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ABSTRACT

Zero-crossings:
Symbolic Vision Primitives

Emulating Physiologic Encoding Schemes

Daniel P. Lulich, M.S.
Oregon Graduate Center, 1985

Supervising Professor: Richard B. Kieburtz

David Marr has proposed a computational model of early vision. This

model uses the current understanding of the physiology of the human visual

system as an intuitive basis for the discovery of the algorithms necessary for

machine early vision [Marr82]. This thesis will describe how to implement

Marr's model by analysis of each computational task comprising early vision.

The first task is sampling the visual world. This computation builds a discrete

two-dimensional intensity array. Next, digital filtering techniques are used to

construct symbolic primitives which form an intermediate representation, from

which the raw primal sketch is built [Marr76]. These primitives are the zero-

crossings of the second directional derivative taken in all orientations and at a

number of different spatial scales throughout the intensity array. Marr et aI.

have argued that images encoded with zero-crossing primitives contain

sufficient symbolic information to reconstruct the original visual image, and

that these primitive symbols are formed into tokens for manipulation by
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higher-order vision algorithms [CrMP80].

At the finest available spatial scale, how are the shapes of objects

represented by the visual system? The author has investigated the above ques-

tion by performing computer and psychophysical experiments. Preliminary

results show that zero-crossing primitives are consistent with th~ shapes per-

ceived by human subjects. Therefore, zero-crossings may be available for scru-

tiny at the finest scale of visual resolution. This result is consistent with

Marr's model.
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INTRODUCTION

What does it mean for a man or machine to see? Seeing is the creation

of internal descriptions of the physical world [RiMa81]. As a sensation, seeing is

effortless. Therefore, we often take for granted the enormous complexity

involved in processing descriptions of what we see. Imagine sitting in a field

and observing nature. Notice the subtlety of color and myriad textures that

make up all that is seeable. The sheer quantity and variety of physical objects

along with the richness of our perceptions give the impression that seeing is

magic. How can a machine be constructed to collect all of this detailed infor-

mation and then act quickly and intelligently upon the internalized representa-

tion? It is much harder to build a seeing machine than it first appears.

David Marr during the mid-seventies observed that vision is primarily an

information proce88ing task [Marr76]. He noted that a vision machine would

have to process large and complex blocks of real world data. The implication

of Marr's operational definition is that the tools of Artificial Intelligence, Digi-

tal Signal Processing, and Systems Design can be brought to bear upon vision

problems [Brad82].

Marr's approach is to first partition vision into a group of smaller

processes. However, where should the partitions fall? With vision there IS a
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model machine - the human visual system - that solves the problem wel!.

Thus, Marr's approach was to partition the design of a seeing machine follow-

ing closely the natural partitions of the human visual system. This thesis will

consider the first set of natural visual partitions. Sampling and symbolic

encoding are the first operations of a vision system and are aptly called early

tnSIon.

Exactly how the human visual system encodes and decodes the physical

world is still a matter of much speculation [Greg73]. The neurophysiologists

and perceptual psychologists trying to understand vision are asking many of

the same questions as computer-vision researchers. Thus, not only can

computer-vision researchers use historical knowledge from the physiology of

vision, but their research may in turn contribute to the fundamental under-

standing of human vision [Marr82]. Contributions to the basic understanding of

human vision is one of the primary goals of Marr's information processing

approach. Portions of this approach will be implemented and evaluated here.

Since vision can be viewed as an information processing task, what is the

nature of the information acted upon? The physical world is composed of sur-

faces that reflect light, emit light, or act with optical properties on light. It is

the stream of photons from or through these surfaces which are the input to

light sensors in the human eye. This intensity information describes the physi-

cal properties of light-manipulating surfaces.
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The surfaces acted on by light are complex, made up of spatially ela-

borate structures (i.e., they are not necessarily smooth everywhere). For exam-

pIe, from a distance a grass lawn looks like a smooth continuous green surface.

As you approach it, the individual blades of grass come into view and the sur-

face is textured by a multitude of stick-like structures. At close range, an indi-

vidual blade is a smooth surface with a prominent feature running up the mid-

dIe. Each of these viewing distances presents a light transducer with different

intensity data describing the spatial elaboration of the surface. It is interest-

ing to note that at each particular. viewing distance, objects generating the

intensity data tend to be more like each other than at smaller or larger dis-

tances IHild80]. For example, blades of grass look similar when viewed up close.

The physical descriptions of the objects which compose the world is the

information a vision processor must extract. In early vision, this extraction

process begins by encoding (i.e., sampling) the intensity of light at a point in

tne input scene. The human eye gracefully performs intensity encoding, and a

simple television camera or charge coupled device could be used by a machine.

Having sensed and quantized the intensity data, have we really seen anything?

According to Aristotle, "Vision is to know what is in the world after looking at

it." All we have gathered is a group of intensity values, and these values do not

mean surfaces or blades of grass. However, using Marr's approach we now have

a knowledge representation (i.e., intensity information) that can be used to

recover the properties of surfaces of real-world objects.
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In order to know what we see, it is necessary to distinguish between the

intensity data of different objects and their boundaries. We have to analyze

this data and use the results of this analysis to construct a usable symbolic

representation of the original object. This set of symbols can then be manipu-

lated to discover the objes:t's relationship to the rest of the world. Marr's

approach encodes intensity information into a set of symbols called zero-

crossingsl which mark the positions of significant intensity changes.

A set of zero-crossing symbols may be manipulated by the brain to com-

plete our perception of the world. These perceptual tasks are higher-order

visual processes, which include the discovery of surface shape from intensity,

recognition of familiar objects, stereopsis, the analysis of texture and motion.

These problems have intrigued artificial vision researchers for two decades, and

many interesting algorithms and application-dependent vision systems have

solved portions of these problems. However, vision researchers have removed

from consideration most natural objects and have substituted a few well-chosen

representative objects. Unfortunately, this approach limits the generality of

the algorithms proposed [Brad80]. Marr's information processing approach

views the human visual system as an example of a general vision processor and

seeks algorithms to emulate it.

The purpose of this thesis is to implement Marr's information processing

approach to vision, and to test this implementation for consistency with the

human visual system. We wi]) limit our discussion to early vision. In the next

two chapters the sampling of intensity data and the construction of zero-
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crossmgs will be discussed. In the third chapter we will add a smaller zero-

crossing detector which will improve the sensitivity to fine details of Marr's

algorithm. We will also examine the limits of visual acuity of humans, and ask

how can such fine acuity be explained by our computer model?

. In the last chapter, the implementation will be evaluated by examining

the response of the model to very fine detail. At the limits of fine spatial reso-

lution we find that Marr's model predicts that zero-crossing artifacts will

occur. A computer-based experiment will be performed that will locate and

specify the size and shape of these artifacts. The finding of these artifacts

prompted the question, "Will these artifacts also be perceived by human visual

system?" Resolving this question is the primary goal of this thesis. The motiva-

tion for the question extends from Marr's use of the human visual system as

the primary model. If the computer experiments find artifacts, then humans

may see similar artifacts. This will be true if we have modeled the human

visual system correctly. A psychophysical experiment is performed using

human subjects, which demonstrates that artifacts do indeed appear. The

shapes and sizes of these artifacts correspond well with the shapes and sizes of

zero-crossing artifacts found in the computer experiment. These results will be

discussed in detail and suggestions for further research proposed.
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SAMPLING VISUAL INFORMATION

In the act of vision, an image of the physical world is presented to each

eye. The image is composed of intensity changes caused by light reflecting

from objects making up the original scene. These intensity changes can be

expressed mathematically as a continuous two-dimensional function limited by

the pupil size and resolving power of the lens of the eye. The quantization of

the amplitudes of individual intensity changes at discrete positions along this

continuous function is a sampling operation. After sampling, a two-dimensional

intensity array has been created to represent the visual information about the

physical world [CrMP80]. If the sampled array of intensity values is displayed

as a matrix of dots, where the brightness of each dot represents the value at

the corresponding x-y position in the intensity array, the image would appear

similar to a photograph of the visual scene.

When taking a photograph, certain constraints must be met to insure

that an adequate picture results. A good photograph results when the resolu-

tion and speed of the film are chosen properly. If the speed of the film is too

slow, it is impossible to capture a moving object. If the resolution of the film is

too low, crucial details in the image are lost. Losing visual information is unac-

ceptable to any vision machine unless the portion of information lost is
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extremely small or is useless to the higher-order vision algorithms [Baxe84].

Therefore, the resolution and speed of the sampling process must be chosen just

as carefully as photographic film. The approach used here is to choose values

for speed and resolution greater than or equal to the worst case performance of

the human visual system.

LIGHT

Fig. 1. Cross-section of the retina.

Light travels through layers of blood vessels,
nerve fibers and supporting cells to light-
sensitive cells (rods and cones). These lie at
the back of the retina, which is functionally
inside-out [Greg73].

The sensory portion of the human retina contains an array of light-

sensitive cells, the rods and cones (see Fig. 1). The purpose of these cells is to
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sample the light intensity at each point in the visual field in varying levels of

background illumination. The cones are active in high levels of illumination,

whereas the rods are tuned for low levels [Greg73]. This array of cells is not

P!JPi1

Fig. 2. Cross-section of human eye.

The retina is a three-dimensional structure

located at the back of the globe. The fovea
lies in the central portion of the retina [Greg73].

rectangular but has a three-dimensional shape that is mapped onto the inside

of a hemisphere. In the central region of the retina lies the fovea, which is a

small area populated by densely packed cones (see Fig. 2). High-visual-acuity

tasks such as reading are performed after projecting the image onto the fovea.

Since vision researchers are interested primarily in high visual acuity tasks, the
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cone cell is the transducer modeled.

In order to capture the topographic arrangement of cone cells, an ima-

ginary two-dimensional array is laid as a grid across the central portion of the

retina. The grid is centered upon the fovea. Each element in the grid

corresponds. to one or more cone cells, thus setting the lower bound of resolu-

tion. There are arguments against a rectangular-transducer mapping based

upon the anatomy of the cone cells. When packed closely together, these cells

do not map well to a grid-like structure. The shape of a single cone and its

neighbors would best map to a hexagonal array [CrMP80j. However, the two-

dimensional array is a well understood data structure and, when properly

dimensioned, serves as a satisfactory topology for light-sensitive transducers.

Therefore, a two-dimensional array is used as the output of the sampling

operation.

In the retina the size of a single cone is small, on the order of 25" of arct,

which guarantees a highly resolved input image [MaHP79j. Even at this resolu-

tion, information begins to be lost as soon as detailed structures in the input

image project smaller than a single cone. Computer representations of images

suffer similar problems when attempting to represent too much of the input

image as a single element of the intensity array. To prevent loss of informa-

tion, the parameters described in the Sampling Theorem are used to sample the

intensity values from a visual image.

t Seconds of arc is an angular measure which can be calculated by angle = arctan d /D. The image of
a 1 inch line segment viewed from 10 feet subtends 28.7' minutes of arc on the retina. This is about 70
cone diameters.
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The Sampling Theorem in Two Dimensions:
(Gabor, Nyquist, Shannon, Whittaker)

A band-limited continuous function of two variables r(x,y) can

be recovered uactly from a rectangular array of its sampled

values rl/(x,y) by interpolating the original values from the

sampled values. Exact recovery is guaranteed if the sampling

frequency W, (Nyquist frequency) is greater than twice the

maximum spatial frequency 2wmaz (Nyquist rate) of the original

function:

W, > 2wm/lz (1)

The proof of the Sampling Theorem is widely available

[Brac65][Hamm77][Op Wi83]. The Sampling Theorem gives the specific require-

ments for sampling a continuous form of an image. Using the Sampling

Theorem, all of the original image detail can be recovered' from a few well

chosen samples. Therefore, a properly designed sampling algorithm is a reversi-

ble encoding scheme that preserves information content.

When considering the properties of the Sampling Theorem, the concept of

a signal is useful. The intensity change information in a image is a continuous

function of two independent positional variables. This function is a signal. A

signal has real numbers as values, and these values are characteristics of physi-

cal phenomena lap \Vi83]. In our common conception of signals (e.g., radio sig-

nals), a signal exhibits properties such as moving between sender and receiver,

the ability to be transformed from one form of energy to another, and a power
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or strength that is measurable. Intuitively, the light which conveys intensity

information exhibits all of these properties.

Signal processing is the application of mathematical techniques to signals

In order to transform them into more usable or informative forms [Hamm77].

Thus, both the eye and vision machines are signal processors. The Sampling

Theorem shows how to sample a continuous function by the application of a

sampling function. This is a signal processing operation. The sampling function

has the property of making the continuous input function everywhere discrete.

The sampling function used to build a rectangular sampled array of intensity

values is:

r,,(x,y) = r(x,y). comb(x Ix). comb(y IY) (2)

where:

00

comb(x) =. E 6(x-n) (3)
n-=-(X)

This sampling function is a two-dimensional array of 0 functions spaced at

intervals of width X in the x direction and width Y in the y direction (see

Fig. 3).

The function 0 used throughout this thesis is the unit impulse functiont

and describes a point in sampling space where a sample is to be taken

[OpWi83]. The 0 function consists of a spike (i.e, impulse) whose amplitude is

t The unit impulse is a function common to digital signal processing. The mathematical properties of
this function are not very well founded, but have been thoroughly studied as part of the class of generalized
functions. The description of the function given here is more than adequate as a practical method for im-
plementing the sampling operation. For a complete development of the unit impulse function see Bra.cewell
IBrac65j.
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one. On either side of the this spike the value of the function is zero.

Sequences of 6 functions are often constructed and describe how samples are

chosen across the range of an input function. The interval between impulses is

always assumed to be equal. The operation of sampling is the multiplication of

the input signal by the sampling function. Thus, the result of sampling scales

the amplitude of the 6 impulses so that they are equal to the amplitude of the

input signal at that position (see Fig. 4).

Fig. 3. Two-dimensional array of 6 functions.

Next, the amplitudes of the 6 functions are quantized to complete the

machine representation of the intensity array. We would like to model this

quantization process after the transduction process of a single cone. The cones
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are sensitive to higher levels of illumination. Therefore, a threshold of illumina-

tion exists below which the cones are insensitive. Also, the level of background

illumination influences the range of intensity change to which cones are sensi-

tive.

a

x

b

x

y

c

%

Fig. 4. Sampling operation in one dimension.

(a) f (x) is a one-dimensional continuous function.
(b) Sampling operation: a row of 0 functions is multiplied with f (x).
(c) The result of sampling.

This suggests that our quantization algorithm must dynamically adjust inten-

sity thresholds as a function of physical variables (e.g., background illumina-
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tion). This added level of complexity is a research issue. The intensity array

values are quantized, modeling the general range of human perceived intensity.

The human visual system perceives intensity changes in normal illumination in

a logarithmic manner (i.e., the dark intensities values map to a larger range of

the total .intensity scale than bright intensity values) [Greg73][Baxe84]. The

mathematical precision of quantization is usually determined by the number of

bits conveniently available in the implementation hardware. All images used

in this work are sampled with eight bits of precision.

The Sampling Theorem states explicitly how close the 6 functions must

be to one another to prevent information loss. To understand this result we

define the spatial frequency of a signal. The frequency of a visual signal can be

described through an example. An image constructed with alternating black

and white stripes spaced closely together has a higher spatial frequency on

average. Conversely, an image constructed in the same manner with stripes

which are much wider has a lower average spatial frequency (see Fig. 5). Spa-

tial frequency can be roughly defined as the rate at which an image changes

intensity. The spatial frequency can be computed with a transformation that

maps the signal's physical components (time domain) to its frequency com-

ponents (frequency domain). This is done mathematically with the well-known

Fourier transform [Brac65][Hamm77][Op Wi83].

00 00

F(u,v)= J J f(x,y)e-;2w(U%HY)dxdy
-00 -00

(4)

and its inverse:
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00 00

J(x,y)= I IF(u,v)e;Z'""+',Jdudv
-00 -00

(5)

Fig. 5. Two-dimensional spatial frequency example.
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The Sampling Theorem states that the input signal must be band-

limited. For a signal to be band-limited there must exist an upper bound on

the signal's highest frequency component. If the maximum frequency of the

input signal is known, the Sampling Theorem tells how the sampling rate (the

distance between 5 functions) is chosen. The sampling rate mu~t satisfy the

Nyquist criterion, which states that the sampling rate must be twice the

highest spatial frequency of the tW<rdimensional input function.

After the reflectance function has been sampled according to the Nyquist

criterion, simple interpolation can be used to reconstruct the intensity informa-

tion. If the sampling rate is chosen ,to be several times greater than the max-

imum input frequency, simple linear interpolation is adequate [OpWi83]. How-

ever, increasing the sampling frequency will increase the number of samples

used to represent intensity data. To reduce storage, the Sampling Theorem is

used to find the minimum number of samples necessary to successfully recon-

struct the data. Thus, proper sampling can be viewed as a data compaction

technique.

If only the minimum number of samples is acquired, a more sophisticated

interpolation function will be needed. Such a function can be a well-chosen

filter function, for example:

sinc(x) =sin7rx /7rX (3)

In order to recover the original continuous-intensity data, the sampled inten-

sity data must be filtered with a filter function similar to the above. Filtering
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IS a signal processing technique that here takes a weighted average that is

specified by the filter function, and applies (i.e. convolves) this average to each

point of the sampled data (see Appendix A). This filtering operation is con-

strained, and the correctness of the recovered data is dependent upon the

amplitude and frequency characteristics of the filter function. However, If the

operation is applied carefully the original continuous-intensity data can be

totally recovered. Even though filtering with the above function is a more

sophisticated operation, the end result is comparable to a simple linear interpo-

lation of sampled data.

Does the human visual system take advantage of the results of the Sam-

pIing Theorem? Some vision researchers believe that it does [BarI78][MaHP78].

For example, the retinal image is band-limited by optics to about 60 cycles per

degree. The size and spacing between cones cells is sufficiently close to guaran-

tee that the Nyquist Criterion is met. It has also been suggested that layer

4C{3 of the striate cortex could be the site of image reconstruction [CrMP80].

Layer 4C{3 contains 50 times more processing cells than input cells. It has

been hypothesized that a point-for-point reconstruction of the visual image

could be performed here. However, there are not enough cells acting as inputs

to 4C{3 to perform a one-to-one mapping of sampled intensity data. One pos-

sible solution is that a much more compact representation of intensit.y data is

input 4C{3. To implement such a solution, further encoding of sampled visual

information is necessary. In the next chapter, we will discuss a more compact

representation of the visual image. The compaction will be done by localizing
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discontinuities in the image intensity. This can be implemented by finding the

zero-crossings in the second non-directional derivative. Later we shall see that,

a reconstruction of the original image at the cortical level of the human brain

may be necessary to explain a perceptual task called hyperacuity.
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CONSTRUCTING ZERO-CROSSING PRIM:ITlVES

The intensity array of sampled values is the input to a higher-level algo-

rithm for symbolic encoding. This algorithm is performed during the process

called early vision. One purpose of early vision is to construct a set of sym-

bolic primitives that will further compact the representation of the physical

world. These primitives mark or denote the areas of meaningful change in the

intensity array.

Historically, both computer vision and image analysis systems have

located significant intensity changes and marked them as primitives [Brad82j.

The primitives have traditionally been called edges, since they roughly

correspond to the physical boundaries between objects in the image. Many

algorithms are available for detecting edges [Hild80][Baxe84][Winst84j. Are

edges the only primitives that need to be labeled in the early stage of vision?

Clearly, there are other physical phenomena that give rise to intensity changes,

such as reflections, shadows and fine texture. A representation of the world

consisting only of ideal edges can not account for human perception. A general

vision processor needs more than edge information to reconstruct an image of

the physical world. Marr has proposed that lines, bars, and blobs, which can

be composed from raw edge information, may be the intermediate symbolic
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tokens used in vision [Marr82].

The method chosen to detect intensity changes is dependent upon the

physical phenomena that give rise to these changes. Many intensity changes

are sharp, such as those on the borders of physical objects. Other changes are

gradual, such as shadows cast on a dark surface. There are still other cases

where both sharp and gradual intensity changes lie on top of one another. To

detect such a variety of intensity change types requires a detection algorithm

to isolate changes at different spatial scales.

Fig. 6. Intensity array: Woman wearing a hat.

Notice that in Figure 6 there are a number of object surfaces producing

intensity changes at different scales. For example, the feathers on the hat are

higher in spatial frequency than shadows on the cheek, and this property
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identifies the spatial scale at which these objects can be found. Intensity

changes at a particular scale are usually produced by objects of the same type

[Marr82]. Since other types of objects will be found by detecting intensity

changes at other scales, the relationship between objects of different types can

be discovered by comparing intensity changes across scales ~Marr82].

The rate of change of the function at a given point may be calculated by

taking the derivative of the function. The first derivative will produce a max-

imum value at the greatest rate of change. The second derivative has a zer<r

crossing at this maximum (see Fig. 7). Intensity changes are calculated by tak-

ing the second derivative across the i.ntensity array. This differentiation is per-

formed by the application of a digital filter with second derivative properties.

This filter can also be called a second derivative operator.

Digital filters designed for edge detection have traditionally been direc-

tionally sensitive [MaU1l79]. The peaks or zer<rcrossings are determined only

when the operator is properly oriented to an edge. For example, the Sobel

operator is maximally sensitive to intensity changes for which the intensity

difference is orthogonal to the x axis [Brad82]. In natural images, intensity

changes are rarely organized neatly. Therefore, a second derivative operator

that is non-directional is needed to produce zer<rcrossings independent of direc-

tion of intensity change. The only linear second derivative operator that is

non-directional is the Laplacian operator [Hild80].
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Any operator which is used to process natural images must be tunable to

different spatial scales (i.e., spatial frequencies). If a scale is chosen so that

a a'

'.
..

..... .. . ..
. ...

'::>. ..."

b

..
. -,

c c'

~'"
'.

d

Fig. 7. Spatial derivatives

(a) Ideal spatial step. (b) One-dimensional cross-section of (a).
(c) First derivative of (a). (d) Second derivative with zero-crossing.
(a') Noisy spatial step. (b') Cross-section of step (h').
(c') First derivative of (a'). (d') Second derivative of (a').

sharply detailed objects are to be isolated, the filter should not be sensitive to

soft, fuzzy objects. To isolate objects in the intensity array at a particular
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scale, the intensity array is first smoothed with a Gaussian operator. The

application of the Gaussian operator can be viewed as the averaging of an

intensity value across neighboring intensity values (i.e., local neighborhood).

The averaging is performed in such a way that closest neighbors are heavily

weighted and progressively. lower weights are assigned to neighbors further

away. The effect of this sort of averaging is smoothing or filtering of unwanted

high spatial frequencies in the locality of any intensity value. The size of the

neighborhood determines the amount of local smoothing.

Algebraically, the two operators, the Laplacian and the Gaussian, can be

combined into a single operator that retains the properties of both [Hild80]. In

two dimensions this combination operator is called the Laplacian of a Gaussian

and is given as:

(4)

The V2G operator is a Mexican-hat-shaped operator, where w is the width of

the positive-going center of the operator (see Fig. 8). The spatial constant 0"of

the V2G equation is related to w by:

U=W/2Y2 (5)

The width w is called the ezcitotory center of the operator because it increases

the value of intensity data positioned over this region. This center is sur-

rounded by a negative annulus, called the inhibitory 8tlrround. Data values

positioned over this region are negatively weighted.
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(b)

Fig. 8. The Laplacian of a Gaussian operator.

(a) Two-dimensional plot of the Mexican-hat-shaped operator.
(b) A one-dimensional cross-section of the operator.

A recent controversy in the literature has pointed out the need for care-

ful engineering of this operator IGrHi85]. To properly construct an impulse

response version of the continuous Laplacian of a Gaussian function, the v:a

function must be sampled over a range that is at least 2won both sides of the
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onglll. This sampling will insure that the brim of the Mexican hat, or skirt of

the filter, is wide enough to preserve the properties of the operator. This circu-

lady symmetric operator must be balanced such that the total area under the

sampled function integrates to zero. A balanced operator is less sensitive to

high-frequency noise without losing any smoothing properties of the underlying

Gaussian [GrHi85]. To maintain balance, the individual values of the impulse

response filter are tweaked. In this work, the precision of the quantized version

of the V2G is 1 part in 2048 using integer values (all values 1/2048 of the

maximum amplitude or less are set to zero). This impulse response version of

the filter is convolved with the intensity array to give a raw zero-crossing out-

put (see Appendix A). The convolution 'of V2G with an intensity array can be

expressed as:

(6)

An example of the resulting image can be seen in Figure 9.

In this form, the zero-crossing information is available but not apparent.

A simple algorithm is applied to the raw convolution data to enhance the loca-

tions of the zero-crossings. The algorithm can be stated as:

if convolution_value[x,y] > 0
convolution_value[x,y] := 1;

else
convolution_value[x,y] := 0;

This intermediate representation of the image is called the binarized image

[Marr82]. In the binarized image, the locations of the zero-crossing are places

where changes between zeros and ones occur. To mark the zero-crossings, the
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binarized image is walked from right to left and top to bottom comparing

adj:1,cent elements. Vfhen a change is found, the location is marked (see Fig.

11).

Fig. 9. Fig. 6 convolved wit.h the Laplacian of a Gaussian.

Zero is represented by a neutral gray shade. Lighter grays are positive.
Darker grays are negative. Notice the overall smoothing which isolates
features at one spatial scale.

How do we choose w to set the sensitivit.y of the \12G operator to the

desired spatial frequency scale? Physiological properties of the human ret ina

are used to guide our intuition. Perceptual experiments and electrophysiologic

recordings from the retinal ganglion cells (sc>c Fig. 1) verify the shape and

bound t.he sizes of the \12G operators lJ\hIlP78]. In addit.ion, Wilson and oth-
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ers have proposed a set of psychophysical channels sensitive to spatial fre-

quency as components of the human visual pathway [WiBe79]!WiGi77]. The

receptive fields of the retinal ganglion cells form the physiologic a] front end of

these channels. These fields are circularly symmetric and are composed of an

excitatory region with an inhibitory su~round. At each point on the retina,

overlapping receptive fields are tuned to different spatial frequencies. The sizes

of these fields grow with eccentricity from the fovea] region. Therefore, fields

in the retinal periphery are predominantly sensitive to lower spatial frequen-

cies. Receptive fields are architecturally composed of ganglion cells connected

to groups of cones via a variety of interneurons [Pogg84] (see Fig. 12). One of

- ..

Fig. 10. Binarized representation of Fig. 9.

White is 1 and black is O.
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Fig. 11. Zero-crossing representation of Fig. 6.

the functions of a ganglion cell seems to be the differentiation of local intensity

changes across the group of cones to which it is connected. The larger the

number of cones, the larger the receptive field of the ganglion cell and the

lower the spatial frequency sensitivity of the channel. It should be noted that

there are probably a variety of receptive fields with different functional chara('-

teristics.

Wilson has modeled the local detection of intensity change of spatial

channels as the difference of two Gaussian distributions (DOG) [WiBe79]. :t-..farr

and Hildreth have argued that the DOG function is a good engineering approx-

imation to the V2G operator [MaHi80]. Therefore, the author used the sizes of

the visual channels found by Wilson to choose w in the V2G operator. These
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PHOTORECEPTOR

~

Fig. 12. A Receptive field of the human retina.

A single ganglion cell connects to a group of cones via intermediate
nerve cells (not shown). The receptive field has an excitatory center and
inhibitory surround. Excitation and inhibition are defined by weighted
connections of the ganglion cell dendrites upon a neighborhood of
photoreceptors.

channels, which are labeled N, S, T, and U have positive excitatory centers of

4.4',8.7', 16.5', and 29.6', which correspond to the w values of 4,9, 17,30 pix-

elst. The T and U channels found by Wilson are not functionally the same as

Nand S, and it is probably incorrect to assign their sizes as values of w for a

t This is a measurement of distance that corresponds to the number of lighted dots on a graphics
display device. The units of measure are pixels (picture elements). It is assumed there exists a one-to-one
mapping from intensity array elements to pixels. It is also assumed that each pixel corresponds to a.pproxi-
mately two cone cells of diameter 25". Therefore, an image is focused on the fovea of an imaginary retina.
All images in this chapter should be viewed from about 4.5 feet to guarantee the above relationships.
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V2G operator [WiBe79]. However, lacking a better description for the low fre-

quency channels these values were used.

To complete the zero-crossings representation from intensity data gath-

ered from the physical worM, a V2G operator of each size is convolved with

the intensity array. Since four sizes of operators have been chosen to cover

high, medium, and low spatial frequency features, four zero-crossing representa-

tions of the input image are created. From. an aesthetic viewpoint, it is

interesting to note that only a few different-size operators with elegant

mathematical.properties are necessary to process zero-crossing symbols. This

observation is consistent with perceptual and physiological data from the

retina.

Marr suggests that zero-crossings are organized into an rich and more

informative representation called the raw primal sketch [Marr82]. In the raw

primal sketch, information from each channel contributes to the construction

of higher-level groups of tokens, such as line segments, bars, and blobs. In addi-

tion, the position and orientation of these symbols are tagged. These tokens

are likely the input higher-order vision processes.

The construction of the raw primal sketch is computation ally intensive.

In this work, four complete convolutions of the intensity array are necessary.

This is not as bad as it first seems. There are methods to reduce the amount

of computation. The first is to look closely at the V2G operator. We have

seen that this operator is an engineering approximation to the difference of two
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Fig. 13. Raw primal sketch

(a) Fig. 1 convolved with a V2G operator with wequal to 4 pixels,
(b) w equal to 9 pixels (c) wequal to 17 pixels (d) wequal to 30 pixels.

(1 pixel = 50" at 4.5 feet).
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Gaussians suggested by physiological experiments. Therefore, the DOG opera-

tor can be substituted for the V2G operator (see Fig. 13). The DOG operator

has some distinct advantages over V2G. A computational improvement is

achieved by decomposing the two-dimensional form of the operator into four

one-dimensional forms of the Gaussian function (see Appendix B for a descrip-

tion and proof of separability of Gaussians). Successive convolution using the

one-dimensional forms requires a significantly lower number of operations than

the two-dimensional DOG [CrPa84]. The time complexity of an individual con-

volution of the intensity array with a filter of a specific size is 0 (n 2) with the

V2G operator. Using the DOG operator, this can be reduced to 4N [CrPa84]

(see Appendix B). Even though the Difference of Gaussians operator can pro-

vide a significant computational improvement, the solution to the problem of

real-time early vision remains elusive. An architectural clue to solving this

incredible computational dilemma is found by examining the human visual sys-

tern. This system is a massively parallel machine. Thus, to achieve real-time

performance parallel computation must be used. The use of systolic array

architectures and the high-density implementation of such architectures III

VLSI are currently achieving real-time vision pre-processors [Kung84].
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b

Fig. 14. Comparison of operators

(a) v:a operator with w equal to 9 pixels.
(b) DOG operator with wequal to 9 pixels.

(1 pixel = 50" at 4.5 feet).
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ACUITY AND THE FIFTH CHANNEL

An implementation of the raw primal sketch has been described. This

intermediate representation is a rich set of primitive symbols that mark local

discontinuities in the intensity array. It has been suggested that a set of zero-

crossings at different spatial scales is used to extract the size, orien~ation, and

positions of visual objects. We have also described the existence of spatially-

tuned channels in the human visual system and used this evidence to set the

size of the Laplacian of a Gaussian operator. The size of these operators

bound the spatial frequency response of the zero-crossing encoding algorithm.

Sensitivity to high spatial frequency in humans sets the limit of visual acuity

along with other physical factors. These factors include the optics of the eye

and the spacing between the retinal cones. If our model is an emulation of

human visual processes then it should be consistent with human acuity meas-

urements. Shortly, we will see that this is not the case and we will use results

of Marr and others to overcome this weakness in the model.

Fine visual acuity is dependent upon the size of the smallest spatial

channel. The smallest channel described by 'Wilson is the N channel. This chan-

nel has a size of 4.4' of arc in the fovea. Marr et al. have shown that the N

channel is too large to explain fine visual acuity [MaHP79]. In order, to
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understand these results we first must examine human acuity measurements.

An example of measuring the upper bound of normal acuity in humans is

the two-point acuity test [WiEE84]. A subject views two dots from a fixed dis-

ta.nce. The dots are moved closer and closer to each other until the subject

cannot resolve them as distinct. Then the distance between the dots is meas-

ured. Humans can distinguish between dots with as little as I' of arc of separa-

tion. Relative positions of dots can be resolved to less than I' of arc. This per-

formance is called hyperacuity. A typical test for hyperacuity is the three-dot

test [WaAn82]. A subject views three dots from a fixed distance. The dots are

aligned either horizontally or vertically. The object of the test is for the sub-

jeet to determine when the dots are out of alignment. The outer two dots

remain fixed, while the middle dot is moved. With practice, subjects can per-

ceive misalignment with deflections of the middle dot of only 2" to 5".

Human acuity testing identifies two independent tasks that describe the

localization power of the visual system. From an information processing point

of view, two different algorithms might be used to perform these tasks, even

though both algorithms might solve portions of the acuity problem with shared

resources. Also, if different algorithms exist, then the algorithms may operate

upon different representations of intensity information. We shall see that with

the addition of a smaller spatial frequency channel the zero-crossing represen-

tation can explain perceived fine visual acuity, but is inadequate to explain

hyperacuity.
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Marr, Hildreth and Poggio have proposed a smaller channel which has a

central diameter of 1'20" [MaHP79]. The diameter of the proposed channel is

sufficiently small to the detect separations of l' found in fine acuity. Research

on human spatial channels does not preclude the existence of a smaller channel.

Channels of such a small size have not been investigated. It has been sug-

gested that such a channel could be constructed from a midget ganglion cell

projecting to a single. cone [MaHP79]. The implications of adding this new

channel to our previous repertoire of four is that the model now conforms to

measured human acuity. It also implies that objects or features of objects

which subtend smaller than 1.3' zero-crossings will not be detected as we would

expect, since they are beyond the resolution of our model.

Addition of the smaller channel cannot explain hyperacuity. The pro-

posed fifth channel, with a diameter of 1.3' of are, is still too large to detect

changes of 2" to 5" of arc. An even smaller channel is not a plausible solution

to hyperacuity, since we have reached the size limitation of a single cone. A

single cone is approximately 25" of arc in width. Therefore, small changes in

position are not detected absolutely, but might be interpolated from raw con-

volution values. Such a mechanism has been suggested but has not been

verified [CrMP80]. If interpolation is used to detect very small changes in an

object's position from zero-crossing input, then hyperacuity most likely is per-

formed higher up the visual pathway. This suggests a reconstructed version of

raw convolution data is made available for scrutiny by a group of yet unknown

operators. The function of such operators could be to extract small features or
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changes in features that which have been lost due the limited size of the smal-

lest channel.

Obviously, this interpolation and reconstruction mechanism is an added

computational expense. However, if hyperacuity is viewed as a demand-driven

process this expense may. be warranted. Hyperacuity is a perceptual skill and

may be learned. Early on, the visua.l system may learn that certain methods of

interpolating data from the zero-crossing representation gives a reliable

mechanism for positioning objects close to one another. We can consider this

hyperacuity representation as a bit map of reconstructed convolution values

from the zero-crossing representatiop.o As previously mentioned, layer 4C{3 of

the striate cortex could be the site of such a reconstruction process.

The construction of a hyperacuity bit map representation is a sampling

problem. The discussion of sampling in chapter two provides a theory to deal

with this problem but this theory is incomplete. It is important to verify that

the zero-crossings alone are sufficient to completely reconstruct the convolved

intensity information. If the convolved image can be reconstructed without

loss of information, all of the original details are present and available for scru-

tiny by vision analysis algorithms. A theorem by B.F. Logan has shown that a

one-dimensional signal can be reconstructed from its zero-crossings [CrMaP80].

This theorem provides a theoretical basis for the preservation of information

by zero-crossings.
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Logan'8 Theorem

If a one-dimensional analytic function (a) is a bandpass of

bandwidth one octave or less, and (b) has no complex zeroes in

common with its Hilbert transform, then the function is com-

pletely determined, up to an overall multiplicative constant, by

its real zero-crossings.

Logan's Theorem is limited to one-dimensional signals. A two-

dimensional result is needed for our purposes. Mathematicians have not been

able to use Logan's method of proof to extend his theorem to two dimensions,

but this is an active area of research [CrMaP80]. The conditions of Logan's

theorem constrain the method of computation of zero-crossings. The second

condition can be ignored since it can be shown to hold only for pathological sig-

nals [MaUI79]. In general, condition (b) will be satisfied by all visual signals.

The first condition is the most interesting. It determines the size of the filters

used to construct zero-crossings. Therefore, the Laplacian of a Gaussian filter

must have a spatial frequency bandwidth of no larger than one octave. Using

Logan's result it can be speculated that raw convolution values can be recon-

structed by zero-crossings alone, if filtered with enough differently scaled opera-

tors, where each operator has a bandwidth of one octave or less.

Unfortunately, physiologic measurement of spatial channels in the human

retina do not meet the ideal one octave bandwidth condition. They are con-

sidered to be about an octave and a half. The values of our operators have
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been cbosen to approximate this scale. Marr argues that the human visual sys-

tern does not seem to lose visual information because Logan's bandwidth condi-

tion is not exactly met. So, it is reasonable to assume that Logan's Theorem

can be relaxed, or that another mechanism is involved in completing the

representation. Both are probably true [Marr82]. We can relax the size con-

straints of the operators. In fact, at one and a half octaves the failure rate of

image reconstruction is about 8% [CrMP80]. Another mechanism which may

provide additional intensity-change information is the gradient calculated at

the zeTo-crossing. This vector supplies information about the contrast, width,

and spatial orientation of the intensity change, and this may be sufficient to

properly reconstruct the convolved image [Hild80]. Therefore, gradient infor-

matioI.'l maybe be packaged along with zero-crossing symbols and used in layer

4C{3 of the striate cortex to construct a hyperacuity bit map representation.

We have suggested mechanisms and modifications to the original model

that may be able to account for both fine visual acuity and hyperacuity meas-

urements in humans. We have introduced a fifth visual channel with a central

diameter small enough to take care of fine visual acuity. We have also specu-

lated that a bit map representation of convolution values may be available for

scrutiny by other operators and this may account for hyperacuity. In the next

chapte'C we will attempt to validate the existence of zero-crossing representa-

tions a.nd evaluate these representations near and beyond the limits of fine acu-

ity. When image features are smaller than the diameter of the smallest chan-

nel artifacts of the convolution process should appear. If zero-crossing artifacts
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are found and zero-crossings are the representation used by the human visual

system then subjects should see these artifacts.
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ZERO-CROSSING ARTIFACTS

The finest spatial scale of Marr's computational model is determined by

the size of the fifth visual channel. This is the smallest channel carrying the

convolution of the image with a V2G operator whose w is 1.3'. If intensity

changes occur in an image that subtend an angle smaller than wof the smal-

lest channel, it would be expected that this operator could not reliably detect

these changes and any zero-crossing reported by an a.!gorithm using this opera-

tor is an artifact. Rather than considering zero-crossing artifacts as unwanted

information produced by V2G operators, we can use this property to explore

the consistency of many aspects of Marr's model with the human visual system.

In this chapter we will describe a computer experiment which locates zero-

crossing artifacts. Then we will examine the perception of human subjects to

see if similar artifacts are present.

Throughout this thesis, we have used the human visual system as a

guideline for the implementation of the model. Therefore, as we begin the test-

ing and verification stage of the implementation, we will evaluate the model

against the performance of the human visual system. If we look at the percep-

tion of humans near the limits of visual acuity, zero-crossing artifacts should

appear. Stevens [1985, personal communication] has shown that this prediction
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holds with informal psychophysical experiments. In collaboration with Stevens,

we have systematically explored these phenomena. The results of this investi-

gation are that artifacts do appear to humans and the general shape of the

artifacts are similar to the artifacts of the V2G operator found in computer

experiments. The implication of these results are the following:

. A zero-crossing representation may be used by the
human visual system.

. Spatial channels and V2G-like operators are used
to derive a zero-crossing representation.

. The size of the smallest channel in the visual system is
roughly the size of the proposed fifth channel.

-
o Zero-crossing artifacts are pre.sent in the human visual

system.

. A zero-crossing representation may be the input to
higher-order vision processes (e.g., hyperacuity).

. Marr's model is consistent with some of the perceptual
experiences of human subjects.

Computer Experiment Method:

The experiment was conducted on a DEC VAX-ll /780. The software was writ-

ten by the author in the "C" programming language. This program conformed

to the details of the implementation of Marr's model previously described.

Images were displayed with a a Metheus Omega 440 graphics controller and a

Tektronix 690SR monitor. An Imagen 8/300 laser printer was used for hard

copy output. A V2G operator with a central excitatory di:1meter of 4 pixels
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(i.e., wof 1'40"). was constructed to approximate Marr's smallest channel. It

was assumed that one cone of diameter (25") mapped to one pixel in this

experiment. This V2G operator was convolved with three checkerboard pat-

terns one pattern at a time. Each checkerboard was composed of 16x16 alter-

nating black and white squares. The size of the individual squares were 4 pixels

(1.6'), 2 pixels (50"), and 1 pixel (25"). The checkerboards were set in a inter-

mediate gray background (see Fig. 15(1-3a)). Zero-crossings and the gradient

across the zero-crossings were computed.

Computer Ezperiment Results:

When the size of a square witS approximately equal to the width of the opera-

tor, the gradient at the zero-crossings at the intersection of squares fell off stee-

ply, and zero-crossing artifacts near the border squares were noticed. These

artifacts consisted of elongation of border squares and rounding of corner

squares. The border squares were approximately 50" larger than an expected

square and rounded at the ends. The corner squares bloomed by roughly 25".

(see Fig 15(lc)). As the size of the squares became smaller than the width of

the operator, the artifacts of convolution were elongation of the squares at the

borders and rounding of corners. The border squares were 100" larger and the

corner square bloomed 50". (see Fig. 15(2b)). As the square-size approached

the smallest value, the zero-crossings in the interior of the checkerboard were

no longer marked. However, the corners were still marked as small circles.

The diameters of the circles was roughly 75". (see Fig. 15(11,)).
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Fig. 15. Results of computer experiment.

(la) Checkerboard 4 pixels. (Ib) Zero-crossings. (Ic) Gradient at zero-crossings.

(2a) Checkerboard 2 pixels. (2b) Zero-crossings. (2c) Gradient at zero-crossings.

(3a) Checkerboard I pixels. (3b) Zero-crossings. (3c) Gradient at zero-crossings.
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Computer Ezperimenl Discussion:

The V2G operator will not detect intensity changes reliably if the intensity

changes occur over a region smaller than the width of the operator. If this

situation occurs then zero-crossing artifacts can be expected. These artifacts

consist of gradient changes in interior squares when the size of the operator is

near the size of the square. Border squares become progressively longer and

rounded as the size of squares fall smaller than w. The corner squares become

progressively rounder and bloom until this artifact is all that remains. Why do

the borders seem most affected while the interior zero-crossing contours result

in the expected grid?

In order to understand this phenomena, it is necessary to understand

what Marr calls the Condition of Linear Variation [Hild80]. If the condition of

Linear Variation holds then zero-crossings align well with the edge where an

intensity change occurs. This Condition is an assumption about the local inten-

sity change that states the intensity change near and parallel to the line of

zero-crossings should be locally linear. At the borders, the linear variation con-

clition does not hold (relative to the size of the operator). It is important to

remember that these operators are sensitive over a region of the intensity

array much larger than W, since the actual diameter of the whole operator is

about 3.5w. It is probably the symmetry in the interior of the checkerboard

that guarantees the grid-like output down a certain scale. Therefore, it is the

size of the operator relative to the squares and the failure of linear variation
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within the scope of operator that generate zero-crossing artifacts.

Hildreth has reported that channels larger than the square size are sensi-

tive to artifacts, and she used this phen0l!lena in an attempt to explain the

perception of squares being organized along the diagonal. She found that out-

put of the zero-crossing algorithm for squares, whi'ch subtended 3', by a chan-

nel with a wof about two times the square size, resulted in a zero-crossing map

that looked like a herringbone pattern [Hild80]. Stevens psychophysical data

predicts elongation of border squares, corner rounding and disappearance of

interior zero-crossings when the smallest channel operator is used and square

sizes varied from 2' to .8' [1985, pers~)llal communication].

Perceptual Experiment Method:

A checkerboard pattern set in a intermediate gray background was placed at

viewing height on a wall, under approximately normal lighting conditions. The

checkerboard was computer-generated and exact in all details (except size) to

the pattern used in the computer experiment. The size of individual squares

were .0247x.0247 inches. A calibrated rule was used to mark distance on the

floor. 10 human subjects with a mean age of 30 years participated. The sub-

jects were asked whether they considered their vision to be normal. The exper-

imental results of those who responded negatively were thrown out. All sub-

jects were instructed, and allowed to practice if they desired to do so. The sub-

jects were told that artifacts would be seen, and that it was their task to find

the distance from the stimulus where the artifacts appeared and disappeared.
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The effect of stepping away from the stimulus is analogous to processmg a

smaller sized version of the pattern, as was done in the computer experimen t.

This measurement was logged.

Perceptual Experiment Results:

The four convolution artifacts predicted by the computer experiment were

recognized by all subjects. These artifacts are: the grouping of squares on the

diagonals, elongation of border squares, the disappearance of interior squares,

and the disappearance of corner features. The numerical entries in the table

are the degrees of arc an individual square subtends on the retina. Mean and

standard deviation values are shown.

Perceptual Experiment Discussion:

In this experiment, many variables such as illumination, precision of distance

measure, and contrast of stimulus were not adequately controlled. In spite of

this, the results are significant. It may be argued that the subjects were

subject diagonals elongated gray gone
1 3.2' 1.9' 1.3' 1.04'

2 4.2' 3.1' 1.7' 1.04'

3 2.9' 1.9' 1.3' 0.85'

4 3.8' 1.8' 1.4' 0.93'

5 2.2' 1.5' 1.1' 0.93'

6 3.9' 1.6' 1.0' 0.85'

7 3.1' 1.8' 1.6' 0.94'

8 2.9' 1.8' 1.2' 0.94'

Mean 3.3' 1.9' 1.3' 0.94'

S.D. 0.6' 0.5' 0.2' 0.07'
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coached into recognizing artifacts. This does not seem to be a real problem

because we were searching for evidence of fine curvature in the artifacts. The

subjects were informed of the presence of artifacts, but independent of any

coaching, reported the attributes and features of the artifacts. All subjects

reported. artifacts consisting of curved features and squares that were organ-

ized along diagonals. These results are consistent with observations made by

Hilderth and Stevens.

Many of the observed artifacts were rounded. The radius of curvature of

rounded zero-crossing artifacts were measured and varied from 6" to less than

3". These figures place the curvature of rounded artifacts in the hyperacuity

range. All subjects reported rounded features at this sca)e suggesting that

zero-crossings may be available for scrutiny by a hyperacuity mechanism.

With the above data and the observations of other vision scientists we

feel that this set of experiments has shown: 1) that a zero-crossing representa-

tion may be used by the human visual system, 2) that spatial channels and

'\J2G operators are the constructors of this representation, 3) that the size of

the smallest channel is approximately 1.3', and 3) that tasks requiring discrimi-

nation of shape at the limit of resolution likely have have a zero-crossing map

available for scrutiny. All of the above findings give evidence that Marr's zero-

crossing model of early vision is consistent with many perceptual experiences of

humans.
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SUMMARY AND FURTHER RESEARCH

An information processing approach to computer vision based on work

previously done by Marr has been implemented and evaluated [Marr82]. Our

implementation focused on early vision, which consisted of sampling intensity

data and the construction of zero-crossings.

Sampling was shown to be a demanding computation. If sampling is not

performed correctly, errors can occu.r. Through the use of the Sampling

Theorem, we could guarantee that the original intensity data could be recon-

structed from the sampled intensity array. Therefore, the sampling operation is

a method of data compaction without the loss of information. By examining

the physiology of the human visual system, it was suggested that reconstruc-

tion properties laid out in the Sampling Theorem apply to the human visual

system. The algorithm used by our implementation was roughly equivalent to

sampling properties of cones in the fovea.

After sampling, Marr constructs zero-crossing primitives. Zero-crossings

mark significant intensity changes in the intensity array at different spatial

scales. The Laplacian of a Gaussian operator is used to detect the zero-

crosslllgs III all orientations. Zero-crossings are detected by convolving four

V2C operators of different sizes with the intensity array. This completes
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Marr's raw primal sketch. The sizes of the operators were chosen based on the

size of measured spatially tuned channels in the human visual system. It was

shown that a computational speedup could be achieved by replacing V'J.G with

an approximately equivalent operator the Difference of Gaussians (DOG). The

time complexity could be reduce from O(fI2) to O( 4N).

The high visual acuity of the human visual system cannot be emulated

by the smallest of the four V2G operators used in this thesis. Therefore, Marr

et ai. proposed a smaller operator whose is sized to be sensitive to zero-

crossings at the limit of resolution of a single cone. This operator was imple-

mented and tested. The following question was raised, "What happens to zero-

crossing contours when the size of the intensity change is smaller than the

width of the smallest operator?" A computer experiment was performed that

showed zero-crossing artifacts were the result. In this experiment a checker-

board pattern was convolved with V'J.G function scaled to correspond to the

smallest operator. Artifacts were located and their sizes and shapes deter-

mined. These artifacts consisted of elongation and rounding of border and

corner squares, and the disappearance of interior zero-crossings at the limits of

resolution.

We then asked, "If artifacts at the limits of fine spatial resolution appear

In the computer model and if the computer model is an emulation of the

human visual system, would humans also perceive such artifacts?". Human

subjects were tested at the limits of acuity and reported artifacts of similar

size and shape. The measurements of viewing distance and artifact sizes were
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consistent with results of the computer experiment and the observations of Hil-

dreth and Stevens. The implications of these results are the following:

. Zero-crossing artifacts are perceived by humans.

. Spatial channels and V2G-like operators are used
by the human visual system to derive zero-crossings.

. The size of the smallest channel in the visual system
is roughly the size of a single cone.

. The radius of curvature of perceived artifacts
is small enough to suggest that zero-crossings
may be available for scrutiny by a hyperacuity
mechanism.

. Marr's model is consistent with the perceptual
experiences of human subjects at the limits of
resolution when checkerboard patterns are used.

The author feels that this work not only provides insight into the functionality

of second derivative operators near their limit of resolution, but also suggests

that this model may be used to predict the behavior of the human visual sys-

tern at that limit.

Further research into the problems of acuity and hyperacuity should be

carried out. A simple approach to examining the limits of resolution of the

visual system relative to the optimum size of operators is to give the computa-

tional model the two- and three-point acuity test. This experiment would pro-

vide important computer data to compare with the wealth of psychophysical

data available. It would be interesting to see if these results would be con-

sistent with the findings here.
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Recent perceptual research on acuity by Watt and Morgan suggests an

a.lt,ernate set of primitives that could be used in addition to zero-crossings.

These primitives are constructed from a second derivative operator and are the

local maximum (i.e., peak) and minimum (i.e., trough) near the intensity

change. These primitiv.es can be computed with little change to the computa-

tio1Ilal model and may be the precursors of the zero-crossing computation in the

human visual system.

The nervous system encodes inhibition and excitation as different

discharge rates of individual neurons. The output of the inhibitory surround of

a spatial channel is encoded as the. trough, and the output of the excitatory

center of the channel is encoded as the peak. Watt and Morgan argue that the

zero-crossing can be computed by looking halfway between these two peaks.

Also, the slope across the zero-crossing is easily determined using the peak and

trough.

The researchers claim that peak and trough information is necessary to

explain the ability of human subjects to discriminate the extent of blurry edges

with a high degree of precision [WaM083]. A blurry edge will lie between the

peak and trough. Unfortunately, this model of primitives was developed with

one-dimensional tests and ideas. Extending the peak and trough primitives to

two dimensions may produce interesting problems, for instance, how is the case

handled where the peaks and troughs from several intensity changes overlap in

two dimensions? Nevertheless these different primitives are worth investiga.-

tion..
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Simple experiments can be designed to do comparison testing between

zero-crossings and the peak and trough counterparts. It can be easily deter-

mined by marking an image with peaks and troughs whether significant inten-

sity changes are detected. Also, the computer model of the peak and trough

. primitives will quickly expose any problems that may occur in two dimensions.

It is a natural extension of this work to seek other possible symbolic primitives

that may be involved in early vision. We have given arguments here for peak

and trough primitives, but more primatives may be discovered.
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APPENDIX A: CONVOLUTION

The convolution operation (also called the composition product, the run-

ning mean, smoothing, blurring or smearing) describes how to take a weighted

mean over a narrow range of a function. In image processing, convolution is

used to apply a digital filter to an input image. If a Gaussian filter is used, the

results of convolution are smoothing or smearing of the input image [Braxe83].

The filter is also called the kernel, operator, or mask. A computational vision

processor calculates the composition product of a two-dimensional kernel and

the sampled reflectance data [Grim85]. A detailed explanation of the methods

presented here appears in Bracewell's book [Brac65].

In two dimensions, the continuous form of the convolution integral for

functions f(x,y) and g(x,y) can be written:

00 00

f · g =J Jf(x',y') g(x-x',y-y') dx'dy'
-00 -00

(la)

where the * denotes convolution. Since the reflectance data r, (x ,y) is discrete

after sampling and this function is convolved with a discrete impulse response

filter f,(x,y), the discrete form of the convolution integral is used:
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00 00

r. * f. = ~ ~ r.(x',y') f.(x-x',y-y')
x'--oo y'=-oo

(2a)

Calculating the convolution of two functions is simple when performed as

serial products. An example of how to hand-calculate a one-dimensional convo-

lution with this method is as follows: Each function will be represented as a

sequence of integers, function A={1,4,5,3} and function B={1,3,3}. A is

written in a column and B is written on a strip of paper in reverse order (see

Fig. AI). Function B will slide downward next to column A during the calcu-

lation. At each step an element in B is multiplied with the corresponding ele-

ment in A and the results of the multiplications are summed and written

down. If B does not have a corresponding element in A, multiply by zero.

Next. slide the strip of paper one element down and repeat the multiplication

and summation process. Continue sliding the strip of paper until column B

has slipped past column A. See (Fig. AI(b-h)) to .trace this example.

The method of serial products extends naturally to two dimensions.

When calculating a two-dimensional convolution in a vision processor, the filter

is centered over each point in the intensity array. All of the values which lie

under the filter are multiplied and summed with the corresponding filter values.

Next, the mask is moved over a neighboring point in the intensity array and

the computation repeated. The mask continues to slide until every value of the

intensity array is visited once. Since all of the convolution kernels used in this

paper are circularly symmetric, reversing the kernel is not necessary.



Fig. AI. Hand trace of serial products method.
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(a)
1 :3
:3 reverse :3
:3 ) 1

1 B 1 B

4 4
2 2

A 7 A 7

(b) (c) (d)
1
:3 1

1 3+ 3 1 3 3 1 1 3
4 B 4 3+ 15 4 3 15
2 2 B 2 3+ 19

A 7 A 7 A 7 B

(e) (r) (g)

1 :1 1 :3 1 3
4 1 15 4 15 4 15
2 3 19 2 1 19 2 19

A 7 3+ 31 A 7 3 31 A 7 1 31
B 3+ 23 3 23

B 3+ 7
B

(h) 1 3
4 15
2 19 +-- resulting sequence

A 7 31
1 23
3 7

3+
B
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The time complexity of the two-dimensional serial products method is

dependent upon the size of both the intensity and filter arrays. Since the size

of the kernel (M) is usually much smaller than the size of the image being con-

volved (N), the algorithm is effectively 0 (n 2) [CrPa84]. More elegant convolu-

tion methods exist. These include taking advantage of the convolution

theorem, which changes the convolution operation to multiplication in the fre-

quency domain [Hamm77]. Before convolution degenerates to multiplication,

the Fourier transform of both the filter and intensity arrays is taken. After

multiplying the frequency domain values of the filter and intensity arrays

together, the inverse Fourier transform is used to get back to the time domain.

A time penalty is paid for taking the transform, but there are fast transforma-

tion algorithms available [OpWi83]. Also, methods of transforming convolution

data into polynomials can take advantage of polynomial algebra to

significantly reduce the number of multiplications and additions [Nuss78].
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APPENDIX B: SEP ARABll..ITY PROOF

The difference of Gaussians function (DOG) is computed by subtracting

two Gaussian functions. This is a two-dimensional function, and when con-

volved with an image requires 0 (n 2) time. The Gaussian function is the only

two-dimensional function which is both circularly symmetric and separable into

one-dimensional components [CrPa84]. Since the difference of Gaussians func-

tion is built from two Gaussian functions, this function can be 'separated into

four one-dimensional forms of the Gaussian. Each of these one-dimensional

forms can be convolved with the image and the result will be equal to convolu-

tion with the two-dimensional form. This will require 4N multiplications and

additions per point in the image compared to N 2, where N is the number of

values along one side of the mask.

The proof of the separability of Gaussians lies in the frequency domain.

Therefore, to understand the proof it is important to visualize the functions in

both the frequency and time domains (how to take a Fourier transform of a

function will not be discussed). Almost all of the functions used in this proof

look the same in both the time and frequency domains, so it is not painful to

move back and forth. The reason for going to the frequency domain is that

multiplication can be used rather than convolution (see the convolution
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theorem [Brac65]).

The impulse function 8 is used to sample the continuous two-dimensional

form of the Gaussian. In this case we are assuming that we are taking infinitely

many samples spaced at infinitely small distances. The intention is to maintain

as closely as possible the continuous form of the function being sampled. Here

sampling can be viewed as taking a slice of the function.

The difference of Gaussians function is given by:

where the ratio of space constants (je :(jj determines the amplitude and width

of the function. If the ratio of the space constants is 1.5, this function closely _

approximates the Mexican-hat-shaped Laplacian of Gaussian function [Hild80].

The proof of separability of the Gaussian function extends directly to the

DOG.

The two-dimensional form of the Gaussian function is given by:

(2b)

By the laws of exponents equation (2b) is equal to:

(3b)

The right hand side of equation (3b) can be renamed:

(4b)

Figure (Bl) shows the time domain plots of the terms of equation (4b). Two

impulse functions are introduced. These functions are used to take a slice of

the two-dimensional Gaussian tubes. This sampling process will create the



G(x,y)

11

Fig. (BI). Time domain plots of the terms of equation (4b).

84
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one-dimensional Gaussian cross sections. We will prove that convolution with

these cross sections is equivalent to convolution with the two-dimensional func-

tion.

The impulse function that samples along the X axis is:

x=o
otherwise (5b)

The impulse function that samples along the y axis is:

y =0
otherwise

(6b)

It is convenient to rename some of the functions given:

To prove that the convolution of the two-dimensional Gaussian function with

an image is equal to the convolution of separated one-dimensional Gaussian

forms of the original Gaussian (the Gaussian tube functions sampled with

impulse functions) we must show the following:

where I(x,y) is the image (see Fig. (B2)).

By the associativity of convolution, it is sufficient to show:

Gx(x,y) = Gx (7b)

Gy(x,y)=Gy (8b)

bAx,y) =bx (9b)

by(x,y)=by (lOb)
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'1/

Fig. (B2). Time domain plots of sampling process.
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(12b)

Consider the Fourier transform of the right side of equation (12b):

(13b)

By the convolution theorem, equation (I3b) can be written as (see Fig. (B3)):

(14b)

Since Gx depends only on x and 8y depends only on y , the Fourier transform

of their product is separable (similarly for Gy and 8x ) [po245 Brac65]. There-

fore, equation (14b) can be rewritten as:

(I5b)

Regrouping terms gives (see Fig. (B4)):

--
(I6b)

Recombining separable products yields:

(lib)

By the properties of exponentials and performing multiplication of the impulse

functions, equation (17b) is rewritten (see Fig. (B5)):

G (x, y) . h(x, y ) (18b)

Since 8(x,y) is the unit plane, the equation (18b) is equivalent to:



v
u

Fig. (B3). Frequency Domain Plots of terms of equation (14b).
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Fig. (B4). Frequency Domain Plots of terms of equation (16b).



G(x,y)

Taking the inverse Fourier transform yields:

G (x,y )

It is now clear that:

G(x,y)

r

6(x, y)

Fig. (B5). Frequency Domain Plots of terms of equation (ISb).
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(1gb)

(20b)

(21b)
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