC-seq datasets performed on mouse whole brain 

tissue, our mouse s3-ATAC libraries contain substantially greater reads per cell with 17.1x, 11.6x 

and 7.8x fold improvement compared to snATAC, 10X Genomics scATAC, and dscATAC, 

respectively (Figure 16b, Appendix Table 12)29,154,155. Read count increases can be indicative of 

poor ATAC-seq library quality, with increased depth reflecting increased noise and loss of signal 

at open chromatin regions. To address this, we first assessed read pair insert sizes, revealing the 

characteristic nucleosome-size banding distribution of ATAC-seq (Figure 16e)65. We next 

calculated transcription start site (TSS) enrichment using the approach defined by the ENCODE 

project (Methods). This produced significant enrichment for both species at 13.4 for human, well 

above the ‘ideal’ standard (>7) and 13.5 for mouse, within the acceptable range and just below 

ideal (>15). Similarly, the fraction of reads in pile-up genomic regions (“peaks”; FRiP) was 

comparable to other single-cell ATAC technologies at 31.95% and 29.15% as measured using 

292,156 and 174,653 peaks for human and mouse cells respectively. However, FRiP is largely 

dependent on the number of peaks called, which influenced heavily by cell number and total 

sequence depth obtained. When expanding to a human cortex high-depth ATAC-seq peak set, a 

mean of 48.1% of reads were present in peaks, and mean of 78.2% of reads for mouse cells 

using a high-depth mouse brain ATAC-seq peak set (Methods). 

With ample signal, we next sought to discern cell types present within the complex 

tissues. For each species, we used peaks called on aggregate data to construct a count matrix 

followed by dimensionality reduction using the topic-modeling tool cisTopic74 which we then 
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visualized using UMAP76, performed graph-based clustering at the topic level, and processed 

via Signac156. Clear separation of cell types was observed using marker gene signal and 

differential accessibility profiles (Figure 16g-h, Appendix Figure 26, Appendix Table 13)29,34. 

Figure 16. Symmetrical strand single-cell combinatorial indexing ATAC-seq (s3-ATAC). (a) Schematic of standard sci-
ATAC library construction (left). Schematic of s3-ATAC library construction with intermediate steps of adapter switching 
leading to increased genomic molecule capture rate (right). (b) Experimental flow through and plate layout for the mixed-
species experiment, including tagmentation and PCR plate conditions per well.(c) Point plots of single cell libraries with 
counts of unique reads aligned to mouse or human chromosomes in a chimeric reference genome. Points are colored to 
reflect species assignment (see Methods) in both pre-tagmentation mixing (left) and post-tagmentation mixing (right). (d) 
Comparison of library complexity for s3-ATAC mouse whole-brain sampled cells to previously reported data sets. All 
comparisons to our data are significantly less (Welch’s two-sample t-test, p value <0.01). Fold improvement of our library 
complexity per method is listed above the method. (e) Insert size distribution of human and mouse libraries reflexing 
nucleosome banding.(f) Enrichment of reads at transcription start sites (“TSS”) for human and mouse libraries with 
enrichment calculation following ENCODE standard practices. (g) UMAP projection of mouse whole brain cell samples 
(n=837 cells) colored by cluster and cell type assignment. (h) UMAP projection human cortex cell samples (n=2,175 cells). 
(i) Subclustering and UMAP projection of human cortical inhibitory neurons (clusters 3 and 4 from panel h., n=342) (j) 
Genome coverage track of human inhibitory neurons (n=342) aggregated over 5 subclusters for genomic locations 
overlapping MGE and CGE marker genes LHX6 and ADARB2, respectively.(k) Hierarchical clustering of topic weight per 
cell (top). Hypergeometric test of gene set analysis enrichment for human inhibitory neuron marker genes (bottom; 
Fisher’s exact test, see Methods). 
 



63 
 

Notably, even with the modest cell count produced by this experiment, the quality improvements 

allow us to interrogate subclusters of inhibitory neurons previously difficult to distinguish in atlas-

level datasets (Figure 16i)67. With our improved cell depth, we were able to discern caudal and 

medial ganglionic eminence inhibitory neurons by marker gene coverage plots across 342 

GAD1+ cells (“CGE” and “MGE”, respectively; Figure 16j). From these, we identified 157 GAD1+, 

ADARB2+ CGE cells and 168 GAD1+,LHX6+ MGE cells. We separated 17 cells (subcluster 4) 

with apoptotic stress markers likely due in part to post-mortem sampling, which could potentially 

compound common single cell ATAC analyses. Aggregated genomic signal over our Topic-based 

dimensionality reduction was used to support our marker gene cell subtype discrimination and 

describe differentially accessible loci in human cortical inhibitory neurons (Figure 16k). 

We then extend the improvements in data quality produced by s3-ATAC to other sci-

workflows. This includes our previously-described sci-DNA-seq method136 that produces single-

cell whole genome sequencing libraries (s3-WGS) and a novel strategy to incorporate the core 

components of HiC library preparation but without ligation junction enrichment to produce 

whole genome and chromatin conformation information (s3-GCC; Figure 17a). Both strategies 

disrupt nucleosomes to acquire sequence reads uniformly across the genome136. We first tested 

s3-WGS by producing two small-scale libraries on the euploid lymphoblastoid cell line, GM12878. 

The first library comprised only four wells at the PCR stage for a target of 60 cells, allowing us to 

sequence the library to high depth (Figure 17b). This produced a median passing read count per 

cell of 12,789,812 (mean = 15,238,184), across 45 QC-passing cells (75% cell capture 

efficiency). With our sequenced library at 72.35% saturation; our complexity is notably higher than 

the predecessor sci-DNA-seq technology which produced a median of 43,367 reads per cell 

(mean = 103,138) at the same sequencing saturation (295 and 148 fold improvement in median 

and mean, respectively; Figure 17b)136. The second preparation performed comparably, though 

sequenced to a lower total depth (15.98% saturation). We also confirmed that the coverage was 

uniform by assessing the median absolute deviation (MAD) across 500 kbp bins, which fell within 

0.152 ± 0.025 (mean ± s.d.), comparable to other single-cell genome sequencing techniques 

(Figure 17d)87,90,136. 
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We performed s3-WGS and s3-GCC on two cultures of a cell line derived from a primary 

pancreatic ductal adenocarcinoma (PDAC) tumor (Figure 17b). PDAC is a highly-aggressive 

cancer that typically presents at an advanced stage, making early detection and study of tumor 

progression key157. PDAC studies suffer from a low cancer cell fraction, thus we used a patient 

derived cell line (PDCL) generated directly from tumor and maintained at fewer than 10 

passages. This method allows for multiple modalities of characterization and perturbation, while 

maintaining the heterogeneity present in the tumor sample158. We profiled two PDCL cultures 

(referred to as PDAC-1 and PDAC-2) to capture variance that may arise during passaging from a 

parent line derived from a tumor harboring a driver mutation in the oncogene KRAS (p.G12D). 

For our s3-WGS preparations, we produced 773 and 256 single-cell libraries with a mean passing 

read counts of 1,181,128 and 1,299,949 for PDAC-1 and 2 (at a combined median of 28.46% 

saturation), respectively. The s3-GCC libraries contained 57 and 145 cells produced a mean 

passing read count of 973,397 and 1,588,926 (combined median 73.25% sequencing saturation, 

Appendix Table 13) for PDAC-1 and 2, respectively (Figure 17e). MAD scores for the two lines 

were greater than that of the euploid karyotype of GM12878, 0.219 ± 0.041 (mean ± s.d.); 

however, this is expected given the widespread copy number alterations present in the samples. 

In addition to the WGS component, the s3-GCC libraries also contained reads that were identified 

as chimeric ligation junctions that provide HiC-like chromatin conformation signal. Across both 

samples, we identified a mean of 118,048 reads per cell that capture genomic contacts at least 

50 kbp apart from one another, a 14.8-fold improvement over the previous single-cell 

combinatorial indexing technique, sci-HiC159 (Figure 17f). Read pairs spanning ≥50 kbp 

accounted for a median of 15.6% and 17.0% of the total reads obtained per cell, which equates to 

an enrichment of 361- and 402-fold over that of the s3-WGS libraries for PDAC-1 and 2, 

respectively.  
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Figure 17. s3 whole genome sequencing (s3-WGS) and genome conformation capture (s3-GCC). (a) 

Schematic of sci-WGS and sci-GCC library construction. (b) Experimental flow through and plate layout for 
PDAC and control diploid line. (c) Boxplot of read count per cell for matched GM12878 cell line9. (d) Boxplot 
of MAD score per cell per sample and assay. (e) Boxplot of reads passing filter per cell. (f) Comparison 
boxplot of s3-GCC and sci-HiC distal contacts (≥50kbp) per cell33. (g) Whole exome sequencing of the 
primary tumor and PDCL. Scatterplot of reads per bin with a shading of called copy number variation. (h) 
Single-cell whole genome copy number calling on 500 kbp bins genome-wide. Cells (rows) are hierarchically 
clustered and annotated by assay, sample, and assigned clade (left). (i) Representative single-cell contact 
maps (raw counts) at 1 Mbp resolution for chromosome 3 and ensemble contact map profile at 500 kbp 
resolution. (j) scHiCRep dimensionality reduction and clustering of single-cell distal contact profiles. (k) 
Subclonal translocation on chr12 specific to PDAC-1. 

 

https://www.biorxiv.org/content/10.1101/2021.01.11.425995v1.full#ref-9
https://www.biorxiv.org/content/10.1101/2021.01.11.425995v1.full#ref-33
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We first focused our analysis on the s3-WGS and the WGS component of the s3-GCC 

libraries to examine the copy number alterations present. To get a sense of the genomic 

landscape, we first performed copy number calling on whole exome sequencing (WES) libraries 

that were generated using primary tumor tissue and in bulk on the PDCL line (Figure 17g). This 

revealed a profile of copy number aberrations at finer resolution, with a more pronounced profile 

in the PDCL sample, likely due in part to the absence of euploid stromal cell contamination. We 

then processed all single-cell libraries using SCOPE90 which revealed a highly altered genomic 

landscape within each of the two samples. In line with paired karyotyping and bulk exome data, 

we see a similar pattern per cell of multi-megabasepair copy number aberrations when 

performing breakpoint analysis on 500 kbp windows, with a median depth per window of 81 

reads. Using the inferred copy number profile within genomic windows for the three samples, 

GM12878 and the two PDCL cultures, we performed hierarchical and K-means clustering on the 

Jaccard distance between cell breakpoint copy numbers at two different centroid counts. For our 

optimal centroid value, we found a relatively clean separation between cell lines (k=3), for 

subclonal analysis we used a higher centroid count at a local optima (k=6). s3-WGS and s3-GCC 

cells cluster dependent on PDCL culture, reflecting our ability to capture genome-wide copy 

number data in our s3-GCC libraries (Figure 17h). We generated pseudo-bulk clades from the 

single-cell read count bins, with an average of 211.3 cells per clade and an average read count of 

3,750 per 50 kbp bin. This revealed multiple fixed and subclonal genomic arrangements 

(Appendix Figure 27). In PDAC-1 and PDAC-2 we see shared copy number loss of tumor 

suppressor genes CDKN2A, SMAD4 and BRCA2157,160. In PDAC-2 we observed a subclonal 

amplification of PRSS1, a mutation that was fixed within our sampling for PDAC-1 and is 

associated with tumor size and a higher tumor node metastasis (TNM) stage161. This suggests 

that while the lines have the same origin, each culture captured different subsets of tumor clonal 

populations. 

Duplications and deletions are not the sole form of genomic rearrangement that may 

induce a competitive advantage in cancer cell growth. Genomic inversions are difficult to assess 

through standard karyotyping and chromosome painting methods, whereas chromosomal 
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translocations are difficult to uncover in whole-genome amplification methods, since only reads 

capturing the breakpoint would provide supportive evidence. To address both of these limitations, 

we utilized the HiC-like component of our s3-GCC libraries. Using read pairs spanning ≥50 kbp, 

we produced chromatin contact maps that produced clear chromatin compartmentalization signal 

(Figure 17i)159. Single cells were separated by their distal contact information via HiCRep and 

observed distinct clusters by PDCLs108. Notably, even at this low sequencing depth, we were able 

to reliably tell PDCL line sparse contact profiles apart (Figure 17j, Appendix Figure 28). 

Differences between the aggregated contact maps between clusters were then used to assess 

unique translocation and inversion events across the sampled cells. We found that our single-cell 

contact data uncovers an intrachromosomal translocation between the 8.5-9.5 Mbp and 88.5-91.0 

Mbp regions of chromosome 12 (Figure 17k), containing ATP2B1, which is commonly 

overexpressed in PDAC162 and the tumor suppressor gene DUSP6163 that is only present in 

PDAC-1. 

Table 2. Summary of results using s3 protocols. 

Assay Cells Captured Fold improvement of 
information per cell over 

previous protocol 

Utility demonstration 

s3-ATAC 3,012 7.8X reads per cell over 
dscATAC-seq 

Subclustering of cell 
subtypes in the cortex 

at low cell count 

s3-WGS 1074 295X reads per cell over 
sci-DNA-seq 

Assessment of high 
resolution copy number 

changes in a tumor-
derived sample 

s3-GCC 202 14.8X distal contacts 
captured over sci-HiC 

Identification of 
putative translocations 

in a tumor-derived 
sample 

 

Taken together, our s3 workflow represents marked improvements over the predecessor 

sci platform with respect to passing reads obtained per cell without sacrificing signal enrichment 

in the case of s3-ATAC, or coverage uniformity for s3-WGS (Table 2). We also introduce another 

variant of combinatorial indexing workflows, s3-GCC to obtain both genome sequencing and 

chromatin conformation, with improved chromatin contacts obtained per cell when compared to 
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sci-HiC. We demonstrate the utility of these approaches by assessing two patient-derived tumor 

cell lines with genomic instability. Our analysis reveals patterns of focal amplification for disease-

relevant genes, and uncover wide-scale heterogeneity at a throughput not attainable with 

standard karyotyping. Additionally, we highlight the joint analysis of our protocols for uncovering 

the chromatin compartment disrupting effect of copy number aberrations. Furthermore, the s3 

workflow has the same inherent throughput potential of standard single-cell combinatorial 

indexing, with the ability to readily scale into the tens and hundreds of thousands of cells by 

expanding the set of transposome and PCR indexes. We also expect that this platform will be 

compatible with other transposase-based techniques, including sci-MET152, or CUT&Tag164. 

Lastly, unlike sci workflows, the s3 platform does not require custom sequencing primers or 

custom sequencing recipes, removing one of the major hurdles that groups may face while 

implementing these technologies. 

Methods 

PDCL propagation 

Low-passage, patient-derived cell lines (PDCLs) were propagated from rapidly 

dissociated PDAC tumors and cultured for continuous propagation in culture medium containing 

ROCK inhibitor (Y-276320)165. Briefly, approximately 50,000 viable, disaggregated tumor cells 

were plated to a 35mm diameter, collagen-coated well (Gibco, A11428-02) and passaged 1:3 

while subconfluent until reaching 85% confluence on a 10cm diameter dish. From a fraction of 

these cells, DNA was extracted to validate the presence of KRAS-G12 mutations by ddPCR (Bio-

Rad, 1863506) and to validate an STR profile that matches normal leukocyte DNA from the same 

patient (Genetica). PDCLs exhibited morphologies consistent with epithelial tumor cells and 

abundant KRT expression was detected by immunocytofluorescence using the monoclonal 

antibodies: AE1/AE3, C-11, and Cam5.2. 

Whole Exome Sequencing and Analysis 

Whole exome sequencing libraries for the patient blood sample, tumor biopsy, and PDCL 

were carried out by the Knight Diagnostic Research Cytogenetics Lab at OHSU. Libraries were 

prepared using 500 ng of fragmented gDNA using KAPA Hyper-Prep Kit (KAPA Biosystems) with 
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Agilent SureSelect XT Target Enrichment System and Human All Exon V5 capture baits (Agilent 

Technologies), following manufacturer’s protocols. Sequencing was carried out using the Illumina 

HiSeq 2500 platform by the OHSU Massively Parallel Sequencing Shared Resource (MPSSR). 

Paired-end reads were aligned with bwa mem (v0.7.15-r1140) to GRCh38 (“hg38”,Genome 

Reference Consortium Human Reference 38 (GCA_000001405.2))166. The data was processed 

following the best practices workflow for the GATK pipeline (v4.1.9.0)93. Exome regions annotated 

as “protein-coding” were extracted from GenCode (v35)167 and used as the intervals for 

processing. The following commands were then used for WES data normalization and 

segmentation with additional options were specified: PreprocessInvertals, CollectReadCounts, 

AnnotateIntervals, FilterIntervals, CreateRedCountPanelOfNormals (using the matched blood 

sample as the normal, with minimum-interval-median-percentile set to 5.0), and 

finally PlotDenoisedCopyRatios. The output was then plotted with ggplot2 (v3.3.2) in R (v4.0.0). 

The geom_rect function was used to shade the genomic region based on the relative copy 

number with segmentation interval, and geom_point was used to plot normalized bin reads. 

s3-ATAC Library Generation 

Prior to sample handling, 96 uniquely indexed transposome complexes were assembled 

using previously-described methods134. Complexes were diluted to 2.5uM in a protein storage 

buffer composed of 50% (v/v) glycerol (Sigma G5516), 100 mM NaCl (Fisher Scientific S271-3), 

50 mM Tris pH 7.5 (Life technologies AM9855), 0.1 mM EDTA (Fisher Scientific AM9260G), 1 

mM DTT (VWR 97061-340), and stored at −20°C. At the time of nuclei dissociation, 50mL of 

nuclei isolation buffer (NIB-HEPES) was freshly prepared with final concentrations of 10 mM 

HEPES-KOH (Fisher Scientific, BP310-500 and Sigma Aldrich 1050121000, respectively), pH 

7.2, 10 mM NaCl, 3mM MgCl2 (Fisher Scientific AC223210010), 0.1 % (v/v) IGEPAL CA-630 

(Sigma Aldrich I3021), 0.1 % (v/v) Tween (Sigma-Aldrich P-7949) and diluted in PCR-grade 

Ultrapure distilled water (Thermo Fisher Scientific 10977015). After dilution, two tablets of 

Pierce(tm) Protease Inhibitor Mini Tablets, EDTA-free (Thermo Fisher A32955) were dissolved 

and suspended to prevent protease degradation during nuclei isolation. 
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For s3-ATAC tissue handling, primary samples of C57/B6 mouse whole brain were 

extracted and flash frozen in a liquid nitrogen bath, before being stored at −80°C. Human cortex 

samples from the middle frontal gyrus were sourced from the Oregon Brain Bank from a 50-year-

old female of normal health status. Tissue was collected at 21 hours post-mortem and then 

placed in a −80°C freezer for storage. An at-bench dissection stage was set up prior to nuclei 

extraction. A petri dish was placed over dry ice, with fresh sterile razors pre-chilled by dry-ice 

embedding. 7mL capacity dounce homogenizers were filled with 2mL of NIB-HEPES buffer and 

held on wet ice. Dounce homogenizer pestles were held in in ice cold 70% (v/v) ethanol (Decon 

Laboratories Inc 2701) in 15mL tubes on ice to chill. Immediately prior to use, pestles were rinsed 

with chilled distilled water. For tissue dissociation, mouse and human brain samples were treated 

similarly. The still frozen block of tissue was placed on the clean pre-chilled petri dish and roughly 

minced with the razors. Razors were then used to transport roughly 1 mg the minced tissue into 

the chilled NIB-HEPES buffer within a dounce homogenizer. Suspended samples were given 5 

minutes to equilibrate to the change in salt concentration prior to douncing. Tissues were then 

homogenized with 5 strokes of a loose (A) pestle, another 5 minute incubation, and 5-10 strokes 

of a tight (B) pestle. Samples were then filtered through a 35 µm cell strainer (Corning 352235) 

during transfer to a 15mL conical tube, and nuclei were held on ice until ready to proceed. Nuclei 

were pelleted with a 400 rcf centrifugation at 4°C in a centrifuge for 10 minutes. Supernatant was 

removed and pellets were resuspended in 1mL of NIB-HEPES buffer. This step was repeated for 

a second wash, and nuclei were once again held on ice until ready to proceed. A 10uL aliquot of 

suspended nuclei was diluted in 90uL NIB-HEPES (1:10 dilution) and quantified on either a 

Hemocytometer or with a BioRad TC-20 Automated cell counter following manufacturer’s 

recommended protocols. The stock nuclei suspension was then diluted to a concentration of 1400 

nuclei/uL. 

Tagmentation plates were prepared by the combination of 420 uL of 1400 nuclei/uL 

solution with 540 uL 2X TD Buffer (Nextera XT Kit, Illumina Inc. FC-131-1024). From this mixture, 

8uL (∼5000 nuclei total) was pipetted into each well of a 96 well plate dependent on well schema 

(Figure 16b). 1uL of 2.5uM uniquely indexed transposase was then pipetted into each well. 
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Tagmentation was performed at 55°C for 10 minutes on a 300 rcf Eppendorf ThermoMixer. 

Following this incubation, plate temperature was brought down with a brief incubation on ice to 

stop the reaction. Dependent on experimental schema pools of tagmented nuclei were combined 

and 2uL 5mg/mL DAPI (Thermo Fisher Scientific D1306) was added. 

Nuclei were then flow sorted via a Sony SH800 to remove debris and attain an accurate 

count per well prior to PCR. A receptacle 96 well plate was prepared with 9uL 1X TD buffer 

(Nextera XT Kit, Illumina Inc. FC-131-1024, diluted with ultrapure water), and held in a sample 

chamber kept at 4°C. Fluorescent nuclei were then flow sorted gating by size, internal complexity 

and DAPI fluorescence for single nuclei following the same gating strategy as previously 

described38. Immediately following sorting completion, the plate was sealed and spun down for 5 

minutes at 500 rcf and 4°C to ensure nuclei were within the buffer. 

Nucleosomes and remaining transposases were then denatured with the addition 1uL of 

0.1% SDS (∼0.01% f.c.) per well. 4uL of NPM (Nextera XT Kit, Illumina Inc) per well was 

subsequently added to perform gap-fill on tagmented genomic DNA, with an incubation at 72°C 

for 10 minutes. 1.5 uL of 1uM A14-LNA-ME oligo was then added to supply the template for 

adapter switching. The polymerase based adapter switching was then performed with the 

following conditions: initial denaturation at 98°C for 30 seconds, 10 cycles of 98°C for 10 

seconds, 59°C for 20 seconds and 72°C for 10 seconds. The plate was then held at 10°C. After 

adapter switching 1% (v/v) Triton-X 100 in ultrapure H2O (Sigma 93426) was added to quench 

persisting SDS. At this point, some plates were stored at −20°C for several weeks while others 

were immediately processed. 

The following was then combined per well for PCR: 16.5 ul sample, 2.5uL indexed i7 

primer at 10 uM, 2.5uL indexed i5 primer at 10 uM, 3 uL of ultrapure H2O, and 25 uL of NEBNext 

Q5U 2X Master mix (New England Biolabs M0597S), and 0.5uL 100X SYBR Green I (Thermo 

Scientific S7563) for a 50 uL reaction per well. A real time PCR was performed on a BioRad CFX 

with the following conditions, measuring SYBR fluorescence every cycle: 98°C for 30 seconds; 

16-18 cycles of 98°C for 10 seconds, 55°C for 20 seconds, 72°C for 30 seconds, fluorescent 

https://www.biorxiv.org/content/10.1101/2021.01.11.425995v1.full#ref-38
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reading, 72°C for 10 seconds. After fluorescence passes an exponential growth and begins to 

inflect, the samples were held at 72°C for another 30 seconds then stored at 4°C. 

Amplified libraries were then cleaned by pooling 25 uL per well into a 15 mL conical tube and 

cleaned via a Qiaquick PCR purification column following manufacturer’s protocol (Qiagen 

28106). The pooled sample was eluted in 50 uL 10 mM Tris-HCl, pH 8.0. Library molecules then 

went through a size selection via SPRI selection beads (Mag-Bind® TotalPure NGS Omega 

Biotek M1378-01). 50 uL of vortexed and fully suspended room temperature SPRI beads was 

combined with the 50 uL library (1X clean up) and incubated at room temperature for 5 minutes. 

The reaction was then placed on a magnetic rack and once cleared, supernatant was removed. 

The remaining pellet was rinsed twice with 100 uL fresh 80% ethanol. After ethanol was pipetted 

out, the tube was spun down and placed back on the magnetic rack to remove any lingering 

ethanol. 31 uL of 10 mM Tris-HCl, pH 8.0 was then used to resuspend the beads off the magnetic 

rack and allowed to incubate for 5 minutes at room temperature. The tube was again placed on 

the magnetic rack and once cleared, the full volume of supernatant was moved to a clean tube. 

DNA was then quantified by Qubit dsDNA High-sensitivity assay following manufacturer’s 

instructions (Thermo Fisher Q32851). Libraries were then diluted to 2ng/uL and run on an Agilent 

Tapestation 4150 D5000 tape (Agilent 5067-5592). Library molecule concentration within the 

range of 100-1000bp was then used for final dilution of the library to 1 nM. Diluted libraries were 

then sequenced on High or Mid capacity 150 bp sequencing kits on the Nextseq 500 system 

following manufacturer’s recommendations (Illumina Inc. 20024907, 20024904). For greater 

sequencing effort, select libraries were also sequenced on a NovaSeq S2 flowcell, again following 

manufacturer’s recommendations (Illumina Inc. 20028315). For both machines libraries were 

sequenced as paired-end libraries with 10 cycle index reads and 85 cycles for read 1 and read 2. 

s3-WGS Library Generation 

Prior to processing the following buffers were prepared: 50mL of NIB HEPES buffer as 

described above, as well as 50mL of a Tris-based NIB (NIB Tris) variant with final concentrations 

of 10 mM Tris HCl pH 7.4, 10 mM NaCl, 3mM MgCl2, 0.1 % (v/v) IGEPAL CA-630, 0.1 % (v/v) 

Tween and diluted in PCR-grade Ultrapure distilled water. After dilution, two tablets of Pierce(tm) 
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Protease Inhibitor Mini Tablets, EDTA-free were dissolved and suspended to prevent protease 

degradation during nuclei isolation. 

s3-WGS library preparation was performed on cell lines as follows. For patient derived 

PDCL cell lines, cells were plated at a density of 1×106 on a T25 flask the day prior to processing. 

At harvest, cells were washed twice with ice cold 1X PBS (VWR 75800-986) and then trypsinized 

with 5mL 1X TrypLE (Thermo Fisher 12604039) for 15 minutes at 37°C. Suspended cells were 

then collected and pelleted at 300 rcf at 4°C for 5 minutes. For suspension-growth cell lines 

(GM12878), cells were pipetted from growth media and pelleted at 300 rcf at 4°C for 5 minutes. 

Following the initial pellet, cells were washed with ice cold 1mL NIB HEPES twice. After the 

second wash, pellets were then resuspended in 300 uL NIB HEPES. Nuclei were aliquoted and 

quantified as described above, then aliquots of 1 million nuclei were generated based on the 

quantification. The aliquots were pelleted by a 300 rcf centrifugation at 4°C for 5 minutes and 

resuspended in 5 mL NIB HEPES. 246 uL 16% (w/v) formaldehyde (Thermo Fisher 28906) was 

then added to nuclear suspensions (f.c. 0.75% formaldehyde) to lightly fix nuclei. Nuclei were 

fixed via incubation in formaldehyde solution for 10 minutes on an orbital shaker set to 50 rpm. 

Suspensions were then pelleted at 500 rcf for 4 minutes at 4°C and supernatant was aspirated. 

Pellet was then resuspended in 1 mL of NIB Tris Buffer to quench remaining formaldehyde. 

Nuclei were again pelleted at 500 rcf for 4 minutes at 4°C and supernatant was aspirated. The 

pellet was washed once with 500uL 1X NEBuffer 2.1 (NEB B7202S) and then resuspended with 

760 uL 1X NEBuffer 2.1. 40 uL 1% SDS (v/v) was added and sample was incubated on a 

ThermoMixer at 300 rcf set to 37°C for 20 minutes. Nucleosome depleted nuclei were then 

pelleted at 500 rcf at 4°C for 5 minutes and then resuspended in 50 uL NIB Tris. A 5 uL aliquot of 

nuclei was taken and diluted 1:10 in NIB Tris then quantified as described above. Nuclei were 

diluted to 500 nuclei/uL with addition of NIB Tris, based on the quantification. Dependent on 

experimental setup, the 420 uL of nuclei at 500 nuclei/uL were then combined with 540 uL 2X TD 

buffer. Following this, nuclei were tagmented, stained and flow sorted, genomic DNA was gap-

filled and adapter switching was performed as described for the s3-ATAC protocol. Library 

amplification was performed by PCR as described above with fewer total cycles (13-15) likely due 
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to more initial capture events per library. Libraries were then cleaned, size selected, quantified 

and sequenced as described previously. 

s3-GCC Library Generation 

The same cultured cell line samples were harvested as described for s3-WGS library 

generation, and processed from the same pool of fixed, nucleosome depleted nuclei. Following 

quantification of nuclei, the full remaining nuclear suspensions (∼2-3 million nuclei per sample) 

were pooled respective of sample. Nuclei were pelleted at 500 rcf at 4°C for 5 minutes and 

resuspended in 90 uL 1X Cutsmart Buffer (NEB B7204S). 10 uL of 10U/uL AluI restriction 

enzyme (NEB R0137S) was added to each sample. Samples were then digested for 2 hours at 

37°C at 300 rpm on a ThermoMixer. Following digestion, nuclear fragments then underwent 

proximity ligation. Nuclei were pelleted at 500 rcf at 4°C for 5 minutes and resuspended in 100uL 

ligation reaction buffer. Ligation buffer is a mixture with final concentrations of 1X T4 DNA Ligase 

Buffer + ATP (NEB M0202S), 0.01 % TritonX-100, 0.5mM DTT (Sigma D0632), 200 U of T4 DNA 

Ligase, diluted in ultrapure H2O. Ligation took place at 16°C for 14 hours (overnight). Following 

this incubation, nuclei were pelleted at 500 rcf at 4°C for 5 minutes and resuspended in 100 uL 

NIB HEPES buffer. An aliquot of nuclei were quantified as described previously, and were then 

diluted, aliquoted, tagmented, pooled, DAPI stained, flow sorted, genomic DNA was gap-filled 

and adapter switching was performed as described for the s3-ATAC protocol. Library 

amplification occurred at the same rate as the s3-WGS libraries (13-15 cycles) and libraries were 

subsequently pooled, cleaned, quantified and sequenced as described above. 

Computational Analysis 

Preprocessing 

The initial processing of all library types was the same. After sequencing, data was 

converted from bcl format to FastQ format using bcl2fastq (v 2.19.0, Illumina Inc.) with the 

following options with-failed-reads, no-lane-splitting, fastq-compression-level=9, create-fastq-for-

index-reads. Data were then demultiplexed, aligned, de-duplicated using the in-

house scitools pipeline (ref 31). Briefly, FastQ reads were assigned to their expected primer index 

sequence allowing for sequencing error (Hamming distance ≤2) and indexes were concatenated 
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to form a “cellID”. Reads that could be assigned unambiguously to a cellID were then aligned to 

reference genomes. For s3-WGS and s3-GCC libraries, paired reads were aligned with bwa 

mem (v0.7.15-r1140) to hg38166. For s3-ATAC libraries, reads were first aligned to a 

concatenated hybrid genome of hg38 and GRCm38 (“mm10”, Genome Reference Consortium 

Mouse Build 38 (GCA_000001635.2)). Reads were then de-duplicated to remove PCR and 

optical duplicates by a perl (v5.16.3) script aware of cellID, chromosome and read start, read end 

and strand. From there putative single-cells were distinguished from debris and error-generated 

cellIDs by both unique reads and percentage of unique reads. 

s3-ATAC Analysis 

Barnyard Analysis 

With single-cell libraries distinguished, we next quantified contamination between nuclei 

during library generation. We calculated the read count of unique reads per cellID aligning to 

either human reference or mouse reference chromosomes (Figure 16c). CellIDs with ≥90% of 

reads aligning to a single reference genome were considered bona fide single-cells. Those not 

passing this filter (2.7%,19/687 cells for pre-tagmentation barnyard) were considered collisions. 

Collision rate was estimated to account for cryptic collisions (mouse cell-mouse cell or human 

cell-human-cell) by multiplying by two (final collision rate of 5.5%). Bona fide single-cell cellIDs 

were then split from the original FastQ files to be aligned to the proper hg38 or mm10 genomes 

with bwa mem as described above. Human and mouse assigned cellIDs were then processed in 

parallel for the rest of the analysis. After alignment, reads were again de-duplicated to obtain 

proper estimates of library complexity. 

Tagmentation Insert Quantification 

To assess tagmentation insert size, samtools isize (v. 1.10) was performed and plotted 

with ggplot2 (v3.3.2) in R (v4.0.0) using the geom_density function (default parameters, Figure 

16e). To assess library quality further, we generated tagmentation site density plots centered 

around transcription start sites (TSSs). We used the alignment position (chromosome and start 

site) for each read to generate a bed file that was then piped into the BEDOPS closest-feature 

command mapped the distance between all read start sites and transcription start sites (v 
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2.4.36)168. From this, we collapsed binned distances (100bp increments) into a counts table and 

generated percentage of read start site distances within each counts table. We plotted these data 

using R and ggplot2 geom_density function (default parameters) subset to 2000 base pairs 

around the start site to visualize enrichment. TSS enrichment values were calculated for each 

experimental condition using the method established by the ENCODE project 

(https://www.encodeproject.org/data-standards/terms/enrichment), whereby the aggregate 

distribution of reads ±1,000 bp centered on the set of TSSs is then used to generate 100 bp 

windows at the flanks of the distribution as the background and then through the distribution, 

where the maximum window centered on the TSS is used to calculate the fold enrichment over 

the outer flanking windows. 

Library Complexity Analysis 

To project library complexity through sequencing effort, pre-de-duplicated cellID read sets 

were used to build a projection as follows8. Reads were randomly subsampled starting at 1% of 

the total reads with 5% of data added in increasing increments to build a simple saturation curve 

per cellID. A summarized saturation curve per species was generated and plotted 

in ggplot2 using the geom_smooth function, descripting the curves mean, median and standard 

error. For comparison to publicly available data sets of a matched tissue type, we focused our 

analysis on the mouse brain libraries. We plotted our PCR plate sequenced to 36.4% ± 17.4% 

unique reads/total reads for comparison to three other single-cell ATAC-seq methods which have 

been applied to post-natal mouse whole brain29,154,155. Data passing self-reported filters were 

used for comparison and plotted with ggplot geom_boxplot function. Welch’s two-sample T test 

comparisons between unique reads per cell were calculated with the t.test function in base R for 

a one-sided alternative hypothesis. 

Dimensionality Reduction 

Pseudo-bulked data (agnostic of cellID) was then used to call read pile-ups or “peaks” via 

macs2 (v.2.2.7.1) with option –keep-dup all72. Narrowpeak bed files were then merged by overlap 

and extended to a minimum of 500bp for a total of 292,156 peaks for human and 174,653 peaks 

for mouse. A scitools perl script was then used to generate a sparse matrix of peaks × cellID to 

https://www.encodeproject.org/data-standards/terms/enrichment
https://www.biorxiv.org/content/10.1101/2021.01.11.425995v1.full#ref-8
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count occurrence of reads within peak regions per cell. FRiP was calculated as the number of 

unique, usable reads per cell that are present within the peaks out of the total number of unique, 

usable reads for that cell for each peak bed file. Cells with less than 20% of reads within peaks 

were then filtered out. Tabix formatted files were generated using samtools and tabix (v1.7). The 

counts matrix and tabix files were then input into a SeuratObject for Signac (v1.0.0) 

processing156,169.We performed LDA-based dimensionality reduction via cisTopic (v0.3.0)with 27 

topics for mouse cells and 24 topics for human cells74. The number of topics were selected after 

generating 25 separate models per species with topic counts of 5,10,20-30,40,50,55,60-70 and 

selecting the topic count using selectModel based on the second derivative of model perplexity. 

Cell clustering was performed with Signac FindNeighbors and FindClusters functions on the topic 

weight × cellID data frame. For FindClusters function call, resolution was set to 0.3 and 0.2 for 

human and mouse samples, respectively. The respective topic weight × cellID was then 

projected into two dimensional space via a uniform manifold approximation and projection 

(“UMAP”) by the function umap in the uwot package (v0.1.8, Figure 16g-h)76. Cis-coaccessibility 

networks (CCANs) were generated through the Signac wrapper of cicero (v1.3.4.10)20. Genome 

track plots with CCAN linkages were generated through Signac function CoveragePlot for marker 

genes previously described156. Differential accessibility between clusters in one by one, and one 

by rest comparisons were generated using Signac function FindMarkers using options: test.use = 

’LR’, and only.pos=T, with latent.vars = ’nCount_peaks’, to account for read depth. Cell type per 

cluster was assigned based on genome track plots and differentially accessible sites. 

Subclustering 

After gross cell type assignment of mouse and human cell lines, human inhibitory 

neurons (GAD1+) clusters 3 and 4 were subset from the SeuratObject. Those 342 cells were then 

iteratively clustered by performing the same cisTopic, UMAP, and Signac processing with the 

following changes74,76,156. CisTopic was performed on the full set of human peaks (292,156) with 

those 342 subset cells. 12 Topic models were constructed (5, 10, 20-30 topics) and the 25 topic 

model was chosen on the second derivate of the model perplexity. A resolution of 0.5 was used in 

the Signac FindClusters on the topic weight × cellID call to attain 5 subclusters. Coverage plots 
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were generated as reported above for ADARB2 and LHX6 . Peaks were then assigned to topics 

using the cisTopic binarizecisTopics function with argument thrP=0.975 (mean count per topic: 

2429 peaks). We then performed a simple gene set enrichment analysis on human cortical 

inhibitory neurons and subtypes based on RNA-identified marker genes defined previously34.We 

used a Fisher’s Exact test with the function fisher.test with function alternative.hypothesis = 

”greater” to look for enrichment of topic-assigned peaks in marker gene bodies for inhibitory 

neuron subclasses relative to all topic-assigned peaks. We filtered results to those with nominal 

enrichment (p value ≤ 0.05) and used ggplot geom_point with color reflecting the reported p-value 

and size proportional to odds ratio to generate a bubble plot (Figure 16k). 

s3-WGS and s3-GCC Analysis 

Quality Control 

s3-WGS and s3-GCC cellIDs were initially filtered to samples with either ≥1×105 or 

≥1×106 unique reads (PDCL and GM12878 samples, respectivley). CellIDs were split after de-

duplication into single-cell bam files. They were then processed via the pipeline in the 

package SCOPE (v1.1)90. The genome was split into 500 kbp bins with each bin being assigned a 

GC content and mappability score (generated through CODEX2)170. Reads with a mapping 

quality of Q ≥ 10 were counted in bins per cellID. Bins with a mappability score < 0.9 or GC 

content ≤ 20% or ≥ 80% were removed (5449 bins passing filter). Additionally, cellIDs with low 

coverage were removed (1268 samples passing filter). Median absolute deviation (MAD) scores 

were calculated per cell on 500kb bins of cells passing filter as previously described90. Briefly, let 

Yi,j be the raw read count for the ith cellID of the jth bin (from 1.. n bins). Let Ni be a cell-specific 

scaling factor (total read depth) and Bj be a bin-specific normalization, output as beta.hat from the 

function normalize_codex2_ns_noK. Such that MAD scores were then plotted using the 

ggplot geom_jitter and geom_boxplot functions. 
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Copy Number Calling 

SCOPE assumes diploid cells within the sample for normalization steps. To this end we 

used GM12878 lymphoblastoid cell line as our normal diploid samples and used an a 

priori estimate of 2.6N based on averaged PDCL karyotyping results (Figure 17c). We then used 

the SCOPE function normalize_scope_foreach with the following options: K=5, T=1:6 to 

normalize read distributions per cell. We segmented the genome into breakpoints per 

chromosome and inferred copy number per breakpoint per cell by segment_CBScs allowing for a 

simple nested structure of copy number changes (max.ns=1). To plot inferred copy number per 

cell, we used the R library ComplexHeatmap (v2.5.5) by function Heatmap171. Pairwise distance 

between cells was generated by Jaccard distance through the R library philentropy (v0.4.0)172 on 

windows categorized as “neutral” (2N), “amplified” (>2N) or “deleted” (<2N). Cells then underwent 

hierarchical clustering by the “ward.D2” argument in the function hclust. The resultant 

dendrogram was then cut into both 3 and 6 clades based on the two independent optimal k value 

searches using the find_k function in the R library dendextend (v1.14.0) given a range of 2 to 10 

and 5 to 10 clusters, respectively (Figure 17i)173. Cells with shared clade membership were then 

combined into “pseudobulk” clades for higher resolution copy number calling. After combining 

counts data across 50 kbp bins (and filtered as described above), we had 6 clades with 154, 250, 

363, 100, 268 and 133 cells, with mean reads per bin of 1207, 2442, 4662, 2071, 2700, and 

9416, respectively. These pseudobulk sampled were then normalized as described above with 

clade 6, containing 83.45% GM12878 cells (111/133 cells) as the normal diploid sample. The 

genome per sample was then segmented as described above and normalized reads per bin as 

well as segmentation calls were plotted with ggplot2 geom_point and geom_rect functions. Select 

genomic locations157 of recurrently mutated genes were vizualized and plotted using IGV with 5 

bins (250kbp) up and downstream from the transcription start sites. (Appendix Figure 28)174. 

s3-GCC contact profile raw counts were generated for cellIDs passing the read count and 

SCOPE filters (215 cells) as follows. For initial plotting of single-cell profiles, paired-end read bam 

files were filtered for an insert length of ≥50kbp via pysam175 and output as upper-triangle triple-

sparse format at 1mbp bin sizes. Raw contact matrices were then plotted 
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with R and ComplexHeatmap (Figure 17j, left). Merged ensemble plots were generated by 

summing single-cell contact matrices generated as described above for 500 kbp bins. Following 

this, we performed dimensionality reduction and clustering analyses using a topic modeling 

approach. We treated the GCC portion of single-cell sequencing fragments (read pairs separated 

by a genomic distance higher than 1kb) as traditional distal interactions. We analyzed these cells 

using our previously established topic model for analysis and characterization of single-cell Hi-C 

data176. In the topic modeling framework, each cell is treated as a mixture of “topics” where each 

topic corresponds to a set of distal interactions. The model is trained in an unsupervised manner 

to find the optimum number of topics that best describe the data and associates each distal 

interaction with a probablistic mixture of topics. 

We trained a topic model using the GCC data with the default parameters in Kim et al. 

However, we altered one parameter, which is the range of distal interactions that are input into 

the model. Due to high coverage of s3-GCC assays, we opted for distal interactions that are 

separated by a genomic distance of 20Mb or less, as opposed to original parameter where we 

used interactions that are separated by distances lower than 10Mb. After training, we found that 

the number of topics that best describe the data is 15. We visualized cells using UMAP and found 

that the majority of cells from two lines cluster separately. Overall, these results validate the Hi-C 

like characteristics of GCC data and further show that we can capture the subtle differences in 

chromatin organization of the two lines. 
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Abstract 

 Chromatin accessibility has demonstrated a powerful ability to identify cell types and states. 

Performed at single-cell resolution, this assay has generated catalogs of genome-wide DNA 

regulatory sites, dynamic chromatin reorganization through development67, and whole organism 

cell atlases on model species80. Single cells in isolation are ineffectual for explaining complex 

and/or developing tissue, so instead methods look to generate hundreds to thousands of single cell 

libraries in parallel at once to provide cell-to-cell context. There are two general methods for 

achieving single-cell data with hundreds to thousands of cells in a single experiment. First, cells 

can be isolated into a single reaction vessel, be it tube or nanoliter droplet on a microfluidics 

platform, as seen in the commercialized products of 10X Genomics30 and Bio-Rad28.  Captured 

cells share the microfluidic droplet with a gel bead synthesized with a set of unique 

oligonucleotides, used to specifically label the cell. Second, iterative split-pool labelling as is seen 

in single-cell combinatorial indexing (sci), can identify single cells while never truly dropping down 

to single cell single reaction conditions147. Here we demonstrate a method to increase the 

throughput of single cell ATAC seq by combining these two approaches; tagmenting nuclei with 

unique indexes and saturating the nuclei loading within the 10X Chromium platform to maximize 

the throughput of single cell library generation. We use this strategy to generate up to 100,000 cells 

per reaction on the 10X Chromium controller (~20X increase in throughput), and describe novel 

biology at atlas-level cell counts. We demonstrate this method on human cortex and mouse whole 

brain samples. 

 

Main Text 

The most robust approach to identify chromatin patterns at a single-cell scale is through 

ATAC-seq (assay for transposase accessible chromatin by sequencing), in which a hyperactive 

transposase enzyme inserts sequencing adapters into sterically open regions of chromatin. The 

resulting pile-up of genome aligned reads identifies loci that are putatively active in expression or 

regulation177. The efficiency of this process has allowed generation of ATAC-seq libraries from 

single cell inputs. Various methods of single-cell ATAC-seq generation have been reported, 
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however there is an upper limit for cell-specific library generation. When cell input exceeds indexing 

throughput, index collisions occur, leading to multiple cells sharing indexes and conflating 

analysis178. To address this issue we combined a 96-well indexed tagmentation approach with a 

microfluidic gel bead encapsulation approach to combinatorially introduce indexes at both stages 

(Fig. 18a). As multiple rounds of fragment capture on the gel beads occur within the droplet, there 

is a possibility for index-switching178. With this in mind, we modified our protocol from a linear 

amplification to an exponential amplification strategy to mitigate necessary cycles. High cell count 

strategies can lead to a sequencing burden during early quality control; requiring billions of reads 

prior to post hoc identification of cells through separation in library complexity. To address this, we 

developed a modified protocol to sequester some cells for quality control prior to additional 

sequencing effort on the full libraries. After encapsulation, we split the pool of encapsulated cell-

beads for 10% and 90% of the volumes. 

Figure 18. sciDROP generates high quality single-cell ATAC libraries at high throughput. a) Molecular details of sciDROP 
library generation, schematized. b) Experimental flow through for sciDROP human cortex and mouse full brain library 
generation. After 96-plex tagmentation, cells are loaded into a 10X Chromium microfluidics device at either 25,000 or 
75,000 target cells (25K/75K, respectively). Following cell encapsulation in the formed emulsion, libraries are split for 
quality control into 10% and 90% pools for quality control. c) Two-dimensional density map of cells passing initial read 
filters for percent unique reads (library saturation) and unique read counts. d) Mixed-species tagmentation wells were 
subject to alignment in both human and mouse reference genomes. e) Number of cells per droplet quantified on a 
histogram, showing a majority of droplets are still contain only a single cell. f) Quantification of cells in 25K and 75K library 
pools. Conditions include doublets uncovered either through cross-species alignment (“mixed doublet”) or through reduced 
dimension detection strategy (see Methods). Other cells passing these filters are colored by identified species and 
tagmentation condition. 
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To test this strategy, we performed a multiplexed tagmentation of human cortex and mouse 

whole brain samples. A mixed species experiment such as this (Fig. 18b.) allows for an accurate 

estimation of collision rate since each index is expected to align uniquely to either the human or 

mouse reference genome. Indexes with cross-alignment indicate collisions and allow us to 

empirically scale cells loaded during droplet formation. We performed two separate experiments 

following the same tagmentation scheme and loaded either 25,000 (~5X recommended loading 

volume) or 75,000 (~15X). Libraries were sequenced to an average depth 44,865 unique reads, 

with a saturation rate of 69.1% unique reads (Fig 18c). Using a species purity cutoff of 90%, we 

uncovered an estimated collision rate of 0.25% and 0.55%, respectively; consistent with our 

estimated average cell loading per droplet of 1.26 and 1.66 (Fig 1e. see Methods). This suggests 

that even at an exponential increase, over 2.09 x 106 cells can be loaded within a single lane before 

a 5% collision rate is attained (3.47 nuclei per droplet). Physical constraints such as device clogging 

or cell suspension density limits are likely to occur first. We captured 19,141 and 61,388 cells, 

respectively (Fig 18f.). To uncover sample complexity, iterative dimensionality reduction74 and 

clustering169 was performed on human and mouse cells separately from the single 15X loading lane 

(Fig 18f, Fig 19a, Fig 20a). We ran an analysis for cryptic doublets within species to remove barcode 

collisions passing our initial species alignment filter (Methods, Appendix Tables 14-15)179. We then 

used previously published single-cell RNA data to predict cell types within our data set, using cis-

coaccessible networks (CCANs) to generate gene activity scores for comparison to 

transcription34,156,180–182. Prediction labels were confirmed with canonical marker genes per cell type 

(Fig 19b, Fig 20b)181,182. We performed an a priori marker identification analysis across cell 

subclusters on gene activity, and transcription factor motif accessibility(Fig 19c-d, Fig 20c-d)20,75,78. 

Notably in both our human and mouse samples, we were able to detect and identify many expected 

cell types with high confidence.  

In the human data set, cell types identified through single-cell RNA-seq experiments34,181 

were identified through the use of gene activity scores. Inhibitory neuron subtypes were readily 

discerned through the bias in use of transcription factor motifs. Notably, in the human sample, 

GAD1+ inhibitory neurons (clusters 4 and 5) displayed a clear separation between medial and 
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medial ganglionic eminence markers (LHX6+ and ADARB2+, respectively) similar to the work 

described in Chapter 2. However, with increased cell count, we were able to further separate the 

LHX6+ cluster 4 into SST+ and PVALB+ cells. The PVALB gene does not show any read pile-ups 

along the gene length, leading PVALB+ cells to be inferred by known co-expressed markers such 

as CUX2. Likewise, we can separate ADARB2+ inhibitory neurons (cluster 5) into VIP+ and 

LAMP5+ cells (Fig 19b)34. The separation of these cell types was not solely in gene activity, but we 

also observed a clear bias in transcription factor motif usage. LHX6+ cells in cluster 4, showed a 

specific enrichment in nuclear receptors with C4 zinc fingers, such as RORB, RORC, and 

ESRRB77. Conversely, ADARB2+ inhibitory neurons (cluster 5) showed an enrichment in POU-

domain factors. We saw a similar separation between inhibitory neuron gene activity and 

transcription factor motif usage in the mouse sample (Fig 20). 

In summary the work described here displays a combination of two techniques for single-

cell ATAC-seq library generation. By combining the reaction isolation of microfluidic emulsion used 

in the 10X chromium system, and the multi-cell reactions possible with combinatorial indexing, we 

improve cell count throughput by over an order of magnitude. In two proof-of-principle experiments, 

we demonstrate the high quality libraries attainable. We then use a single tube reaction to generate 

two high cell count assessments of human and mouse brain tissue samples (22,565 and 38,606 

cells, respectively). To do this we leveraged the inherent multiplexing ability of multiple 

tagmentation reactions, meaning number of independent samples need not be sacrificed, 

overcoming a major hurdle of the 10X platform30. The read depth and cell count attainable within 

this single reaction corresponds well with transcriptome profiles from large-scale single-cell RNA 

atlases34,181,182 and allows for the assay of genome-wide peaks and transcription factor motif usage. 

The ease and availability of this method will lead to substantially higher quality data sets and more 

nuanced chromatin accessibility studies. 
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Figure 19. Cell type identification and marker assessment in human cortex sample. a) UMAP projection of 75K loading 
human cells (n= 22,565). Identified clusters then underwent a second round of reduction and UMAP projection in parallel 
(right panels). Subcluster coloring is consistent throughout the figure. b) Cell type and subtype identification through 
canonical marker gene sets. Z-scored average gene activity score per subcluster is plotted as a heatmap. Subclusters are 
hierarchically clustered and labelled by cell type. Astro: astrocytes; Endo: endothelial cells; iN: inhibitory neurons; ExN: 
excitatory neurons; Micro: microglia; Oligo: oligodendrocytes; OPC: oligodendrocyte progenitor cells; Micro.PVM: 
microglia and perivascular macrophages. c) A priori determination of marker genes through chromatin accessibility-
derived gene activity. Z-scored average gene activity score per subcluster is plotted, with the top 3 markers per subcluster 
shown. Subclusters are hierarchically clustered based on all differentially accessible gene activities. d) A priori 
determination of marker transcription factor motifs through genome-wide transcription factor motif accessibility. Z-scored 
average motif accessibility per subcluster is plotted, with the top 3 markers per subcluster shown. Subclusters are 
hierarchically clustered based on all differentially accessible gene activities, consistent with panel c. SeqLogos are plotted 
alongside heatmap rows. 
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Figure 20. Cell type identification and marker assessment in mouse whole brain sample. a) UMAP projection of 75K 
loading human cells (n= 38,606). Identified clusters then underwent a second round of reduction and UMAP projection in 
parallel (right panels). Subcluster coloring is consistent throughout the figure. b) Cell type and subtype identification 
through canonical marker gene sets. Z-scored average gene activity score per subcluster is plotted as a heatmap. 
Subclusters are hierarchically clustered and labelled by cell type. Abbreviations are consistent with Figure 2. PyrCA1: 
pyrimidal CA1 neurons. c) A priori determination of marker genes through chromatin accessibility-derived gene activity. Z-
scored average gene activity score per subcluster is plotted, with the top 3 markers per subcluster shown. Subclusters are 
hierarchically clustered based on all differentially accessible gene activities. d) A priori determination of marker 
transcription factor motifs through genome-wide transcription factor motif accessibility. Z-scored average motif 
accessibility per subcluster is plotted, with the top 3 markers per subcluster shown. Subclusters are hierarchically 
clustered based on all differentially accessible gene activities, consistent with panel c. SeqLogos are plotted alongside 
heatmap rows. 
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Methods 

Sample preparation 

At the time of nuclei dissociation, 50mL of nuclei isolation buffer (NIB-HEPES) was freshly 

prepared with final concentrations of 10 mM HEPES-KOH (Fisher Scientific, BP310-500 and Sigma 

Aldrich 1050121000, respectively), pH 7.2, 10 mM NaCl (Fisher Scientific S271-3), 3mM MgCl2 

(Fisher Scientific AC223210010), 0.1 % (v/v) IGEPAL CA-630 (Sigma Aldrich I3021), 0.1 % (v/v) 

Tween-20 (Sigma-Aldrich P-7949) and diluted in PCR-grade Ultrapure distilled water (Thermo 

Fisher Scientific 10977015). After dilution, two tablets of Pierce™ Protease Inhibitor Mini Tablets, 

EDTA-free (Thermo Fisher A32955) were dissolved and suspended to prevent protease 

degradation during nuclei isolation. 

Primary samples of C57/B6 mouse whole brain were extracted and flash frozen in a liquid 

nitrogen bath, before being stored at -80°C. Human cortex samples from the middle frontal gyrus 

were sourced from the Oregon Brain Bank from a 50-year-old female of normal health status. 

Tissue was collected at 21 hours post-mortem and then placed in a -80°C freezer for storage. An 

at-bench dissection stage was set up prior to nuclei extraction. A petri dish was placed over dry 

ice, with fresh sterile razors pre-chilled by dry-ice embedding. 7mL capacity dounce homogenizers 

were filled with 2mL of NIB-HEPES buffer and held on wet ice. Dounce homogenizer pestles were 

held in ice cold 70% (v/v) ethanol (Decon Laboratories Inc 2701) in 15mL tubes on ice to chill. 

Immediately prior to use, pestles were rinsed with chilled distilled water. For tissue dissociation, 

mouse and human brain samples were treated similarly. The still frozen block of tissue was placed 

on the clean pre-chilled petri dish and roughly minced with the razors. Razors were then used to 

transport roughly 1 mg the minced tissue into the chilled NIB-HEPES buffer within a dounce 

homogenizer. Suspended samples were given 5 minutes to equilibrate to the change in salt 

concentration prior to douncing. Tissues were then homogenized with 5 strokes of a loose (A) 

pestle, another 5 minute incubation, and 5-10 strokes of a tight (B) pestle. Nuclei were transferred 

to a 15mL conical tube and pelleted with a 400 rcf centrifugation at 4°C in a centrifuge for 10 

minutes. Supernatant was removed and pellets were resuspended in 5mL of ATAC-PBS buffer 
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(APB) consisting of 1X PBS (Thermo Fisher 10010) and 0.04mg/mL (f.c.) of bovine serum albumin 

(BSA, Sigma Aldric A2058). Samples were then filtered through a 35 µm cell strainer (Corning 

352235). A 10uL aliquot of suspended nuclei was diluted in 90uL APB (1:10 dilution) and manually 

counted on a hemocytometer with Trypan Blue staining (Thermo Scientific T8154). The stock nuclei 

suspension was then diluted to a concentration of 2,857 nuclei/uL in APB. Dependent on 

experimental schema pools of tagmented nuclei were combined to allow for the assessment of 

pure samples and to test index collision rates (Appendix Tables 14-15). 

Tagmentation buffer solution (TB1) was prepared with a final concentration of 1.92X 

concentration TD buffer (Nextera XT Kit, Illumina Inc. FC-131-1024), 0.0192% (f.c) Digitonin 

(Bivision 2082-1), 0.192% Tween-20 and diluted in PCR-Grade Ultrapure distilled water. 

Tagmentation plates were prepared by the combination of 1430 uL of TB1 with 770 uL nuclei 

solution. This mixture was mixed briefly on ice. 20uL of the mixture was placed into ready-to-use 

96-well iTSM plate containing 5uL of 100nM pre-indexed transposase (ScaleBio). Tagmentation 

was performed at 37°C for 60 minutes on a 300 rcf Eppendorf ThermoMixer with a lid heated to 

65°C. Following this incubation, plate temperature was brought down with a 5 minute incubation 

on ice to stop the reaction. Tagmented nuclei were then pooled into a single 5mL conical tube. 5mL 

of tagmentation wash buffer (TMG) was prepared consisting of a final concentration of 10mM Tris 

Acetate pH 7.5 (Sigma 93352 and Sigma A6283, respectively), 5mM MgAcetate (Sigma M5661) 

and 10% (v/v) glycerol (Sigma G5516), diluted in PCR grade water. 1mL of TMG was added on top 

of the chilled tagmented nuclei. Nuclei were pelleted at 500 x g for 10 minutes. Most of the 

supernatant was removed with care not to disturb the pellet. Then 500uL of TMG was added to the 

pellet and the tube was once again spun at 500 x g for 5 minutes. 490 uL was removed leading a 

low volume of concentrated nuclei. Loading buffer was prepared consisting of 10% (v/v) glycerol, 

20 mM NaCl, 10 mM Tris-Cl pH 7.5 (Life technologies AM9855), 0.02 mM EDTA (Fisher Scientific 

AM9260G), 0.2 mM DTT (VWR 97061-340), and 0.2X TB1 (v/v). The nuclear pellet was 

resuspended with an additional 30uL of loading buffer. An aliquot of 2uL of sample was dilute 20-

50X and quantified with Trypan Blue on a hemocytometer. Depending on experiment, a 14uL nuclei 
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solution containing the desired amount of nuclei in loading buffer was then combined with 1uL of 

75 uM oligo SBS12 (5’CGTGTGCTCTTCCGATCT in TE buffer).  

The 10X Chromium was then run with the custom nuclei solution as per manufacturer’s 

instructions (10x Document CG000209 Rev D) with the following adaptations. At step 2.4e during 

GEM aspiration and transfer, 100uL GEM volume was split into two tubes, with one receiving 10uL 

and the other 90uL (henceforth referred to as 10% and 90% samples). At step 2.5.a, GEM 

incubation cycles were limited to 6. For Pre-PCR wash elution (Step 3.2.j) the 10% sample was 

eluted in 8.5uL whereas the 90% sample was eluted in 32.5uL. For step 3.2.n, the 10% sample 

had 8uL transferred to a new strip, while the 90% sample had 32uL transferred to a new strip. At 

step 4.1.b, the sample Index PCR mix was split with 11.5uL and 46uL being combined with the 

10% and 90% samples, respectively. For step 4.1.c, 1uL and 2uL of a 10uM i7 TruSeq primer was 

used, respectively. For step 4.1.d, 8 and 7 PCR cycles were used, respectively. Libraries were then 

checked for quality and quantified by Qubit DNA HS assay (Agilent Q32851) and Tapestation 

D5000 (Agilent 5067-5589) following manufacturer’s instructions. Libraries were then diluted and 

sequenced on a NextSeq 500 mid-capacity or NovaSeq 6000 S4 flow cells (Illumina Inc.). 

Computational Analysis 

Raw code is available at https://mulqueenr.github.io/scidrop/ 

Preprocessing 

After sequencing, data was converted from bcl format to FastQ format using bcl2fastq (v 2.19.0, 

Illumina Inc.) with the following options with-failed-reads, no-lane-splitting, fastq-compression-

level=9, create-fastq-for-index-reads. Data were then demultiplexed, aligned, de-duplicated using 

the in-house scitools pipeline31. Briefly, FastQ reads were assigned to their expected primer index 

sequence allowing for sequencing error (Hamming distance ≤2) and indexes were concatenated 

to form a “cellID”. Reads that could be assigned unambiguously to a cellID were then aligned to 

reference genomes. Paired reads were aligned with bwa mem (v0.7.15-r1140)183 first aligned to a 

concatenated hybrid genome of hg38 and GRCm38 (“mm10”, Genome Reference Consortium 

Mouse Build 38 (GCA_000001635.2)). Reads were then de-duplicated to remove PCR and 
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optical duplicates by a perl (v5.16.3) script aware of cellID, chromosome and read start, read end 

and strand. From there putative single-cells were distinguished from debris and error-generated 

cellIDs by both unique reads and percentage of unique reads.   

Barnyard Analysis 

With single-cell libraries distinguished, we next quantified contamination between nuclei during 

library generation. We calculated the read count of unique reads per cellID aligning to either 

human reference or mouse reference chromosomes (Figure 18). CellIDs with ≥90% of reads 

aligning to a single reference genome were considered bona fide single-cells. Those not passing 

this filter were considered collisions. Collision rate was estimated to account for cryptic collisions 

(mouse cell-mouse cell or human cell-human-cell) by multiplying by two. Bona fide single-cell 

cellIDs were then split from the original FastQ files to be aligned to the proper hg38 or mm10 

genomes with bwa mem as described above. Human and mouse assigned cellIDs were then 

processed in parallel for the rest of the analysis. After alignment, reads were again de-duplicated 

to obtain proper estimates of library complexity (Appendix Tables 14-15).  

Tagmentation Insert Quantification  

We generated tagmentation site density plots centered around transcription start sites (TSSs). 

We used the alignment position (chromosome and start site) for each read to generate a bed file 

that was then piped into the BEDOPS closest-feature command mapped the distance between all 

read start sites and transcription start sites (v 2.4.36)168. From this, we collapsed binned 

distances (100bp increments) into a counts table and generated percentage of read start site 

distances within each counts table. We plotted these data using R and ggplot2 geom_density 

function (default parameters) subset to 2000 base pairs around the start site to visualize 

enrichment. TSS enrichment values were calculated for each experimental condition using the 

method established by the ENCODE project (https://www.encodeproject.org/data-

standards/terms/enrichment)184, whereby the aggregate distribution of reads ±1,000 bp centered 

on the set of TSSs is then used to generate 100 bp windows at the flanks of the distribution as 

the background and then through the distribution, where the maximum window centered on the 

TSS is used to calculate the fold enrichment over the outer flanking windows. 
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Dimensionality Reduction  

Pseudo-bulked data (agnostic of cellID) was then used to call read pile-ups or “peaks” via macs2 

(v.2.2.7.1)72 with option –keep-dup all. Narrowpeak bed files were then merged by overlap and 

extended to a minimum of 500bp for a total of ### peaks for human and ### peaks for mouse. A 

scitools perl script was then used to generate a sparse matrix of peaks × cellID to count the 

occurrence of reads within peak regions per cell. Fraction of reads in peaks (FRiP) was 

calculated as the number of unique, usable reads per cell that are present within the peaks out of 

the total number of unique, usable reads for that cell for each peak bed file. Tabix formatted files 

were generated using samtools and tabix (v1.7). The counts matrix and tabix files were then input 

into a SeuratObject for Signac (v1.0.0) processing75,169. We performed LDA-based dimensionality 

reduction via cisTopic (v0.3.0)74 with 28 and 30 topics for human and mouse cells, respectively. 

The number of topics were selected after generating 25 separate models per species with topic 

counts of 5,10,20-30,40,50,55,60-70 and selecting the topic count using selectModel based on 

the second derivative of model perplexity. Cell clustering was performed with Signac 

FindNeighbors and FindClusters functions on the topic weight × cellID data frame. For 

FindClusters function call, resolution was set to 0.01 and 0.02 for human and mouse samples, 

respectively. The respective topic weight × cellID was then projected into two dimensional space 

via a uniform manifold approximation and projection (“UMAP”) by the function umap in the uwot 

package (v0.1.8)185. To check for putative doublets within-species, we then ran scrublet analysis 

and removed scrublet-identified doubles from further analysis179. A second iteration of 

subclustering was performed on each cluster to better ascertain cell type diversity. This was done 

as described above with the data subset to just the cells within the respective cluster for both 

cisTopic model building and UMAP projection. Resolution per subcluster was set post hoc based 

on cell separation in UMAP projection. Cis-coaccessibility networks (CCANs) and the resulting 

gene activities were generated through the Signac wrapper of cicero (v1.3.4.10)20. Genome track 

plots with CCAN linkages were generated through Signac function CoveragePlot for marker 

genes previously described. Genome-wide accessibility of known transcription factor motifs was 

calculated per cell using the JASPAR database (release 8)77 via chromVAR78. Differential 
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accessibility between subclusters in one by all other comparisons were generated using Signac 

function FindMarkers using options: test.use = 'LR', and only.pos=T, with latent.vars = 

'nCount_peaks', to account for read depth.  

Cell Type Identification 

For cell type identification we used previously existing single-cell RNA data sets of the human M1 

cortex, and mouse whole cortex and hippocampus. We applied the Signac label transfer strategy 

between the annotated single-cell RNA with our gene activity scores at the level of our 

subclustered cell groups. For cell type refinement, we plotted the average gene activity score per 

subcluster for a set of RNA-defined marker genes, as well as markers defined within our data 

sets on the gene activity scores using the Signac FindMarkers function as described above. 

Subcluster dendrograms were generated by using base R functions dist and hclust through 

running Z-scored average gene activity on internally-defined markers and based on “ward.D2” 

clustering of Euclidean distance. The resultant dendrogram was used for both pre-defined and 

internally defined marker sets. Results were plotted via ComplexHeatmap (v2.5.5).  
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Chapter 4: Single-cell ATAC-seq reveals chromatin 
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Abstract 

Development is a complex process that requires the precise modulation of regulatory 

gene networks controlled through dynamic changes in the epigenome. Single-cell -omic 

technologies provide an avenue for understanding the mechanisms of these processes by 

capturing the progression of epigenetic cell states during the course of cellular differentiation 

using in vitro or in vivo models186. Single-cell combinatorial indexing (sci-) has been applied as a 

strategy for identifying single-cell -omic originating libraries and removes the necessity of single-

cell, single-compartment chemistry80. Here, we apply a sci- assay for transposase accessible 

chromatin by sequencing (ATAC-seq; sci-ATAC) to characterize the chromatin dynamics of 

developing forebrain-like organoids, an in vitro model of human corticogenesis55. Using these 

data, we characterized novel putative regulatory elements, compared the epigenome of the 

organoid model to human cortex data, generated a high-resolution pseudotemporal map of 

chromatin accessibility through differentiation, and measured epigenomic changes coinciding with 

a neurogenic fate decision points.  Finally, we combined transcription factor motif accessibility 

with gene activity (GA) scores to directly observe the dynamics of complex regulatory programs 

that regulate neurogenesis through developmental pseudotime.  

Main Text 

Recent methodical advances have enabled the preparation of thousands of single-cell -

omics libraries simultaneously. Using the general sci- framework, single-cell library generating 

methods have been developed to measure accessible chromatin73, genomic sequence 

variation187, transcription137, chromatin folding159 and DNA methylation188. Specifically, sci-ATAC 

enables the interrogation of open chromatin regions, which are predominantly active promoters 

and enhancers, and make up between 1-4% of the genome189. In sci-ATAC, generation of  
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sequencing library molecules is selective towards regions of open chromatin due to the steric 

hindrance caused by DNA-bound proteins such as histones, on the hyperactive derivative of the 

Figure 19. See next 
page for caption.  
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cut-and-paste Tn5 transposase65. The sci-ATAC platform was recently utilized to produce whole-

organism maps67,80, demonstrating the throughput and power of the technique.  

 We sought to characterize a complex sample with actively forming cell types through 

differentiation. Brain organoids are a powerful model system to study human neurodevelopment 

in vitro55. Data from bulk and single-cell RNA-seq, H3K4me3 ChIP-seq (chromatin-

immunoprecipitation and sequencing), and bulk DNA methylation analysis, demonstrate that 

these models are strongly correlated with similar data from primary human fetal brain samples 

ranging from the early to mid-gestational period (post-conception weeks 9-24)48,52,55,120,190. 

Specifically, forebrain-like organoids derived from induced pluripotent stem cells (iPSCs) mimic 

the early stages of human corticogenesis and lamination, wherein proliferating radial glia cells in 

the ventricular zone generate a pool of progenitors45,50,55. From these radial glia cells, tightly 

regulated transcription factors drive either continued proliferation, or neurogenesis, when the 

radial glia or its intermediate progenitor differentiates into neurons191. However, our 

understanding of the temporal dynamics of non-coding regions and regulatory sites within this 

critical timeframe is lacking. For these reasons, we chose a forebrain-like organoid model system 

for leveraging our sci-ATAC method on studying epigenomic dynamics6755.  

We differentiated forebrain-like organoids from human iPSCs for up to 90 days in vitro 

(DIV) using a previously described miniature bioreactor protocol with modifications to increase 

organoid uniformity (Methods, Fig. 19 and 20, Appendix Tables 16-18)55. Subsets of organoids 

were collected from two separate differentiation experiments and characterized by their 

expression of cortical markers at multiple time points. Similar to previous results55, these 

Figure 19. Characterization of earlier stage forebrain-like organoids. a, Brightfield image of days in vitro (DIV) 7 
organoids showing uniformity in size and shape. Scale bar: 200 µm. b, Brightfield images of organoids at DIV 14, 18, 
and 25 showing growth over time. Note the increased number of neuroepithelial buds around the perimeter of DIV 25 
organoids. Scale bars: 200 µm. c-d, Immunohistochemical characterization of organoids at DIV 15. Scale bars: 200 
µm. c, At DIV 15, the majority of cells stain positive for the progenitor markers SOX2 and Nestin (NES) and do not 
yet express the layer 5 marker CTIP2. Scale bars: 200 µm. d, DIV 15 organoids stained for NES, DCX, and TBR1. 
Scale bars: 200 µm. At DIV 15, organoids are mainly comprised of SOX2+/NES+ progenitors (c) with patches of 
newly born DCX+/TBR1+ layer 6 neurons (d), which are the first to be born during cortical neurogenesis. e-h, 
Expanded immunohistochemical characterization of organoids at DIV 30. e, DIV 30 organoid with image panels 
show individual staining of SOX2, PAX6, and CTIP2. Scale bars: 50 µm. As seen in Fig 2a. f, DIV 30 organoid 
immunostained for the deep layer neuron markers TBR1 and CTIP2, in addition to FOXG1, a general marker of 
forebrain development. The subsequent expression of CTIP2 (layer 5) after TBR1 (layer 6) mimics the stepwise 
order of deep layer neurogenesis in vivo. Scale bars: 100 µm. g, DIV 30 organoid immunostained for EOMES and 
PAX6, markers of progenitors in the subventricular zone and ventricular zone, respectfully. Scale bars: 100 µm. h, 
DIV 30 organoid immunostained for SATB2 and CTIP2. Note that at DIV 30, organoids do not yet express SATB2, a 
marker of upper layer neurons. Scale bars: 50 μm. 
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forebrain-like organoids mimicked the in vivo developmental processes by developing multi-

layered structures resembling the ventricular zone comprised of SOX2+/PAX6+ progenitors, 

subventricular zone comprised of EOMES+ (aka TBR2) intermediate progenitors and cortical 

plate, where we observe almost exclusive expression of layer-specific neuronal markers such as  
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TBR1, BCL11B (aka CTIP2), and SATB2 (Fig 21a)55. Additionally, formation of post-mitotic  

neurons followed the expected step-wise temporal order of layer-specific neurogenesis, indicated 

by generation of TBR1+ layer 6 neurons prior to layer 5 CTIP2+ neurons, followed by SATB2+ 

and CUX1+ upper layer neurons (Fig 20).  

We performed sci-ATAC on two separate differentiation experiments derived from the 

same IPSCs of a neurodevelopmentally normal individual. From this we generated 35,590 quality 

control (QC)-passing single-cell ATAC profiles from four DIV 30 organoids, four DIV 60 organoid, 

and eight DIV 90 organoids (Fig. 21a,d). We tested methods of dissociation and nuclear isolation 

to determine possible increases to transposase activity during in situ tagmentation. Though we 

found increased nuclear occupancy of Tn5 with addition of a nuclear pore complex inhibitor, 

Pitstop 2, these data failed to reliably replicate in later experiments, suggesting confounding 

sample variables we were unable to ascertain (Appendix Note 2). We addressed this orthogonally 

by later improving sci-ATAC with a novel adapter switching strategy (described in Chapter 2).  

We used the full set of peaks and performed dimensionality reduction through the use of 

cisTopic74, a machine learning approach which defined an optimal 28 “topics” based on shared 

peak accessibility, producing a matrix of cells by topic weights. This matrix was then used to 

identify eight clusters of cells based on similarity169. We next projected the clusters into 2-

dimensional space for visualization using uniform manifold approximation positioning76 (umap). 

We saw a strong bias of clustering and projection from DIV, suggesting we were capturing 

changes to the epigenome through organoid differentiation. Conversely, we did not see strong 

bias in clustering due to differentiation, transcription start site enrichment, or read counts in 

similarly aged organoids (Fig 21b). We noted clusters were also unbiased to Pitstop 2 treatment 

did not interfere with DIV 90 organoid clustering position (Appendix Note 2). To look at cluster 

proportion per organoid, we measured the proportion of cluster-membership per organoid. We 

observed some clear patterns of differentiation, namely an increase in cluster 2 and 5 proportion 

Figure 20 Characterization of later stage forebrain-like organoids. a-c, Expanded immunohistochemical characterization of 
organoids at days in vitro  (DIV) 60 a, DIV 60 organoid immunostained for SOX2, PAX6, and CTIP2. b, Expanded 
immunohistochemical characterization of a DIV 60 organoid as seen  in Fig. 2a. Image panels show individual staining of 
TBR1, CTIP2, and CUX1. c, DIV 60 organoid immunostained for CUX1 and SATB2. d-g, Expanded immunohistochemical 
characterization of organoids at DIV 90. d, DIV 90 organoid immunostained for SOX2, PAX6, and CTIP2. e, DIV 90 
organoid immunostained for TBR1, CUX1, and CTIP2. f, DIV 90 organoid immunostained for PAX6, DCX, and HOPX, a 
marker outer radial glia. g, DIV 90 organoid as shown in Fig. 2a. Image panels show individual staining of SATB2 and 
CUX. Scale bars: 50 µm. 
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in organoids from DIV 60 to DIV 90, and a sharp decrease in cluster 6 membership after DIV 30  

(Fig 21d). This suggests an ability to capture active chromatin differentiation dynamics of cells 

through organoid differentiation.  We next sought to characterize the cell type and differentiation 

state of the eight clusters by several epigenetic marks. We leveraged bulk epigenomic data of 

putative enhancer regions from purified primary human cortical cell types24 and a single-cell RNA 

Figure 21. a) Representative images of organoid immunohistochemical staining. b) UMAP projection of sci-ATAC profiles 
into two-dimensional space, cells are colored by days in vitro (DIV), differentiation experiment, quality control passing 
filter, organoid sampled, transcription start site (TSS enrichment), and Log10 unique reads per cell. c) Cells were 
clustered on cisTopic reduced dimension matrix and colored by cluster over the same UMAP projection as panel b. d) 
Stacked bar plots showing the percentage of cells in each cluster per organoid. Bar plots are split by differentiation 
experiment (top ribbon) and DIV (bottom ribbon). Colors coincide with clusters in panel c. e) (left) Z-scored heatmap of  
transcription factor (TF) motif accessibility from previously defined markers for primary sample radial glia (RG), 
intermediate progenitor cell (IPC) and excitatory neurons (ExN). JASPAR reported TF motifs are shown per column. 
(middle) Gene activity scores calculated for RNA-seq defined marker genes in primary cortical samples. (right) Label-
transfer prediction values acquired through cannonical correlation analysis (CCA, Methods) on single-cell RNA-seq data 
on primary samples. All rows are in the same order throughout panel e. 
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data set52. To infer transcription factor usage in our ATAC profiles, we calculated the genome-

wide transcription  factor motif accessibility of all validated transcription factors in the publically 

available JASPAR data base77,78. To infer transcription rate, we also generated gene activity 

scores, through looking at local cis-coaccessible sites anchored at open promoters (Fig 22)20. We 

found that our data followed the expected patterns of transcription factor motif usage and putative 

marker gene transcription, allowing us to grossly order cell type progression by use of the marker 

genes, transcription factors, and DIV. To confirm our assessment, we performed a label transfer 

via co-assay integration on the single-cell RNA data set (Fig 21e)52. This demonstrated 

concordance of our ordering, showing a cluster progression from RG to IPC to excitatory neurons 

(ExN, Fig 24a). We observed additional statistically significant (q value < 0.05) enrichment of 

previously reported marker genes and transcription factor activities191. For example, cluster 6 and 

0 showed enrichment in motifs for NKX6-2, a proliferating radial-glia associated transcription 

factor, Clusters 1, 2, and 5 showed motifs associated with the NEUROD and T-box family factors, 

such as NEUROD2, EOMES (aka TBR2) and TBR1, suggesting they were populated by post-

mitotic neurons (Fig. 21e)9,49,55.  To bolster our analysis against read drop-out, we also looked at 

enrichment across transcription factor modules (TF modules), collections of gene networks 

known to be co-expressed with transcription factors across cortex development11. We generated 

module scores per cell for 782 modules with 285 ± 91 genes (mean ± standard deviation, Fig 23). 

This analysis further supports our delineation of radial glia to excitatory neurons, with later 

Figure 22. Coverage plots showing normalized read pile-ups per cluster. Select canonical cortex development markers 
are shown. Gene track and cis-coaccessible networks (CCANs) used for the generation of gene activity scores are 
shown below. 
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clusters showing enrichment in TF modules defined by factors such as NEUROD2, BCL11B, and 

RORB, whereas radial-glia like clusters show enrichment in HES1, SOX9 and NFE2L211,50.  

Notably, many of the gene activity scores uncovered as statistically different between clusters are 

Figure 23 (Left) Differential TF motif accessibility across clusters calculated through logistic regression. Heatmap shows 
non-redudant top 5 TF motifs based on q value. Values are then Z-scored and plotted, JASPAR–reported motifs are 
shown to the left. (Middle) Top 5 per cluster non-redudant gene activity score significant differences. (Right) TF module 
signficant differences per cluster. 
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not commonly used as marker genes in organoids, suggesting a either a difference in organoid 

protocol, or a difference in the regulation of transcriptomic and epigenomic modalities48,50,52,67. 

We further examined the accessibility levels at proximal elements for a set of genes with 

a known window of activity in corticogenesis based on the assumption that cis-acting elements 

should have increased accessibility when a gene is active31,192. We examined accessibility levels 

at proximal elements for a set of genes with a known window of activity in corticogenesis. 

Clusters 6, 0, and 3 showed a higher density of proximal reads for neural progenitor genes such 

as SOX2 or PAX69,49,59. Cluster 5 showed increased read density around deep layer neuronal 

cortex markers such as TBR1 and NEUROD29,49,55, indicating that these marks are activating as 

cells are exiting the basal-progenitor like state, with an overlap of the two marker sets during the 

transition (Fig. 22). These assessments further confirmed our progressive cluster assignments 

through corticogenesis. It is notable that due to similar or shared DNA binding motifs of many 

classes of transcription factors, the combination of promoter region accessibility and genome-

wide transcription factor motif presentation jointly inform interpretation.  

Figure 24 a) Projected values of radial glial (RG) and excitatory neuron (ExN) signatures over UMAP projection. Values 
are same as Figure 21e, and demonstrate a gradient of values to justify a pseudotime trajectory. b) Cell cycle scores 
calculated from primary RG cell cycle markers, suggesting the root of the ExN clusters through the still cycling 
intermediate progenitor cells. c) Trajectory (line) and assigned pseudotime value (color gradient) across organoid cells. d) 
Transcription factor motif accessibility changes through pseudotime from binned values. (Below) stacked bar plots 
showing amount of DIV and cluster assignment of cells per bin. 
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Reasoning that all cells within the organoid samples were sourced from a shared stem-

like origin and that clustering recapitulates the stereotyped patterns of corticogenesis, we sought 

to capture epigenome dynamics through generating a pseudotemporal ordering of cells – a 

trajectory of epigenomic changes during differentiation26. We observed a gradient of signal for S-

phase and G2/M-phase defined through single-cell RNA analysis of radial glia previously (Fig 

24b)11. We constructed a trajectory across all cells as done previously for primary cortical 

samples11,67. We rooted the trajectory within cluster 6, populated almost solely by DIV 30 

organoid-sourced cells most similar to the primodial neuroepithelia. We then used both 

transcription factor motif accessibility and TF modules to measure changes in epigenomic 

regulation through differentiation. We found that multiple waves of transcription factor motif 

opening occur during organoid differentiation, including known patterns that have been observed 

in single-cell transcriptomic studies of murine corticogenesis, and bulk ATAC-seq in fetal human 

samples10,193. The earliest waves can be explained by a neuroepithelial-like state, showing 

relative increases in transcription factor motifs associated with telencephalic commitment or 

symmetric division in proliferating radial glia cells, such as OTX2 or EMX2194. Progressive waves 

follow known programs of transcription factors linked to corticogenesis, with many transcription 

factor waves spanning cluster boundaries (Fig. 24d). Transient increases in transcription factors 

associated with radial-glial proliferation, e.g., POU3F3 (aka BRN1), EOMES and NFIX, precede 

the waves of transcription factors such as MEF2C, NEUROD6, NEUROG2, and BACH2, which 

are linked to neuronal migration and maturation10,193. 

In conclusion, we utilized our sci-ATAC assay to characterize a burgeoning model of 

neurodevelopment and provide, to our knowledge, the first single-cell chromatin accessibility 

profile of this model. Our findings not only recapitulate known waves of epigenomic 

reprogramming, but produce maps of regulatory element usage, revealing cascades of co-

accessible patterns that incorporate novel loci. 
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Methods 

Sample generation 

iPSC culture 

Forebrain organoids were differentiated in two parallel rounds from a human control iPSC 

line (CW20043) obtained from the California Institute for Regenerative Medicine (CIRM) 

repository at the Coriell Institute for Medical Research. The iPSCs were maintained feeder-free 

on 100 mm2 dishes coated with 5 µg/mL vitronectin (Thermo Fisher, Cat. A14700) in StemFlex 

Medium (Thermo Fisher, Cat. A3349401) and kept inside a 37°C incubator with 4% O2 and 5% 

CO2. Prior to passaging or thawing, StemFlex Medium was supplemented with the following 

ROCK inhibitors to promote viability: 10 µM Y27632 (Stemgent; Cat. 04-0012-10) and 1 µM 

Thiazovivin (Stemgent, Cat. 04-0017). The culture medium was exchanged daily on weekdays; a 

double volume of media was provided on Fridays. The iPSCs were passaged at ~80-90% 

confluency as follows: cells were washed once with PBS then incubated with Versene (Thermo 

Fisher, Cat. 15040066) for 4 minutes at 37°C. After Versene was aspirated, StemFlex medium 

containing 10 µM Y27632 and 1 µM Thiazovivin was added to the culture dish to collect cells. The 

iPSC suspension was further diluted in StemFlex with Y27632 and Thiazovivin then transferred to 

new vitronectin-coated dishes using a 1:12-1:25 split ratio depending on colony density prior to 

passaging. CryoStor10 freezing medium (STEMCELL Technologies, Cat. 07930) was used for 

cryopreservation of iPSCs. 

Differentiation of forebrain organoids  

Differentiation of forebrain organoids from human iPSCs was carried out using a 

previously described protocol with certain modifications55,58. In this modified protocol, cortical 

neurogenesis is initiated in AggreWell800 plates (STEMCELLTechnologies; Cat. 34850) to 

produce uniformly-sized embryoid bodies that are chemically induced to develop into forebrain-

like tissues through the addition of small molecule SMAD inhibitors. Refer to Appendix Table 16 

for the regimen of factors to add to the differentiation medium used during feedings. 

AggreWell800 plates were prepared for aggregate culture according to manufacturer instructions 

using STEMdiff Neural Induction Media (NIM; STEMCELL Technologies, Cat. 05835) 
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supplemented with 10 μM Y27632, 2 µM Thiazovivin, 2 µM Dorsomorphin (Tocris, Cat. 3090), 

and 2 µM A83-01 (Tocris, Cat. 2939) then set aside until needed. Of note, all supplemental 

factors (e.g. small molecules, recombinant proteins) added to differentiation medium were done 

so immediately prior to feeding. 

To begin neural induction (day 0 of in vitro differentiation; DIV 0), two 80-90% confluent 

100 mm2 dishes of iPSCs were washed once with 10 mL PBS then treated with 5 mL Accutase 

(STEMCELL Technologies, Cat. 07920) for 8 minutes at 37°C. Colonies were disaggregated into 

a single cell suspension by pipetting up and down for ~10 seconds with a 5 mL serological pipet, 

then for an additional 3-5 seconds with a P1000 pipet. The single iPSCs in Accutase were 

transferred to 50 mL conical tube then the 100 mm2 dishes were immediately washed twice with 

10 mL of DMEM/F12 with GlutaMax (Thermo Fisher, Cat. 10565018) that was added to the same 

50 mL tube containing cells. Residual clumps of cells were removed by passing the suspension 

through a 40 µm cell strainer into a new 50 mL conical tube. Filtered iPSCs were centrifuged at 

200 x g for 5 minutes, after which, the supernatant was aspirated and the pellets resuspended in 

1 mL NIM containing 10 μM Y27632, 2 µM Thiazovivin, 2 µM Dorsomorphin, and 2 µM A83-01. 

Cells were kept on ice while counting and performing calculations. 

Each well in the AggreWell800 plate contains 300 microwells. Each of these microwells is 

used to form a single organoid initially comprised of approximately 10,000 cells. To achieve this, 

we seeded 3,000,000 iPSCs per well of the AggreWell800 plate, centrifuged the plate at 100 x g 

for 3 minutes to collect ~10,000 cells into each of the 300 microwells, then incubated at 37 °C 

with 5% CO2. Organoids were cultured in the AggreWell800 plate for 5 days with a daily 75% 

medium change. On day 2, Y27632 and Thiazovivin were omitted from the differentiation 

medium. On day 5, organoids were harvested from the AggreWell800 plate according to 

manufacturer instructions using wide-bore P1000 tips that were prepared by cutting off tips with a 

clean pair of scissors then autoclaved to sterilize. Organoids collected from a single well of the 

AggreWell800 plate were transferred to one 60 mm2 ultra-low attachment dish (Corning, Cat. 

3261) in Forebrain Differentiation Medium I (FDM I) comprised of DMEM/F12 with GlutaMax, 1% 

N2 Supplement (Thermo Fisher, 17502048), 1% MEM Non-Essential Amino Acids (Thermo 
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Fisher, Cat. 11140050), 1% Penicillin/Streptomycin (Thermo Fisher, Cat. 15140122), and 1 

µg/mL heparin (Sigma, Cat. H3149) supplemented with 1 μM CHIR99021 (Stemgent, Cat. 04-

0004) and 1 μM SB431542 (Stemgent, Cat. 04-0010). On day 6 (the following day), organoids 

were embedded in 20 µL droplets of Growth Factor Reduced (GFR) Matrigel (Corning, Cat. 

354230) using wide-bore P200 tips as previously described57, then returned to ultra-low 

attachment suspension culture in FDM I with 1 μM CHIR99021 and 1 μM SB431542 and for 

another 8 days with medium changes every 2 days. 

On day 14, GFR Matrigel-embedded organoids were transferred to culture in either a 

nylon (laser sintered) or ULTEM 9085m 3D-printed Spin Omega 12-well miniature bioreactor55,58 

(refer to Qian et al55. for detailed instructions on bioreactor 3D-printing and assembly) in 

Forebrain Differentiation Medium II (FDM II) consisting of a 1:1 mix of DMEM/F12 with GlutaMax 

and Neurobasal (Thermo Fisher, Cat. 17504044) with 1% N2 Supplement, 2% B27 Supplement 

(Thermo Fisher, Cat. 17504044), 0.5% GlutaMax (Thermo Fisher, Cat. 35050061), 1% MEM 

Non-Essential Amino Acids, 1% Penicillin/Streptomycin, 2.5 µg/mL Insulin (Sigma, Cat. I9278), 

and 50 µM 2-Mercaptoethanol (Sigma, Cat. M3148) with medium changes every 2-3 days. 

Approximately every two weeks, organoids were transferred to different wells in a new 12-well 

bioreactor plate to avoid position effects55,58. On day 70, we began adding 0.2 mM L-Ascorbic 

Acid (Sigma, Cat. A4403), 0.5 mM cAMP (Sigma, Cat. A9501), 20 ng/mL BDNF (Peprotech, Cat. 

450-02), and 20 ng/mL GDNF (Peprotech, Cat. 450-10) to the FDM II and continued exchanging 

the medium every 2-3 days up until day 90 when the experiment ended.  

Organoid freezing protocol 

Single organoids were transferred to individual 1.5 mL tubes using a P1000 pipet 

equipped with a wide-bore tip then pelleted by centrifugation at 500 x g for 2 minutes at 4 °C. 

After removing the supernatant, organoid pellets were flash frozen by placing the tubes in a slurry 

of ethanol and dry ice for approximately 2 minutes then transferred to a -80 °C freezer for 

storage. 

Organoid characterization 
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Immunohistochemistry 

Methods used to prepare organoids for cryosectioning were adapted from a previously 

described protocol57. In brief, wide-bore P200 or P1000 tips were used to transfer two to three 

organoids to single wells in a 24-well plate containing 250 μL medium for each cryosection block 

to be embedded. Organoids in the 24-well plate were washed once with 1 mL PBS then fixed with 

1 mL of 4% PFA (Sigma, Cat. 158127) for 15 minutes at 4°C. Organoids were then washed three 

times with 1 mL PBS for 10 minutes at room temperature. The final PBS wash replaced with 30% 

sucrose (Sigma, Cat. S7903) with 0.02% sodium azide (Sigma, Cat. S2002) then the plate was 

incubated for 24-72 hours at 4°C. Subsequently, organoids were equilibrated in 1 mL of a 7.5% 

gelatin (Sigma; Cat. G1890)/10% sucrose embedding solution inside a 37°C incubator for 15-30 

minutes. During this period, biopsy cryomolds (Tissue-Tek, Cat. 4565) for each well with 

organoids by coating the bottoms with a thin layer of the gelatin/sucrose embedding solution. 

Organoids were transferred to the cryomolds pre-coated with embedding solution using wide-bore 

tips then incubated at 4°C for 5 minutes. Cryomolds were then filled with embedding solution and 

allowed to solidify for 20-30 minutes at 4°C. The gelatin/sucrose blocks with organoids were 

frozen in a -30°C to -50°C isopentane bath for 2 minutes, after which, the cryomolds with frozen 

blocks were tightly wrapped with Parafilm and stored at -80°C until sectioned.  

For immunohistochemistry, frozen blocks with embedded organoids were cut into 20 µm 

sections using a cryostat (Leica). Sections were serially collected onto Superfrost Plus 

microscope slides (Fisherbrand, Cat. 22-037-246), allowed to dry for ≥30 minutes, and then 

stored at -20°C or 4°C until ready for staining. Prior to staining, slides were equilibrated to room 

temperature then sections were circumscribed with a hydrophobic barrier pen (Invignome, Cat. 

GPF-VPSA-V). Sections were washed twice with PBS for 10 minutes then blocked for 1 hour at 

room temperature in permeabilization/blocking buffer comprised of PBS with 10% normal goat 

serum (Jackson ImmunoResearch, Cat. 005-000-121), 1% bovine serum albumin (BSA, Millipore, 

Cat. 126626), 0.3% Triton X-100 (TX-100, Sigma, Cat. 11332481001), 0.05% Tween-20 (Sigma, 

Cat. P1379), 0.3 M glycine (Sigma, Cat. G7126) and 0.01% sodium azide (Sigma, Cat. S2002) 

for 1 hour at room temperature. During the blocking step, primary antibodies (Appendix Table 16) 
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were diluted in a buffer containing PBS, 2% NGS, 1% BSA, 0.01% TX-100, 0.05% Tween-20, 

and 0.01% sodium azide. The diluted primary antibodies were applied to sections then incubated 

overnight at 4°C inside a StainTray (Simport Scientific, M922-2). Primary antibodies were washed 

from the sections five times with PBS for 5 minutes at room temperature. During wash steps, 

secondary antibodies (Appendix Table 17) were prepared by diluting 1:1000 in the same buffer 

used to dilute primary antibodies. Sections were incubated with the diluted secondary antibodies 

inside a StainTray for 1 hour in the dark at room temperature (sections were protected from light 

following secondary staining). Secondary antibodies were washed from the sections three times 

with PBS for 5 minutes, then nuclei were counterstained with DAPI (Thermo Fisher, Cat. D1306) 

for 10 minutes at room temperature. After DAPI staining, sections were washed an additional two 

times then glass coverslips were mounted with ProLong Diamond Anti-Fade Mounting Medium 

(Thermo Fisher, Cat. P36961). 

Microscopy and image processing  

Live organoid images were taken with a Nikon Ts2 inverted microscope. Optical sections 

of organoids were acquired with a Zeiss ApoTome AxioImager M2 fluorescent upright microscope 

and processed using Fiji software.  

sci-ATAC on Organoids 

Nuclei isolation and Tagmentation 

sci-ATAC libraries were prepared on 16 organoids (differentiation 1: 3 DIV30, 3 DIV60, 

and 4 DIV90; differentiation 2: 2 DIV30, 2 DIV 60 and 2 DIV90) and two bulk preparations of 

DIV15 pooled cells from differentiation 2. Nuclei were isolated from the flash frozen pellets by 

resuspension with Nuclei Isolation Buffer (NIB; 10mM Tris HCl, pH 7.5 [Fisher, Cat. T1503 and 

Fisher, Cat. A144], 10mM NaCl [Fisher, Cat. M-11624], 3mM MgCl2 [Sigma, Cat. M8226], 0.1% 

IGEPAL [v/v; Sigma, I8896], 0.1% Tween-20 [v/v, Sigma, Cat. P7949] and 1x protease inhibitor 

[Roche, Cat. 11873580001]). For DIV 30 organoids, 300 μL NIB was used; for DIV 60 and DIV 90 

organoid tube, 600 μL of NIB was used. Resuspension was done by 10-20 triturations of NIB 

solution to break up the pellet of cells. Cells were then incubated on ice for 10 minutes and then 

triturated another 10 times. The full volume of each sample was then each run through a 35 μm 
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cell strainer (BD Biosciences, Cat. 352235) and nuclei were stained with 3 μL of DAPI (5mg/mL, 

Thermo Fisher, Cat. D1306) for DIV30 samples, and 5 μL DAPI for DIV60 and DIV90 samples. 

To test library complexity improvement, one DIV 90 organoid sample was dissociated with 70 μM 

Pitstop2 NIB solution and another with 70 μM Pitstop2 NIB and the OMNI-ATAC digitonin nuclear 

isolation (Bivision 2082-1)195, prepared as described above.  

2X TD buffer (Illumina, Cat. FC-121-1031) aliquots were prepared with a supplementation 

of 3 mM Pitstop 2, to the appropriate final concentration (0 μM or 70 μM, see further described in 

Supplementary Note). 5μL of the appropriately supplemented 2X TD buffer was added to 5 μL 

(5,000 nuclei total) samples, respective of test condition (10 μL final volume). A Sony SH800 

FACS machine was used to sort 5,000 nuclei (identified through DAPI gating) into each well of 

multiple 96 well plates. The wells containing sorted nuclei (n=432 wells) were then tagmented in 

parallel (Appendix Table 19). For each reaction, 1μL of 8 μM loaded indexed transposase was 

added (See Picelli et al. for loading protocol)142. The nuclei treated with Pitstop 2 prior to sorting 

were once again treated with a final concentration of 70 μM Pitstop 2 added to the TD buffer. All 

reactions were pooled respective of Pitstop 2 condition and 3μL of DAPI (5mg/mL) was added to 

each.  

Sorting nuclei 

96-well plates were prepared, each well containing 8.5 μL of protease buffer (PB; 30 mM 

Tris HCl, pH 7.5 [Fisher, Cat. T1503 and Fisher, Cat. A144], 2 mM EDTA [Ambion, Cat. AM9261, 

20 mM KCl [Fisher, Cat. P217 and Fisher, Cat. A144], 0.2% Triton X-100 [v/v, Sigma, Cat. 9002-

93-1], 500 ug/mL serine protease [Fisher, Cat. NC9221823). To each well, a combination of 1 μL 

10 mM i5 and 1μL 10 mM i7 PCR primers (Appendix Table 19, IDT) containing a well-specific 

index combination was added. DAPI-stained nuclei pools were then sorted using a Sony SH800 

FACS machine with sample and sorting chambers held at 5°C. Gating was performed to isolate a 

clean population of singlet nuclei.100 tagmented nuclei were deposited into each well of the PCR 

plates by FANS. 
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Transposase denaturation and PCR 

Following sorting, plates were spun at 500 rcf for 5 minutes at 4°C to ensure nuclei were 

within the reaction buffer. Transposomes and any other proteins within the reaction were then 

degraded by the serine protease by holding the samples at 55°C for 20 minutes, the protease 

was then denatured by heating to 70°C for 30 minutes. Following this, 13.5 μL of PCR Master Mix 

(13 μL 2X KAPA Hotstart HiFi [Fisher, Cat. NC0465187], 0.25 μL (2 units) Bst3.0 [NEB, Cat. 

M4374] and 0.25 μL 100X SYBR Green I [FMC BioProducts, Cat. 50513]) was added to each 

well. Real-time (RT)-PCR was performed on a BioRad CFX machine, for the following 

temperatures and times: 72°C for 5 minutes, 98°C for 30 seconds, and then multiple rounds of 

98°C for 30 seconds, 63°C for 30 seconds, 72°C for 1 minute and a SYBR plate read before 

starting the next cycle. PCR reactions were stopped when the SYBR readout for a majority of 

wells plateaus (19 cycles). 

Library pooling, cleanup and sequencing 

For the PCR plate, 10 μL of each well was pooled for clean-up and quantification. First, 

the 960 μL pool was concentrated on a PCR purification column (Qiagen, Cat. 28106) following 

manufacturer’s protocol. DNA was eluted off the column in 50 μL 10mM Tris HCl, pH 8.0 (Fisher, 

Cat. T1503 and Fisher, Cat. A144). Library pools were then cleaned and size selected using 

SPRI beads generated as describe previously188. An equal volume of prepared SPRI beads (1X) 

were added to the library pools, and incubated at room temperature for 15 minutes. Beads were 

then pelleted on a magnetic rack and washed twice with 150 μL of freshly prepared 80% ethanol 

(v/v, Decon, Cat. 2705). Following the second wash, all remaining liquid was carefully removed 

from the tube without disrupting the pellet. Pellets were then allowed to dry for 10 minutes, before 

being resuspended in 50 μL 10mM Tris HCl, pH 8.0. This 1:1 volume SPRI bead clean-up was 

repeated a second time. For the final elution of the second cleanup, libraries were eluted in 27 μL 

10mM Tris HCl, pH 8.0. 2 μL of this eluate was used for quantification with a Qubit HS Assay 

(Thermo Fisher, Cat. Q32851). Following this, libraries were diluted to 4 ng/μL and 1μL was run 

on an Agilent DNA HS BioAnalyzer (Agilent, Cat. 5067-4626). Libraries were then diluted based 

on BioAnalyzer-reported molarity in the 150-1000bp range and loaded on a NextSeq 500 
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(Illumina Inc.) sequencer High Capacity kit with a loading concentration of 1.2 pM with a custom 

sequencing protocol, for 75 cycles of read 1, 30 cycles of index 1 and index 2, and 75 cycles of 

read 231. 

Computational Analysis 

Raw code is available at mulqueenr.github.io/organoid 

FastQ generation, index assignment, single-cell read set definition 

Following sequencing libraries on the Illumina NextSeq 500, bcl files were converted to 

FastQ format using bcl2fastq (v2.19.0, Illumina Inc.) with the option “with-failed-reads". FastQ 

reads were then combined across sequencing runs. Read sets were allocated to index barcodes 

with an allowance of two Hamming distance from possible index combination (perl v5.16.3, 

custom script). FastQ-format reads were modified so as to have the accepted indexing barcode 

(cell ID) as the read name. FastQ files were then aligned to the hg38 reference genome 

(GRCh38, NCBI) via bwa-mem (v0.7.15-r1140)183. The resulting aligned reads then underwent a 

removal of duplicate reads based on unique cell ID, chromosome and start sites of reads. The 

number of total reads and persisting unique reads was used for a comparison of library 

complexity (unique reads/total reads respective of cell ID). Single-cell libraries were defined by 

cell ID read sets containing a unique read cut-off of at least 1,000 reads with Q>=10 mapping 

quality. In total we generated 35,590 sci-ATAC libraries with a mean unique read count per cell of 

18,939.  

Generation of counts matrix and cisTopic dimensionality reduction 

We called peaks as read-pileup regions using MACS2 (v.2.2.7.1)72. In total, we 

uncovered 183,391 peaks. We used the filtered peaks from our data set and the cell ID-

associated, deduplicated reads to generate a cell ID by peak read count matrix, wherein each 

element within the matrix describes the number of reads from the respective cell ID overlapping 

with the peak feature. For each single-cell library an average of 30.80 ± 11.85 % (mean ± s.d.) of 

reads overlapped with peaks. Tabix formatted files were generated using samtools and tabix 

(v1.7). The counts matrix and tabix files were then input into a SeuratObject for Signac (v1.0.0) 
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processing75,169. Peak-set motif analysis was performed by chromVAR78 on JASPAR2020 motif 

elements (release 8)77. With the Signac functions: getMatrixSet, and CreateMotifMatrix.  

We performed LDA-based dimensionality reduction via cisTopic (v0.3.0)74 on our cell ID 

by peak matrix. We used 27 topics. The number of topics were selected after generating 10 

parallel models topic counts of 20-30 and selecting the topic count using selectModel based on 

the second derivative of model perplexity. Cell clustering was performed with Signac 

FindNeighbors and FindClusters functions on the topic weight × cellID data frame. For 

FindClusters function call, resolution was set to 0.2. The respective topic weight × cellID was then 

projected into two dimensional space via a uniform manifold approximation and projection 

(“UMAP”) by the function umap in the uwot package (v0.1.80)185. To check for putative doublets 

within-species, we then ran scrublet analysis (Appendix Table 20) and removed scrublet-

identified doubles from further analysis179. We plotted the projection with various coloring 

schemes via ggplot2 (v3.3.2) matching annotations for cluster assignment, organoid source, 

differentiation experiment, DIV, and Pitstop 2 treatment, scrublet identification of doublets and 

cells passing quality control filters (Fig 21b). We found an unequal proportion of DIV-sourced cells 

through the clusters, suggesting shifting cell type populations through differentiation (Fig. 21b). 

We plotted this change in cluster proportion using ggplot2 geom_bar function with arguments 

position=”fill”, and stat=”identity”.  

Cell type assignment 

Since the ATAC-seq signal is an indirect measurement of genomic active regions, and a 

large portion of existing data on corticogenesis and organoid differentiation assay transcript 

counts, we sought to better correlate our ATAC data with RNA-seq. To do this, we generated cis-

coaccessible networks (CCANs) anchored at promoter regions to incorporate putative enhancer 

activity. This was done via the cicero package (v1.3.4.10)20. Per cell we generated a gene activity 

score based on the read counts across the promoter-anchored CCANs. We then used this to infer 

cell type similarities with known corticogenic marker genes. We took the mean value per cluster 

and Z-scored across clusters via the scale function (base R). This was performed for the markers 

of neuroepithelia, radial-glia, intermediate progenitors, excitatory and inhibitory neurons defined in 
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ref 24. This was then plotted via ComplexHeatmap (v2.5.5). We performed the same scaling and 

plotting for chromVAR defined motif-accessibility for transcription factors defined in ref 24 and 

plotted along the corresponding motifs plotted through the Signac function MotifPlot. Finally, we 

performed a label-transfer method on our gene activity scores compared to single-cell RNA data. 

We took single-cell RNA data generated in ref 52 and the self-reported marker gene set, and 

performed cross-modality integration through canonical correlation analysis (CCA) as described 

previously75. The mean predicted value was summarized per cluster, scaled and plotted as 

described above.    

Addition of Module Scores from Gene Sets 

To assess the role of regulatory networks on organoid differentiation we performed 

several analyses of pre-defined gene sets on our gene activity scores per cell. To measure cell 

cycle scoring, we used genes listed as important for S-phase or G2/M-phase in radial glia, 

defined in ref 11 (573 and 462 genes, respectively). To calculate cell-cycle scores per cell, we 

used the Seurat function CellCycleScoring supplied with the lists of corticogenic specific S-phase 

and G2/M-phase genes on our gene activity matrix169. Additionally transcription factor gene 

networks scores were defined through neocortical development mid-gestation in humans11. We 

calculated the enrichment of gene activity in these sets, by the Seurat AddModuleScore function. 

We further calculated module scores for eigengenes across primary tissue and organoid 

differentiation described by Pollen et al48 using the same method.  

Differential Motif Accessibility and Gene Activity Scores 

 To calculate differential motif accessibility, differential TF module accessibility, and 

differential gene activity scores across clusters, we used the Signac function FindMarkers using 

logistic regression and using the read count within peaks as a latent variable75.  

Monocle Trajectories and Pseudotime Analysis 

 A pseudotime trajectory was generated through the use of monocle326  with the without 

partitioning or closing loops additionally, minimal branch length of 20.  Following this, cells were 

assigned a pseudotime through residual values to the trajectory. Calculation of bias across 

pseudotime was performed through Moran’s I test, using monocle3’s graph_test function. Cells 
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were then split into 25 bins and chromVAR motif values were summarized per bin. Motifs found to 

be nominally significant (q value <0.1) were plotted as a heatmap and rows were hierarchically 

clustered by Euclidean distance. 
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Summary and Discussion 
 

 The work reported here contains a framework for several new methodologies for single-

cell library generation and analysis. To address concerns of the balance between low information 

content per cell, and rare cell type dropout, I describe improvements on both cell throughput and 

information content.  

The role of the methylome in genome-wide regulation is understudied and requires the 

jump to a commonplace single-cell methylation protocol. In the novel protocol, sci-MET 

(described in Chapter 1), I developed a method for high-cell count DNA methylation analysis. In 

this work I both demonstrate the validity of our results, replicating bulk methylome profiles from 

single cells, and demonstrating the ability to discriminate mixed cell types. Notably, within our 

mixture of tissue culture lines, we are able to reliably discern specific methylation profiles of 

fibroblast cells from lymphoblast cells when fibroblasts are less than 5% of the cell population. 

This suggests a power to discern rare cell types in complex mixtures. Additionally, we 

demonstrate this strategy on the mouse cortex, displaying an ability to separate out neuronal 

subtypes. However, single-cell methylation profiling thus far has focused on few idealized cases 

such as the mouse cortex19 or embryonic stem cells113,124,133, which are known to have unique 

methylation profiles compared to other somatic tissues111. Methods for clustering neurons largely 

rely on the methylation of CH sites, rarely seen, or completely absent in most somatic tissues19. 

As methylation profiling becomes further recognized for biomarkers of cancer206,207, sci-MET will 

likely play an important role in building an atlas of differentially methylated regions. Such an atlas 

is critical for our understanding of progressive changes to the methylome in cancer samples or 

methylation changes in the “cancer field effect”208, and atlas-scale single-cell methylation data 

sets are required for our generalized understanding of cell type and state methylome changes. 

This is the first and still only non- “single-cell, single well” method of single-cell methylome 
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profiling and remains a promising protocol for larger scale future studies19,115,124,132,133. Further, 

since it follows the same premise of sci protocols, it is directly adaptable to a spatial analysis 

used in the micro-biopsy punch derived sci-MAP protocol209. This opens new avenues of 

investigation in methylation profiling.  

One constant limitation of single-cell experiments is the low capture rate of targeted 

genomic regions. Lower coverage of target regions leads to noisy signal, thus making cell-to-cell 

comparisons underpowered. In Chapter 2, I described a generalized adaptation to sci- protocols: 

s3. This change to the molecular design greatly increases captured molecules per cell. I describe 

improvements of single-cell ATAC libraries by over an order of magnitude, while maintaining cell 

count throughput. Through this, I described the chromatin profiles of both human cortex and 

mouse whole brain samples at an information density per cell never before achieved, to the best 

of my knowledge29,154,155. I uncovered differentially accessible genomic regions, and cis-

coacessibility networks (CCANs) centered on genomic regions that will inform future cell type 

discrimination in the cortex. The increased coverage of accessible regions per cell allowed for 

robust CCANs which were used to infer cell activity. Even with samples as low as 50-80 cells, I 

could discern unique cell states with proper statistical power. This demonstrates that s3-ATAC is 

a powerful tool for discrimination of cell types in highly complex samples, and to make the most of 

rare state capture events.  

I also adapt the s3 strategy to whole genome sequencing and genome conformation 

capture. In these assays, I improve coverage per cell to analogous assays by over 100 fold and 

over 10 fold, respectively. I apply these protocols in a proof-of-concept study to a patient-derived 

model of pancreatic ductal adenocarcinoma and survey the wide spread genomic instability. In 

this, I see reproducible profiles of dramatic genomic-changes that are masked in bulk whole-

exome analysis. I uncover subclonal copy number changes that include genes important for 

PDAC invasion potential161. I also use the genome conformation information to uncover a 

subclonal translocation across a previously reported PDAC-associated locus163. This is, to my 

knowledge, the first time a single-cell Hi-C read-out has been used to uncover subclonal 

translocations in a sample. We demonstrate that coverage across the genome for non-distal 
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reads is still sufficient for copy-number calling. The study of subclonal genomic conformation 

changes, as well as cryptic structural variations like inversions and translocations is an interesting 

view into genome regulation changes that could be associated with treatment-targetable cancer-

drivers200. This protocol has the potential to not only inform studies on cancer-derived genomic 

instability from a general biological sense, but also serve as an easily automated replacement of 

karyotyping or array CGH that far exceeds the cell count and resolution currently attainable201,202. 

This could prove invaluable to the study of non-random translocation and inversion events during 

cancer progression, a stated goal of present large scale atlas efforts203.  

One open question in the field of single-cell omics is the relation between epigenomic 

and transcriptomic regulation. Cross-assay integration, the co-emedding of epigenetic and 

transcriptomic measures, remains difficult, but is currently gaining traction75. This difficulty reflects 

our incomplete understanding of how epigenomic and transcriptomic programs intersect. New 

methods allow for the assessment of both chromatin and transcript counts within a single-cell, 

providing a valuable truth-state for our understanding113,196,197. Currently, many studies remain 

underpowered, with data too sparse for true generalization198. However, s3 protocol development 

is a promising route forward for high depth capture of single-cell transcriptomics with epigenetics, 

or even an additional bisulfite conversion step for methylome analysis. This adaptation to sci 

protocols captures more information per cell than previously described by over an order of 

magnitude for multiple assays. This level of depth per cell has huge potential for high quality data 

sets and unique analyses in future experiments. 

 As ATAC-seq library generation becomes more commonplace, a need for simple high-

cell count library generation increases. In Chapter 3, I describe sci-DROP, an adaptation to a 

widely available commercialized droplet-based single-cell ATAC product. This improvement 

increases cell throughput by >15-fold, generating single-cell atlas level cell counts while both 

driving down the cost per cell, and maintaining the ability to multiplex samples80. In this work we 

deeply sequence ~80,000 cells from the human cortex and mouse brain. We describe an atlas of 

mature human cortical and mouse whole brain cell types, describing marker sites both at the 

genomic locus and co-accessible network level. Interestingly, we find that co-accessible networks 



4 
 

sometimes fail to discriminate cell types at known RNA-described markers. This reflects the 

movement of standard single-cell analysis pipelines away from a handful of marker genes to a 

more nuanced, holistic label-transfer methodology75. The method described here shows minimal 

cross-talk between cells in the same capture droplet, and could theoretically scale significantly 

higher. Additionally, because tagmentation reactions are multiplex, we were able to run multiple 

samples on a single reaction downstream in a single tube. To show this and the cell count 

throughput possible, in a single tube reaction, I was able to catalog both the complex epigenomic 

landscape of a human cortical sample, and across a mouse whole brain preparation. Following 

the work I described, generating a million cells libraries can now only take a single day 

experiment and cost the price of a 10X Chromium kit30. The cost burden becomes on almost 

entirely on sequencing effort. With this expansion on throughput, organismal cell atlases are 

attainable — expanding the possibility of single-cell assay use in building new species reference 

atlases for evolutionary biology comparisons and multi-tissue effect studies. 

 Finally, in Chapter 4, I also describe chromatin dynamics during a mid-gestational model 

of human corticogenesis. I generated, to my knowledge, the first single-cell ATAC profile of 

organoid differentiation. Through this, I was able to both assess chromatin structure relative to 

what is expected from primary bulk and single-cell samples. I used the active differentiation in this 

model system to uncovered dramatic changes in transcription factor motif usage, and the 

progressive recruitment of enhancers to mature glutamatergic marker gene promoters. In terms 

of corticogenic model systems, forebrain organoids remain a promising method. Efforts are 

underway to address cellular stress which is commonly seen in RNA profiling, and that we have 

observed through our ATAC data. This issue reflects poor nutrient and oxygen transfer to cells, 

driving them to a glycolytic metabolism. Recent work has introduced a functional vascularization 

that addresses this issue204, while another has demonstrated a xenografted approach52. In both 

approaches, organoids displayed an improved transcriptomic correlation to human mid-

gestational cortex. The question of how valid these models can become and their utility is still an 

open question. Thus far, there are few cases of cortical organoids modelling neurodevelopmental 

and neurodegenerative disorders. Recently, An AAV1-based gene knockout model of GLB1 in 
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cortical organoids have been used recently for the study of the neurodegenerative disorder, GM1 

gangliosidosis205. In addition cortical organoids were infected with the Zika virus to assess its role 

in microcephaly58. Improvements to organoid fidelity is a necessary component of model 

development, especially in generalizing results from perturbation experiments to our collective 

understanding of brain development. The work described here is a necessary step for future work 

in organoid model systems, to account for cell stressors present in organoid generation and 

understand the timing of differentiation in culture.  

Taken together, this body of work provides relatively low-cost, open-source, easily 

adoptable and adaptable methods as a resource for the field of single-cell omics. This is 

necessary to democratize single-cell assays for application on new samples, and for the further 

development of new methods. Beyond that, the assays described here are scalable. 

Commercialized products for single-cell technologies are set to discrete sample sizes (~5000 

cells dependent on the assay). However, the small experiments to test biochemical reaction 

efficiencies are absolutely critical to moving the field forward. To help in this effort, I have 

developed and described methods that prioritize i) scalability, ii) avoiding the use of specialized 

equipment, and iii) affordability. All of these criteria are crucial to the adoption of a method. The 

sci- protocols described here can be limited to as few as a couple dozen cells and expanded to 

hundreds of thousands in their output. This allows for external research groups to perform small-

scale tests and avoid prohibitive sequencing costs. Since these biochemical reactions have been 

shown to increase in efficiency through scaling upwards, small scale tests remain directly 

applicable as larger data sets are needed. This allows for new research groups to adapt these 

methods for their own use, without having to brute-force cell throughput at prohibitively high cost 

and effort. Further, many single-cell assays require specialized equipment for cell isolation such 

as the 10X Genomics of BioRad microfluidics controllers; cell isolation in sci protocols can be 

performed with just a pipette to dilute nuclei into a 96-well plate. Finally, sci- protocols are 

relatively affordable. Costs have been scaled to the point where they cost less than a cent to 

generate a cell library, but more critically the barrier to entry is small. Enzymes and reagents are 

commercially available, with high quality unloaded Tn5 enzyme becoming recently more 
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accessible. Together, all of these considerations allow for protocol development in a method that 

can be readily adopted.  

 Single-cell omics has proven a powerful tool in capturing cellular heterogeneity and are 

rapidly gaining popularity for their unbiased approach. This collective body of work demonstrates 

the open-source development of adaptive novel methods and their applications to several single-

cell omic assays. This not only advances our understanding of basic cellular biology of cortical 

development, but provides valuable new avenues of inquiry for future use across biological 

questions. 
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