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Abstract 

Background: Cognitive deficits are an early feature of Alzheimer’s disease (AD) and 

vascular dementia (VD). Brain white matter hyperintensities (WMH), identified with 

MRI, are thought to represent cerebrovascular pathology and are a risk factor for 

cognitive decline. Six genes in the 17q25 region were recently identified as being 

associated with WMH burden.  I aimed to test if these genes are associated with cognitive 

dysfunction in elderly men.  

Methods: This study was conducted in Osteoporotic Fractures in Men Study (MrOS), a 

cohort of community-dwelling me age 65 and older. This was a cross-section study 

comparing 26 SNPs in six genes, TRIM65, TRIM47, FBF1, MRPL38, ACOX1 and WBP2, 

with outcomes of two cognitive tests, Trails Making Test Part B (Trails B) and the 

Modified Mini Mental State Examination (3MS).  

Results: Mean Trails B and 3MS scores were determined to be 129.5±56.3 seconds and 

94.1±5.0 points respectively. SNPs in ACOX1, FBF1, and MRPL38 were associated with 

Trails B and 3MS scores at p<0.05 levels. However, after correction for multiple 

comparisons, only one SNP (rs11651351) in ACOX1 was found to be significantly 

associated with 3MS in a recessive effects model (β=6.55, p<0.0001).   

Conclusions: White matter burden has been linked to decreased cognitive function as 

well as to the six genes studied here. So, the relationships observed in this study are 

plausible, but warrant further study in a larger population to verify the relationships.  
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INTRODUCTION 

 Cognitive decline is characterized by impaired memory, loss of language skills, 

impaired judgment, and personality changes among other symptoms.  Cognitive deficits 

are an early feature of Alzheimer’s disease (AD) and vascular dementia (VD). This study 

examines the genetic basis of cognitive function in a large cohort of older men.  The 

clinical characteristics, proposed mechanisms and epidemiology of AD and VD will be 

introduced, then followed by a description of risk factors already shown to be associated 

with brain aging, as well as the rational for the candidate genes included in this study.   

Research Question 

Brain white matter hyperintensities (WMH), identified with MRI, are thought to 

represent cerebrovascular pathology and are a risk factor for cognitive decline.	
  1 Recently, 

six genes were found to be associated with WMH burden.	
  2 WMH accumulation is 

associated with disturbances in executive skills, which likely occur earlier than its impact 

on more global cognitive functions.	
  3,4 Trail Making Test Part B (Trails B) and the 

modified mini-mental (3MS) reflect executive skills and global cognition, respectively.	
  5,6 

Thus, we tested the hypothesis that single nucleotide polymorphisms (SNPs) in these 

genes previously linked to WMH are also associated with the cognitive phenotype driven 

predominately by the WMH burden.   

Cognitive Impairment Overview 

Cognitive decline is a substantial burden, with 5.4 million Americans afflicted in 

2012, 5.2 million of whom are over the age of 65.	
  7 Age is a primary risk factor, so as 

people live to older ages, disease burden increases. The two most common forms of age-

related cognitive impairment are AD and VD. AD was characterized by Alois Alzheimer 
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in 1906 as he observed the hallmark plaques and tangles in a woman at autopsy whom 

had developed a dementia.  VD is caused by strokes, or other vascular risk factors (i.e., 

hypertension, diabetes), which ultimately disturb blood flow to the brain.  Both, AD and 

VD, however, can appear phenotypically similar, with symptoms including memory loss, 

language loss, personality changes and impaired problem-solving skills.	
  8 

Burden of Disease 

By 2050 an estimated 21 million Americans will be over the age of 85 – nearly 

quadruple the number in 2012.	
  7 Age has been clearly indicated as a risk factor for 

dementia.	
  9 One in eight people age 65 and older has AD and it is estimated that 13.9% of 

people over the age of 71 have some form of dementia.	
  7 In men alone, there are currently 

1.8 million individuals over the age of 65 who are living with AD, meaning 11% of men 

in this age group have AD or some form of dementia.	
  7  

There is a high financial burden associated with cognitive impairment in the elderly. 

For example, in 2008, Medicaid payments for Medicare beneficiaries over age 65 with 

AD and other dementias were nineteen times those for cognitively intact patients.	
  7 These 

costs are associated with the long-term care needs of these patients, particularly their 

utilization of nursing homes and assisted living facilities. Additionally, Medicare 

recipients with Alzheimer’s and other dementia patients paid an average of $9,368 each 

in out-of-pocket expenses to cover long term care needs in 2008.	
  7  

In 2008, 82,435 people died of AD, although this is likely an underestimate as death 

certificates may list an acute condition as the primary cause of death instead of the 

underlying cognitive impairment.	
  7 Deaths from other major causes are decreasing, while 

deaths from AD and other dementias are increasing. Between 2000 and 2008, death 
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attributed to AD increased 66% while those attributed to heart disease decreased 13% 

over the same time period. AD is the fifth leading cause of death in people over 65 years.  

Symptoms, Diagnosis and Treatment 

Clinically, cognitive decline, induced by AD or VD, includes a variety cognitive 

symptoms including memory loss, confusion with time or place, challenges in solving 

problems, trouble understanding visual images and spatial relationships, poor judgment, 

and changes in mood and/or personality.	
  7 Progression through the disease is unique for 

each individual, and no effective treatment exists. Because cognitive tests are not a 

routine part of regular examinations, elderly patients are usually diagnosed with clinical 

dementia long after the initial onset of symptoms.	
  7 Subtle differences in the initial 

symptoms seem to be related to different forms of dementia, with memory loss being 

more prevalent in AD and impaired judgment being more common in VD, although 

disease presentation can vary greatly between individuals.	
  7 Patients eventually reach a 

stage in which they can no longer care for themselves and have impaired mobility, which 

is when a diagnosis of dementia is given.	
  7 This frequently leads to vulnerability to 

infections, Alzheimer’s-related pneumonia, and eventually death (Figure 1).  

VD is diagnosed when an MRI image displays vascular injuries in the brain that 

accompany low cognitive function.  AD can be diagnosed when other causes of dementia 

have been ruled out such as VD, tumors, or stroke.	
  1 AD is not generally confirmed until 

after death, when brain material can be closely examined.	
  8 For these reasons there is 

much overlap in the diagnosis of Alzheimer’s and VD.	
  10  

There is currently no treatment for AD or VD. The primary drugs used to maintain 

mental function are Cholinesterase inhibitors, thought to slow mental decline by 
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increasing brain levels of the neurotransmitter acetylcholine.  In clinical trials they are 

relatively effective showing and odds ratio of 1.56 (95% CI 1.32 – 1.85) when comparing 

those who improved to those who stayed the same or deteriorated over six months of use.	
  

11 Efficacy does seem to vary across populations and even at its best only temporarily 

reduces symptoms.	
  7 Interventions to manage the disease such as management of 

coexisting conditions, participation in activities, medications, and support groups, can 

increase the quality of life for those afflicted with cognitive impairment, but nothing has 

been found that can stop or reverse the progression of the disease.	
  12  

Role of Executive Functioning in AD and VD 

 Executive function is considered to be the higher-order cognitive capacities that 

are necessary to support independent, purposive, goal-directed behavior.	
  13 The National 

Center for Learning Disabilities defines it as the set of mental processes used to perform 

activities such as planning, organizing, strategizing, paying attention, remembering 

details and managing time and space.	
  14 Its presence is critical for elderly individuals to 

maintain independent lives, multi-task, and plan.  Decline in executive functioning is 

frequently seen in conjunction with decline in memory or global cognitive function, but 

some studies suggest that preclinical deficits in executive functioning precede cognitive 

impairment.	
  15 Executive function may be impaired two to three years prior to AD 

diagnosis.	
  16 Furthermore, executive functioning is one of the primary cognitive domains 

that have been shown to be independently associated with certain forms of 

cerebrovascular pathologies on MRI scans of brain tissue.  
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Mechanisms Underlying Cognitive Impairment 

We are interested in identifying genes associated with cognitive decline, but the 

mechanisms by which genetic difference cause the disease processes are important to 

consider. The mechanisms by which AD affects the brain are not entirely clear.  There is 

ample evidence to support the disease progression listed below, which is initiated by 

disturbance of neuronal protein homeostasis, characterized by the following processes 

(Figure 2)	
  17:  

1. Faulty processing of the amyloid precursor protein by beta secretase enzymes 

predominately lending toward longer cleavages of the amino acid chains of beta-

amyloid protein that begins to form “sticky” oligomers and then deposit in the 

extracellular space as plaques.  In addition, the microtubule matrices inside the 

neurons begin to break down as tau proteins begin disentangling, become 

phosphorylated and eventually become neurofibrillary tangles. Disturbed 

metabolism leads to degeneration of neuron, atrophy of the axon and eventual loss 

of synapses necessary for cell connectivity and transmission.   

2. Oxidative stress damages the mitochondria and together these phenomena are the 

underlying features responsible for the neurodegeneration seen in AD.    

3. As these molecular and cellular processes progress, structural changes are 

observed in the brain using MRI: the entorhinal cortex, hippocampus, and 

cerebral cortex begin to atrophy while the ventricles begin to expand; all signs of 

neurodegeneration.   

4. This sequence is followed by cognitive decline and eventual loss of the ability to 

maintain independent living. 
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While the “plaques” and “tangles” appear to have an important role in AD pathology, 

there is evidence that cerebrovascular disease also plays a role in many cases of AD.  

VD is also associated with symptoms of cognitive deficit and motor dysfunctions 

in the case of stroke induced dementia.  MRI methods are readily available to 

characterize early features of a vascular “mediated” cognitive decline and the 

cerebrovascular pathology, including small vessel atherosclerosis.	
  3 These are seen on 

MRI images as WMHs and are associated with accelerated cognitive decline, VD and AD. 

One distinct difference between the two, from a clinical perspective, is that AD has an 

insidious presentation taking years if not decades to evolve, while VD generates abrupt 

changes.  AD is the most commonly diagnosed form of cognitive impairment, but the 

importance of other forms of cognitive decline, such as VD are becoming increasing 

recognized as significant contributors to this public health burden.	
  1 However, the 

presence of VD does not exclude Alzheimer’s. In fact, it is now believed that both are 

frequently present together.	
  7 For these reasons there is much overlap in the diagnosis of 

Alzheimer’s and VD, and the term vascular cognitive impairment has recently been 

proposed to encompass this phenomenon.	
  10  

Most epidemiological literature is focused on AD, but there is a frequent co-

occurrence of AD pathology and other pathologic phenomena important to the risk for 

cognitive decline.  This thesis highlights “vascular driven pathways” to cognitive decline, 

where VD is the end of the clinical spectrum.  Because Alzheimer’s and VD have similar 

risk factors (e.g., age, education, vascular pathologies such as high blood pressure, high 

cholesterol and diabetes), public health efforts to reduce dementia incidence from each 

may be similar. Additionally, current cognitive tests alone cannot distinguish between 
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VD and AD (or other, less common, causes of cognitive impairment) From a genetic 

standpoint, the genotypes linked to these phenotypes may also overlap.  This overlap 

introduces some ambiguity when evaluating genetic associations, but it is currently very 

difficult to clearly separate these cognitive function phenotypes.  Because of the 

homogenous nature of the cognitive phenotypes, this thesis will consider literature 

pertaining to both cognitive phenotypes.  

Risk Factors for Cognitive Decline   

Identification of risk factors for dementia or cognitive decline might allow us to take 

the measures necessary to prevent the onset or to delay the progression.  Understanding 

disease pathology is important as it can provide early warning signs and aid in secondary 

prevention of the onset of symptoms.  It is also necessary to further understand the 

disease itself and develop effective treatments and prevention methods. Identifying 

genetic risk factors, however, might allow primary prevention, where those with 

increased risk for cognitive decline could take preventive measures before any disease 

pathologies begin, and far before symptoms are experienced.  Because there is no known 

way to prevent the onset of the disease, research must take a two-pronged approach, 

identifying risk factors and identifying potential prevention strategies. 

AD, like many chronic diseases that plague our society, is caused by a combination of 

genetic and environmental factors and its underlying pathology does not always present 

clinically as AD dementia.  The greatest risk factor for development of AD is aging, with 

the majority cases being diagnosed after age 65, and is present in over half of individuals 

over age 85.	
  7 A higher prevalence in women is confounded by the fact that women live 
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longer than men.  There is no strong evidence to believe that gender modifies risk for AD 

dementia.	
  7 

AD does show familial patterns and is considered to be at least partially heritable. 

Table 1 summarizes the results found in various studies examining the heritability of 

cognition. The first study showing increased risk of AD in family members of people 

with AD was published in 1981 and showed that subjects with relatives who had autopsy-

confirmed AD had increased risk of experiencing cognitive decline with the probability 

of 15.1% ± 2.6% of developing AD by age 84 compared to 5.5% ± 3.0% in the control 

group, suggesting the possibility for genetic transmission.	
  18 In 1993, a common genetic 

variant in the gene coding for apolipoprotein E (APOE) was found to be associated with 

increased risk for AD. Individuals carrying one or more copy of APOE e4 allele have 

3.68 times the odds (95% CI 3.30 – 4.11) of developing AD than non-carriers.	
  19,20 This 

association has been confirmed numerous times and across various populations, but it is 

neither necessary nor sufficient for the development of cognitive impairment and its 

causal pathway.	
  21 Since the discovery of the association with APOE, many more genetic 

associations have been identified, particularly since the advent of genome-wide 

association studies (GWAS), which allows large numbers of markers to be 

simultaneously assessed.  None of these genes however, has been successful in 

explaining large amounts of variation, with APOE estimated to explain only 7%-9% of 

total variation,	
  22 and all other genes explaining even less of AD pathologies, leaving 

much of the genetic associations poorly understood.	
  23  

In addition to genetic risk factors, vascular risk factors are important in cognition 

pathology. Development of AD has been linked to various vascular risk factors, including 
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high blood pressure in mid-life, type 2 diabetes, high body weight, and high cholesterol 

levels (Table 2).	
  24 Additionally cerebrovascular disease is known to be a risk factor for 

VD, but is also considered as a risk factor for AD.	
  24 Forms of cerebrovascular disease, 

such as ischemic infarcts or other changes in white matter in MRI imaging, have been 

clearly linked to increased risk of dementia, and co-occurrence with AD is common.	
  7 It 

is now thought that age-related cognitive impairment can be attributed to AD pathology 

and/or cerebrovascular disease.	
  1 This suggests that cardiovascular risk factors might be 

used to both predict and provide prevention targets for these related diseases, and many 

already have.	
  25 Additionally, because cerebrovascular diseases can be visualized as 

infarcts or white matter changes using MRI, this imaging could be used as predictive and 

diagnostic tools for AD.	
  1  

White Matter Changes/Hyperintensities and Cognitive Decline 

MRI of the brain can permit the study of structural and functional changes in the 

brain that are pertinent to cognitive behavior.  Brain MRI can detect structural changes 

that occur with aging.  For example, changes in the gray matter, specifically the 

hippocampal change in volume can predict decline in memory recall.	
  26 Changes in the 

white matter also occur but have been understudied in relation to AD risk and cognitive 

decline outside of stroke and VD.  These white matter signals, called lesions, are usually 

identified as leukoariosis or white matter hyperintensities (WMH) on T2 weighted or 

FLAIR MRI scans, and are prevalent in up 60-92% of the elderly population.	
  27,28 WMH 

have been shown to represent cerebrovascular disease	
  25,29, atherosclerosis	
  30 and 

demyelination of neurons in elders at autopsy.	
  31 They have been associated with vascular 

risk factors such as diabetes, fasting glucose, hypertension, systolic blood pressure, and 
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endothelial dysfunction.	
  32,33 White matter burden and changes are associated with 

vascular cognitive impairment, a syndrome that includes both cognitive impairment in 

one or more cognitive domains and evidence of vascular brain injury (stroke or 

subcortical WMH).	
  1 WMHs, a form of subcortical vascular brain injury, have recently 

been shown to independently predict dementia in the general population with the 

associations being found with both VD and AD.	
  34  

Various forms of white matter damage have been observed to be related to 

vascular cognitive impairment. White matter hyperintensities, which include areas of 

demyelination as well as silent infarcts,	
  33 have been clearly linked to all-type dementia.	
  

35 Additionally, larger volumes, and increased numbers of macroscopic infarcts have 

been associated with an increased likelihood of dementia.	
  1 In general, it appears that 

greater total and periventricular white matter hyperintensity burden is associated with 

cognitive impairment.	
  36 While the mechanisms by which white matter changes affect 

cognition are not well understood, the association has been consistently observed.	
  31   

 Not only have white matter hyperintensities been linked to all form dementia and 

AD,	
  31 but also more specifically, white matter lesions may impact particular cognitive 

domains more than others.  For example, literature is mounting that show WMH 

associated with lower executive function.   In a population-based study, Prins et al. found 

that periventricular white matter lesions, brain infarcts and generalized brain atrophy 

were associated with the rate of decline in executive function.	
  3 More recently WMH 

volume was also linked to increased relative risk for lower executive function in elderly 

community-dwelling subjects even after adjustments for sex, age, education and 

cardiovascular risk factors (Relative Risk = 1.55, 95% CI 1.06-2.26).	
  4  
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Genetic Basis for White Matter Hyperintensities  

In 2011, Fornage et al. conducted a meta-analysis of genome wide association 

studies in which they examined white matter hyperintensity (WMH) burden in 9,361 

stroke-free individuals from 7 cohorts.	
  2 Verhaaren et al. replicated these results in 

2011.37 Using a significance threshold of p<5 x 10-8, the study identified SNPs in or 

around six genes having genome-wide statistically significant associations with WMH 

burden: WBP2, TRIM65, TRIM47, MRPL38, FBF1 and ACOX1.  These genes are in the 

17q23 region meaning they are on chromosome 17, on the long arm of the chromosome 

as represented by “q”, and are in the 23rd band that you can see using a microscope and 

counting away from the centromere.  The current known function of these six genes 

provides limited insight into their role in cognitive decline mediated by silent vascular 

brain injury, in fact little is known about most of them (Table 3).  TRIM65, TRIM47 and 

FBF1 have been linked to apoptosis which may occur in white matter lesions	
  38,39, but no 

specific biologic mechanisms have been established.  Increased WBP2 expression has 

been associated with decreased noradrenaline transporters in mice, and decreased 

noradrenaline has been associated with AD in humans.	
  40,41	
  42 MRPL38 and ACOX1 are 

both associated with oxidative stress, but again specific mechanisms are not clear.	
  42-­‐45 

 Fornage et al. further examined two of these SNPs for associations with stroke, 

dementia and AD, and no significant association was found in these cohorts.	
  2 However, 

discovering the underlying relationship between genes affecting WMH and cognitive 

function may require testing the association of a complete set of SNPs from these genes 

in large cohorts of participants at risk for cognitive impairment.  Furthermore, WMH 

have been independently linked not only to vascular cognitive decline, but also more 
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specifically, to impairment and accelerated decline of executive functioning,	
  3 suggesting 

that use of a more specific phenotype may also aid in elucidating this relationship.   

Summary 

Cognitive impairment is a common and costly disorder with high prevalence and high 

projected incidence as the population in America ages.  AD and VD, the two most 

common forms of cognitive impairment, are similar conditions with many overlapping 

clinical presentation and risk factors. While many mechanisms underlying cognitive 

impairment are not yet fully understood, many risk factors have been identified including 

age, APOE gene, hypertension, diabetes, BMI, depression, cholesterol, diet and exercise.  

MRI technology is further aiding the understanding of this pathology.   Changes in white 

matter, including areas of WMHs, that can now be visualized and quantified, have been 

associated with cognitive performance, specifically executive functioning. Furthermore 

AD, VD and WMHs all share common vascular risk factors such as diabetes, 

hypertension, systolic blood pressure and stroke. Six genes were recently identified as 

being associated with WMH burden, and while the function of these genes is still poorly 

understood, it provides one step towards understanding the genetic basis of this 

neuroimaging phenotype, as well as candidate genes to study in association with 

cognitive phenotypes.  

Research Question 

 Foranage et al. identified six genes in the 17q23 region associated with white 

matter hyperintensites (Table 3).   Several studies have demonstrated WMH 

accumulation is associated with worse cognitive performance, particularly in the domain 

of executive function.  Our primary hypothesis is that genes associated with WMH are 
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also associated with executive functioning, a cognitive skill that appears most affected by 

the accumulation of WMH. The following specific aims are investigated in this study:  

1. Test whether there are associations between SNPs in these six genes and 

executive function as measured by Trails B.  

2. Test whether there are associations between SNPs in these six genes and global 

cognitive function as measured by 3MS.  

3. Compare and describe the SNPs in association with Trails B scores and 3MS 

scores in this MrOS sample.  

METHODS 

Data Management and Collection 

This study was conducted using data from the Osteoporotic Fractures in Men 

Study (MrOS). MrOS is a multi-center prospective cohort study designed to examine 

potential causes of osteoporotic fracture in elderly men (65 years and older), and also 

includes additional measures related to many aspects of aging, of which several will be 

used for this analysis. It enrolled subjects between March 2000 and April 2002 at six 

study sites: Birmingham, Alabama; Minneapolis, Minnesota; Palo Alto, California; 

Monongahela Valley near Pittsburgh, Pennsylvania; Portland, Oregon; and San Diego, 

California.  Because the primary focus of the MrOS study was osteoporosis, eligible men 

must have been able to walk without assistance, not have had bilateral hip replacements, 

and be community-dwelling, meaning none had been diagnosed with AD. All of these 

men had clinical and population characteristics measured at baseline and at follow-up 

studies.  This study is limited to baseline data alone, which will be used for this cross-

sectional analysis. Detailed descriptions of the MrOS cohort and its data collection have 
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been published elsewhere.	
  46,47 This study is funded by the National Institute of Aging 

and the National Institute of Arthritis and Musculoskeletal and Skin Diseases. I used the 

February 2012 data release. This protocol was approved by the OHSU IRB board. All 

data that I received was completely anonymized, prior to data being sent to me. I did not 

have the key to the code for the anonymized data.  Ages over 90 were truncated to 90 

before I receive the data and I did not know the key to find out specific ages for this 

subset.  There were 21 individuals who were classified as 90 years or older.  

Inclusion/Exclusion Criteria 

 For this analysis only data from five study sites was used: Minneapolis, 

Minnesota; Palo Alto, California; Monongahela Valley near Pittsburgh, Pennsylvania; 

Portland, Oregon; and San Diego, California because the consent form used in 

Birmingham did not include consent to have genotyping data analyzed for cognitive traits.  

Additionally, only Caucasian men had genotype data available, so analysis was limited to 

this racial group, which represented 77% of the cohort.  It was also limited to those who 

had genotyping data and cognitive measures available at baseline.  Additionally, those 

with a history of stroke were eliminated, as this is a known cause of cognitive decline, 

and the purpose of this study is to examine other causes of dementia (Figure 2).  

Outcome Definitions 

Cognitive Tests 

There are many neuropsychological exams that have been validated for testing 

cognitive performance.  These exams include some that tap global performance, and 

others are designed to assess language, attention, visuo-spatial skills, processing speed 
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and memory more distinctly.  Two psychometrics used in this study are: The Trail 

Making Test Part B (Trails B) and Teng’s Modified Mini-Mental (3MS) examination. 

Trails B is commonly used as a measure of executive functioning,	
  5 and executive 

function is important to maintaining activities of daily living in older adults.	
  16 This timed 

test asks subjects to connect numbers and letters alternately and in order as quickly as 

possible and time is recorded as seconds.  Various studies use different “end-points” for 

stopping the test when subjects have not yet completed the task, but the most common are 

to truncate at 200 or 300 seconds.  This test has been validated as a measure of executive 

function by comparing it to a set-switching task known to provide an index of executive 

function.	
  5   

In the MrOS cohort, subjects were timed while performing the test and if a 

mistake was made, the test administrator corrected subjects, and it was assumed that the 

mistake was accounted for by the longer time needed to complete the task. Each subject 

in the MrOS study had the Trails B test administered at baseline and at two subsequent 

follow-up visits.  Subjects in the MrOS study were given 300 seconds to complete the test. 

Those who did not complete the test in the allotted time had 300 seconds recorded for 

their time. Trails B was used as a continuous variable for this analysis.  

The Teng’s Modified Mini-Mental State Examination (3MS) is a modified version of 

the Folstein Mini-Mental State Examination (MMSE).  The MMSE asks questions testing 

basic arithmetic, language use and comprehension and basic motor skills.  The 3MS goes 

on to incorporate a few additional questions to cover a broader range of cognitive 

function.  This test is graded on a scale of 0-100, with different weights given to various 

questions, and a score below 80 was considered to indicate cognitive impairment.	
  6 It is a 
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short and easily administrable exam that provides a measure of global cognitive function 

without examining a specific domain.	
  6 3MS has been validated in cohort of individuals 

over age 65 as a reliable test of global cognitive performance.	
  48 

The 3MS was used to provide a measure for scoring global cognitive function in 

MrOS. Each subject in MrOS had the 3MS tests administered at baseline.  3MS score 

was used as a continuous variable for this analysis.  

Genetic Data Generation in MrOS 

Genomic DNA was extracted from blood using the Flexigene (Qiagen, Valencia, 

CA, USA) protocol at the University of Pittsburgh. Of the 5994 MrOS participants, 5551 

provided blood samples and 5506 had sufficient DNA quantity for whole-genome 

sequencing.  Genotyping was performed on members of the MrOS cohort for use in 

GWAS.  These studies are used to scan the genomes for SNPs associated with an 

outcome of interest.	
  49 This can be very useful to identify novel regions of the genome 

that may be associated with an outcome, and is the method that was used to identify the 

six genes in the 17q26 region this study is examining.  In MrOS, GWAS data was 

generated by whole-genome genotyping, creating a set of genotyped SNPs from which 

specific SNPs could also be used to test specific associations as I am doing in this study.  

Whole-genome genotyping was performed using Illumina’s HumanOmni1 Quad 

genotyping array at the Broad Institute. Genotypes were found using a clustering 

algorithm in Illumina’s BeadStudio software.	
  50 In this process DNA is hybridized to 

probes matching specific genotypes where fluorescence is observed if the DNA is able to 

bind to a probe and is not observed if it has the opposite allele and cannot bind.  

Illumina’s software identifies these reactions for the thousands of different SNPs being 
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tested to determine, or “call”, each genotype in each individual.  When DNA hybridizes 

to the probes on these arrays they form clusters, and the software that reads these results 

must distinguish between the various clusters to determine specific genotypes.  The 

software has various built in measures to determine if these clusters are physically 

distinguishable thereby making the genotype calls more or less reliable.  Samples were 

excluded due to poor quality if they had call rates lower than 97%, referring the 

frequency with which the software feels it can make an accurate call. GenTrain scores 

reflect the shape and inter-cluster distance on the arrays and scores lower than 0.6 were 

excluded.  Cluster separation scores lower than 0.4, meaning the clusters were too close 

together to call, were also excluded. Additionally minor allele frequency lower than 0.01 

were excluded as genotyping error would have a large effect on these SNPs.  SNPs out of 

Hardy-Weinberg equilibrium were assumed to have genotyping error and were excluded 

(Pearson’s chi-squared p-values <10-4).  Of the 1,016,423 SNPs on the array, 740,713 

passed this quality control.  

As further quality control, duplicates were genotyped for 81 samples and pairwise 

concordance was 100%. A diverse group of population samples were used for quality 

control (QC).  Replicates of subjects used in HapMap trios of Utah residents with 

Northern and Western European ancestry (CEU) and Yoruba in Ibadan, Nigeria (YRI) 

populations and singletons from Han Chinese in Beijing, China (CHB) and Japanese in 

Tokyo, Japan (JPT) populations were genotyped along with MrOS samples.	
  51 

Comparisons between these replicates and HapMap genotypes were determined to assess 

the quality of the genotyping within the MrOS cohort.   Concordance between the control 

samples and HapMap genotypes was 99.7% and 95.0-99.7% for CEU and YRI samples 
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and CHB and JPT samples respectively indicating acceptable quality for the MrOS 

genotypes.   

SNP Inclusion Criteria 

Using dbSNP, a list of 1692 SNPs was composed that are in the six genes of 

interest: WBP2, TRIM65, TRIM47, MRPL38, FBF1 and ACOX1. The analysis was based 

on all SNPs from this set that were also included on the Illumina 1M genotyping chip 

datasets that are available for study subjects. For each SNP, each subject had one of three 

genotypes: homozygote for the major allele, homozygote for the minor allele, or 

heterozygote.  Of the 1692 SNPs identified in these target genes, only 45 were available 

in the MrOS GWAS dataset.  Of these 45, 4 SNPs were excluded on the basis of having 

only one allele represented. Five SNPs did not have any individuals who carried the 

homozygote minor allele genotype.  These SNPs could not be used for recessive effects 

models, but were able to be used for additive effects models (these models are explained 

below). SNPs in each gene were assessed for correlations with each other (Appendix 1), 

and highly correlated SNPs had one of the two removed at random. For this pruning only 

correlations within genes, not between genes, were considered. SNPs were considered 

highly correlated when r2 > 0.8 and it was assumed that SNPs that were higher correlated 

were in strong linkage disequilibrium and would therefore be testing the same effects 

(Table 4).  

Principal Component Analysis 

Common ancestry can cause confounding of the relationship between SNPs and 

any outcome of interest as ancestral differences in cognition (attributable to genes not 

included in this study) could be mistakenly attributed to our specific SNPs. It is necessary 
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to account for this potential population stratification resulting from systematic ancestry 

differences in the population studied.  For example, systematic ancestral differences may 

be responsible for causal SNPs underlying a phenotype of interest, but these same 

ancestral patterns may be responsible for non-causal SNPs being tested in relation to the 

phenotype.  This circumstance may yield an association between these non-causal SNPs 

and the phenotype, that is not a true association but simply seen because of common 

ancestral patterns. Principal component analysis (PCA) is a method by which to model 

these ancestral differences and create variables that can be used to control for this 

stratification in other models. PCA can be used to reduce the complexity of high 

dimensional genomic data to lower dimensions while continuing to explain as much of 

the genetic variation in the entire sent of genes as possible. These resulting variables are 

principal components, called eigenvectors, and can be used in subsequent analysis within 

the same population to adjust the relationship between SNPs and phenotypes, thereby 

attempting to account for any systematic ancestral differences in the population.	
  52  

In MrOS PCA was used to model ancestry differences within this cohort using its 

GWAS data and including 35,769 SNPs in 4,637 men. There is a chance that some of the 

SNPs I am testing were included in this PCA, but because of the large number for total 

SNPs used for this analysis, our SNPs would not greatly influence the outcome of this 

analysis, and making it unlikely that adjusting for PCA would cause potential 

associations between our SNPs and cognitive measures to not be found.  The first four of 

the resulting eigenvectors were then used in analyses to account for any systematic 

ancestry differences within the population and to ensure that spurious associations, due to 

common ancestries, are not observed.	
  52 While more than four eigenvectors were 
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generated, each successive one explains a smaller proportion of the variation, so the four 

of these eigenvectors should adequately account for any population stratification due to 

ancestry.   

Covariates 

Because of its strong link to cognitive decline, age is important to consider.  Age 

is the strongest known predictor of dementia, and it was necessary to account for this 

covariate in any analysis. This cohort has a minimum age of 65 years. Subjects with ages 

greater than 90 years were censored to 90 years, as an age over 90 years is considered 

identifiable data and this type of data was not approved by the IRB.  

Study site can also cause confounding through ancestry differences.  This could 

occur through systematic ancestral differences by study site. While the principal 

components should account for this phenomenon, we do see highly significant 

differences between study sites even after adjustment for age.  Therefore, we adjusted for 

it in each model, both base and multivariate.  

Other than ancestry, confounding was not a concern in this analysis because no 

other variable, can influence a subject’s genotype.  However, because various other 

factors have been linked to cognitive decline, there was a potential for covariates to be 

influencing cognitive measures. The covariates that were examined and considered for a 

final model are: BMI, total cholesterol, LDL cholesterol, HDL cholesterol, hypertension 

status, anti-depressant use, selective serotonin reuptake inhibitor (SSRI) use, systolic 

blood pressure, diabetes status and education level. All variables were measured at 

baseline at the subjects' first visit, the same visit at which cognitive measures were 

assessed.  
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BMI is a calculated variable made by dividing each subject’s mass in kilograms 

by their height in meters squared, as measured at the baseline visit.  Total cholesterol, 

LDL cholesterol, HDL cholesterol and systolic blood pressure were measured in mg/dL 

at baseline.  Diabetes status was measured at baseline using fasting glucose (≥8hrs) using 

a Hitachi 917 Autoanalyzer. Subjects were put into one of three categories: Diabetes 

(fasting glucose ≥126 mg/dl, or self-reported diabetes at baseline or use of hypoglycemic 

medications at baseline), impaired fasting glucose (fasting glucose ≥100 and <126 mg/dl) 

or normoglycemic (fasting or non-fasting glucose <100 mg/dl). Current and previous 

hypertension status was self-reported by participants as well as current and previous SSRI 

and antidepressant use.   

The highest level of education was reported for each participant.  There were 

eight categories possible: some elementary school, elementary school, some high school, 

high school, some college, college, some graduate school, and graduate school.  All eight 

categories are presented with the population characteristics (Table 5).  Due to small 

sample size for some of the levels of education, some of the groups were combined to 

create a new variable definition.  They were combined based on similar Trials B scores to 

create an education variable with five levels: elementary school or less, some high school, 

high school or some college, college, some or all graduate school.  

Models 

To test for associations between SNPs in the six genes of interest, I built a variety 

of linear regression models.  First each SNP was used to build additive regression models 

on each of my cognitive outcomes: 3MS and Trails B. An additive model uses three 

levels for the genotype: homozygous for the minor allele, heterozygous and homozygous 
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for the dominant allele.  These were coded as 0, 1, and 2 respectively in this study. This 

allows one to test the effects of having zero, one or two copies of an allele separately. 

Each SNP was then also used to build recessive regression models on each cognitive 

outcome.  Recessive models use only two levels for the genotype: those that contain no 

copies of the major allele, and those that contain the major allele.  These are coded as 0 

and 1 respectively.  This allows one to test the effects of having a dominant allele versus 

not having a dominant allele.  Using both methods allows one to look at different types of 

genetic associations.  If the SNPs are related in a dominant fashion, and the heterozygous 

and homozygous dominant genotypes are phenotypically equivalent, then a recessive 

model will be best to identify associations.  If a dose effect is present, where those with 

heterozygous genotypes fall phenotypically between the two homozygous genotypes, 

then additive regression will be best to identify the associations.  

 Each SNP was first used to build both additive and recessive regression models 

on each cognitive outcome adjusting for age and study site only. Second, each of these 

models was built again including the first four eigenvectors as covariates.  Then, each 

model was also rebuilt using censored normal regression and adjusting for age, study site 

and the first four eigenvectors. Censored normal regression was used to account for the 

spike in scores at the top end of both the Trails B and 3MS distribution. Because 

participants were cut off after 300 seconds during the Trails B test, those who did not 

finish had a time of 300 seconds recorded, creating a spike at this final value (Appendix 

2).  Additionally, 3MS has a maximum score of 100 points, and therefore also has a spike 

at 100 points that represents all subjects with perfect scores (Appendix 2). It is assumed 

that among those with 300 seconds on Trails B or 100 points on 3MS that some variation 
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still exists, and censored normal regression can account for this.  Using this method 

allowed a comparison between censored and non-censored models to see if these spikes 

were greatly influencing the outcomes.   

Finally, linear regression models were built that not only adjusted for age, study 

site, the first four eigenvectors, but also the risk factors that were independently related to 

the cognitive phenotypes.  These variables were chosen after looking at their associations 

with Trails B and 3MS in the first step of this analysis. This step was done to make sure 

that no factors independently related to the cognitive phenotypes were responsible for 

explaining the variation being attributed to the SNPs of interest.   

Statistical Analysis 

All statistical analyses were performed using SAS version 9.3 (SAS Institute Inc.) 

and used the following six-step process:  

Step 1 – Summarize Population 

Baseline demographic and clinical characteristics were summarized in all subjects 

Cognitive risk factors described are: age, education level, antidepressant and SSRI use.  

Vascular risk factors described are: hypertension status, total cholesterol, LDL 

cholesterol, HDL cholesterol, systolic blood pressure, and diabetes status.  Means and 

standard deviations were reported for continuous variables.  Population proportions were 

reported for dichotomous and categorical variables.  

Step 2 – Covariate Analysis 

Each covariate discussed above was analyzed for an association with Trails B 

time and 3MS score in the analytic dataset to identify potential effect modifiers.  Non-

parametric measures were used to test the relationships between covariates and both 



	
   24	
  

Trails B and 3MS scores as both measures deviated from a normal distribution.  Mean 

and standard deviation of each outcome variable (Trails B and 3MS) were calculated for 

each dichotomous covariate (hypertension, SSRI use and antidepressant use) and 

compared using a two-sided Wilcoxon rank sum test.  Continuous covariates (age, BMI, 

total cholesterol, LDL cholesterol, HDL cholesterol, and systolic blood pressure) were 

divided into quartiles to create categories by which to compare Trails B and 3MS scores.  

Means of each of the quartiles as well as means from the other categorical variables 

(education and diabetes status) were compared using a two-way Kruskal-Wallis test. 

Continuous variables were also evaluated for correlation with both Trails B and 3MS and 

a Spearman rank correlation coefficient was reported.  The Spearman rank correlation 

was repeated after adjusting for age.  Age-adjusted p-values are also reported for non-

continuous covariates.  These were generated using linear regression analysis of each 

outcome of interest on each covariate while adjusting for age.  Finally, expected genotype 

frequencies were calculated and each SNP was tested for Hardy-Weinberg Equilibrium 

using a Fisher’s exact chi-squared test, to account for very low frequencies of certain 

alleles.  

Step 3 – Initial Models 

Linear regression models were built to test the additive effects of each of the 26 

SNPs on Trails B and 3MS. Additive effects models considered three genotypes: 

homozygote for the minor allele (coded as zero), heterozygote (coded as one) and 

homozygote for the major allele (coded as 2).  Five of the SNPs being used had no 

homozygote recessive genotypes present in this population, so only the remaining 21 

SNPs were used to build recessive effects models.  Recessive effects models consider 
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only two genotypes: homozygote for the minor allele (coded as zero), and those that 

contain at least one copy of the major allele (coded as one).  These models included age, 

and study site, but no other covariates.  Then a second set of models was build that 

included age, study site and the first four eigenvectors. Additionally, censored normal 

regression models were built for each outcome and both the additive and recessive effects 

models to account for the non-normal distributions of Trails B and 3MS.    

Because each association was being tested with 26 SNPs, a false discovery rate 

(FDR) correction was used on each raw p-value.	
  53 This method accounted for multiple 

comparisons, while not being as strict as a family-wide error rate correction. A 

Bonferroni correction would mean that p-values for each SNP would need to be <0.0019 

to be considered statistically significant.  The FDR correction, however, adjusts the raw 

p-values by ranking them in ascending order, and then dividing each raw p-value by its 

rank, creating an adjustment that penalizes larger p-values less than smaller ones. 	
  54 

Step 4 – Adjusted Models 

Models were built adjusting for all covariates that showed a significant 

relationship to either Trails B or 3MS.  Models of Trails B were adjusted for BMI, HDL 

cholesterol, systolic blood pressure, antidepressant use, diabetes status and education.  

These models were also adjusted for study site, age and the first four eigenvectors as in 

the base models.  Models of 3MS were adjusted for age, BMI, HDL cholesterol, systolic 

blood pressure, diabetes status and education, study site and the first four eigenvectors. 

Linear regression models including these covariates were built to test both additive and 

recessive effects on Trails B and 3MS as described above.  Additional censored normal 

regression models were also built using these covariates for both Trails B and 3MS 
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testing both additive and recessive effects to verify that deviation from normality was not 

affecting the linear regression (data not shown).  For each model, p-values were adjusted 

using a FDR correction.   

Step 5 – Model Diagnostics 

Residual analysis was performed on models that showed SNPs significantly 

associated with an outcome.  Plots showing raw residuals versus expected values were 

examined for unexpected patterns.  Leverage graphs were also examined for outliers and 

Cook’s distance was used to identify outliers and assess their influence and check for 

errors in the dataset.   

Step 6 – Final Model 

After looking at the associations above, the dataset was divided randomly into 

two groups. Using one of these groups we attempted to create a model that explained the 

most variation in Trails B using a subset of SNPs.  Multivariate linear models were built 

using subsets of SNPs (as well as age and principal components) and Mallow’s Cp, was 

used to compare the resulting multivariate models. Mallow’s Cp is a calculated value, 

using the mean squared prediction error, which allows for comparisons between models 

using different subsets of all possible variables. The value of Mallow’s Cp is expected to 

be close in to the number of predictors in the model, so a model with a Cp value mostly 

closely matching the number of predictors will be the best model. This method is used to 

select the model that allows the highest predictive ability without over adjusting for two 

many variables. The model that best explained variation in Trails B was then applied to 

the second half of the dataset to test if the identified SNPs were still significantly 

associated with Trails B. 
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RESULTS 

Study Population 

A total of 3552 and men with a mean age of 74 years (± 5.9) from the MrOS 

cohort met the inclusion criteria for this analysis. Subjects represented each of the 5 study 

sites with similar frequency. The mean Trails B score was 129.5 (± 56.3) and the mean 

3MS score was 94.1 (± 5.0). Antidepressant use in this cohort was low with only 181 

mean (5.5%) and even fewer subjects using SSRIs (n=78, 2.3%). In this group, 1636 

(46.4%) subjects were normoglycemic, 1174 (33.3%) subjects experienced impaired 

fasting glucose, and 487 (13.8%) had diabetes. Close to half the dataset reported 

hypertension (41.2%).  These men were highly educated (55% completed college or 

higher). Population and clinical characteristics are presented in Table 5. 

Risk Factors and Cognitive Measures 

Risk Factors and Trails B 

 Trails B was correlated with age (r=0.34, p<0.001), as expected, since age is 

known to be the greatest predictor of cognitive impairment. Trails B was also correlated, 

after adjusting for age, with systolic blood pressure (r=0.38, p=0.03), and was only 

weakly correlated with BMI (r=0.05, p=0.002) and very weakly correlated with HDL 

cholesterol (r=-0.002, p=0.002). Initially it appeared that high Trails B times (indicating 

poorer performance) were associated with lower LDL and total cholesterol values, but 

after adjusting for age, these correlations were no longer significant. As expected, Trails 

B times were highly associated with education level, diabetes status, and antidepressant 

use (all p≤0.001). The associations between Trails B and other cognitive risk factors are 

presented in Table 6. 
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Risk Factors and 3MS 

 3MS was also correlated with age (r=-0.29, p<0.001), as expected. Also similar to 

Trails B, after adjustment for age, 3MS scores were correlated with BMI (r=0.08, 

p<0.001), HDL Cholesterol (r=0.07, p<0.001), and systolic blood pressure (r=-0.08, 

p<0.001), although all correlations were small and likely spurious and only due to the 

large population size.  Also similar to Trails B, higher 3MS scores (indicating better 

performance) appeared initially associated with lower LDL and total cholesterol values, 

but after adjusting for age, these correlations were not longer significant. 3MS scores 

were highly associated with education level and diabetes status (both Kruskal-Wallis 

p<0.001), but unlike Trails B times, they were not associated with antidepressant use. 

The associations between 3MS and other cognitive risk factors are displayed in Table 7. 

Study Sites and Cognitive Measures 

 Both Trails B and 3MS means varied significantly by study site (p<0.001 for both 

tests). These relationships were still significant for both cognitive measures after 

adjusting for age (p<0.001).  Mean Trails B scores and mean 3MS scores are shown in 

Table 6. Differences by study site could indicate ancestral differences by study site, and 

could confound analysis.  Therefore, study site was adjusted for in each model of SNPs 

on Trails B or 3MS.  

Trails B and 3MS 

  Both Trails B and 3MS measure cognitive performance, but they have 

differences in the types of performance they measure making it useful to see if these 

measures outcomes are related to each other.  The two measures were only moderately 

correlated with r=0.43 (p<0.001).  
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Linear Regression Models 

SNPs 

Twenty-six SNPs were selected for this analysis. All SNPs were also found to be 

in Hardy-Weinburg Equilibrium.  Trails B and 3MS scores by genotype of each SNP are 

displayed in Appendix 3 and Appendix 4. To account for potential ancestral differences 

in the population, previously calculated principal components were used as covariates in 

both the base and adjusted models. 

Use of Principal Components Analysis 

 Initial models were built with and without the inclusion of the eigenvectors from 

the principal component analysis. The models with and without the eigenvectors were 

very similar and they did not cause any noticeable change in the magnitude of effect or in 

which SNPs were significantly associated with outcomes. This suggests that confounding 

by ancestry was not a problem in this cohort.  

Additive Effects Model on Trails B 

An Additive Effects Model was built on Trails B for each of 26 SNPs (Table 8 

and Appendix 5), adjusting for age, study site and the first four eigenvectors. SNPs in 3 

different genes were found to have significant non-corrected β-values: rs7208173 in 

TRIM65 (β=-45.2, p=0.024), rs9892372 in MRPL38 (β=-19.8, p=0.011), and rs8082018 

in ACOX1 (β=-20.6, p=0.007). Negative beta-values correspond to a decreased Trails B 

score associated with the minor allele because the genotypes were coded such that a 

homozygote minor allele genotype is zero, a heterozygote genotype is one and a 

homozygote the major allele genotype is 2. For example, a β of -19.6 in the rs9892372 in 

MRPL38 indicates that men who are heterozygous have a mean Trails B score that is 19.6 
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seconds longer than those with the homozygote major genotype, and 19.6 seconds shorter 

than those with the homozygote minor genotype. Considering the standard deviation of 

Trails B in this cohort is 56.3 seconds, the effect of one additional minor allele 

corresponds a decrease of 34.8% of one standard deviation in Trails B.   

In this population, rs7208173 in TRIM65 has a minor allele (C) frequency of 

0.001, has no individuals with the CC genotype and only 7 individuals with the CT 

genotype, bringing into question whether or not this observed relationship is spurious.  

rs9892372 in MRPL38 has only 2 individuals with the homozygote minor allele genotype 

(mean Trails B = 167±18.4) but has 39 heterozygous individuals (mean Trails B = 145.5 

±67.7) to compare with 3478 homozygous major allele individuals (mean Trails B = 

129.3 ±56.1).  rs8082018 in ACOX1 has 2 homozygous minor allele individuals (Trails B 

= 167.0 ±18.4), 40 heterozygous individuals (mean Trails B = 145.7 ±66.8) and 3483 

homozygous major allele individuals (mean Trails B = 129.3 ±56.1). While the minor 

allele frequency is low in each of these three SNPs, the three genotypes do show a dose-

dependent effect with minor allele being associated with lower scores in the heterozygote 

genotypes, and even lower scores in the homozygote minor allele genotypes.  Due to the 

similarity in the Trails B scores and allele frequencies at these two SNPs I went on to test 

the correlation between each of these SNPs and found that they are all highly correlated 

with each other (r > 0.8, p<0.05).  

When the FDR correction was applied, none of these SNPs continued to show 

significant associations with Trails B times or 3MS scores. Including potential covariates 

(BMI, diabetes, education, systolic blood pressure and HDL cholesterol), as well as using 

censored normal regression models, identified the same three SNPs as significant 
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predictors for Trails B displaying only small differences in β-coefficients, but again, in 

each of these models the SNPs were no longer significant after using the FDR correction.   

Recessive Effects Model on Trails B 

The recessive effects model identified two additional SNPs in ACOX1 with 

significant β-values when adjusted for only age, study site and the first four eigenvectors: 

rs6343 and rs3744033 (Appendix 6).  However, after adjustments were made for the 

other cognitive risk factors that were also associated with Trails B (BMI, HDL 

cholesterol, systolic blood pressure, education, diabetes and anti-depressant use) the 

association with either of these SNPs did not remain significant.  

Adjusting for the additional cognitive risk factors also identified, as significant at 

p<0.05 level, the same two similar SNPs from the additive effects models: rs9892372, 

and rs808218 although they were not found to be associated in the models only adjusted 

for age and principal components.  This may not be a genuine association, due to the fact 

that at each of these SNPs only two individuals are homozygous for this minor allele, 

which is not enough to provide an accurate test.  It is however, promising that it at least 

shows the same trend as the additive model.  In these recessive effects models, using 

censored normal regression did not change the outcome.  Applying the FDR correction 

did cause all SNPs to become insignificant predictors of Trails B in these models.   

Additive Effects Model on 3MS 

An Additive Effects Model was built on 3MS for each of 21 SNPs (Table 9 and 

Appendix 7).  This model was adjusted for only age, study site and the four eigenvectors. 

In this model six SNPs were associated with 3MS scores, one in MRPL38: rs9892372, 

(β=1.75, p=0.014) and three in ACOX1: rs3643 (β=0.46, p=0.029), rs8082018 (β=1.75, 
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p=0.013), and rs7213998 (β=0.43, p=0.039). Because lower 3MS scores are associated 

with lower cognitive performance  (as opposed to Trails B where higher scores are 

associated with lower cognitive performance), positive β-coefficients correspond to 

deleterious effects of a minor allele.  

The adjustments for other cognitive risk factors did not change the significance of 

any SNPs in these models.  Using censored normal regression also did not produce 

significantly different results in terms of which models significantly predicted 3MS 

scores.  After using the FDR correction, no SNPs were significantly associated with 3MS 

scores in the additive models.   

Furthermore, these SNPs, while associated with 3MS scores, are associated with 

very small actual changes in average 3MS scores.  For instance, at rs8082018 those 

homozygous for the minor allele had a mean 3MS score of 92.0 ±2.8, while those with 

the heterozygous genotype had a mean 3MS score of 92.3 ±5.3 and individuals 

homozygous for the major allele had a mean 3MS score of 94.1 ±5.0.  While these results 

may be statistically significant in a linear regression model, they may be clinically 

irrelevant, as these scores are all very similar and may indicate little difference in the real 

impact to an individual’s daily life. 

Recessive Effects Model on 3MS 

Building recessive effects models on 3MS identified two additional SNPs in two 

genes as significantly associated with 3MS scores as well as identifying one SNP form 

the additive effects models with even higher predictive value (Appendix 8).  rs7213548 in 

FBF1 (β=3.31, p=0.009), and rs3643 (β=3.48, p=0.001)  and rs11651351 (β=6.55, 

p<0.0001) in ACOX1 were all found to be significantly associated with 3MS scores in the 
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model adjusting for age, study site and the four eigenvectors alone.  Both SNPs in 

ACOX1 remained significantly associated with 3MS after correction for multiple 

comparisons.  After building multivariate models (adjusting for BMI, HDL cholesterol, 

systolic blood pressure, education, and diabetes), these same three SNPs are still 

significantly associated with 3MS scores. Each of these three SNPs have only a few 

individuals with the homozygous minor allele genotype, but their mean 3MS scores are 

noticeably different.  For example rs3643 in ACOX1 only has 20 individuals who are 

homozygous for the minor allele, but they have a mean 3MS score of 90.8 ± 6.5 

compared to those who carry one of the major alleles who have a mean 3MS score of 

94.1 ±5.03, and while these means are not different enough to be statistically significant, 

and may not even be clinically significant, a clear trend is observed.  The SNP that is the 

most significantly associated with 3MS is rs11651351 in ACOX1.  It only had 11 people 

who are homozygous at the minor allele and have an average 3MS score of 97.5 ±2.79 

compared to those who carry the major allele who have a mean 3MS score of 94.1 ±4.77.  

The recessive effects model of rs3643 on 3MS was also significant after the FDR 

correction (p=0.14). These two SNPs were the only SNPs that were still significant after 

adjusting for all covariates in the multivariate model and using the FDR correction. 

Interestingly, the adjustments for other cognitive decline risk factors in the 

recessive model on 3MS, yielded a noticeable change in some of the β-values associated 

with each significant SNP in its model.  This effect was much less pronounced in either 

the additive or recessive effects models on Trails B, or in the additive models on 3MS.  

Further examination indicated that that education and systolic blood pressure had the 

greatest effect on decreasing the magnitude of the β-coefficient. Each of these two 
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covariates alone lowered the β-coefficient, and together they had an even greater effect.  

BMI and HDL cholesterol had very small effects on the β-coefficients in these models. 

As in the additive effects models, statistically significant associations corresponded to 

relatively small changes in 3MS scores that may have little clinical relevance.  

Best-Fit Models 

 By regressing Trails B on age alone, we found that only 11.5% of the variation in 

Trails B is explained by age.  When the four eigenvectors and the study site are included 

13.2% of the variation in Trails B is explained.  It would be useful to have a model that 

explained a greater portion of this variation.  Towards this end, we attempted to select the 

best subset of SNPs to predict Trails B outcome.  To do this, Mallow’s Cp was calculated 

for various combinations of predictors.  Each model included age, study site and the four 

principal components.  Initially this analysis was performed in half of the group chosen at 

random.  Using this approach the best model to predict Trails B did not include any SNPs 

and only included the required variables (age, eigenvectors and study site).  The second 

best model included one SNP: rs8082018 in addition to age, study site and the four 

eigenvectors (Cp = 1.48, R=0.0973). When testing this model on the same half of the 

group, the β-value associated with this SNP was only marginally significant (p=0.053).  

This is likely due to the loss of power by only using half the dataset.  Linear regression 

was then performed using this model in the second half of the dataset and similar results 

were observed. Using this model with the full dataset explained 13.5% of the variation in 

Trails B, barely more than without this SNP.   

 While it is interesting to know which SNP from this set is the best predictor of 

Trails B, this model does not provide a good way in which to predict which patients have 
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decreased cognitive performance. We know that this phenotype is multifaceted and likely 

controlled by many genes.  Therefore, individuals SNPs are likely not going to be 

extremely useful for diagnostic tests.  This shows that these genes are not alone a good 

set to use to develop a model that can explain a large amount of variation in cognition.  

Residual Analysis 

 On each significant model, residual analysis was performed.  A plot of residuals 

versus predicted values was created and assessed (Appendix 9).  A pattern was observed 

in the graphs of all Trails B models.  This was due to the spike in frequency for a time of 

300 seconds.  This was noted earlier as a deviation from normality in this measurement.  

We had attempted to use censored normal regression to account for this deviation, and it 

did not greatly change the results of the regression analyses. Graphs displaying leverage 

were used to identify outliers and additionally, using Cook’s distance to assess influential 

points also generated a list of those people who had gotten 300 seconds as a Trails B time.  

Again, because the censored normal regression models that attempted to account for this 

phenomenon did differ greatly from the linear regression models, these results were not 

of concern.  No other problems were observed in the residual analyses of these significant 

SNPs.    

DISCUSSION 

This study examined the relationship between six genes previously associated 

with WMH burden, WBP2, TRIM47, TRIM65, MRPL38, FBF1 and ACOX1, and 

cognitive performance in elderly men.  Trails B, a test of executive function, was used as 

the primary outcome, but 3MS, a measure of global cognition was also examined for 

associations with 26 SNPs in these six genes.  This study found that SNPs in two genes, 
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MRPL38 and ACOX1, might be associated with executive function as measured by Trails 

B.  Furthermore, SNPs in MRPL38, ACOX1 and FBF1 were found to be associated with 

global cognitive function as measured by 3MS. These models were adjusted for age, the 

largest known predictor of age-related cognitive impairment and study site, to account for 

potential confounding caused by difference in measurements. Adjusting models for 

principal components, other cognitive impairment risk factors or using a censored normal 

regression to account for non-normality in the outcome variables did not change the 

SNPs that were found to be associated, and had very little affect on the magnitude of the 

effects.  Only one model, the recessive effects model of rs11651351 in ACOX1 on 3MS 

score, remained significant after adjusting for covariates using a FDR correction to 

account for multiple testing. The recessive effects model of rs3643 in ACOX1 and 3MS 

was also significant after applying the FDR correction as well as covariate adjustments, 

but had a p=0.051 when both the adjustments and FDR correction were applied.  Overall, 

this study suggests that genes that predict white matter disease may also be associated 

with cognitive function in elderly men, but confirmation in larger cohorts, as well as in 

women, and a better understanding of these genes’ functions are needed to support these 

findings.   

Associations 

Cognitive Risk Factors and Trails B and 3MS 

This study confirmed that vascular risk factors such as HDL cholesterol, systolic 

blood pressure, BMI and diabetes are related to both tests of executive function and 

global cognition. As expected, age accounted for some of the variation seen between 

these measures and cognition, but significant relationships were still observed after 
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adjusting for age.  Education level, a proxy measure of cognitive reserve, was highly 

associated with better Trails B and 3MS scores, even after adjusting for age.  This 

population is highly educated with three quarters of men having attended at least some 

college and a quarter of them having finished graduate school.  This selection bias is 

likely due to the selection bias resulting from men with greater education being more 

likely to volunteer for a study.  Nevertheless, a clear association was observed between 

education level and cognitive measures of executive function and global cognition 

(p<0.0001 after age adjustment for both outcomes).  This association between education 

level and AD has been shown consistently and is part of the cognitive reserve hypothesis 

that suggests that individuals with higher IQ, education or occupational complexity have 

decreased incidence and prevalence of AD.	
  55 

Depression is a known risk factor for cognitive decline,	
  56 but a direct measure of 

depression was not available in the MrOS dataset.  Data was available on antidepressant 

use as well as use of the specific class of antidepressants, SSRIs.  Antidepressant use was 

associated with increased Trails B times (indicating poorer performance), but it was not 

with 3MS scores, while SSRI use was not associated with either cognitive measure.  It 

can be noted that antidepressant use may not accurately reflect those who experienced 

depression, as these drugs can be prescribed for other uses, or people may have 

experienced depression who did not seek treatment, or who used a non-pharmaceutical-

based treatment.  This likely misclassification would only cause failure to account for 

some of the variation in the outcome variables and should not affect the magnitude of any 

effects seen in this study, as it is not related to the genes themselves.  
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Genes Associated with Trails B and 3MS 

 Multiple SNPs were found in this 17q25 region that were related to either Trails B 

times or 3MS scores with nominally significant p values (<0.05) but most of these 

significant relationships were not present after FDR adjustment.  These associated SNPs 

were identified in ACOX1, MRPL38 and FBF1.  No associations were found between 

either of the cognitive tests and any SNPs in TRIM47, TRIM65 or WBP2.   

 MRPL38 showed one SNP, rs9892372, which was associated with Trails B and 

3MS in additive models with unadjusted 0.006<p<0.03 in all models but FDR adjusted 

0.07<p<0.22.  This effect could not be reliably tested in the recessive models, as there 

were only two individuals homozygous for the minor allele.  MRPL38 encodes a protein 

in the mitochondrial ribosome subunit 39S.  Mitochondrial dysfunction has been 

implicated in Alzheimer’s disease pathology	
  57 as has oxidative stress	
  45 which has been 

shown to affect this specific subunit.	
  44 Both mitochondrial dysfunction and oxidative 

stress are areas of active research for AD therapies, and while the link between genes and 

these processes is still incomplete, these finding further support this area of research. 

MRPL38 had only three SNPs to test in this cohort, all located in non-coding regions, so 

it is possible different associations could be observed with other known SNPs in this gene.   

 The association with FBF1 was only seen in the recessive effects model on 3MS 

scores, with rs7213548 showing a significant association before the multiple comparison 

adjustment (p=0.009).  Following the FDR correction this relationship was no longer 

significant (p=0.065). FBF1 encodes for a protein that interacts with the Fas cell surface 

receptor, a regulator of apoptosis.  Not only has apoptosis been implicated in AD	
  57, there 

is evidence of it occurring in white matter lesions,	
  58 suggesting some biologic 
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plausibility for this association, although further understanding of this gene’s function is 

needed. By understanding the specific role of FBF1 on apoptosis, therapies could be 

targeted to correctly regulate this process, and perhaps slow white matter lesion 

development.   

 SNPs in ACOX1 showed associations with both Trails B and 3MS.  rs8082018 

was associated with both Trails B and 3MS in additive models before the FDR correction. 

Additionally, one more SNP (rs7213998) was associated with 3MS in the additive effects 

models and two more SNPs (rs3643 and rs11651351) were associated with 3MS in the 

recessive effects models before the FDR correction. rs3643 was still significant after the 

FDR correction in the age-adjusted model, but after the FDR correction in the 

multivariate model this relationship was no longer significant at a 0.05 level (p=0.051).  

rs11651351 was significantly associated with 3MS scores in the recessive model, and 

was the only relationship in this study to maintain its significance after accounting for 

FDR correction and all of the adjustments in the multivariate model (p=4.54 E-10).  

Because there were only eleven individuals homozygous for the recessive allele, a 

spurious association cannot be ruled out, but it is a relationship that at least warrants 

further study especially considering its magnitude (β=9.73 which represents almost a two 

standard deviation shift in 3MS scores).    

The ACOX1 protein is responsible for the first, and rate-limiting, step of the very 

long chain fatty acid (VLCFA) beta-oxidation.	
  59 This process occurs in an organelle 

called the peroxisome when fatty acids are too long to be oxidized directly by the 

mitochondria.	
  59 Following this initial peroxisomal oxidation of VLCFA, fatty acids can 

undergo additional oxidation in the mitochondria and can subsequently be used to 
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generate energy in the Krebs cycle.  ACOX1 deficiency leads to the accumulation of 

VLCFA in the plasma and tissues and results in a rare disease called pseudoneonatal 

adrenoleukodystrophy (P-NALD), which leads to neuroinflammation and 

neurodegeneration.	
  60 One characteristic of P-NALD is demyelination of axons, which, as 

discussed earlier, is thought to be a cause the white matter hyperintensities seen on MRI.	
  

60 Therefore, functional mutations in the ACOX1 gene could plausibly lead to abnormally 

high VLCFA levels and perhaps their associated neuroinflammation and degeneration 

which could be observed as WMHs. However, because this SNP is in a non-coding 

region of ACOX1, it is hard to tell its exact physiological affect on the protein for which 

this gene encodes, as it is likely only a marker near a functional variant, but its 

relationship with fatty acid beta-oxidation does provide biologic plausibility for the 

relationship between this gene and cognitive function.  

Additionally, when ACOX1 catalyzes the first step in the long chain fatty acid 

beta-oxidation pathway, electrons are donated to molecular oxygen creating hydrogen 

peroxide, a strong oxidizing agent, as a byproduct.	
  42 Increased peroxisomal ACOX1 

expression is known to lead to oxidative DNA damage.	
  59 Oxidative stress has been 

repeatedly linked to AD pathology and may also be induced by beta amyloid as the 

disease progresses, suggesting the possibility of great benefit to AD patients if therapies 

could be targeted to reduce oxidative stress.	
  61  

Interestingly, a greater number of SNPs were associated with 3MS than with 

Trails B.  We predicted that there would be stronger and more frequent associations with 

Trails B as it is a test of executive function, and WMHs have been specifically linked to 

executive function	
  3,4, and used this as our primary outcome measure in this study.  Since 
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these genes were linked to WMHs by Fornage et al.	
  2 we hypothesized that they might 

also be associated with executive dysfunction, the cognitive phenotype linked to WMH 

accumulation. This relationship was observed between MRPL38 and ACOX1, but these 

genes, and additionally FBF1, were also related to 3MS scores and the relationship 

existed for a greater number of SNPs. It is not surprising that there is overlap here, as 

both tests are cognitive tests that have been associated with aging and are therefore not 

entirely independent.  This was demonstrated in this study when a small correlation was 

found between the two tests (r=0.43,p<0.001).  3MS is a broader test getting at 

generalized cognitive performance, so it might follow that a broader range of SNPs 

would be associated with this measure.   

Study Limitations  

The main limitations of this study were sample size, the population included only 

males, study design and APOE allele status was not available.  From the MrOS cohort, 

3552 subjects had genotype data available for analysis.  Because many of the SNPs being 

studied here have very low minor allele frequencies, a larger study population is needed 

to be able to observe enough instances of the minor allele.  Many of the SNPs had fewer 

than twenty individuals exhibiting the homozygosity for the minor allele, making it very 

hard to build dependable recessive effects models.  Even with the additive effects models, 

some of the heterozygote genotypes were too small to have a great amount of confidence 

in their predictions.  For instance, rs7208173 in TRIM65 showed an association with 

Trails B (in models without an FDR correction), but because there were only eight 

individuals who carried at least one copy of the minor allele, and within these eight 

individuals there was high variability in their Trails B score, these results cannot be 
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interpreted as anything other than spurious in this cohort.  Validation in another cohort 

for these candidate SNPs would be useful.  For instance, Study of Osteoporotic Fractures 

(SOF) the sister study to MrOS, would be a good cohort in which these SNPs could be 

validated.  A future study in a larger population may also help further elucidate if these 

relationships, or lack thereof, are spurious or accurate. The original GWAS study that 

identified these genes as related to WMHs was a meta-analysis of studies that included 

9,361 individuals, and therefore, may have been more able to identify significant 

relationships with these genes.	
  2 Due to the biologic plausibility underlying the 

relationship between white matter abnormalities with both executive function and 

cognitive performance, it seems reasonable that the relationships observed between these 

genes and Trails B or 3MS are accurate, and further testing could be used to substantiate 

these findings.  

In this study we were not able to control for ApoE e4 Allele status.  This gene has 

been repeatedly and strongly linked to AD, and is one of the strongest predictors of its 

occurrence, after age with the e4 allele being associated with worse outcomes.	
  19 This 

cohort did not have the SNPs needed to determine the ApoE4 genotype in the study 

subjects.  Because this gene is a strong independent predictor of cognitive decline, it may 

be necessary, like age, to account for it in models used to predict a cognitive outcome.  

This was not possible in this population and represents a limitation to this study.  Because 

APOE is on chromosome 19, it is likely not in LD with the genes being tested in this 

study, and is less likely to be a confounder. Hopefully, this means this adjustment would 

not greatly change the results, but it could still be an important covariate, and these 

results would be stronger if it could be considered.  
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The biggest limitation of this analysis was study design.  Because this was a 

cross-sectional study, change over time could not be examined, which is necessary to 

really observe cognitive deficit.  It is possible that someone with low cognitive 

functioning, who maintains that same low function over time, will appear to have low 

cognitive measures when they’re not experiencing dementia-related symptoms.  

Additionally, someone who had very high cognitive functioning, but has experienced 

some decline, may appear just average when taking a cross-sectional view.  These two 

cases could create a scenario where some who is in the process of experiencing decline 

would appear cognitively healthier than someone who is maintaining their cognitive 

ability. When studying dementia, the outcome of interest is really decrease in cognitive 

ability, not simply how subjects perform at baseline. Because of this, the ideal study 

design would be a longitudinal study that examines change in cognitive scores over time 

in relation to genes.  

Finally, because this study was only conducted in males of Caucasian descent, it 

cannot be generalized to other populations.  Conducting this analysis in women would be 

useful counterpart, as well as in other populations with a broader range of ancestry. A 

larger, more diverse sample would improve generalizability.  

Potential Confounders and Biases 

Confounding 

 Because genotypes are fixed and cannot be influenced by any known factors, 

confounding is unlikely to be influencing these results.  The only thing that could be 

causing confounding is ancestral patterns within the population. This, however, was 

accounted for through the use of principal component analysis and adjustment for the 
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first four eigenvectors.  The models with and without the inclusion of eigenvectors were 

very similar, so they were likely not needed to account for confounding.  By definition, a 

confounder must be associated with the primary predictor and also the primary outcome 

while remaining clear from the biological causal pathway between the predictor and 

outcome, and in this case no other factor is able to change an individual’s genetic code. 

There are, however, potential sources of bias that could be influencing the results of this 

study.  

Selection Bias 

 Selection bias was present in this data set as all men were community dwelling at 

baseline, suggesting that they were primarily cognitively intact at baseline.  As discussed 

above, executive function can be impaired before clinical dementia symptoms are 

observed, but in general this group of men were highly functioning cognitively. If these 

genes truly are associated with low cognitive function, those who are affected might not 

be represented in the cohort of relatively healthy volunteers. There still existed variation 

in cognitive performance against which to test the effects of these genes, but having 

subjects with a wider range of cognitive abilities may further help to elucidate this 

potential relationship. 

 Another source of selection bias may be present in the education levels of the men 

in this cohort.  It is a highly educated group of men, which over half processing an 

undergraduate degree, and over a quarter possessing a graduate degree.  As mentioned 

above this is likely due to the fact that higher educated individuals and also may place 

more value on participating in a study such as MrOS resulting in a group of men that 

does not closely match the general population.  We know that greater cognitive reserve 
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has been linked to higher cognitive performance in the elderly, this analysis could be 

experiencing bias towards the null, which men who would otherwise be experiencing a 

lowered cognitive performance due to a specific genotype, may have those effects 

masked by having greater cognitive reserve. While we tried to account for this by 

adjusting for level of education, this measure is only a proxy for cognitive reserve, and 

may not have completely eliminated the effect of this type of bias.    

 Finally, only a subset of men within this cohort was used for this analysis.  Not 

only was the dataset limited to Caucasian men due to genotype data availability, some 

men had not consented for genotype analysis related to the study of cogitation.  This 

caused one whole study site, Birmingham, Alabama, to be excluded from this analysis. 

Summary statistics for the MrOS cohort showed that for 3MS the average score for the 

entire cohort was 93.3 ± 5.9, whereas in my cohort average 3MS score was 94.1 ± 5.0.  

Trails B time for the entire cohort was 134.5 ± 58.9 seconds whereas in my cohort the 

average Trails B time was 129.5 ± 56.3.  For each of these measures scores were very 

similar, with very slightly “healthier” scores in my dataset. These differences are very 

small, well within one standard deviation of each other, and, because it was an entire 

study site being excluded, those who were not included in the dataset were not 

systematically excluded based on their exposure or outcome, so this should not affect the 

results of this analysis.  

 Information Bias in the Exposure 

 A limitation of this study, and many genetic association studies, is that the SNPs 

tested are not expected to be causal. Most are intronic or in untranslated regions, with 

only few exceptions (rs7213548 in FBF1 is responsible for a missense mutation changing 
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Cys to Ser	
  42).  Instead, these SNPs mark a genomic region that might contain causative 

variants. This means that there is known misclassification in the exposure but, because 

we do not know which SNPs in this region are the causative variants, this 

misclassification cannot be avoided.  However, it is still useful to identify SNPs that may 

mark a functional gene or gene region, but it must still be noted that we are not testing the 

functionality of these genes directly.  

In any study, there is a chance for inaccurate measurements leading to 

information bias in the exposure. Inaccurate genotyping may have occurred, but since it 

is likely to be random and not systematic it is unlikely to have had a large effect on our 

associations identified in this large group.  Futhermore, genotype data was subjected to 

stringent quality control as described above. 

Information Bias in the Covariates 

Covariates that were clinically measured at baseline are likely more reliable than 

the self-reported measures due to recall ability.  Cholesterol measurements, blood 

pressure, anti-depressant use and diabetes were all measured at baseline, the same visit in 

which Trails B and 3MS tests were administered. Self-reported measures are slightly less 

reliable, such as stroke and hypertension status. It is hard to postulate how variation in 

any of these measures would affect the resulting data, and while measurement error can 

be a concern, because these are all covariates, and not primary predictors, hopefully any 

minor error did not contribute significantly to the results of this study. 

Information Bias in the Outcome 

Because Trails B and 3MS were measured variables they could be subject to 

interviewer bias, but since this is unrelated to a subjects genotype, it is unlikely to have 
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any affect in the study outcomes. Additionally, variation could occur by study site, but 

this is thought to arise from true differences in cognition at each site rather than 

measurement error since strict protocols were used to reduce this in MrOS.  Regardless of 

the reason, Trails B and 3MS scores were significantly different by study site in this 

cohort.  To account for this, the study site variable was included in each of the analysis, 

so each model includes adjustment for location.  

While measurements of Trails B and 3MS likely did not introduce a large amount 

of misclassification error into this study, their representation of cognitive phenotypes may 

have be a source of non-differential misclassification bias.  Because it is very difficult to 

differentiate between AD and VD they were group together conceptually for the purposes 

of this study.  The two cognitive tests, Trails B and 3MS, did not distinguish between AD 

and VD at all (or any other cause of cognitive impairment). AD and VD may have great 

overlap and be controlled by the same genes, but they also maybe controlled by a 

different set of genes, or two overlapping sets of genes. Using these two overlapping 

phenotypes in genetic association studies introduces some ambiguity into the results, as 

associated genes may be associated to one or both specific outcomes.  Because the genes 

that were chosen for this analysis were related to white matter, we hypothesized that they 

were also related to Trails B as a text of executive function.  WMH is a vascular 

pathology, but executive functioning may be caused by multiple pathologies, such as 

other forms of cognitive decline that are not vascular disease mediated. This means that 

the outcome being measured by Trails B is somewhat ambiguous.  Because there may be 

multiple pathways by which to reach decline in executive functioning, it would make the 

results much stronger if it were possible measure if subjects had decreased executive 
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functioning due to vascular disease or due to some other pathology using MRI, but this 

measure was outside the scope of this study. If present, this bias would be responsible for 

underestimating the true association between SNPs and vascular-mediated decline in 

executive functioning, causing bias towards the null and potentially missing some true 

associations, and therefore should not invalidate the results of this study.   

Overall Validity of Data 

 While multiple potential sources of bias exist, the single greatest source seems to 

be that all individuals were healthy at the time this data was collected.  This means that 

there was little variation in the data to be explained by the SNPs of interest creating large 

selection bias.  Also, the ambiguity of the phenotype may also be masking a true 

association between SNPs and a more specific phenotype. Because both of these 

situations would cause bias towards the null, it means that, if anything, the SNPs 

suggested by this study, could have a stronger association with cognitive measures in a 

more variable population with more directly measured phenotypes.  Therefore, there were 

no sources of bias that should automatically make this data invalid, but it is necessary to 

address these questions in a larger, more diverse elderly population.  Additionally, a 

different study design where longitudinal data is used and incident cognitive decline can 

be observed would also help to observe a greater variation in genotypes and substantiate 

associations found here. MrOS does have data available for both 3MS and Trails B at 

times after the initial visit, so this analysis could be performed in a future study.   

Public Health Implications 

AD is not only a leading cause of death in the elderly, but it is also responsible for 

a sharp decline in quality of life in those who are affected and has a tremendous burden 
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on caregivers and health care economics. Because strategies to prevent or slow the 

disease are unavailable, more research in this area is needed to discover new treatments.  

Recently much work has been put forth to explain how “vascular risk factors” can 

modulate risk for age related dementia incidence.  Because many vascular risk factors 

(diabetes, cholesterol and blood pressure) are modifiable, targeting these may be useful in 

helping to delay the onset of Alzheimer’s.  However, caution still needs to be taken in 

making global recommendations in this field.  For example, lowering blood pressure in 

later ages has been associated with worse brain outcomes some subjects.	
  62 Identifying 

genes that link cognitive decline to other measures of vascular health will permit the 

discovery of new disease mechanisms or phenotypes where preventative strategies can be 

developed. Additionally, prevention strategies will need to be implemented along with 

prediction strategies to stay ahead of the curve of aging elders at risk for dementia.  Once 

both of these are in place, those that can be identified as more likely to develop age-

related cognitive impairment could take measures to reduce their risk thereby preventing 

or delaying onset of cognitive dysfunction.  

Ethical Concerns 

There are various ethical problems associated with the study of genetic 

determinants of any disease, but specifically cognitive impairment as it is not currently 

treatable. When predictive genes are discovered, researchers may use them to gain further 

understanding of the diseases and their pathology, leading to potential treatments and/or 

cures. While these advances are biologically useful, there is typically a lag before they 

are clinically useful. Being able to identify a genetic risk factor in a patient brings up a 

host of ethical concerns if there is no prevention or treatment available to him or her. 
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Whether or not to test patients for genetic risk factors for age-related cognitive 

impairment is an important ethical question that clinicians now face, because it is unclear 

if patients should know about a predisposition to a disease they cannot treat or prevent. 

Additionally, when testing subjects for research studies, it must be determined 

whether or not patients should know what their test results are.  If studies such as these 

yield genes that may be associated to cognitive outcomes, researchers must decide 

whether or not to inform the subjects of their genetic status. Again, this is a difficult 

question because subjects may not be able to do anything with the information if there is 

no treatment available. However, if this motivates individuals to take necessary steps to 

improve their lifestyle and overall health then perhaps this type of information can have 

clinical utility on population health. As we learn more about the genetic profile of 

individuals who develop cognitive decline, or any genetic disease, these questions 

become increasingly important to answer, and clinicians and researchers must carefully 

consider these important issues.  

CONCLUSIONS 

 In conclusion, this study identified three genes related to cognitive measures in 

elderly men.  Only the association between ACOX1 and 3MS remained significant after a 

FDR adjustment was used to account for multiple comparisons.  It was initially 

hypothesized that these genes would be related to executive function as measured by 

Trails B, due to their associations with WMH burden.  Although two of these six genes 

were associated with Trails B, these associations did not remain significant after 

adjustment for multiple comparisons.  One SNP in ACOX1 was significantly associated 

with 3MS after adjustments. This may be due to the small sample size resulting in few 
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occurrences of the minor alleles in the SNPs being tested.  White matter burden has been 

linked to decreased cognitive function (including executive function) as well as to these 

six genes, so the relationships observed in this study may not be spurious, but further 

studies are needed to verify these relationships.   
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Tables 

Table 1: Heritability of various cognitive measures 
Phenotype h2 Citation 
Alzheimer’s in Swedish 
Twins 

0.74 Ashford et al	
  63 

Alzheimer’s in Norwegian 
Twins 

0.61 Ashford et al	
  63 

Episodic memory 0.49 (p<0.0001) Wilson et al	
  64 
Semantic memory 0.32 (p<0.0001) Wilson et al	
  64 
Working memory 0.34 (p<0.0001) Wilson et al	
  64 
MMSE 0.25 (p<0.0000001) Lee et al	
  65 
Executive function in Twins 0.79 Swan et al.	
  66 
Trails B 0.5  Swan et al.	
  66 
Total recall 0.32 (p<0.0000001) Lee et al	
  65 
MMSE=Mini-mental state examination 
h2=estimate of heritability (estimated proportion of variation between individuals in a 
population that is influenced by genetic factors) 
 

 
Table 2: Common risk and protective factors for cognitive decline 
Factor Direction of 

effect 
Description 

Age Increased risk Over the age of 65 there is an exponential increase in 
occurrence of VD.	
  1 Age is the strongest predictor for 
cognitive decline. 

APOE e4  
 

Increased risk ApoE e4 allele is associated with increased risk of AD 
and cardiovascular risk factors.	
  1 Individuals carrying 
one or more copy of APOE e4 have 3.68 times the odds 
(95% CI 3.30 – 4.11) of developing AD than non-
carriers.	
  19 

Head trauma 
LOC and 
APOE4 

Increased risk Loss of Consciousness and traumatic brain injury lead 
to  
increased effect size in ApoE e4 carriers, meaning that 
those with the e4 allele and LOC injury are at even 
greater risk than those simply carrying the e4 allele.	
  67 

Hypertension Increased risk HTN prior to being 65 (defined as dbp over 90mmHg 
or sbp over 140mmHg) is a risk factor for late-life 
cognitive decline. Hazard ratio = 1.24 (95% CI 1.04-
1.48). High SBP has been associated with greater late-
life cognitive decline.  Effects of diastolic blood 
pressure are unclear for late life hypertension.	
  62,67 

Type II Increased risk A meta-analysis of risk of type II diabetes on AD found 
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Diabetes a relative risk of 1.54 (95% CI 1.33-1.79). Also, a 
longer duration of diabetes is associated with poorer 
cognitive function.	
  1,67 
  

High Body 
Weight 

Increased risk Both high and low BMI have been associated with AD, 
but the strongest effect is seen between obesity and 
AD. Meta-analysis between obesity and AD risk yields 
an odds ratio of 1.59 (95% CI 1.02-2.5).	
  67 

Depression Increased risk People with 3-5 depressive symptoms compared with 
0-2 symptoms had increased cognitive decline. 
Adjusted Odds ratio of 1.6 (95% CI 1.2 – 2.1).	
  56 

Cholesterol Increased risk High cholesterol in midlife predicts cognitive 
impairment in late life.  Results are more ambiguous 
for cholesterol measured concurrently with cognition. 
High midlife cholesterol was associated with an 
increased risk of AD 3 decades later.  HR = 1.57 (95% 
CIL 1.23-2.01).	
  68 

Cognitive 
Reserve 

Protective Education and leisure activities are protective against 
AD onset. Increased brain use resulting from these 
activities is referred to as “cognitive reserve”. Meta-
analysis of high cognitive reserve compared to low 
reserve gives an odds ratio of 0.54 (95% CI 0.49-0.59).	
  
67 

Diet Protective Diets high in Vitamins B, C, D and E and the Omega-3 
fatty acids are associated with decreased risk of 
cognitive decline and AD dementia. High adherence to 
self-reported Mediterranean diet is associated with 
decreased risk of cognitive decline and AD dementia 
(HR=0.85, CI 0.42-0.87) compared with those in the 
lowest.	
  67  

Exercise Protective Long-term, regular exercise is strongly associated with 
lower levels of cognitive decline. Exercise has also 
been shown to be protective when combined with a 
Mediterranean diet. Walking 4 hours per week is 
associated with less cognitive decline. Exercising 3 
times a week for 30 minutes can increase the size of the 
hippocampus compared to non-aerobic stretching 
exercise over 1-year.	
  1,67,69,70 
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Table3: Function of genes associated with WMH burden	
  42 
Gene Function 
WBP2 This gene encodes a WW domain binding protein, meaning that it binds 

another protein at its WW, a specific structure present in a variety of 
proteins. Increased WBP2 expression has been associated with decreased 
expression of sodium-dependent noradrenaline transporter in mice, while 
decreased noradrenaline transporters have been associated with AD in 
humans.	
  40-­‐42  

TRIM65 
TRIM47 

This gene codes for a protein that is member of a superfamily of proteins 
(with TRIM47) involved in biological processes including innate 
immunity, apoptosis, cell cycle regulation, vesicular trafficking and 
neuroprotection. Increased apoptosis leading to neuronal death and 
decreased neuronal density has been associated with Alzheimer’s disease. 	
  
2,71  

MRPL38 
This gene encodes a protein in the mitochondrial ribosome subunit 39S. 
39S was found to be an oxidatively modified protein, and oxidative stress 
has been associated with Alzheimer’s disease.	
  42,44,45 

FBF1 This gene codes for a protein that interacts with the Fas cell surface 
receptor, a regulator of apoptosis, which has been implicated in AD 
pathologies.	
  2,71 

ACOX1 
This gene encodes a protein that is the first enzyme of the fatty acid beta-
oxidation pathway. Oxidation products of fatty acids have been associated 
with neurodegeneration.	
  42,43  
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Table 4: Pruned SNPs and their relationship to  
analyzed SNPs 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Table 5: Population and clinical characteristics 
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Table 6: Mean Trails B scores by covariates 
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Table 7: Mean 3MS scores by covariates 
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Table 8: Linear regression of SNPs on Trails B 
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Table 9: Linear regression of SNPs on 3MS 
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Appendix 1  
Correlations between SNPs within genes 
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Appendix 2  
Distributions of Cognitive Measures 
	
  
	
  

	
  
	
  



	
   74	
  

	
  
	
  

	
  
	
  
	
  
	
  



	
   75	
  

Appendix 3 
	
  

	
  



	
   76	
  

 
Appendix 4 
	
  



	
   77	
  

Appendix 5 
	
  

	
  
	
  
	
  	
  
	
  
	
  
	
  
	
  



	
   78	
  

Appendix 6 
	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



	
   79	
  

Appendix 7 
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Appendix 8 
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Appendix 9 
Sample residual plots 
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