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Abstract 

 This thesis work highlights development and applications for both circulating 

extracellular vesicles (EV) and cell-free RNA (cf-RNA) toward liquid biopsy based early 

cancer detection methodologies. Effective detection and monitoring for signatures of 

oncological disease in a noninvasive manner are urgently needed to reduce the morbidity 

and mortality caused by cancer. Circulating EVs and cf-RNA are intensely sought after 

biomarkers in liquid biopsy. Their roles in cell-to-cell communication, ability to reflect 

phenotypic changes from cells, and tissues of origin are becoming better understood. 

Despite this, current literatures present key challenges which limit the promise of liquid 

biopsy based early cancer detection: i) there is a lack of standardized blood processing for 

multi-omics which minimizes ex-vivo processing artefacts via discerning true in-vivo 

signatures from ex-vivo artefacts; ii) daily fluctuations and the influence of meal 

consumption on EV and cf-RNA levels are not clear; iii) a comprehensive study of cf-RNA 

for cancer detection, pan cancer discernment, and high risk group identification has not 

been conducted; and iv) the selective packaging of cf-RNA carriers and its association with 

cancer are unknown. 

 The chapter one is an overview of existing technologies commonly utilized in EV 

and cf-RNA studies and includes considerations for complex biofluids. In chapter two, we 

systematically evaluated the effect of preanalytical variation on the yield and purity of EVs 

and cf-RNA in human plasma. Notably, we found that centrifugation and temperature 

resulted in the highest EV and cf-RNA variability, owing to the release of ex-vivo derived 

EVs from platelets. The extent of these technical artefacts significantly differed for distinct 
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EV sizes and types of cf-RNA transcripts, highlighting the importance to minimize sources 

of technical artefacts. In chapter three, we assessed the diurnal and interpersonnel variation 

on EVs and cf-RNA, which may impact biomarker discovery. Through serially sampling 

a preliminary cohort, we showed that EV and cf-RNA were consistent over time for a given 

individual. In contrast, we found a significant interpersonal variation, highlighting the 

importance in larger population screening and understanding of person-to-person variation. 

 In chapter four and five, we investigated the potential clinical utility and biological 

roles of EVs and cf-RNA as noninvasive biomarkers for early cancer detection. In chapter 

four, we revealed cell-free messenger RNA (cf-mRNA) transcripts not only differentiate 

the presence of cancer, but also classified individual cancer types and high-risk groups 

using cf-RNA sequencing and machine-learning approaches. However, how these 

signatures are protected from the RNase-rich environment in plasma and how cancer may 

dysregulate cf-mRNA signatures remained unknown. Therefore, in chapter five, we aimed 

to determine if EVs are the major cf-mRNA carrier and how to identify which cf-mRNA 

transcripts are dysregulated in different cancer types and high-risk groups. To address the 

role of cf-RNA packaging as a novel biomarker, we sequenced the RNA of EVs and non-

vesicles from size fractionated human plasma. Critically, we found the majority of cf-

mRNA were contained within EV-enriched plasma fractions, while also being protected 

from RNase digestion. In addition, we discovered distinct cancer and high-risk group 

distinguishing genes were selectively packaged across plasma fractions. Ultimately, these 

specific gene sets reflected an imbalance of secreted RNA found in cancer progression as 

a form of cell-to-cell communication. 
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1.1 Introduction 

Effective detection and monitoring for signatures of malignant disease in a 

noninvasive manner are urgently needed to reduce the morbidity and mortality caused by 

cancer. Early stage cancers are often asymptomatic, making early diagnosis difficult. 

However, routine blood tests which detect abnormal molecular signatures can help 

diagnose cancers earlier. Accordingly, identifying robust circulating signatures for pan-

cancer detection is the “holy grail” for liquid biopsy, with an ever-expanding body of 

literature addressing it. Among the wide variety of circulating biomarker carriers being 

studied, extracellular vesicles (EVs) and circulating nucleic acids especially cell-free 

messenger RNA (cf-mRNA) are particularly sought after, as they have been shown to carry 

specific information from their cells of origin while also potentially reflect phenotypic 

changes. 

Owing to significant progress made in identifying extracellular vesicles and cell-

free nucleic acids signatures, improved isolation and analytical methods have aided in 

understanding the biology of extracellular vesicles spurring research into diagnostic 

applications for human biofluids. Despite significant progress made in understanding 

circulating EVs and cf-RNA, integration of existing methods to probe the utility of these 

biomarkers in human plasma has presented a number of challenges. Specifically, a lack of 

standardized protocols coupled with insufficiently sensitive detection and analytical tools 

has led to this gap in translation from model systems to more accurately quantifying these 

biomarkers from patient plasma. 

My thesis work progresses the key steps needed to develop such early-cancer 

differentiating liquid biopsy biomarkers utilizing circulating EVs and cf-mRNA, as well as 
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a demonstration of how these signatures can be stratified for cancer detection. Transferring 

to OHSU from UC San Diego, where I began my PhD research into nanoparticle drug 

delivery, the focus of my work became how I could leverage my growing breadth of 

analytical experience to help push the boundaries of liquid biopsy based early cancer 

detection at the growing OHSU Knight Cancer Research Center. In this chapter, I describe 

the fundamentals of EVs and cf-RNA, followed by an overview of current methods and 

findings related to the isolation, identification, and quantification of these liquid biopsy 

biomarkers. To set the foundation for discussions in subsequent chapters, we will touch 

upon some of the current gaps in understanding in how to employ EVs and cf-RNA as 

robust liquid biopsy biomarkers. Ultimately, this provides the basis for the underlying 

hypothesis of my thesis. 

1.2 Fundamentals of extracellular vesicles 

Extracellular vesicles (EVs) are membrane-enclosed vesicles released by many cell 

types and found in every bodily fluid. In 1983, EVs were reported from sheep reticulocytes 

using transferrin receptor [1]. Iodine-125 or FITC labelled reticulocyte’s transferrin 

receptors were externalized into the extracellular space [1]. Pan and Johnstone found 

multivesicular bodies were fused with plasma membrane, leading to the release of small 

vesicles under 100 nm in diameter [1]. EVs are typically defined by size, biogenesis, 

density (1.1.3 – 1.19 g/ml), and certain enriched protein markers. EVs are generated in a 

process that involves formation of multivesicular bodies and fusion with the plasma 

membrane (Figure 1.1). Size, heterogeneity and different biogenesis mechanisms divide 

EVs into microvesicles, exosomes, and exomeres. Microvesicles are typically 150 nm -  
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Figure 1.1 | Schematic of EV biogenesis and contents of EVs. 

Through endocytosis extracellular contents enter the cells, where in plasma membrane 

invagination presents the outer membrane orientation towards outside. This budding 

process results in formation of early sorting endosome which gives rise to late sorting 

endosome. Second invagination in the late sorting endosome leads to generation of 

intraluminal vesicle, which proteins originally on the cell surface could distributed on the 

membrane. During which multivesicular body fuse with plasma membrane, exocytosis 

occurs and releases EVs to the outer membrane. Several proteins such as teraspanin 

markers (CD9, CD63, and CD81), TSG101, and Flotillin are common exosome markers. 

Intracellular proteins, RNA, DNA, and amino acids can also be found inside EVs. 

Reprinted with permission from [2]. Copyright 2020 American Association for the 

Advancement of Science. 
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1 μm in size and released via membrane blebbing from the surface of cells [3]. Exosomes 

are 50  –  100 nm in size and are released via the fusion of endocytic multivesicular bodies 

with the plasma membrane [3]. Exomeres are the smallest and relatively new subclass of 

EVs less than 50 nm in size, whose structure lacks a lipid bilayer yet still retain protein 

markers expressed in microvesicles and exosomes [4]. Certain tetraspanin proteins (CD9, 

CD63, and CD81) were found to be highly enriched in EVs [5]. CD81 is highly enriched 

in plasma membranes, whereas CD63 is an endosomal marker [5]. These tetraspanin 

proteins are also known for their roles in membrane trafficking and oligomerization with 

other proteins [6]. Depending on their origin, EVs can contain many molecular constituents 

such as proteins and nucleic acids [7]. Collectively, heterogeneous size, protein makers, 

and varying composition of EVs add complexity to understanding their roles in biology. 

EVs have been reported to play a role in a wide variety of processes including 

cellular migration, tumor progression, and regulation of immune systems (Figure 1.2) [2]. 

An increasing body of literature has revealed EVs play an important role in cell-to-cell 

communication [8, 9]. Such exosome-mediated transfer of molecular cargoes have shown 

involvement with tumorigenesis. Interestingly, Hoshino et al. demonstrated that tumor 

derived exosomes present certain integrins on their surfaces, which determine organotropic 

metastasis [10]. Their study revealed that unique integrin combinations preferentially allow 

the uptake of tumor-derived exosomes into sites of organ-specific metastasis [10]. In 

addition, oncogenic proteins such as mutant KRAS have been shown to be released into 

EVs, which enhances the invasiveness of recipient cells [11]. Choi et al. have shown that 

the oncogene EGFR and its mutant EGFRvIII released from glioblastoma cells are not only 

present in EVs derived from those cells, but that the proteome of EV-related proteins 
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changes as well [12]. The role of exosomes in immune response has also been widely 

documented [13, 14]. Gehrmann et al. revealed exosomes derived from dendritic cells carry 

NK cell activating ligand which induced both antigen-specific T and B cell activations 

[13]. Kurywchak et al. discussed how surface proteins on exosomes from B lymphocytes 

presented major histocompatibility complex (MHC) class I and II contributing to 

modulation of tumor immunity [14].  

 

 

 

Figure 1.2 | Function and roles of EVs. 

The hallmarks of EVs include regulation of gene transcription and translation, survival and 

proliferation, immune system, cellular migration, and reprogramming. EVs are generated 

by all cells and carry nucleic acids, proteins, and metabolites, playing important roles in 

various aspect in human physiology. Reprinted with permission from [2]. Copyright 2020 

American Association for the Advancement of Science. 



7 

 

1.3 EV isolation, quantification, and characterization 

techniques 

Despite their promise as circulating biomarkers, EVs have faced key issues in 

implementation. The foremost concern in utilizing them as liquid biopsy biomarkers is the 

significant variability in isolation standards, which has brought accompanying pre-

analytical variation and further issues with reproducibility [15-18]. This chapter section 

serves as an overview of the attributes, tradeoffs, and common practices for EV isolation, 

quantification, and characterization. 

1.3.1  EV isolation 

Extracellular vesicles can be isolated by a variety of techniques [19]. Various 

techniques such as ultracentrifugation, ultrafiltration, size-chromatography, polymer-based 

precipitation, and affinity-based bead capture have been utilized to isolate EVs [19]. 

Notably, different isolation techniques can affect the size, yield, and ultimately 

interpretation of results. Compared to cell culture medium, human plasma is a rich source 

of EVs, other plasma proteins, and lipoprotein particles [20]. Therefore, separation of EVs 

from plasma proteins and lipoprotein particles have been considerably challenging. As a 

result, choosing an appropriate isolation technique is critical for the study aims.  

1.3.1.1 Ultracentrifugation 

Ultracentrifugation (UC) is a conventional method that uses centrifugation force 

(100,000 – 200,000 x g) to sediment EVs [21]. The efficiency of EV isolation depends on 

acceleration, type of rotor, and viscosity of the medium [21]. These parameters, which can 

affect the yield and purity of EVs, should be taken into consideration. Although an 
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increased centrifugation time can increase the yield of EVs, it can also co-precipitate other 

plasma proteins [22]. Density gradient centrifugation is another commonly used method 

which utilizes the inherent density differences in EVs and contaminants such as 

apolipoproteins in plasma. Density gradient centrifugation typically uses sucrose gradients 

or commercially available iodixanol gradients (OptiPrep). However, UC-based methods 

for EV purification are time-consuming and low-throughput, which is not suitable for 

clinical settings. To overcome these limitations, other simpler isolation methods have been 

developed. 

1.3.1.2  Filtration and size-exclusion chromatography 

EVs can be isolated by either molecular weight or size. Ultrafiltration is a method 

which isolates EVs by the defined size or molecular weight. Typically, molecular weight 

cut-offs of 10 kDa or filtration < 0.22 μm is expected to concentrate EVs [23]. Although 

this method is simple, it is difficult to remove contaminating proteins. EV isolation via 

size-exclusion chromatography (SEC) utilizes porous beads where particles separate by 

differing sizes. Fractions of solution will be eluted in order of decreasing size, allowing 

EVs to be separated from smaller plasma proteins. SEC has been shown to provide higher 

EV purity and good recovery rate [24]. It has advantage in allowing sequential elution of 

different EV sizes and characterization by transmission electron microscopy which 

revealed the eluted EVs were intact [25]. Importantly, SEC isolation of EVs has been 

shown to be rapid and reproducible [26], with single-step plasma EV isolation using SEC 

published using commercially available Izon qEV SEC columns [27].  
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1.3.1.3  Polymer precipitation and affinity based bead capture 

EVs can also be isolated by their surface properties. Precipitation based methods 

have relied on reagents which preferentially interact with the phospholipid bilayer exterior 

of EVs to cause them to aggregate and more easily pellet via centrifugation [21]. The 

commercial kit ExoQuickTM uses a precipitation reagent mixture which includes 

Polyethylene Glycol (PEG) polymers [19]. PEG polymers alter the solubility and dispersity 

of exosomes, facilitating their precipitation from biological fluids [19]. However, co-

isolation of soluble proteins and deformation of EVs are unavoidable, affecting down-

stream analysis [28]. To overcome the impurities of exosome precipitation, immuno-

affinity based methods have been exploited to capture exosomes utilizing specific surface 

proteins on EV surface membranes. This method utilizes immunomagnetic beads coated 

with covalently cross-linked streptavidin facilitating biotinylated antibodies against the 

target molecules. Anti-CD9, -CD63, and -CD81 antibodies are commonly used to isolate 

exosomes. Based on this technology, a microarray has been developed for exosome 

detection and phenotyping [29]. While this method is highly specific, it relies on the 

selected subset of markers which may not reflect all EVs present in a given biofluid. 

Therefore, this method can be followed by other quantification methods to understand its 

cargo or remove impurity from the whole plasma.  

1.3.1.4  Asymmetric-flow field fractionation 

A recent development of size-based fractionation is asymmetric-flow field flow 

fractionation (AF4) technology. The basic principle behind AF4 utilizes two flows to 

resolve particles: primary forward channel flow and cross flow perpendicular to the  
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Figure 1.3 | Asymmetric field flow size fractionation of EVs.  

Single direction of channel flow from inlet to the outlet is applied, which diffuse the 

particles with small diameter are eluted at an early time point. Representative AF4 

fractionation profiles of B16-F10 derived exosomes with respect to QELS (DLS) intensity 

(red) and UV absorbance (blue). Transmission electron microscopy images of 

corresponding fraction revealed heterogeneous EV sizes. Reprinted with permission from 

[30]. Copyright 2018 Springer Nature. 

 

channel flow [31]. When the sample is applied to thin, flat channel, the input channel flow 

creates a parabolic laminar flow to move particles from inlet to outlet in a forward direction 

(Figure 1.3). Combined with external physical field by cross-flow, particles are driven 

toward the bottom of the well. This cross-flow is the driving force to resolve particles with 

different hydrodynamic sizes counteracting the Brownian motion related to particle sizes 

[31]. Unlike SEC, AF4 elutes the smallest hydrodynamic sized particles first, as their 
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higher rate of diffusion lets them most easily stay within the parabolic flow field [31]. In 

conjunction with real-time monitors such as UV absorbance or dynamic light scattering, 

distinct size ranges of EVs from cell culture have been separated: so called Exo-L, Exo-S, 

and exomeres [30]. Although it can separate particles at high resolution in nanometer range, 

sample dilution through fractionation remains as a major challenge. Collectively, inherent 

tradeoffs in these different EV isolation strategies must be weighed against specific 

questions of the study and the impact of isolated EV concentration and purity on 

downstream analyses. The advantages and disadvantages of most commonly used methods 

for exosome isolation are summarized (Table 1.1). 

 

 

 UC MF PEG IA SEC AF4 

Mechanism of 

separation 

Size, 

density 

Size, 

molecular 

weight 

Surface 

charge, 

solubility 

Immunoaffinity 

capture of antigen 

on surface 

membrane 

Size; large 

particles 

eluted first 

Size; small 

particles 

eluted first 

Specificity ++ ++ + +++ ++ ++ 

Recovery ++ + +++ ++ +++ +++ 

Purity ++ + + +++ ++ ++ 

Time + +++ +++ + ++ ++ 

Table 1.1 | Summary of different EV isolation methods.  

Specificity which specific exosome isolated is scaled from highest (+++) in 

immunoaffinity capture to lowest (+) in precipitation method. Recovery which amount of 

exosomes yields is scaled from highest (+++) to lowest (+). Purity which separates EVs 

from other contaminants is scaled from highest (+++) to lowest (+). Time for processing is 

scaled from shortest (+++) to longest (+). UC: ultracentrifugation, MF: membrane filter, 

PEG: precipitation method, IA: immunoaffinity capture, SEC: size exclusion 

chromatography, and AF4: asymmetric-flow field flow fractionation. 
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1.3.2  EV quantification and characterization 

Several characterization and validation methods have been developed to analyze 

EVs. These include: i) biophysical measurements by transmission electron microscopy 

(TEM), resistive pulse sensing (qNano), and dynamic light scattering (DLS), ii) protein 

characterization by flow cytometry, western blot, and mass spectroscopy, and iii) 

understanding of RNA cargo by quantitative polymerase chain reaction (qPCR) and RNA-

sequencing.   

1.3.2.1  Biophysical property measurement of EVs 

Biophysical properties of EVs such as size, shape, surface charge, and 

concentration are important to understand the basic biology of EVs and their use in applied 

science. Several techniques have been routinely used to characterize EVs. These include 

dynamic light scattering (DLS), transmission electron microscopy (TEM) and tunable 

resistive pulse sensing (TRPS). DLS measures the hydrodynamic particle size distribution 

resulting from Brownian movement of particles [32]. It is suitable for measuring particles 

in suspension which are monodispersed [33]. The technique provides diameter range of 

analyzed particles, however it does not visualize the particles. TEM is widely used to 

characterize the size, structure, and morphology of EVs [34]. TEM works by focusing the 

electrons into a very thin beam which is directed to the specimen of interest [34]. Typically, 

heavy metal stains are used to generate sufficient electron scatter contrast to visualize 

relatively less dense biological samples of interest [34]. The image formed by the scatter 

of electrons by the stained sample can be collected either using a fluorescent screen or a 

charged-coupled device (CCD) [35]. The resulting negatively stained images provide  
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Figure 1.4 | TEM image of transferrin receptor containing extracellular vesicles from 

sheep reticulocytes.  

The first TEM image of extracellular vesicles from sheep reticulocytes. After 

centrifugation at 12,000 g to remove cells, supernatant was filtered and centrifuged at 

100,000 g for 1 hr. The resulting pellet was imaged at 125,000x magnification. Reprinted 

with permission from [1]. Copyright 1983 Elsevier. 

 

unparalleled detail, often down to nanometers or even angstroms in resolution [34]. The 

first reported images of extracellular vesicles were in 1983, which used TEM to directly 

visualize the carrier of radiolabeled transferrin receptors released from sheep reticulocytes 

over time during cell-culture (Figure 1.4) [1]. From its foundations in similar works, TEM 

has become a gold standard in identifying not only the presence but also morphology of 

EVs. More recently, advancements in cryo-electron microscopy have enabled the 

visualization of near-native structures of isolated EVs [36]. Although TEM provides 

structure, morphology, and size, it can only infer the relative abundance of EVs within a 

sample. Therefore, alternative methods such as resistive pulse sensing technology are 
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Figure 1.5 | qNano instrument and mode of operation 

(A) Commercial setup of resistive pulse sensing with indicated components. Nanopore is 

positioned on the instrument separating lower fluid shell from upper fluid shell. (B) 

Schematic diagram of the EVs passing through the nanopore and baseline voltage across 

it. (C) Example of raw baseline current profile with resistive pulses revealing the detection 

of passively diffusing EVs. The magnitude is proportional to the size of the particle. 

Reprinted with permission from [37]. Copyright 2014 Journal of Visualized Experiments. 

 

needed to measure the concentration of EVs. Recently, TRPS has emerged as a new 

technique. TRPS is a technique which monitors current change when particles pass through 

a narrow pore (Figure 1.5) [38]. Sample particles are driven through the nanopore by 

applying both pressure and voltage. Each particle causes a resistive pulse or “blockade”, 

and subtle differences in electric impedance are measured over time [38]. The blockade 

frequency is used to determine the particle concentration, with magnitude directly 

proportional to the size of the particle [37]. 
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1.3.2.2 Protein Characterization of EVs 

Molecular based approaches to characterize EV proteins are essential to understand 

their biological interactions. Since EVs are lipid bilayer enclosed particles, they include 

both cell-surface proteins and soluble proteins. EV surface proteins include proteins 

implicated in antigen presentation, tetraspanins, and lipid anchors [2]. EVs also carry 

intravesicular proteins such as tumor susceptibility gene 101 (TSG101), heat shock 

proteins (HSP70 or HSP90), and apoptosis-linked gene 2 interacting protein (ALIX) as 

internal cargoes [2]. To label and characterize EV proteins, several methods including 

western blot, flow cytometry, and mass-spectroscopy have been employed. Western blot is 

a widely used technique to detect the presence of EV-associated proteins in samples of 

interest. Western blot, however, is often conducted from EVs isolated from cell culture 

medium where the relative abundance of other contaminants is low. The major challenge 

in analyzing EVs from complex media such as human plasma is significant contribution of 

other soluble plasma proteins like albumin [20]. For specific targeting approach, immuno-

precipitation methods which utilize magnetic beads coupled with protein A have been 

developed. The bead-bound antibody permits isolation of EVs with specific targets of 

interest [39]. However, this method is limited to specific targets and thereby specific 

subpopulations of EVs. Therefore, other methods such as flow cytometry are increasingly 

used as a high-throughput and multiparametric technique.  

Flow cytometry is currently one of the most popular methods of analyzing EVs [40, 

41]. A flow cytometer is a laser-based instrument for analyzing physical characteristics of 

cells or particles of interest. It is commonly used to analyze relative size, relative internal 

complexity, and relative fluorescence of labeled antigens on the surface of cells [42]. Flow 
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cytometers are composed of three main components (fluidics, optics, and electronics) to 

work simultaneously together for particle detection and analysis. The fluidic system 

focuses particles to laser beam for interrogation. Typically, samples are injected into the 

center of a pressurized buffer stream (sheath fluid). The pressurized sheath fluid is driven 

through the illumination path, forcing the sample pass through a flow cell [42, 43]. Sheath 

fluid density and velocity differ from the sample, creating a laminar flow which does not 

mix with the sample [43]. This confines a slow flowing stream by the faster flowing stream, 

known as hydrodynamic focusing. The hydrodynamic focusing guides the sample particles 

in a single-file stream, wherein a series of lasers are focused onto the sample at the 

interrogation point [43]. The optical subsystem then provides the excitation sources and 

detector components. A series of lasers and an array of filters in front of the detectors 

(typically photomultiplier tubes or photodiodes) are used to detect and parse the different 

wavelength emissions of common fluorophores which are used for the immunodetection 

of the particles of interest. Finally, the electronic subsystem converts light signal to 

electronic signals, providing numerical values for pulse height, width, and area [43]. 

Light scattering occurs when the particle passes through the laser beam. Forward 

scattering is detected in the forward direction of the laser beam. Side scattering is detected 

approximately 90° to the laser beam. Light scattering is affected by both size, refractive 

index, and granularity of the particle in a fluid. Determination of accurate light scattering 

and size have been challenging as most EVs cannot be resolved by light microscopy and 

their diameter is notably smaller than visible light wavelengths [44]. Recently, the 

refractive index of individual small EVs have been assessed utilizing nanoparticle tracking 

analysis [44, 45]. The relative light scattering intensity values of the individual particles 
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were compared to theoretical light scattering generated from Mie theory to solve the 

unknown refractive index of particles. A laser beam with specific power illuminates each 

particle in suspension generating scattered light. The trajectory of each particle moving by 

Brownian motion is used to determine the diffusion coefficient, which can be related to the 

particle diameter via Stokes-Einstein equation [46, 47]. Mie theory is used to derive 

relationship between scattered light and refractive index [45]. The vesicle consists of a 

several nm thick phospholipid shell resulted in a refractive index of 1.46 ± 0.06 [45].  

 

Figure 1.6 | Analysis of platelet-derived EVs using flow cytometer 

(A) Dot plot of unstained, isotype control, CD41 and phosphatidylserine stained EV, and 

detergent treated stained EV. (B) Stained EV dilution control with consistent median FITC-

H intensity. (C) Scatter-diameter curve relationship from FCMpass software. Acquired 

bead data are shown with predicted model and green region indicates vesicle diameter with 

effective refractive indices. Reprinted with permission from [40]. Copyright 2019 Wiley. 
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Utilizing the refractive index of EVs, a growing body literature describes 

importance of light scatter standardization to facilitate highly consistent and reproducible 

data between commercial flow cytometers. Calibration of light scatter is demonstrated by 

Fattacioli et al., and specifically for EVs by van del Pol [41, 48]. Welsh et al. developed 

the software (FCMpass) package for light scatter and fluorescence [40, 49, 50]. The 

software composed of fluorescence calibration and light scatter calibration for standardized 

EV reporting units [40, 49, 50]. Fluorescence calibration is performed by using molecules 

of equivalent soluble fluorochrome (MESF) beads. These are fluorescent microspheres that 

are labelled with specific amounts of fluorophores. The MESF units are determined by 

comparing fluorescence intensity signal from the microbeads standards to the signal from 

a solution of the same fluorochrome [51]. Using the assigned MESF unit, fluorescence 

intensity can be standardized between varying instrument sensitivity. Similarly, light 

scattering calibration can be done using reference beads from the National Institutes of 

Standards and Technology (NIST). Mie modeling and subsequent conversion of observed 

light scatter intensity to diameter can be performed using FCMpass software (Figure 1.6) 

[40, 49, 50]. 

Mass spectrometry has also been used to screen for proteomic profiles of EVs. In 

this approach, proteins extracted are digested into peptides that can be subsequently 

separated by liquid chromatography and analyzed by the mass spectrometer [24]. Relative 

quantification of protein abundance is useful to employ EV proteins as novel biomarker 

sources. During the last decade, high-resolution mass spectrometry (HR-MS) has become 

established. HR-MS utilizes tandem mass spectra coupled to nano-HPLC. There are two 

approaches to make MS quantitative: isotope-based [52] and label-free method [53]. 
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Absolute quantification is determined by comparing ion intensity between isotope-labeled 

authentic standards and analyte as physical properties of isotope labeled compounds are 

identical [54]. However, limited availability of isotope standards restricts the number of 

samples which can be accurately compared. Therefore, advancements in label-free 

methods have enabled quantification in a large scale without additional experiment steps 

[54]. These proteomic approaches have been used in several EV characterization studies. 

For example, proteomic studies of EVs have revealed heterogeneous populations of EV 

subtypes [55]. EVs from human primary monocyte-derived dendritic cells were first 

separated by differential centrifugation followed by either iodixanol density gradient or by 

immuno-isolations [55]. Comprehensive proteomic analysis of different EV isolation 

methods yielded histocompatibility complex, flotillin, and heat shock protein present in all 

EVs [55]. For studying EV proteins in relation to cancer, Beckler et al. purified exosomes 

from two colon cancer cell lines. They confirmed EV-sized particles through TEM and 

positive presence of EV-enriched markers HSP70, FLOT1, and TSG101 via western 

blotting [11]. Intriguingly, their mass spectroscopy analysis from exosomes derived from 

colon cancer cell lines with KRAS mutant allele (DKO-1) and KRAS wild-type allele 

(DKs-8) revealed that mutant KRAS caused an increase in proteins related to vesicle 

components or transport (16% of upregulated) while losing RNA-binding associated 

proteins (30% of downregulated) [11]. Further advances have utilized human plasma from 

multiple cancers [56]. Using AF4, proteomic profiling of EVs revealed pan-EV markers 

from cells, tissues, and most biofluids in human and murine samples: CD9, HSPA8, ALIX, 

HSP90AB1, and ALIX [56]. Compared to tumor tissue explant and normal tissue, Zhang 

et al identified tumor differentially expressed proteins (VCAN, TNC, and THB2) with high 
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Figure 1.7 | Proteomic analysis of EVs from surgically removed pancreatic cancer 

tissue explant 

(A) Diagram of tissue explant method from tumor tissue, adjacent tissue, and matched 

distant tissue. Millimeter-sized fresh tumor and peritumoral adjacent tissue were harvested 

from patients with localized pancreatic cancer or lung adenocarcinoma. Tissue was cut into 

small pieces and cultured for 24 hours in serum-free RPMI. Conditioned media was 

processed for EV isolation. (B) Top 30 proteins highly represented in pancreatic tumor 

tissue compared to adjacent tumor tissue. Reprinted with permission from [56]. Copyright 

2020 Elsevier. 
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sensitivity and specificity (Figure 1.7). Importantly, Zhang et al. performed proteomic 

profiling on plasma and found 51 and 19 unique proteins to pancreatic cancer and lung 

cancer [56]. Taken together, plasma-derived EV protein profiles from various sources 

could serve as liquid biopsy tools to detect cancer.  

1.3.2.3  RNA characterization of EVs 

In addition to proteomics based approaches, the assessment of coding and 

noncoding RNAs in EV is undergoing intense research. RNA profiling has emerged as a 

powerful tool to investigate the potential of EV derived RNA as a biomarker from human 

biofluids. However, RNA sequencing from biofluids is technically challenging due to their 

low input amount and the degradation of RNA [57]. To establish whether extracellular 

RNA and their carriers such as extracellular vesicles may mediate intercellular 

communication, the Extracellular RNA Communication Consortium (ERCC) was 

launched by NIH Common Fund to establish foundational knowledge about extracellular 

RNA research [58]. Extracellular vesicles have been shown to play an important role in 

transporting RNAs between cells and promote tumor growth [59]. How these RNAs reside 

in RNase-rich biofluids, specific types of cargoes associated with subtypes of EVs, and 

overall clinical utility remain to be established [58]. Importantly, efforts to develop 

technologies, informatics tools, and analysis are essential in related research studies.  

Using computational deconvolution, the data repository of extracellular RNA 

communication consortium analyzed cell free RNA cargo from various biofluids covering 

23 health conditions across 19 different studies (Figure 1.8) [60]. Their computational 

integrated analysis revealed within the non-coding RNAs, there are 4 major types of 
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Figure 1.8 | ExRNA atlas from Extracellular RNA Communication Consortium 

The NIH Extracellular RNA communication Consortium created exRNA atlas resources 

containing 5,309 exRNA sequencing and exRNA qPCR profiles using 7 different bodily 

fluid from 19 different studies. To analyze variation between studies, computational 

devolution analysis was used to model six cargo types for non-coding RNA. Reprinted 

with permission from [60]. Copyright 2019 Elsevier. 

 

carriers: high and low density EVs, lipoprotein particles, and RNA binding proteins [60].  

Due to substantial overlap in their physicochemical properties, identifying effective 

separation and characterization of these known carriers has remained a challenge. EVs and 

high-density lipoproteins have similar density which can co-fractionate using density-

gradient ultracentrifugation [61]. However, size-exclusion chromatography has been 

shown to separate these two particles based on size [58], although size resolution within 
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the EV peak to identify EV heterogeneity remains challenging. Importantly, sequencing of 

small RNA using size-exclusion chromatography revealed RNA are sorted into EVs or 

RNA binding proteins [62]. Relevant to the packaging of RNA cargo into carriers, another 

study revealed how oncogenes, such as KRAS, may influence the selective packaging of 

genetic materials into vesicles in cell culture media [63]. However, little is known for cell 

free messenger RNA, especially in human biofluids, regarding the major type of carrier 

and understanding how cancer may dysregulate RNA packaging profiles.  

1.4  Fundamentals of cell-free RNA 

Cell free RNA (cf-RNA) is another major group of circulating biomarkers and 

holds promise in disease detection and diagnosis. Circulating RNAs are highly specific and 

amplifiable which makes them an ideal target as novel tools in cancer diagnosis. The first 

discovery of circulating nucleic acids originated back in 1948 as described by Mandel and 

Metais [64]. Surprisingly, it wasn’t until 1999 that cell-free RNA (cf-RNA) was first 

discovered, when two groups identified circulating messenger RNA (mRNA) in the plasma 

of patients with Nasopharengeal carcinoma and malignant melanoma. Lo et al. found cell-

free Epstein-Barr viral mRNA in the plasma of patients with nasopharengeal carcinoma 

[65]. Additionally, despite generally higher serum RNAase activity in patients with 

malignant melanoma, Kopreski et al. found elevated Tyrosinase mRNA in patient serum 

which passed through a 0.45μm filter [66]. Since then, a wide range of RNAs have 

presented in human biofluids: messenger RNAs (mRNAs), long noncoding RNAs 

(lncRNA), microRNAs (miRNAs), circular RNAs (circRNAs), tRNA-derived fragments 

(tRFRNAs) and Piwi-interacting RNAs (piRNAs) [67].   
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Figure 1.9 | Characterization of miRNA stability and detection of human prostate 

cancer by serum levels 

(A) Normalized count threshold (Ct) results for indicated miRNA subjected to prolonged 

room temperature incubation or multiple freeze-thaw cycles. (B) Detection of human 

prostate cancer serum level of tumor associated miR-141. Receiver operation characteristic 

(ROC) plot for miR-141, showing area under the curve value of 0.907. Reprinted with 

permission from [68]. Copyright 2008 National Academy of Sciences. 

 

To accelerate the progress in the new field of cell free RNA biology, the 

Extracellular RNA Communication Consortium was launched in 2013 [58]. The 

consortium is designed to overcome many gaps in knowledge and technical challenges. 

These include, but are not limited to: i) understanding the biology of cell free RNA, ii) 

biomarker discovery in human diseases, and iii) development of technical tools including 

bioinformatics. Mitchell et al. investigated the detection and stability of miRNA in human 

plasma (Figure 1.9). microRNAs (miRNAs) are approximately 21-22 nucleotide non-

coding RNA molecules that regulate gene expression at the post-transcriptional level [68, 
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69]. Despite the exogeneous RNAse activity in human plasma, levels of miRNA were 

stably detected over 24 hours of incubation and after up to eight cycles of freeze-thawing 

[68]. The mechanism of this protection is a growing current research topic which can be 

associated with either EVs, ribonucleoprotein or lipoprotein complexes. In regards to 

biomarker discovery in human cancer, Mitchell et al. revealed miRNA-141 levels were 

overexpressed in patients with prostate cancer from healthy control [68]. Sayeed et al. 

investigated cell-free mRNA transcriptome in people with liver cirrhosis (LC) and 

hepatocellular carcinoma (HCC) to determine biomarker potential of cell-free mRNA [70]. 

Using RNAseq and RT-qPCR, liver-derived circulating transcripts were significantly 

upregulated in HCC patient samples revealing potentials for cancer detection [70]. Despite 

initial findings in these studies, whether transcripts can differentiate pan-cancer remains 

unknown. To develop a computational analysis tool to understand different miRNA cargo 

types and its association with cancer, Extracellular RNA Communication Consortium 

created a data repository between studies and developed bioinformatics tools [60].  

1.5  RNA isolation, quantification and characterization 

techniques 

The human circulation contains cell free RNA, which can be an important source 

of biomarkers. An earlier study demonstrated miRNA are released into the circulation in a 

remarkably stable form after longer duration of incubation time, and even after many 

freeze-thaw cycles [68].  Additionally, this work revealed circulating miRNA carry disease 

specific signatures that can be exploited as non-invasive biomarkers. Despite their promise 

as circulating biomarkers, there is a critical need to provide more reliable and reproducible 
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results from human biofluids. In this section, sample and assay standards focused on 

standardization of RNA isolation and profiling methods will be discussed. 

1.5.1  RNA isolation 

1.5.1.1  RNA extraction 

One of the most exciting areas of cell free RNA research involves the assessment 

of cell free RNA present in serum or plasma samples. For the purification of cell-free RNA, 

especially miRNA, there are many different commercial kits: i.e. RNAdvance (Agencourt 

Bioscience, Beckman Coulter, Beverly, MA), MAgMAX (Life Technologies, Thermo 

Fisher Scientific), miRCURY-Biofluids (Exiqon, Vedbaek, Denmark), Quick-RNA (Zymo 

Research, Irvine, CA), DirectZol (Zymo Research, Irvine, CA), miRNeasy (Qiagen, 

Hilden, Germany), and mirVana (Thermo Fisher Scientific) [71]. Most commonly used 

miRNA isolation kit utilize: 1) TRIzol (guanidium-acid-phenol extraction) reagent, 2) 

proprietary paramagnetic, or/and 3) silica bead-based technology. The organic extraction 

technique using TRIzol is widely used in molecular biology for RNA isolation [72]. The 

single step technique was originally published by Piotr Chomczynski and Nicolette Sacchi 

in 1987 [73]. This method relies on phase separation from a mixture of an aqueous sample 

and solution containing phenol and chloroform. Guanidium thiocyanate, a chaotropic 

agent, is added to organic phase to denature proteins which bind nucleic acids [74]. Under 

acidic pH, nucleic acids partition into different phases allowing DNA and RNA to be 

separated due to differences in protonation of DNA and RNA [74]. Precipitation of nucleic 

acids is then performed using ethanol while the resulting pellet is resuspended in Tris-

EDTA (TE) buffer [74]. 
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Solid-phase nucleic acid was originally developed to avoid toxic phenol and 

chloroform phase separation. Solid-phase nucleic acid extraction allows quick and efficient 

purification compared to conventional methods [74]. The silica or paramagnetic beads 

absorb nucleic acids during the extraction process relying on the pH and salt concentration 

of the buffer. For magnetic beads, biopolymer such as cellulose which exhibits affinity to 

target nucleic acids are modified into the surface [74, 75]. However, this approach is not 

nucleic-acid specific and can also absorb other biosubstances as a drawback [75]. To help 

alleviate this, silica based isolation has been developed utilizing specific charge interaction 

[76]. In general, negatively charged nucleic acids bind tightly to silica particles under high 

ionic strength (pH < 7) and can be eluted under low ionic strength (pH ≥ 7) [74, 76]. Silica 

carbide (SiC) based DNA/RNA isolation also avoids toxic phenol and chloroform phase 

separation while retaining a wide variety of nucleic acid lengths and content. When 

comparing to other total RNA isolation kits utilizing either silica fiber (SiF) or silica 

membrane (SiM), SiC based methods have the highest total recovery of RNA, especially 

including low molecular weight RNA such as miRNA [77] (Figure 1.10). Silica based 

columns are typically engineered to retain either high or low molecular weight RNA, while 

SiC beads retain the full complement of smaller miRNA and larger RNA molecules [77]. 

Therefore, optimization of RNA isolation steps is a critical aspect of study design. 

The choice of different RNA isolation kits relies on the type of biofluid and 

subtypes of RNA being studied [78]. Comparison of different commercially available RNA 

extraction kits has been evaluated from plasma [78]. miRNeasy serum/plasma and 

miRNeasy serum/plasma advanced both extracted total RNA while being enriched for 

small RNA populations < 200 nt [78]. Quick-cfRNA serum and plasma is targeted for both   
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Figure 1.10 | Total RNA isolated using silica carbide and other RNA extraction kits 

(A) Performance of silica carbide in RNA purification was compared to the current 

technology using phenol-based and silica-based extraction in 1.5% formaldehyde-agarose 

gel. Total RNA was isolated from HeLa cells employing either silicon carbide (SiC), silica 

fiber (SiF) or silica matrix (SiM). Guanidine thiocyanate/phenol based TRI reagent 

isolation was used as a positive control for complete size range of RNA isolation. Only SiC 

and TRI contained both the large and small RNA species. (B) Recovery of small RNA was 

compared to two commercially available miRNA kits. Enrichment of small RNA using 

SiC did not involve any phenol extraction, but enriched miRNA similar to those with 

phenol extraction. Reprinted with permission from [77]. Copyright Norgen Biotek Corp. 

Thorold, ON, Canada. 

 

miRNA and mRNA, and Isolate II fractionates RNA population based on size to select for 

small RNAs [78]. Srinivasan et al. presented 10 different extracellular RNA isolation 

methods across 5 biofluids using small RNA sequencing [79]. Importantly, RNA size 

distribution and yield varied according to the biofluid type and extraction method used 
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(Figure 1.11). Using small RNA-sequencing, Srinivasan et al. identified the distribution 

of RNA biotypes also varied by different RNA extraction kits, and complexity was 

correlated with differences in read depth. Therefore, RNA isolation methods should be 

selected based on RNA types of interest to observe meaningful results within a given study.    

 

 

Figure 1.11 | Hierarchical clustering analysis of miRNA among different biofluid 

types and exRNA isolation methods 

(A) Heatmap of miRNA unsupervised clustering of samples by biofluid types (bile, plasma, 

serum, urine, and cell culture medium). (B) Heatmap of miRNA within plasma and serum 

samples by exRNA isolation methods. Colors shown for biological group, biofluid, lab and 

exRNA isolation method. Reprinted with permission from [79]. Copyright 2019 Elsevier. 
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1.5.2  RNA quantification 

Accurate determination of the RNA yield is important for downstream applications 

since qPCR and next generation sequencing (NGS) require specific concentrations for 

optimal performance. RNA quantification can be performed using the following methods: 

i) UV absorbance, ii) fluorescence measurement using nucleic acid dye, and iii) qPCR.  

1.5.2.1  RNA quantification by UV absorbance 

The most common technique used to determine RNA concentration and purity is 

UV absorbance. Absorbance is used to measure total RNA concentration in a purified 

sample. Absorbance of 260 nm light relative to blank buffer approximates both RNA 

concentration and purity [80]. Absorbance at 260 nm light (A260) is used as nucleic acid 

bases in the RNA molecule most strongly absorb light at this wavelength [80]. The RNA 

concentration is calculated using the Beer-Lambert law, A = ϵCl, where ϵ is the extinction 

coefficient (ϵ for RNA is 0.025 (μg/ml)-1cm-1, C is the concentration of the nucleic acid, l 

is the path length of the cuvette, and A is the measured absorbance at 260 nm [81]. To 

evaluate protein contamination, the ratio of absorbance at 260 nm (nucleic acid absorbance) 

and 280 nm (absorbance of peptide bonds) is used [81]. Typically, A260/A280 ratios over 

1.8 are considered highly pure RNA [81]. For RNA measurement, the presence of DNA 

would falsely indicate higher RNA abundance as DNA contaminants share the same base 

pair absorption at 260 nm [81]. To avoid this, samples can be treated with an enzyme called 

deoxyribonuclease (DNAse) which specifically digests DNA and not RNA. The 

A260/A280 ratio is specifically affected by buffer pH, where studies have shown that 

weakly basic conditions enhanced the sensitivity of this ratio in determining nucleic acid 
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purity [82]. For samples with very low RNA concentrations, UV spectroscopy is not 

sensitive below 0.1 at 260 nm absorbance, or 4 µg/ml RNA [83]. Although spectroscopy 

is commonly used, its sensitivity and specificity to distinguish DNA, RNA, or protein can 

be unreliable and inaccurate [84, 85].  

1.5.2.2  Fluorescence measurement using nucleic acid dye 

In light of drawbacks for quantifying RNA using UV spectroscopy, fluorescence 

based measurements have become a common alternative [86]. Two of the most commonly 

used fluorescence-based RNA quantification systems are Qubit fluorometer and 

bioanalyzer. The most significant difference between fluorescence-based quantification 

and UV absorbance is the specificity of the molecules of interest (RNA, DNA, or protein). 

Fluorescence-based methods leverage distinctive fluorogenic dyes which can exhibit > 

200-fold enhancement for binding RNA [87]. The Qubit fluorometer can detect 250 pg/μl 

to 100 ng/µl, however, there is no information about the size distribution [88]. The 

bioanalyzer system, which can detect as little as 50 pg of total RNA, can provide both the 

size and abundance of RNA [87, 89]. The bioanalyzer works using a microfluidics chip 

incorporating both gel and nucleic acid intercalating dyes. Similar to RiboGreenTM, the 

RNA Nano Dye used by the bioanalyzer interacts with single-stranded RNA molecules to 

sensitively permit fluorescence versus unbound fluorophores [90]. Another key feature of 

the bioanalyzer is the electropherogram. As samples move through microchannels, samples 

are electrophoretically separated [87]. Smaller size RNA migrate faster through the 

microchannel than the larger ones [87]. The fluorescent signal from different RNA lengths 

are measured into gel like images (bands) and electropherograms (peaks) [87]. The gel-

like image produced from the bioanalyzer is similar to a standard agarose DNA/RNA gel 
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stained with ethidium bromide. [87]. Quantification is done using RNA ladder as a 

reference. Overall, the bioanalyzer provides better sensitivity towards low input RNA and 

also provides measurements of RNA integrity and sample purity. 

1.5.2.3  qPCR mechanism and detection 

Polymerase chain reaction (PCR) has become a central technique in biochemistry 

and molecular biology for RNA quantification. PCR was invented in 1983 by Kary Mullis, 

awarded the Nobel Prize for the procedure to replicate DNA [91]. Given a small amount 

of RNA, two nucleotides, DNA polymerase, and four deoxynucleoside triphosphate 

(dNTPs), millions to billions of copies of specific DNA can be generated [92]. Compared 

to aforementioned quantification methods, qPCR measures the concentration in real time 

during the exponential phase of the amplification product [93]. PCR relies on a thermal 

cycling process which goes through different phases: 1) denaturation melts DNA double 

helix at high temperatures (94–98 °C), 2) annealing steps in which primers bind to 

complementary sequences of template DNA at lower temperature (55–70 °C), and 3) 

extension and elongation which DNA polymerase enzymatically assembles new DNA 

strands using dNTPs [94, 95]. Reverse transcription-qPCR (RT-qPCR) is a technique 

which reverse transcription or the RNA template into DNA occurs prior to PCR to amplify 

complementary DNA (cDNA). As the PCR enzyme strictly recognizes double stranded 

DNA (dsDNA), RNA samples must first be converted to DNA using reverse transcriptase 

(RT). RT uses a RNA as a template to synthesize complementary DNA (cDNA). Typical 

number of cycles is usually carried out 25-35 times depending on input amount for the 

desired yield of the PCR product [96]. Performing more than 45 cycles is not recommended 

as nonspecific bands start to appear. 
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Figure 1.12 | Overview of qPCR workflow for measuring RNA using SYBR green.  

Reverse transcriptase converts purified RNA into complimentary DNA strands. 

Polymerase chain reaction, with gene-specific template DNA and SYBR green dye, 

enables real-time quantification of PCR amplification and relative gene abundance. 

 

During each PCR cycle, the presence of DNA-intercalating dyes enables a 

fluorescent readout of DNA concentrations (Figure 1.12). There are two methods for 

simultaneous detection and quantification. One is using fluorescent dyes that are retained 

nonspecifically between double strands. The other one involves probes which specifically 

bind target sequences to become fluorescently labeled. SYBR green functions as an 

intercalating dye, whereby segments of the cyanine-based dye will insert into the pi-orbital 

stacks between nucleic acid bases of dsDNA [97]. During each PCR cycle, SYBR green 

dye binds to double stranded products resulting in a net increase of fluorescence [98]. 

However, SYBR green will nonspecifically bind all dsDNA, requiring individual targets 

to be amplified in separate reaction wells. DNA-purity can be inferred by performing a 

melt-curve analysis and measuring the dissociation of SYBR dye. The melting temperature 

of the specific amplified product should yield a sharp decrease in fluorescence when the 

target dsDNA melts into single stranded DNA (ssDNA) and SYBR green intercalating 
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fluorescence becomes inhibited [97]. On the other hand, Taqman probe-based assay is 

specific to the target of interest using fluorescence resonance energy transfer (FRET) 

(Figure 1.13). Base oligonucleotide template sequences are made to match only unique 

DNA sequences for specific genes with one side conjugated with fluorophore and quencher 

on the other side. When each fluorophore is intact with a quencher, the proximity of the 

quencher prevents fluorescence emitted by the fluorophore. Within each PCR cycle, the 

complimentary probes will be paired and cleaved from 5’ end by DNA polymerase, 

releasing originally bound quencher and enabling fluorescent readout [99]. 

 

 

Figure 1.13 | Overview of RT-qPCR workflow for measuring RNA using TaqMan. 

TaqMan probe relies on 5’-3’ exonuclease activity of Taq polymerase to cleave dual-

labeled probe during hybridization. TaqMan probe has fluorophore on one side and 

quencher on the other side, which quenches the fluorescence emitted by fluorophore. 

Degradation of the probe releases the fluorophore, which can be detected in qPCR. 

Reprinted with permission from [100]. Copyright Agilent Technologies, U.S.A. 
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Figure 1.14 | Basic principle of PCR and relative fluorescence cycle number 

(A) Baseline, exponential phase, linear phase, and plateau phase during PCR amplification. 

Reproduced with permission from [101]. Copyright Rice et al. (B) Amplification plots are 

created when fluorescent signal is plotted for every cycle number. The higher concentration 

of target input results in lower cycle threshold value. Reprinted with permission from [102]. 

Copyright Life Technologies Corporation, Carlsbad, CA, U.S.A. 

 

When calculating results of a quantification assay, either relative or absolute 

quantification is used. There are three phases of fluorescent intensity in a RT-qPCR plot: 

1) The exponential phase, where input cDNA is amplifying exponentially yet fluorescent 

readout is not above background fluorescence, 2) the linear phase, where cycle causes a 

linear observed fluorescence increase on a log scale, and 3) the plateau phase, where PCR 

products are so abundant that fluorescent probes saturate the detector nonlinearly (Figure 

1.14). The parameter, cycle threshold, is defined as the number of cycles at which the 

fluorescence passes the fixed threshold. This threshold is defined from an average standard 

deviation of fluorescence emission intensity of the reporter dye [97]. In general, relative 

quantification is used to analyze changes in gene expression between treatment and control 

groups. The cycle threshold (Ct) value is inherently relative and it relies on: reagent quality, 

PCR efficiency and instrument calibration. However, when a reference DNA with known 

concentration is also added, the relative nature of Ct values then enables absolute 
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quantification. By interpolating their quantity from a standard curve, the absolute copy 

number of specific DNA can be obtained.   

1.5.3  RNA sequencing, alignment, and characterization 

Following RNA extraction and quantification, RNA can be sequenced to enable 

transcriptomic analysis and comparative gene expression from different diseases and 

treatments. RNA sequencing is a technique which examines the quantity and sequences of 

RNA in a sample using next generation sequencing (NGS) technology. NGS is a powerful 

technology revolutionizing total transcriptomic profiling to understand expression levels 

for both coding and non-coding RNAs [39, 58, 103, 104]. It has revealed many important 

roles played in biological processes such as gene expression regulation [105], development 

of various human diseases [105-108], drug discovery [109, 110], and biomarker discovery 

[104]. This section will discuss current RNA sequencing workflows, normalization and 

downstream analysis. 

1.5.3.1  RNA sequencing 

 To enable NGS analysis, current RNA sequencing protocol involves library 

generation. Library preparation is the process of converting RNA to cDNA, attaching 

sequencing-specific adapter sequences and additional motifs such as sequencing binding 

sites that are complementary to the sequencer. General workflows of library preparation 

includes: synthesis of cDNA with library indices (barcodes), cDNA cleanup, library 

amplification, and library clean-up. For non-coding RNA of 22 nucleotides in size, 

specifically designed 3’ and 5’ adapters are ligated prior to reverse transcription with 

unique molecular indices (UMI) for efficient ligation. For total RNA sequencing library  
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Figure 1.15 | Schematic of SMARTer stranded total RNAseq library preparation  

SMARTer stranded total RNAseq involves generation of cDNA from all RNA fragment 

using random priming (N6 primer). During reverse transcription, enzyme adds few 

nontemplatated nucleotide shown as Xs to the 3’ end of cDNA. The adapter base-pairs with 

nontemplated nucleotide stretch, creating an extended template to continue replicating to 

the end of oligonucleotide. The resulting cDNA contains sequencing derived from random 

primer and adapter. The resulting cDNA goes through 2 PCR cycles which adds full length 

of Illumina adapters including barcode and enrichment of final library after ribosomal 

cDNA cleavage. Reprinted with permission from [111]. Copyright Takara Bio Inc. 

Mountain View, CA, U.S.A.  
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preparation, important consideration should be taken to cleave highly abundant ribosomal 

cDNA. This process leaves the library fragments originating from non-rRNA molecules 

untouched [112]. The final library contains sequences allowing clustering on an Illumina 

flow cell. Studies have compared the performance of commercially available library kits 

for samples with low amounts of total RNA [113]. In summary, SMARTer Stranded Total 

RNA-Seq Kit v2 provided strand specificity while working with minute starting materials, 

allowing to provide better resolution of transcriptomic profiling [113]. Additionally, 

SMARTer Stranded total RNA sequencing kits have been successfully utilized for low-

input RNA amount from human biofluids (Figure 1.15) [103].   

1.5.3.2  Workflow for RNA sequencing 

Following RNA-sequencing, resulting reads are quality controlled and undergo 

sequencing alignment to generate a count matrix (Figure 1.16). Quality control can be 

assessed using quality control tools like FastQC. FastQC provides overview of RNA-seq 

raw reads consisting of sequence quality, GC content, adaptor content, duplicated reads, 

and overrepresented sequences. The first pipeline starts with a reference alignment against 

the human reference genome. After the quality of raw reads is assessed, read alignment is 

performed to determine where the reads originated from in the reference genome. 

Alignment is then performed by packages like TopHat, STAR (Spliced Transcripts 

Alignment to Reference), HISAT, and bowtie2 which consists of removing tagging 

sequence reads, assigning sample reads per unique library barcode, and removing 

erroneous reads which are either too long or too short [114-118]. Mapping statistics which 

include statistics of uniquely mapped reads, reads mapped to multiple location, and reads 

that are unmapped can be obtained through read count distribution. Once the reads are 
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aligned to the genome, the next step is to generate a count matrix that has been mapped to 

genome. Ht-seq count and featureCounts are two commonly used counting tools. Once a 

count matrix is generated, differential expression analysis can be performed using tools 

like DESeq2 [119], edgeR [120], and limma [121]. All of these packages are available in 

R, which is language useful for analyzing NGS data.    

 

 

Figure 1.16 | Workflow of RNAseq analysis  

The unmapped sequencing file is in FASTQC file format generated from next-generation 

sequencing technologies. After quality of sequence is assessed with quality matrics, the 

reads are aligned to human reference genome using alignment tools (STAR, TopHat, 

HISAT, or bowtie2). Count matrix is generated from aligned reads using counting tools 

(featureCounts or htseq) followed by differential expression analysis and other downstream 

analysis. 

 

1.5.3.3  Normalization 

Normalization is essential to reduce sources of systematic variation including 

library size (sequencing depth) or unwanted variation introduced by technical effects. The 

basic concept of RNA-seq normalization has been accounting for library size, or the total 
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number of reads from the input library. Methods commonly used for normalization of 

RNA-seq data are: trimmed mean of m-value (TMM), median, upper quartile (UQ), scale 

quantile, RPKM, TPM, RPM, and relative log expression (RLE) using R packages from 

edgeR and Deseq [122, 123]. Trimmed mean of m-value is a normalization method in 

which scaling factors are calculated based on the weighted mean of log ratios between test 

and reference [123, 124]. Median normalization works by dividing each count by the 

median expression of all genes in an observation and multiplying by the median values 

from all observations. Upper quartile is similar to median normalization, except that the 

50% quantile is replaced by a 75% quantile. Scale quantile is user-specified quantile 

method. RPKM (reads per kilobase per million reads) or TPM (transcript per million) are 

commonly used in normalization that includes gene length correction [125, 126]. RPM 

(reads per million mapped reads) are calculated from the number of reads mapped to a gene 

RPKM x 106 divided by the total number of mapped reads [127]. Finally, RLE is calculated 

using the log ratio of gene counts over the geometric mean across all samples [128]. 

Although global gene expression analysis provides quantitative information, these methods 

assume samples have similar total expression [128, 129]. However, potential sources of 

error can be overlooked when the relative mRNA expression levels significantly differ in 

biological samples (Figure 1.17). Utilizing global scaling factor may lead to either a false 

increase or regression in the expression level according to the library size. To overcome 

this issue, synthetic spike-in RNA standards are implemented which allows normalization 

to correct for unwanted variations [129, 130]. External RNA Controls Consortium (ERCC) 

spike-in RNA is a premixed set of 92 synthetic transcripts which share common attributes 

of eukaryotic mRNA, including polyadenylated tails, at differing nucleotide lengths and 
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concentrations [130]. Utilizing ERCC as an external standard, Loven et al. ensured more 

accurate detection of differential expression of samples with inherently different biological 

library sizes [129]. Therefore, normalization should consider variability in measurements 

by both biological and technical factors in completing RNA-seq studies. 

 

 

Figure 1.17 | RNAseq normalization and interpretation of expression data  

(A) Schematic representation of transcription change on limited sample. (B) Schematic 

representation of effect of normalization when overall levels of mRNA (in black dots) do 

not change. The observed fold change reveals the increased expression represented by red 

bars above the midline and decreased expression represented by green bars. (C) Schematic 

representation of pattern of change in gene expression when levels of total RNA in two 

cells are different, where most genes are also expressed in higher level. This will lower 

overall observed fold change in those samples. (D) Schematic representation of 

normalization when overall observed mRNA levels per cells are increased. (E) The 

perceived response using spike-in as standards for normalization reveal overall 

transcriptional amplification of gene expression. Reprinted with permission from [129]. 

Copyright 2012 Elsevier. 
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1.5.3.4  Downstream analysis 

Finally, after all other steps to pre-process and normalize sequencing data, 

expression level differences across sample types can be compared to find differentially 

expressed (DE) genes of interest. DE genes are commonly defined as any gene which has 

a collective expression level change lower than a threshold p-value. As with most statistical 

comparisons, the number of samples and variation within and between replicates all affect 

DE genes. By organizing DE genes by lowest p-value, most up- or down-regulated genes 

between samples can be extracted. Genes implicated by DE analysis are often candidates 

for downstream validation, either by comparison with additional sequencing datasets or 

even RT-qPCR to more directly quantify how significantly different expression from genes 

identified through sequencing are across samples. Critically, robust genes which have 

passed DE analysis are often good candidates for either diagnostic or prognostic 

applications. 

1.6  Gaps in current understanding & layout of the thesis 

Collectively, the current literature presents key challenges which limit the promise 

of liquid biopsy based early cancer detection: i) the lack of standardized blood processing 

for multi-omics which minimizes ex-vivo processing artefacts via discerning true-in-vivo 

signatures from ex-vivo artefacts; ii) the daily cycles and consumption of meal influence 

on cell free mRNA and EV levels are not clear; iii) a comprehensive study of cf-mRNA 

for cancer detection, pan cancer discernment, and high risk group identification has not 

been conducted; and iv) the selective packaging of cf-mRNA carriers and normalization 

pipelines for quantitative data analysis are unknown. My central hypothesis is that 
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circulating cfRNA/EVs contain cancer associated signatures, which can be detected within 

patient plasma to stratify cancers and precancerous conditions. The remainder of the thesis 

is organized as follows. Chapter 2 focuses on preanalytical variability assessment on both 

EVs and cf-RNA, investigating ex-vivo artefacts from blood processing conditions. 

Chapter 3 aims to reveal diurnal stability of EV and cf-RNA signatures across blood 

sampling, establishing baseline levels for within and between individuals. Chapter 4 aims 

to identify specific gene signatures which can differentiate the presence of cancers and 

precancerous diseases from healthy patients, allowing us to identify lowly abundant yet 

robust biomarkers. Finally, chapter 5 aims to identify the carrier of cf-mRNA in patient 

plasma, and determine if selective RNA packaging can reveal the progression of cancer.  
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 Chapter II: Irreversible alteration of extracellular 

vesicle and cell-free messenger RNA profiles in human 

plasma associated with blood processing and storage 
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2.1  Abstract 

The discovery and utility of clinically relevant circulating biomarkers depend on 

standardized methods that minimize preanalytical errors. Despite growing interest of 

studying extracellular vesicles (EVs) and cell-free messenger RNA (cf-mRNA) as potential 

biomarkers, how blood processing impacts both remain to be established. To systematically 

investigate this, we utilized flow cytometric analysis and examined impact of differential 

centrifugation and freeze/thaw effect on EV profiles. Utilizing flow cytometry post 

acquistion analysis software (FCMpass) to calibrate light scattering and fluorescence, we 

revealed how differential centrifugation and post-freeze/thaw processing removes and 

retains EV subpopulations. Additionally, cf-mRNA levels measured by RT-qPCR profiles 

from a panel of housekeeping, platelet, and tissue-specific genes were preferentially 

affected by differential centrifugation and post-freeze/thaw processing. We found this is 

predominantly due to freezing plasma containing residual platelets, yielding irreversible ex 

vivo generation of EV subpopulations and cf-mRNA transcripts. Importantly, we found 

distinct subpopulation of EVs and cf-mRNA in human plasma persisted despite additional 

processing after freeze-thaw, highlighting importance of minimizing confounding 

variation attributable to plasma processing and platelet contamination.    
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2.2  Introduction 

Circulating extracellular vesicles (EVs) and cell-free RNA (cfRNA) are promising 

biomarkers for early cancer detection [131]. EVs are a heterogeneous mixture of vesicles 

with varying size and composition that are released from cells [132-135]. Since EVs are 

either derived from the plasma membrane or the involvement of multivesicular endosome 

fusion with the cell surface, they have cell-specific antigens on their surface that may be 

antibody labelled for imaging and/or isolation in –omics analyses [7, 136, 137]. There is 

increasing evidence that EVs may transport a variety of proteins and nucleic acids, 

including being a potential carrier of cfRNA [138, 139]. Cell-free messenger RNAs (cf-

mRNA) specifically are protein coding mRNA molecules in plasma that may serve as 

biomarkers [140, 141]. Since EVs may transport diverse extracellular RNAs, including cf-

mRNA, there is an intense interest in the combination of these analytes for blood-based 

cancer diagnosis [142, 143]. 

Previous studies have suggested that ex vivo platelet activation and fragmentation 

affect EV profiles in serum and plasma [132, 144-146, 148-151]. Thus, the International 

Society of Extracellular Vesicles (ISEV) and International Society on Thrombosis and 

Haemostasis (ISTH) have recommended general platelet-poor plasma processing 

conditions for EV analysis [16, 152]. However, how specific preanalytical variables can 

influence EV subpopulations was not thoroughly characterized. Others have shown that 

residual platelets also significantly affect plasma microRNA levels solely due to 

differences in blood processing methods [145, 146]. However, no prior studies have 

specifically examined changes in cf-mRNA. Since common blood processing conditions 

for biobanking may not produce platelet-poor plasma [145], as guided by ISEV and ISTH, 
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additional processing on banked samples after thawing may mitigate the effect of platelet 

activation on EVs and cf-mRNA analysis. However, which subpopulations of ex vivo 

generated EVs and cf-mRNA subtypes are removable or retained is unknown.  

Despite the growing body of literature describing the impact of blood processing 

on EVs, standardization through light scatter calibration was not widely adopted in these 

studies to analyze EV subpopulations using flow cytometry. Flow cytometry has been 

increasingly utilized to characterize heterogeneity of EV surface markers [132, 145, 153-

158]. Nonetheless, standardizing nanoscale flow cytometry for sub-micron sized EV 

detection can be challenging due to varying instrument settings and resolution [155-157]. 

Recent efforts to ameliorate this have focused on Mie scattering theory modeling [40, 41, 

49, 50, 159]. An estimated relative size of an EV population can be derived from a given 

scatter intensity provided an assumed refractive index and specific optical configuration in 

a flow cytometer [40, 49, 50]. Although quantifying the exact refractive index of EVs is 

challenging, previous measurement by either nanoparticle tracking analysis or fluorescence 

lifetime imaging microscopy suggested a potential range from 1.37-1.45  [44, 45, 160]. 

Using National Institutes of Standards and Technology (NIST) traceable bead standards 

with known diameters and refractive indices, scatter-diameter curves can be generated via 

postacqusition analysis software [40, 41, 49, 50, 159]. Given an effective refractive index 

of EVs, established scatter-diameter curves yielded reproducible EV measurement between 

instruments [40, 41, 49, 50, 159]. 

In this study, we systematically examined the variation of both EV and cf-mRNA 

subpopulations in human plasma due to blood processing and freeze thaw effect after -

80°C storage. EVs were analyzed by flow cytometry with standardized size and fluorescent 
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calibration, and cf-mRNA levels were measured by multiplex RT-qPCR. We compared 

plasma derived from single spin (S1: 1,000 × g centrifugation for 10 min) and double spin 

(S2: 15,000 × g secondary spin for 10 min after the initial single spin S1) analyzed freshly 

and after freezing. We examined how post freeze/thaw processing removes and retains 

specific EV subpopulations as well as cf-mRNA originated from platelets, common cell 

types and tissue specific cells. Our analysis revealed subpopulations of EVs and cf-mRNA 

were irreversibly altered ex vivo in association with blood processing and freeze/thaw 

effects after storage. 

2.3  Materials and Methods 

Blood sample collection and processing 

All experimental protocols were reviewed and approved by the Oregon Health & 

Science University Institutional Review Board. All methods were carried out in accordance 

with relevant guidelines and regulations. Blood samples from healthy individuals were 

obtained from the Cancer Early Detection Advanced Research center (CEDAR) at Oregon 

Health and Science University. All samples were collected under institutional review board 

(IRB) approved protocols with informed consent from all participants for research use. 

Whole blood was collected from healthy individuals in 10 ml in K2EDTA tubes (BD 

Vacutainer, Becton Dickinson, cat. 36643) via antecubital vein puncture using a 21G 

butterfly needle (BD Vacutainer, Becton Dickinson, cat. 367281). Tubes were transported 

vertically at room temperature before processing. Within 1 hour of blood withdrawal, 10 

ml of whole blood was centrifuged at 1,000 × g for 10 minutes at 23°C with the highest 

acceleration and deceleration setting at ‘9’ using Eppendorf 5810-R centrifuge with S-4-
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104 Rotor. Plasma was collected until 10 mm above the buffy coat and was labelled as S1. 

To obtain double spun plasma, S1 plasma was centrifuged in Eppendorf 5424R centrifuge 

at 15,000 x g for 10 minutes at 23°C. The resulting supernatant of platelet-depleted plasma 

was collected and labelled as S2. S1 and S2 plasma samples did not undergo a freeze/thaw 

cycle. Plasma samples that were frozen at −80 °C and thawed at room temperature were 

labelled as S1FR and S2FR respectively. For post-thaw processing, S1FR was centrifuged 

in Eppendorf 5424R centrifuge at 15,000 x g for 10 minutes at 23°C. The resulting 

supernatant was carefully transferred and designated as S1FRS2.  

 

Platelet counting 

The platelet count was measured by an improved Neubauer haemocytometer (VWR 

Scientific Products, Piscataway, NJ) by two independent, experienced researchers. The 

total number of platelets were counted from central 1 x 1 mm area consisting of 25 groups 

of 16 squares separated by closely ruled triple lines, equivalent to a volume of 0.1 μl.  

 

Flow cytometry set-up for light scatter and fluorescence calibration 

Beckton-Dickinson FACSAria Fusion equipped with 488 nm (60 mW) and 640 nm 

(100 mW) lasers was used. For optimal configuration of submicron size detection, 0.1 µm 

size filter was applied to the sheath fluidic system to reduce sheath fluid noise. The sample 

flow rate was set at 1, which was measured by mass discharge [159] and determined to be 

45 μl/minute. Timed collections were recorded for 60 seconds. Data collection was set 

using the SSC trigger threshold value of 200 using scatter wavelength at 488 nm. In order 

to calibrate light scattering, 152, 203, 303, 401, 510, and 600 nm polystyrene NIST-



50 

 

traceable beads (ThermoFisher Scientific) were serially diluted in 0.1 μm filtered D-PBS 

without calcium and magnesium. Minimum of 5,000 events were recorded for 60 seconds. 

Particle diameter and scatter relationship was established utilizing FCMpass software 

(v3.09, http://nanopass.ccr.cancer.gov) [40, 49, 50]. Median SSC-H intensity in arbitrary 

units was converted to standardized unit in EV diameter. To approximate EV diameter size, 

the average of effective refractive index (RI) data based upon published measurements 

were used. Detailed instructions for light scattering calibration based on a core-shell 

structure to model EVs were followed (Shell RI = 1.4800, Core RI: 1.3800, and shell 

thickness: 5 nm) [40]. For fluorescence calibration, Quantum Alexa Fluor 647 Molecule 

Equivalent Soluble Fluorochrome (MESF) (Bangs Laboratories, cat. 647) or Quantum 

Alexa Fluor 488 MESF (Bangs Laboratories, cat. 488) were used. Data collection was set 

using the FSC trigger threshold value of 5,000 and analyzed using FSC-A vs SSC-A in 

arbitrary units. Utilizing FCMpass software, the fluorescent intensity in arbitrary units were 

converted to MESF standardized units. All measurements were analyzed using FlowJo 

software. 

 

Fluorescent antibody labeling of differentially processed plasma for flow cytometry 

To fluorescently label EV surface proteins, 5 µl of plasma was incubated with 5µl 

of antibody mix prepared after established dilution series. CD9 Alexa Fluor 647 (R&D 

system, clone: #209306, cat. FAB1880R-100μg) was diluted to a final concentration of 

0.001 mg/ml for staining. CD63 Alexa Fluor 488 (Thermofisher scientific, clone: MEM-

259, cat. MA5-18149, concentration 0.26 mg/ml) was diluted to a final concentration of 

0.0013 mg/ml for staining. For isotype controls, mouse IgG2B Alexa Fluor 647 conjugated 
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isotype control (R&D system, cat. IC0041R) and mouse IgG1 Alexa Fluor 488 conjugated 

isotype control (Thermofisher Scientific, cat. MA518167) were used at the same 

concentration as matched stained controls and were recorded at the same dilution as stained 

and unstained samples. Incubation was done for 3 hours at room temperature in the dark. 

The stained EV samples were further diluted 200-fold with 0.1 µm filtered D-PBS without 

calcium and magnesium Thermo Fisher Scientific, cat. 14190250) prior to acquiring the 

data using an abort rate of < 5% and keeping the threshold rate below 20,000 events per 

second. To account for the electronic abort rate due to nanoparticle coincidence (also 

known as “swarming”), stained samples were serially diluted and validated via consistent 

median fluorescent intensity across plasma dilutions. A buffer-only control of 0.1 µm-

filtered DPBS without calcium and magnesium was recorded at the same flow cytometer 

acquisition settings as all other samples, including triggering threshold, voltages, and flow 

rate. The buffer-only control had a count of <1,000 events per second.  

 

RT-qPCR profiling of cell free mRNA 

For characterizing the effect of freeze thaw on cell free mRNA expressions, RNA 

was extracted using plasma processed with S1, S2, S1FR, S2FR, and S1FRS2 conditions. 

Cell free mRNA was isolated by using plasma/serum circulating and exosomal RNA 

purification Kit (Norgen Biotek) followed by 10X Baseline-ZERO DNase treatment 

(Epicentre). DNase treated RNA samples were purified and further concentrated using 

RNA clean and concentrator (Zymo Research). The purified RNA samples were assayed 

by RT-qPCR using custom selected 16 primers targeting MTND2, PPBP, B2M, PF4, 

ACTB, CORO1C, GSE1, GAPDH, SMC4, HBG1, NUSAP1, MIKI67, FGB, APOE, FGG, 
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and ALB. Template RNA was mixed with Superscript III One-step RT-PCR system with 

Platinum Taq DNA polymerase (Invitrogen) to generate cDNA according to the protocol. 

PCR amplification products were treated with Exonuclease I (New England Biolabs) to 

digest single stranded primers at 37°C for 30 min followed by inactivation of enzymes at 

80°C for 15 min. For RT-qPCR, cDNA from preamplification was diluted 1:80 and set-up 

in 96-well plates with SsoFast EvaGreen supermix with low ROX (BioRad) with above 

primers at 10𝜇M. QuantStudio 7 Flex (Applied Biosystems) was used to run RT-qPCR 

assay according to manufacturer’s recommended cycling conditions. 

 

Statistical analysis 

To determine the impact of overall preanalytical factors, statistical analysis was 

performed on CD9+ or CD63+ EVs on specific gated populations across differential 

centrifugation and freeze/thaw processing. The significance of individual preanalytical 

factor comparisons were determined using Tukey’s multiple comparison test. p values 

<0.05 were considered statistically significant (*p < 0.05, **p < 0.01, ***p < 0.001, and 

****p < 0.0001). Analyses were conducted using R package.  

2.4  Results 

Light scattering and fluorescence calibration 

We calibrated the flow cytometer Beckton-Dickinson FACSAria Fusion using 

National Institutes of Standards and Technology (NIST) traceable size standard beads (152, 

203, 303, 401, 510, and 600 nm) and Quantum Molecules of Equivalent Soluble 

Fluorophore (MESF) to establish standardized units for light scatter and fluorescence 
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respectively [40, 49, 50]. For light scatter, each bead sample was analyzed at the same 

acquisition setting until > 5,000 bead events were recorded. The histogram of each sized 

bead population revealed distinct side scattering in arbitrary units, where a progressive 

increase in SSC-H with increasing NIST bead diameter (152 nm – 600 nm) was observed 

(Figure 2.1A). The median light scatter statistic of each bead size gated population was 

inputted into flow cytometry post acquisition analysis software (FCMpass) to calibrate 

light scattering [40, 49, 50]. The collection half-angle of our system, which is important to 

quantify the amount of light reaching a detector in absolute units, was determined to be 

45.3° using FCMpass software. Utilizing the side scattering collection angle, recorded side 

scattering value in arbitrary units was standardized to predicted scattering cross-section 

using Mie theory [40, 49, 50]. The linear regression between our observed light scattering 

power in arbitrary units and predicted scattering cross-section resulted in R-squared value 

= 0.9991 (Figure 2.1B). The acquired scattering intensity of standard beads (red dots) was 

plotted on modelled data (black line) for polystyrene beads, which revealed the model fitted 

actual data accurately (Figure 2.1C). After scatter-diameter relationship for EVs is 

extrapolated using FCMpass software, the measured scatter signal for polystyrene beads 

corresponding to vesicle diameter is revealed (Figure 2.1C). Approximate diameters of 

EVs was calculated using the average of effective EV refractive index (Shell RI = 1.4800, 

Core RI: 1.4000, and shell thickness: 5 nm) [40, 49, 50].  
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Figure 2.1 | Light scattering calibration 

(A) Histogram of NIST-traceable polystyrene beads (152, 203, 303, 401, 510, and 600 nm) 

are shown using side scattering (SSC-H) on a bioexponential scale. Each bead size relative 

to SSC-H is identified to obtain median side scattering in arbitrary units (a.u.) for light 

scattering calibration. (B) Regression plot of acquired light scattering power in arbitrary 

units compared to the predicted scattering cross-section in nm2 is calculated using 

FCMpass software. (C) Scatter-diameter curve showing light scatter intensity relationships 

with EV diameter established in FCMpass software. The acquired NIST-traceable 

polystyrene bead scattering intensity are overlaid with the predicted scattering data for 

NIST-traceable polystyrene beads with refractive index of 1.5900. The scatter-diameter 

relationship given high, average, and low effective EV refractive indices are shown, which 

can be used to estimate EV diameter from corresponding scattering intensity in arbitrary 

units.  
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Next, we performed fluorescence calibration using forward scatter as the trigger 

threshold to gate micron-sized MESF beads. MESF beads for each fluorophore was 

analyzed until > 5,000 bead events were recorded. While FSC-A vs. SSC-A revealed a 

single microsphere population, four fluorescent microspheres were observed with varying 

fluorescent intensity in arbitrary units (Figure 2.2A, 2.2B). The median fluorescence 

statistic of each bead fluorescence gated population was inputted into flow cytometry post 

acquisition analysis software (FCMpass) to calibrate fluorescence (Figure 2.2C). The 

relationship between MESF bead reference values and acquired fluorescence in arbitrary 

units was established to calibrate fluorescence (Figure 2.2D). 

 

  

Figure 2.2 | Fluorescence calibration 

(A) Representative flow cytometry dot plots of Quantum Alexa Fluor 488 MESF (top) and 

Quantum Alexa Fluor 647 MESF beads (bottom) gated using SSC-A and FSC-A in 

arbitrary units (a.u.). (B) The gated beads are shown in each fluorescence channel (488-

530/30-A and 640-670/30-A respectively) against SSC-A in arbitrary units. (C) Histogram 

of Quantum Alexa Fluor 488 MESF and 647 MESF beads are shown using fluorescent 

intensity in arbitrary units. (D) Regression of acquired fluorescence intensity in arbitrary 

units to MESF bead reference values for each population established in FCMpass software. 
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Flow cytometry reveals distinct vesicle populations differentially affected by blood 

processing condition 

After establishing light scatter and fluorescence calibration, we investigated the 

impact of differential centrifugation on plasma EVs using the flow cytometer. Plasma was 

differentially processed using single centrifugation at 1,000 × g for 10 min (S1) and double 

centrifugation (S2: 15,000 × g secondary spin for 10 min after the initial single spin S1) 

(Figure 2.3A). Complete counts of residual platelets in plasma were measured using a 

hemocytometer. Single spun plasma S1 contained an average platelet concentration of 313 

± 74 thousand/µl while secondary spin resulted in the removal of more than 99.99% of 

residual platelets in S2 (Figure 2.3B). For EV analysis, plasma was stained with anti-CD9 

and anti-CD63 fluorescent antibodies and measured by flow cytometry. The fluorescently 

positive gated data revealed that there are distinct populations in EV diameter distribution 

ranging between 150 nm and 3,000 nm (Figure 2.3C). It is noted that the subset of EVs 

within 150 – 1,000 nm range at around 500 nm is an artifact of Mie scattering calibration 

from our calculated flow cytometer collection angle and geometry. Specifically, this 

corresponds to a plateau in the scatter-diameter curve from ~400-480 nm using predicted 

EV light scattering from the estimated average EV refractive index employed in our model 

(Figure 2.1C). Welsh et al. reported a similar observation, suggesting that a plateau from 

the scatter-diameter curve resulted in an artifact between 400 – 480 nm accordingly [40]. 

Therefore, we gated EVs into two populations: 150 – 1,000 nm which may be comprised 

of small and medium EVs, and 1,000 – 3,000 nm comprised of large EVs and platelets 

[159]. Flow cytometer assay controls included unstained samples, isotype controls, serial 

dilution of stained plasma, and antibody with buffer alone (Supplementary Figure S2.1).  
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Figure 2.3 | Effect of differential centrifugation on EVs using flow cytometry 

(A) Schematic diagram of differentially processed plasma using single spin (S1: 1,000 × g 

centrifugation) and double spin (S2: 15,000 × g secondary spin after the initial single spin 

S1). (B) Platelet concentration in differentially processed plasma from three healthy 

individuals (n=3) was measured in independent technical replicates using a 

haemocytometer. Values are means ± standard deviations for the indicated blood 

processing conditions. (C) Representative flow cytometry dot plot of EV diameter (nm) 

versus fluorescent intensity in Quantum Alexa Fluor MESF units for S1 and S2. Quantum 

Alexa Fluor 647 MESF was used for Alexa Fluor 647 conjugated CD9 stained plasma, and 

Quantum Alexa Fluor 488 MESF was used for Alexa Fluor 488 conjugated CD63 stained 

plasma. Events were gated into two subpopulations: 150 to 1,000 nm (green box) and from 

1,000 to 3,000 nm (red box).     
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Serial dilution of stained plasma showed the linear detection of EVs while the median 

fluorescence intensity remained constant, suggesting that EVs were detected and counted 

as single particles via flow cytometry. Plasma condition at S2 resulted in a clear reduction 

in 1,000 – 3,000 nm population compared to S1 while the 150-1,000 nm EVs remained 

similar for plasma from both processing conditions (Figure 2.3C). 

 

Freezing of platelet containing single spun plasma generates ex vivo EVs  

Previous studies have suggested that ex vivo platelet activation and fragmentation 

generate EVs [15-17, 132]. We noted that single spun plasma S1 contained a high level of 

residual platelets (Figure 2.3B). Therefore, we examined freeze/thaw effect on plasma EV 

profiles using anti-CD9 and anti-CD63 fluorescent antibodies. We compared EVs 

measured freshly (S1 and S2) with EVs after a freeze/thaw cycle (S1FR and S2FR) (Figure 

2.4A, Supplementary Figure S2.2). We observed remarkably increased CD9+ EVs for 

both 1,000 – 3,000 nm and 150 – 1,000 nm populations after single freeze/thaw cycle of 

S1 plasma (S1FR vs. S1, P <0.001). However, we observed no significant changes in CD9+ 

EVs occurred after single freeze/thaw cycle of S2 plasma samples for either size (S2FR vs. 

S2, ns) (Figure 2.4B). Similarly, the 1,000 – 3,000 nm CD63+ EVs were significantly 

increased in single spun plasma after freeze/thaw (S1FR vs. S1, P<0.01) while remaining 

the same for double spun plasma (S2FR vs. S2, ns) (Figure 2.4B). In contrast, the 150 –

1,000 nm CD63+ EVs were statistically unchanged with respect to either spin freeze/thaw 

cycle (Figure 2.4B). To confirm the nature of EVs which are sensitive to detergent lysis, 

we applied detergent to disrupt EVs found in S1FR and S2FR. We found disappearance of 

both CD9+ and CD63+ stained EVs with detergent treatment, validating the detected  
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Figure 2.4 | Effect of freeze thaw cycle on EVs using flow cytometry 

(A) Schematic diagram of differentially processed plasma (S1, S2) and respective freeze 

thaw processes (S1FR, S2FR). (B) Box plot of CD9+ and CD63+ of gated events from 

1,000 – 3,000 nm (red) and 150 – 1,000 nm (green) for S1, S1FR, S2, and S2FR. CD9+ 

and CD63+ events were converted to concentrations using calibrated flow rate in a given 

acquisition time. EV concentration defined as the number of EVs per μl was determined 

by number of EVs detected in a given sample volume. Statistical significance obtained 

from three healthy volunteers for each freeze thaw processing using Tukey’s multiple 

comparisons (ns = not significant, P>0.05; *P <0.05, ***P<0.001, ****P<0.0001). 

 

difference is not due to false-positive events derived from antibody aggregates 

(Supplementary Figure S2.2). In summary, our data indicated that freezing single spun 

plasma which contains residual platelets generated ex vivo EVs in a marker dependent 

manner, whereas no significant change was observed for residual platelet depleted plasma 

in the second spin prior to freezing.  
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Figure 2.5 | Effect of post-thaw processing on EVs using flow cytometry 

(A) Schematic diagram of differentially processed plasma (S1, S2), respective freeze thaw 

samples (S1FR, S2FR), and secondary spin after post freeze/thaw plasma S1FR (S1FRS2). 

(B) Representative flow cytometry dot plot of EV diameter (nm) versus fluorescent 

intensity in Quantum Alexa Fluor MESF units for CD9+ EVs and CD63+ EVs in S1FR, 

S2FR, and S1FRS2 conditions. Quantum Alexa Fluor 647 MESF is used for Alexa Fluor 

647 conjugated CD9 stained plasma, and Quantum Alexa Fluor 488 MESF is used for 

Alexa Fluor 488 conjugated CD63 stained plasma. Events were gated from 150 to 1,000 

nm (green box) and from 1,000 to 3,000 nm (red box). (C) Box plot of CD9+ and CD63+ 

of gated events from 1,000 – 3,000 nm (red) and 150 – 1,000 nm (green) for S1FR, S2FR, 

and S1FRS2. Statistical significance were obtained from three healthy volunteers for each 

freeze thaw processing condition using Tukey’s multiple comparisons (ns = not significant, 

P>0.05; *P <0.05, ***P<0.001, ****P<0.0001). 
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Ex vivo generated EVs are irreversible even after post-thaw processing   

Next, to test if a post-thaw processing effectively removes ex vivo generated EVs, 

we performed centrifugation at 15,000 g for 10 min on S1FR plasma samples (S1FRS2) 

(Figure 2.5A). We found S1FRS2 significantly depleted CD9+ and CD63+ 1,000 – 3,000 

nm populations associated with S1FR (Figure 2.5B, 2.5C). Meanwhile, the levels of small 

and medium CD9+ EVs associated with S1FR remained significantly higher in post-thaw 

processing plasma S1FRS2 compared to S2FR (S1FRS2 vs S2FR, P<0.05 for EV diameter 

150 – 1,000 nm) (Figure 2.5B, 2.5C). In contrast, we observed 150 – 1,000 nm CD63+ 

EVs remained statistically unchanged (S1FRS2 vs S2FR, ns) (Figure 2.5B, 2.5C). 

Collectively, our results revealed freezing residual platelets in S1 significantly generated 

small and medium CD9+ EVs ex vivo, which post-thaw processing could not remove. 

Meanwhile, we observed CD63+ EVs were retained regardless of spinning and post-thaw 

processing conditions. 

 

Distinct subsets of cf-mRNA influenced by differential centrifugation and post-thaw 

processing   

Since platelets and EVs contain mRNA, we sought to determine if blood 

centrifugation and post-thaw processing affected cf-mRNA levels. We analyzed cf-mRNA 

profiles in single and second spin plasma (S1 and S2) freshly, after freezing at -80°C (S1FR 

and S2FR), and for samples subjected to a second spin following S1FR processing 

(S1FRS2). We selected a panel of housekeeping, platelet and tissue-specific genes for 

multiplex RT-qPCR measurements (Figure 2.6A, 2.6B). Hierarchical clustering analysis 

of relative gene expression between post-thaw processed samples revealed three distinct  



62 

 

  

Figure 2.6 | Effect of freeze thaw and post-thaw processing on cf-mRNAs using 

qRT-PCR 

(A) Hierarchical clustering analysis of relative levels (in ΔCt) of 16 custom selected genes 

using RT-qPCR. Ct difference (ΔCt) between S1 and individual processing conditions are 

indicated from lowest (blue) to highest (red). Non-tissue specific genes that are fully or 

partially removed, and tissue-specific genes which are retained in S1FRS2 with respect to 

S1 are shown. (B) Box plot of the median expression levels (in Cts) for representative non-

tissue specific genes which are fully removed (i.e. HBG1 and SMC4) or partially removed 

(i.e. PF4, and B2M), and tissue-specific genes (i.e. APOE, ALB) which are retained in 

S1FRS2 with respect to S1 are shown. Higher raw Ct indicates lower levels of cfRNA 

transcripts. 

 

clusters (Figure 2.6A). Overall, these clusters were either dependent (non-tissue specific) 

or independent (tissue specific) of post-thaw processing conditions, wherein non-tissue 

specific genes segregated into two clusters. The first cluster included genes (HBG1 and 

SMC4 for example), which could be removed by post thaw processing and therefore were 

likely related to large EVs or platelets (Figure 2.6A, 2.6B). The second cluster, including 

platelet genes and house-keeping genes such as PF4 and B2M, was partially removed by 
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post thaw processing and therefore was likely associated with ex vivo generated small and 

medium EVs which remained after post-thaw processing (Figure 2.6A, 2.6B). Importantly, 

our results revealed that tissue specific gene signatures (such as genes expressed in liver 

tissue; including APOE and ALB) were retained regardless of spinning and post-thaw 

processing conditions (Figure 2.6A, 2.6B), suggesting they are present in non-platelet 

small or medium EVs. The relationship of cf-mRNA transcripts with EV subpopulations 

requires further investigation and is the subject of future studies. Overall, as genes from 

different biological roles are uniquely affected by preanalytical differences, the selection 

of novel cfRNA biomarkers should consider the effects of preanalytical variability.  

2.5  Discussion 

Circulating EVs and cf-RNA are promising biomarkers for disease diagnosis and 

prognosis [161-164]. However, significant variability in standardizing blood processing 

across published methods has led to a lack of reproducibility between studies [132, 145, 

146, 165]. In this study, we utilized multiparametric flow cytometry and cf-mRNA 

profiling to characterize preanalytical influences on EV and cf-mRNA subpopulations in 

plasma. We observed two distinct subpopulations by flow cytometry which are 

differentially impacted by centrifugation and post-thaw processing. Interestingly, we 

observed small and medium CD9+ EVs irreversibly generated via freezing single spun 

plasma while CD63+ EVs remained similar. Importantly, these ex vivo generated EVs could 

not be removed by additional centrifugation after freeze/thaw, and thereby can significantly 

affect downstream analyses. As a first in cf-mRNA studies, we also found groups of genes 

significantly, partially, or unaffected by post-thaw processing in plasma. 
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Since different types of EV purification methods (ultracentrifugation, density 

gradients, size-filtration, etc.) affect the yield and purity of EVs [22, 166], we chose to 

fluorescently label EVs directly in plasma using EV tetraspanin-specific antibodies with 

proper assay controls according to recent MIFlowCyt-EV reporting framework [167]. 

Previous study highlighted effects of centrifugation on pre-isolated EVs from platelets and 

erythrocytes by examining recovery of EVs through differential centrifugation [18]. 

However, their freeze-thaw cycle was performed on purified EVs, leading to no significant 

change across different temperatures of single freeze-thaw cycle. By examining EVs 

directly in plasma, we observed irreversible ex vivo generation of EVs and cf-mRNA 

subpopulations altered by differential centrifugation and post-thaw processing. 

Although previous studies highlighted the preanalytical influences on microparticle 

generation associated with platelet activations [17, 18, 168], the effect of blood processing 

on EV subpopulations using flow cytometry with light scattering and fluorescence 

standardized calibration is lacking. The enumeration of microparticles in previous studies 

mostly utilized flow cytometry that was validated to discriminate between 0.5 μm and 0.9 

μm Megamix beads [15, 18]. Since considerable efforts have been directed to establish a 

standardized methodology for EV measurements by flow cytometry [40, 41, 49, 50, 159], 

we applied this standardized approach to investigate enumeration of EVs influenced by 

preanalytical factors. Utilizing the FCMpass software developed by Welsh et al. [40, 49, 

50], we observed differential centrifugation results in distinct EV subpopulations within 

the diameter range between 150 nm and 3,000 nm. In addition, our freeze thaw analysis 

further revealed ex vivo generated CD9+ EVs, adding to the body of literature on platelet-

associated blood processing artefacts [132, 145]. We addressed the importance of 
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preanalytical influences on EVs using a standardized approach, which will improve the 

reproducibility with respect to effective EV diameter and given fluorochrome molecule 

standards across literatures.  

Comprehensive assessment of light scattering sensitivity on multiple different flow 

cytometers was performed by Van del pol et al [159]. For small particle detection, only a 

few flow cytometers detected more than three different sized reference beads using both 

side scatter (SSC) and forward scatter (FSC). Similarly, our instrument could not detect 

more than three sized reference beads by FSC. Instead, we utilized FCMpass software to 

calibrate SSC using the effective refractive index of EVs (Shell RI = 1.4800, Core RI: 

1.3800, and shell thickness: 5 nm) [40]. Since the true refractive index of different EV 

subpopulations is currently unknown, the average EV refractive indices based on core-shell 

theory has been implemented [40, 49]. Although EVs in the ~ 1,000 nm diameter range 

may overlap with small platelets [169], precise refractive indices which considers platelet 

granule content and shapes is currently unknown. Specific studies, which definitively parse 

EVs from small platelets and understanding refractive indices of EV subpopulations, are 

needed to better define EV physical characteristics and compositions. 

How blood processing influences circulating microRNA has been previously 

shown [145, 146], and yet the impact on cf-mRNA is poorly understood. Cheng et al. 

provided preanalytical influences on miRNA expression due to differing residual platelet 

amount [146]. Conversely, our study investigated the impact of blood processing 

conditions through differential centrifugation, respective freezing condition, and post-thaw 

processing on cf-mRNA. We revealed cf-mRNA groups whose extent of preanalytical 

variability differed based on the degree of residual platelets in plasma. In particular, non-
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tissue specific genes were further classified as either partially or fully removed by freeze-

thaw post processing. Intriguingly, tissue-specific cf-mRNA were less prone to blood 

processing conditions, revealing them as potentially more robust biomarkers, or 

differentially associated with smaller vesicle subpopulations retained through 

centrifugation.  

2.6  Conclusions 

In conclusion, our study provides an assessment of the preanalytical effect of 

differential centrifugation and freeze/thaw cycles on plasma EVs and cf-mRNA. 

Employing multiparametric flow cytometry, our work provides insights into how 

preanalytical factors influence EV subpopulations and ex vivo release of EVs in association 

with residual platelets. Notably, these artifacts appear to be irreversible for CD9+ small and 

medium EVs and mRNA transcripts of genes present in platelets. Our results indicate 

distinct subpopulations of EVs and cf-mRNA are not removable by additional spinning 

after freeze/thaw. Therefore, consideration should be taken when analyzing EVs and cf-

mRNA from banked plasma and designing robust EV and cf-mRNA based liquid biopsy 

tests. 
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3.1  Abstract 

Many emerging technologies are reliant on circulating cell-free DNA (cfDNA), 

cell-free RNA (cfRNA), or extracellular vesicles (EVs) for applications in the clinic.  

However, the impact of diurnal cycles or daily meals on circulating analytes are poorly 

understood and may be confounding factors when developing diagnostic platforms.  To 

begin addressing this knowledge gap, we obtained plasma from four healthy donors serially 

sampled five times during 12 hours in a single day.  For all samples, we measured 

concentrations of cfDNA and cfRNA using both bulk measurements and gene-specific 

digital droplet PCR.  In addition, we measured the abundance of plasma EVs 

immunostained with canonical EV and platelet markers using flow cytometry.  We found 

no significant variation attributed to blood draw number for the cfDNA, cfRNA, or EV 

measurements throughout the day. This indicated that natural diurnal cycles and meal 

consumption do not appear to significantly affect abundance of total cfDNA, total cfRNA, 

our two selected cfRNA transcripts, or common EV markers in plasma.  Conversely, we 

observed significant variation between individual donors for cfDNA, one of the cfRNA 

transcripts, and two of the EV markers. The results of this work suggest that it will be 

important to consider patient-specific baselines when designing reliable circulating 

cfDNA, cfRNA, or EV clinical assays. 

3.2  Introduction 

Liquid-biopsy based diagnostic platforms are a highly desired and increasingly 

accepted in clinical settings [170].  Although many diseases could potentially benefit from 

liquid-biopsy technology, the need for non-invasive platforms is especially apparent in the 
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field of cancer screening and diagnostics because of potential risks involved with invasive 

needle biopsy procedures (e.g. [171, 172]) and concerns of radiation exposure during 

imaging tests [173, 174].  In addition, there is substantial interest in accurate screening 

methods that can be performed at frequent intervals to stratify patient cancer risk and detect 

potentially lethal cancers at early, treatable stages [175].  Plasma or serum-based platforms 

are of particular interest because the circulatory system interacts with the entire body and 

therefore provides a means to sample all organs.  The sensitivity of current methods to 

reliably characterize nucleotide sequences and subcellular particles at single-event 

resolution has generated substantial interest in utilizing circulating cell-free DNA (cfDNA, 

e.g. [176-179]), cell-free RNA (cfRNA, e.g. [142, 180-183]) and extracellular vesicles 

(EVs, e.g. [138, 184]) as clinically-relevant biomarkers.  Human plasma contains both 

vesicular and extravesicular RNA and DNA; these different components may have 

distinctive contents with potential clinical relevance [185].   While promising, translation 

of cfDNA, cfRNA, and EVs to the clinic has been slow in part because the natural temporal 

and interpersonal variation of the circulating analytes remains poorly understood.  It is 

well-known that mammalian blood cell/tissue gene expression and physiology changes 

drastically during the daily diurnal cycle or following meals [186-189].  Recent evidence 

also suggests that some human bodily fluid-derived micro-RNAs (miRNAs) may follow a 

daily cycle of fluctuation [190, 191].  Therefore, establishing the extent to which 

circulating cfDNA, cfRNAs, and EVs are affected by normal physiology is critical for the 

analytes to have successful clinical implementation. 

To address the potential influence of daily cycles on circulating analytes, we 

characterized total cfDNA, cfRNA, and EVs in plasma obtained from four healthy 
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volunteers sampled multiple times across two days.  We measured bulk cfDNA and cfRNA 

concentration using fluorometric or automated electrophoresis methods, as well as 

sequence-specific cfDNA and cfRNA copy number concentration using digital droplet 

PCR (ddPCR).  The droplet-counting approach of ddPCR allows for absolute quantitation 

of nucleic acid templates and more sensitive resolution of fold-changes compared to 

conventional quantitative PCR [192-194].  Using this ddPCR approach, we targeted two 

single-copy genomic DNA regions as proxies for cfDNA abundance: one locus containing 

the gene telomerase reverse transcriptase (TERT) and one locus containing the gene N-

acetylglucosamine kinase (NAGK); for cfRNA we targeted two commonly used genes used 

for mRNA normalization: β-actin (ACTB) and glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH).  Using high-resolution flow cytometry following International 

Society for Extracellular Vesicles (ISEV) guidelines [195], we quantified EVs 

immunostained for canonical exosomal markers CD9, CD81, and CD63 and the platelet 

marker CD41 [55, 196]. Our results suggest that while cfDNA, cfRNA, and EVs are overall 

stably expressed diurnally, several of the analytes demonstrate significant interpersonal or 

daily variation.  Deeper characterization of these sources of variation will likely be required 

before the circulating analytes gain greater acceptance as clinically practical liquid-biopsy 

platforms. 
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3.3  Materials and Methods 

Participant plasma sample collection 

Identifier Age (years) Sex 

HD1 42.5 F 

HD2 50 M 

HD3 60.1 F 

HD4 73.7 F 

Table 3.1 | Age and sex of the four healthy donors (HDs) volunteered for this study. 

 

All experimental protocols were reviewed and approved by the Oregon Health & 

Science University Institutional Review Board (protocol #8316).  All methods were carried 

out in accordance with relevant guidelines and regulations.  Informed consent was obtained 

from all volunteers, and volunteers were compensated for participating.  Healthy donors 

(HDs) were consented for multiple blood draws over a 12-hour period at the Oregon Health 

& Science University Oregon Clinical and Translational Research Institute (OCTRI) 

inpatient research clinic.  HD age and sex distributions are given in Table 3.1. Each HD 

had two days, separated by one week, to provide five blood draws each day (Figure 3.1). 

The HDs were advised to not engage in rigorous exercise 24 hours prior to the blood draw 

dates.  HDs were given access to recliner chairs and had the ability to walk around freely 

between blood draws.  All individuals had an IV inserted for the multiple blood draws, but 

at times when the IV failed, ad hoc venipuncture was performed about 50% of the time for 

each participant. Blood was drawn from individuals every 2 hr 45 min beginning at 8:30 

am. Meals ordered from the hospital menu were consumed by individuals between draw 1-

2, draw 2-3, and draw 4-5.  To replicate a typical patient arriving in a clinical setting, diets 
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were not restricted.  Approximately 20 ml of blood was drawn into 10 ml EDTA tubes 

(Cat# 366643, BD Vacutainer) per time point.  Blood was processed within 15 min of the 

draw and plasma was obtained as follows: EDTA tubes were centrifuged at 1,000 x g for 

10 min at room temperature, plasma was extracted down to ~500 μl from the buffy coat 

interface, plasma supernatant was centrifuged for a second time at 2,500 x g for 10 min at 

room temperature, and the resulting plasma supernatant was extracted down to ~200 μl 

from the debris pellet interface.  The final supernatant was distributed into 1 ml aliquots 

and immediately frozen at -80°C until analysis. 

 

 

Figure 3.1 | Schematic of the HD sampling procedure used to obtain plasma for 

analysis.  

Blood from four HDs were sampled five times per day over two days. The blood was 

processed into plasma and analyzed for changes in cfDNA, cfRNA, or EVs. 
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Nucleic acid extractions 

For each HD and time point, cfDNA and cfRNA was extracted separately (Figure 

3.1). CfDNA was extracted from 1 ml plasma using the QIAamp Circulating Nucleic Acid 

Kit (Qiagen #55114) according to manufacturer instructions and eluted into 20 μl buffer 

EB (10 mM Tris-Cl, pH 8.5). CfRNA was extracted from 1 ml plasma using the 

Plasma/Serum Circulating and Exosomal RNA Purification Kit (Norgen #42800) and 

eluted into 100 μl nuclease-free deionized water.  To remove genomic DNA contamination, 

the cfRNA samples were treated with 2 MBU of Baseline-ZERO DNase in 1X Baseline-

ZERO DNAse buffer (Lucigen #DB0715K) for 20 min at 37°C, purified using the RNA 

Clean & Concentrator-5 kit (Zymo #R1013), and eluted in 14 μl nuclease-free water. For 

no plasma controls, 1 ml nuclease-free deionized water was used in place of plasma. These 

purified cfDNA and cfRNA samples were used for all subsequent nucleic acid analyses.  

 

Bulk quantitation of cfDNA and cfRNA 

Purified cfDNA concentration was first determined using the Qubit dsDNA HS 

Assay Kit (quantification range 0.2 – 100 ng DNA, Thermo Fisher Scientific #Q32854) 

and Qubit 3 Fluorometer (Thermo Fisher Scientific).  Purified cfRNA concentration was 

quantified using the Agilent RNA 6000 Pico Kit (quantification range 50 – 5000 pg/μL 

RNA in water, Agilent #5067-1513) and Agilent 2100 Bioanalyzer instrument (Agilent) 

within a window of 50-500 bp. 
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First-strand cDNA synthesis of cfRNA 

For first-strand cDNA synthesis of cfRNA, 10 μl reverse transcription reactions 

were prepared using 3 μl total cfRNA in 1X SuperScript IV VILO Mastermix (Thermo 

Fisher Scientific #11756050).  cDNA synthesis reactions were incubated at 25°C for 10 

min, followed by 50°C for 10 min, and were terminated with incubation at 85°C for 5 min.  

The cDNA reactions were used as direct template for cDNA copy number quantification 

by ddPCR. 

 

Primers for ddPCR analysis 

Primers and probes for cfDNA ddPCR analysis to target single-copy number genes 

TERT (F primer 5’-3’: CCTCACATAAATGCTACCAAACGA; R primer 5’-3’: 

TTCCAAGAAGGAGGCCATAGTC; Probe 5’-3’: AAGAAATGAACAGACCCATC 

CCCCAGG; fluorescent probe: HEX; quencher: ZEN/IBFQ) or NAGK (F primer 5’-3’: 

TGGGCAGACACATCGTAGCA; R primer 5’-3’: CACCTTCACTCCCACCTCAAC; 

Probe 5’-3’: TGTTGCCCGAGATTGACCCGGT; fluorescent probe: FAM; quencher: 

ZEN/IBFQ) and were purchased from IDT (Integrated DNA Technologies, Coralville, IA, 

USA).  Primer and probe sequences for cfDNA were chosen using sequences reported by 

Devonshire et al. [197] for these two genomic loci. To quantify cDNA copy number, gene 

expression ddPCR assays for ACTB (assay dHsaCPE5190199; fluorescent probe: FAM) 

and GAPDH (assay dHsaCPE5031597; fluorescent probe: HEX) were purchased from Bio-

Rad and contained both probes and primers premixed at 10X concentration. 
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ddPCR of cfDNA and cDNA samples 

To measure cfDNA copy number by ddPCR, 22 μl ddPCR reaction mixtures were 

prepared using 2.2 μl purified cfDNA in 1X ddPCR Supermix for Probes (No dUTP) (Bio-

Rad #1863024) and with final primer/probe concentrations of 0.9 µM/0.25 µM or 0.2 

µM/0.1 µM for TERT and NAGK, respectively.  Each cfDNA ddPCR reaction was 

multiplexed for both TERT and NAGK. To measure cDNA copy number by ddPCR, 22 μl 

ddPCR reaction mixtures were prepared using 1.5 μl undiluted cDNA template in 1X 

ddPCR Supermix for Probes (No dUTP) (Bio-Rad #1863024), 1X ACTB gene expression 

ddPCR assay mix, and 1X GAPDH gene expression ddPCR assay mix.  For no template 

controls (NTCs), 1 μl nuclease-free water was used instead of cfDNA or cDNA template.  

Reactions were performed in semi-skirted 96-well plates (Eppendorpf #951020362).  

Plates for droplet generation were heat-sealed with pierceable foil (Bio-Rad #1814040), 

vortexed briefly, then spun down using a tabletop plate spinner.  Droplet generation was 

performed using a QX200 AutoDG Droplet Digital PCR System (Bio-Rad) with 

Automated Droplet Generation Oil for Probes (Bio-Rad #1864110) and DG32 Automated 

Droplet Generator Cartridges (Bio-Rad #1864108).  Droplets were deposited into a clean 

96-well plate held in a pre-chilled cold block to prevent evaporation.  Plates were then heat-

sealed with pierceable foil and PCR was performed in a Bio-Rad C1000 thermocycler using 

the following temperature conditions: 95°C for 10 min, 40 cycles of 94°C for 30 sec 

followed by 60°C for 1 min, 98°C for 10 min, and then cooling to 4°C until droplets were 

read. Droplets were counted using the QX200 Droplet Reader (Bio-Rad) using 

manufacturer’s instructions. Positive and negative droplets were subsequently analyzed 

using QuantaSoft Analysis Pro (v1.0.596, Bio-Rad, Hercules, California, USA). 
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Fluorescent labeling of EVs with antibodies 

To fluorescently label EV surface proteins, 5 μl of plasma was incubated with 5 μl 

of antibody mix prepared by 1:200 dilution of anti-CD9 (human) Alexa Fluor 647 

conjugated antibody (R&D Systems #FAB1880R-100UG), 1:50 dilution of anti-CD81 

(human) PE conjugated antibody (clone M38, Thermo Fisher Scientific #A15781), 1:50 

dilution of anti-CD63 (human) Alexa Fluor 488 conjugated antibody (clone MEM-259, 

Thermo Fisher Scientific #MA5-18149), and 1:20 dilution of anti-CD41 (human) Brilliant 

Violet 421 conjugated antibody (clone HIP8, BioLegend #303730) for 3 hrs at room 

temperature in the dark. 

 

Flow cytometry analysis of EVs 

EV flow cytometry analysis was performed using the BD FACSAria Fusion (BD 

Biosciences). The threshold value was set at SSC of 200 at flow rate of 1, stopping time at 

60 sec, and events to record at 1,000,000 events.  To account for electronic abort rate, 

plasma samples incubated with antibody mix were diluted to retain threshold rates below 

20,000 events per second. The following detector settings were used throughout the 

experiment: 350V for FSC, 365V for SSC, 700V for laser emitting at 488 nm, 680V for 

laser emitting at 640 nm, 535V for laser emitting at 405nm, and 655V for laser emitting at 

561 nm. To run size calibration beads, megamix-plus SSC and FSC (BioCytex) containing 

submicron sized fluorescent beads (100, 160, 200, 240, 300, and 500 nm) were 

reproducibly measured prior to every experiment with laser emitting at 488 nm, where the 

side scattering voltage was adjusted to match the side scattering intensity of 104 for 200 

nm beads as a size reference. 
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Statistics and plots 

Graphs of cfDNA, cfRNA, and EVs measured over time were prepared using R 

(v.3.6.1) and Rstudio (v.1.2.5019). Permutation tests for each analyte were performed in 

Rstudio using the “coin” R package and default parameters [198, 199]. For significant 

permutation tests, post-hoc pairwise permutation tests were performed using the R package 

“rcompanion” (v. 2.3.2, http://rcompanion.org) with the “fdr” p-value adjustment method. 

To test for a significant difference between draws performed on day 1 versus day 2, a 

permutation test of symmetry was performed on the draws paired by day. To test for a 

significant difference between draws or between individuals, the values between day 1 and 

day 2 for each draw were averaged and one-way permutation tests of independence was 

performed using either draws or individuals as factors. Summary statistics, correlation 

plots, Spearman nonparametric correlation coefficient, and two-tailed correlation P-value 

analysis were prepared using GraphPad Prism (v8.3.0, GraphPad Software, San Diego, 

CA, USA). For all statistical tests, P-values were determined to be significant at a threshold 

of P ≤ 0.05. 

3.4  Results and Discussion 

Over the past decade, it has become increasingly clear that detecting unpredictable 

disease via blood biopsy, especially at the earliest stages, will require intricate 

understanding of naturally occurring circulating biomarker variation.  Workflow 

standardization for liquid-biopsy based analytes is the first step towards identifying and 

minimizing sources of non-biologically relevant variation [200-202]. However, 

confounding factors related to meals, time of day, and the intrinsic interpersonal variation 
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could critically affect analyte abundance, normalization, and multi-omic integration.  To 

begin addressing these concerns, here we provide the first descriptions of diurnal cfDNA, 

cfRNA, and EV measurements derived from the same cohort.   

 

Differences in plasma cfDNA abundance across donors is attributed to interpersonal 

variation 

First, we characterized total donor plasma cfDNA abundance using Qubit as well 

as total genome copy numbers via locus-specific ddPCR assays.  Following cfDNA 

extractions of plasma from the four HDs, we observed overall averages of 3.05 ng cfDNA 

/ ml plasma when measured by Qubit (SD = 1.2 ng cfDNA / ml plasma, Figures 3.2A, 

3.2B, Supplementary Table S3.1).  When cfDNA was measured by ddPCR, we observed 

758.6 copies/ml plasma (SD = 286.2) and 723.5 copies/ml plasma (SD = 299.3) using 

TERT and NAGK probes, respectively (Figure 3.2C-3.2F). The ddPCR workflow for 

cfDNA yielded an average of 14,658 accepted droplets (range = 10,426 – 18,130; SD = 

1,366) per ddPCR reaction well (Supplementary Figure S3.1).  No plasma controls and 

NTCs for TERT/NAGK ranged from 0 – 9.3 copies/ml (Supplementary Figure S3.2).  

We observed a strong correlation between the two cfDNA extraction replicates (Spearman 

rs = 0.73, P < 0.0001, Supplementary Figure S3.3A) and between the two analysis 

methods (Spearman rs = 0.97, P < 0.0001, Supplementary Figure S3.3B). We found no 

significant difference in cfDNA abundance between the five draws when measured by 

either Qubit or ddPCR (Table 3.2, Supplementary Tables S3.1-3.3).  This finding 

contrasts with a recent report by Madsen et al. [203] which found a decrease in plasma 

cfDNA concentration at their final draw when five draws were performed three hours apart. 
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Figure 3.2 | Abundance of plasma-derived cfDNA across the five sampled time points.   

CfDNA abundance was measured by Qubit (A,B) and by ddPCR with TERT (C,D) or 

NAGK probes (E,F). For left panels, dashed lines represent the average of the four 

individuals and the shaded area corresponds to 95% confidence intervals. For right panels, 

the individual data points overlaying boxplots are color coded sequentially starting from 

the first blood draw of day 1. 
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However, our second centrifugation step was performed at 2,500 x g, rather than 13,000 x 

g as done by Madsen et al. [203], and therefore the composition of cell-free plasma may 

not be directly comparable. We observed no significant difference between the two draw 

days (Table 3.2), although we did observe a significant source of variation attributed to 

the individuals (P < 0.05, Table 3.2, Supplementary Table S3.1).  

 

Analyte Method Daya Draw numberb Individualb 

 Qubit 0.30 (ns) 0.38 (ns) 0.013 (*) 

cfDNA TERT 0.61 (ns) 0.38 (ns) 0.021 (*) 

 NAGK 0.35 (ns) 0.38 (ns) 0.020 (*) 

 Bioanalyzer 0.75 (ns) 0.64 (ns) 0.82 (ns) 

cfRNA ACTB ddPCR 0.96 (ns) 0.80 (ns) 0.20 (ns) 
 

GAPDH ddPCR 0.29 (ns) 0.53 (ns) 0.016 (*) 

EV 

CD81+ counts 0.20 (ns) 0.39 (ns) 0.0014 (**) 

CD63+ counts 0.15 (ns) 0.92 (ns) 6.6e-05 (****) 

CD41+ counts 0.90 (ns) 0.96 (ns) 0.059 (ns) 

CD9+ counts 0.50 (ns) 0.99 (ns) 0.076 (ns) 

Table 3.2 | Summary of the permutation tests comparing the two draw days, the five 

draws across the day, or individuals to determine significant sources of variation. 

a Permutation test of symmetry. P-values are followed by P-value summaries in 

parenthesis. ns, not significant. 

b One-way permutation test of independence. P-values are followed by P-value summaries 

in parenthesis. *, P < 0.05; **, P < 0.01; ****, P < 0.0001; ns, not significant. 

 

For example, the cfDNA level of individual HD1 was consistently lower than the 

overall average, respectively (Figure 3.2A-3.2B, Supplementary Tables S3.1-S3.3). 

Post-hoc pairwise permutation tests also identified individuals with significantly different 

cfDNA levels (Supplementary Tables S3.1-S3.3). Plasma cfDNA was previously 

described by Zhong et al. [204] to fluctuate 1.9 – 67.9 fold in healthy, nonpregnant 
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individuals when sampled across 12-hour or longer time points.  Similar to Zhong et al., 

we observed inconsistent cfDNA fluctuation across time in the HDs and attribute primary 

source of plasma cfDNA abundance differences to be from interpersonal variation. 

 

GAPDH counts, but not ACTB counts or total cfRNA, varied significantly by donor 

Next, we measured total plasma cfRNA abundance by Bioanalyzer and mRNA-

specific abundance characterization using ddPCR.  Across the four HDs, we observed an 

overall average of 3.05 ng/ml plasma cfRNA when measured by Bioanalyzer (SD = 1.2 

ng/ml plasma, Figures 3.3A, 3.3B, Supplementary Table S3.4).  We did not find 

significant cfRNA variation by day, draw, or individual when total cfRNA abundance was 

measured using this method (Table 3.2).  When cfRNA was measured by ddPCR, we 

observed 25,022 copies/ml plasma (SD = 5,932) and 5,983 copies/ml plasma (SD = 1,703) 

using ACTB and GAPDH probes, respectively (Figures 3.3C-3.3F).  The ddPCR for 

cfRNA yielded an average of 16,216 droplets per well (range = 11,912 – 19,618; SD = 

1,554) for ACTB and GAPDH cDNA templates (Supplementary Figure S3.4).  No plasma 

controls and NTCs for ACTB/GAPDH ranged from 0 – 4.3 copies/ml (Supplementary 

Figure S3.5).  Similar to our bulk measurement of cfRNA by Bioanalyzer, we did not 

observe significant variation due to day of draw or draw number for either ACTB or 

GAPDH (Figures 3.3C-3.3F; Table 3.2, Supplementary Tables S3.5-S3.6). However, 

we observed significant variation attributed to the individuals for GAPDH counts (P < 0.05, 

Table 3.2). Post-hoc pairwise permutation tests for GAPDH counts did not reveal 

significant differences between individuals (Supplementary Tables S3.6). 
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Figure 3.3 | Abundance of plasma-derived cfRNA across the five sampled time 

points.   

CfRNA abundance was measured by Bioanalyzer (A,B) and by ddPCR with probes 

targetting ACTB (C,D) or GAPDH (E,F). For left panels, dashed lines represent the 

average of the four individuals and the shaded area corresponds to 95% confidence 

intervals. For right panels, the individual data points overlaying boxplots are color coded 

sequentially starting from the first blood draw of day 1. 
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ACTB and GAPDH are commonly used mRNA normalization genes for liquid 

biopsy applications [205, 206] despite accumulating evidence suggesting their expression 

can be highly variable and require situation-specific considerations [207-209].   Currently, 

there are few reports describing the long-term stability of plasma mRNA expression in 

individuals. Recent work by Max et al. [202] found no significant variation miRNA 

plasma/serum profiles following meals and also described interpersonal differences in 

miRNA abundance that could be stable for up to a year.  While we similarly did not find 

an effect of meals on bulk cfRNA abundance or ACTB/GAPDH expression, we found 

significant variation attributed to individual donors for GAPDH transcripts.  Like our 

finding with plasma cfDNA abundance, our results suggest that at least some plasma-

derived cfRNA transcripts may have baseline expression levels that are specific to the 

donor; therefore, a thorough understanding of cfRNA normalization transcripts across time 

and between individuals may be necessary for future cfRNA diagnostic applications. 

 

EVs counts can vary significantly between individuals, but does not vary by draw or 

day  

In order to characterize the abundance of plasma-derived EVs , samples from four 

individuals across five sampled time points were measured by high-resolution flow 

cytometry. To standardize the instrument for relative size calibration, we used fluorescent 

beads of varied diameters (0.1-1um) for approximate and relative sizing of nano-size EVs. 

To allow comparison and validation of data between the experiments, we fixed 200-nm 

calibration beads at the start of each experiment to match side scatter (SSC) signal intensity 

at 104 in SSC/FL plot (488-nm excitation; 530/30-nm emission) [210]. With this setup, we 
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detected FITC-labeled size calibration beads range from 100-nm to 900-nm above noise 

events (Supplementary Figure S3.6A). To characterize relative EV abundance, flow 

cytometric analysis was performed by gating SSC below 104 (using 200-nm bead 

reference) in SSC/FL plot (Supplementary Figure S3.6B). Using uniform fluorescent 

labeling and appropriate assay controls with EV canonical markers (CD63, CD9, and 

CD81) as well as platelet marker (CD41), the majority of plasma EVs were detected within 

this gating (Supplementary Figure S3.6C, S3.7). We examined the relative number of 

EVs stained with canonical exosomal markers CD9 (Figures 3.4A and 3.4B), CD81 

(Figures 3.4C and 3.4D), and CD63 (Figures 3.4E and 3.4F), in addition to platelet 

marker CD41 (Figures 3.4G and 3.4H), for each individual and time point. We found no 

significant differences in relative EV abundancies between the five draws using these 

markers (Table 3.2, Supplementary Tables S3.6-S3.10). When individuals were 

compared, we observed significant variation between individuals for CD63 and CD81, 

(Table 3.2, Supplementary Table S3.7 and S3.8).  Notably in HD3 draw 3, day 1, we 

observed a spike in counts for CD9 and CD41 that did not appear to follow the trend for 

other samples and time points (Figures 3.4A-3.4D), likely due to outstanding platelet 

contribution in this draw. The high variation caused by this sample time point may explain 

why the counts for CD9 and CD41 were not determined to vary significantly between 

individuals when tested using one-way permutation tests of independence.  Non-platelet 

markers CD81 was not affected by the fluctuation of this draw. When individuals were 

compared, we observed significant variation between individuals for CD63 and CD81 

(CD63 P < 0.01, CD81 P < 0.001, Table 3.2, Supplementary Tables S3.7 and S3.8). 

Individual HD4 had higher level of CD63+ EVs compared to the overall average 
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Figure 3.4 | Abundance of plasma-derived EVs across the five sampled time points.   

EVs were fluorescently labeled using antibodies for CD9 (A,B), CD41 (C,D), CD63 (E,F) 

or CD81 (G,H) and counted using flow cytometry. For left panels, dashed lines represent 

the average of the four individuals and the shaded area corresponds to 95% confidence 

intervals. For right panels, the individual data points overlaying boxplots are color coded 

sequentially starting from the first blood draw of day 1. 
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consistently across the draws and days (Figure 3.4E-3.4F). Similarly, the level of CD81+ 

EV of individual HD1 was persistently lower than the overall average throughout all days 

in two days (Figure 3.4G-3.4H). Post-hoc pairwise permutation tests also identified 

individuals with significantly different CD63 and CD81 EV counts (Supplementary 

Tables S3.7-S3.8).  These observations suggest that the primary source of variation in EVs 

is interpersonal. Conversely, Danielson et al. [211] demonstrated diurnal fluctuation of 

circulating EVs when characterized by forward and side scattering distributions. Their size 

gating was placed at > 200 nm gating region, wherein the majority of platelet-derived 

microvesicles are found, and therefore it is unclear whether their observed distribution of 

diurnal EV variation was caused in part due from effects of platelet activation. We also 

note that accumulating evidence suggests the specific blood processing protocol used prior 

to EV characterization can directly affect final EV composition [196, 212], and thus our 

study may not be directly comparable to Danielson et al. [211]. Ultimately, our results 

support a model in which the abundance of canonical human plasma EVs remains stable 

throughout the daytime and individuals maintain their own distinct EV baselines.  

3.5  Conclusions 

Liquid-biopsy technology for patient risk-stratification, diagnosis, or disease 

progression monitoring will likely require biomarker thresholds tailored specifically for 

each patient. In our pilot cohort, we observed significant interpersonal variation for each 

of the three analytes examined. Remarkably, distinct baseline levels of cfDNA, cfRNA and 

EV of each individual were persistent through the draws over time.  Future multi-omic 

studies such as the work presented here, but with larger and more inclusive cohorts, will 
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be essential for determining the full extent of interpersonal and sample collection variation 

that may be present across populations. 
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 Chapter IV: Plasma cell-free RNA profiling enables 

multiclass pan-cancer detection and distinguishes 

cancer from pre-malignant conditions 
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4.1  Abstract  

Cell-free RNA (cfRNA) in plasma reflects phenotypic alterations of both localized 

sites of cancer and the systemic host response. Here we report that cfRNA sequencing 

enables the identification of novel messenger RNA (mRNA) signatures in plasma with the 

tissue of origin specific to cancer types and pre-cancerous conditions. We sequenced total 

cfRNA from 66 plasma samples representing three cancer types, two pre-cancerous 

conditions and healthy donors to explore the diagnostic potential. We identified distinct 

gene sets and built classification models using the random forest algorithm that could 

distinguish cancer patients with specific cancer types from premalignant conditions and 

healthy individuals with high accuracy. Across the four groups that included healthy 

individuals and patients with lung cancer, liver cancer or multiple myeloma, the cancer 

types were classified with 96.5% accuracy. 3). Distinction of multiple myeloma from its 

pre-cancerous monoclonal gammopathy of undetermined significance (MGUS) yielded an 

accuracy of 90% (17/19). Detection of primary liver cancer from its premalignant condition 

cirrhosis yielded an accuracy of 100% (12/12). This work lays the foundation for 

developing low cost assays measuring mRNA transcript levels in plasma using a small 

panel of genes for identifying cancer types and monitoring pre-malignant disease 

progression across cancers. 

4.2  Introduction  

Although recent advances in cancer research offer new methods to treat cancer, 

early detection of malignancy still constitutes the highest chances of long-term patient 

survival. For lung cancer, the leading cause of cancer death worldwide, over half of cases 
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can be cured with existing treatments if detected early while fewer than 5% will survive 

past 5 years if detected late [213, 214]. Early detection of liver cancer, which has the most 

rapidly increasing incidence in the United States, would extend 5-year survival rates to 

33% with current treatment options. Currently, only 2.4% of metastatic liver cancer 

patients survive for more than 5 years [58]. Even with a hematologic malignancies like 

multiple myeloma, 95% of patients are detected when the cancer has already systemically 

spread, resulting in a decrease of at least 20% in 5-year survival rates compared to when 

the disease is detected early [215]. Noninvasive, low cost and reliable cancer diagnostic 

assays could greatly benefit patients by facilitating accessibility to early cancer screening. 

For many cancers, there are disease states known to be precursors of malignant 

disease. For example, multiple myeloma, a cancer of antibody-producing plasma cells, is 

often preceded by monoclonal gammopathy of undetermined significance (MGUS), which 

is characterized by lower levels of abnormal antibodies. The prevalence of MGUS is about 

3% in the Caucasian population, and the conversion rate from MGUS to multiple myeloma 

is approximately 1% per year [216, 217]. Hepatocellular carcinoma (HCC), the most 

common form of liver cancer, is often preceded by liver cirrhosis, which is a degenerative 

disease characterized by irreversible fibrosis of the liver and is present in 4.5-9.5% of the 

global population [218-220]. The risk of developing de novo HCC in patients with liver 

cirrhosis ranges between 1-5% per year, depending on the etiology of the cirrhosis [218-

224]. Most early cancer detection studies to date have focused on distinguishing cancer 

from healthy controls, rather than discriminating between cancer and common 

premalignant conditions. There is an unmet clinical need for a simple blood test that can 
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identify patients who require further interventions that detect cancer in patients with 

premalignant conditions during regular surveillance.  

With current clinical practices, cancer diagnosis is primarily initiated based upon 

clinical symptoms that are not generally recognized until tumors are at an advanced stage. 

Liquid biopsy, a minimally invasive method for the sampling and analysis of analytes in 

various body fluids, has the potential to improve cancer diagnosis and prognosis [225-228]. 

Several blood-based analytes have been explored for liquid biopsy utilities in cancer 

detection such as circulating cells (Circulating Tumor Cells (CTCs), Circulating Hybrid 

Cells (CHCs), Tumor Associated Macrophages (TAMs)) [229-234], circulating tumor 

DNA (ctDNA) [235-237], platelets [238-240] and protein panels [241]. However, ctDNA 

and circulating cells are present at low levels, have very diverse characteristics between 

patients, and only weakly correlate with phenotypic changes of the tumors [230, 242, 243]. 

Epigenetic features of ctDNA such as profiles of DNA methylation, 5-

hydroxymethylcytosine and ctDNA protected patterns may provide information about the 

tissue of origin for pan-cancer detection [244-249]. However, these methods are currently 

expensive due to the requirement of large coverage sequencing. Recent transcriptome 

analysis of tumor-educated platelets has shown promise for pan-cancer detection, but 

platelets are fragile, can be easily activated in vitro, and have highly variable characteristics 

depending on their preparation that make them incompatible with existing clinical blood 

tests [250].  There is a need for robust liquid biopsy technology that can overcome these 

challenges in a safe, reliable and cost-effective manner. 

Blood flows throughout the body and collects the cell-free RNA (cfRNA) released 

from cells by active secretion or through cell death including apoptosis and necrosis [251, 
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252]. Therefore, cell-free transcriptomes from plasma have the potential to reflect the 

systemic response to growing tumors and information about the tissue of tumor origin 

specifically by cancer type. Previous work has demonstrated that global cfRNA profiles 

can reflect temporal abundance changes of organ-specific transcripts, and further analysis 

through machine learning allows the prediction of pregnancy delivery and preterm birth 

[253-255]. Here, we explore the potential of cfRNA profiles to distinguish between cancer 

types and pre-malignant conditions. We sequenced total plasma cfRNA from plasma 

samples of patients with three cancer types including lung cancer (LuCa), liver cancer 

(HCC) and multiple myeloma (MM), two pre-cancerous conditions including liver 

cirrhosis (Cirr) and MGUS, and healthy donors. Feature selection and classification models 

were built to explore the potential of cfRNA profiles in multiclass cancer detection and 

differentiating malignant from pre-malignant conditions. 

4.3  Materials and Methods  

Patient Samples 

Blood samples from healthy individuals and patients with monoclonal gammopathy 

of undetermined significance (MGUS), multiple myeloma, liver cirrhosis, liver cancer, and 

lung cancer were obtained from Oregon Health and Science University (OHSU) by Knight 

Cancer Institute Biolibrary and Oregon Clinical and Translational Research Institute 

(OCTRI). All samples were collected under institutional review board (IRB) approved 

protocols with informed consent from all participants for research use. Individuals who had 

no recorded previous history of cancer were considered to be healthy donors.  
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All lung and liver cancer patients were treatment naïve at the time of blood 

collection. Treatment naïve is not an excluded criteria for Multiple Myeloma patients. 

These patients encompass early and late stage cancers. All samples were collected and 

processed using a uniform protocol by the same staff  at Oregon Health and Science 

University. Samples for analysis were matched between cancer and control groups with 

respect to age and gender of participants.  

 

Processing of whole blood 

For all cohorts, whole blood samples were collected in EDTA-anticoagulated 

vacutainers. Within 2 h of collection, blood samples were first centrifuged at 1,000g for 10 

min at 4°C followed by 15,000g for 10 min at 4°C. Plasma was then stored at -80°C until 

RNA isolation. 

 

cfRNA isolation 

Total RNA purification was performed by using plasma/serum circulating and 

exosomal RNA purification kit (Norgen Biotek) from 3ml of human plasma according to 

the manufacturer’s protocol. To digest trace amounts of contaminating DNA, RNA was 

treated with 10X Baseline-ZERO DNase. DNase I treated RNA samples were purified and 

further concentrated using RNA clean and concentrator-5 (Zymo Research) according to 

the manufacture’s manuals. Final eluted RNA was stored immediately at -80°C.  
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Library preparation 

We prepared stranded RNA-Seq libraries using Clontech SMARTer stranded total 

RNA-seq kit v2- pico input mammalian (Takara Bio) according to the manufacturer’s 

instructions. For cDNA synthesis, we used option 2 (without fragmentation), starting from 

highly degraded RNA. Input of 7ul of RNA samples were used to generate cDNA libraries 

suitable for next-generation sequencing. For addition of adapters and indexes, we 

employed SMARTer RNA unique dual index kit -96 U. SMARTer RNA unique dual index 

of each 5’ and 3’ PCR primer were added to each sample to distinguish pooled libraries 

from each other. The amplified RNA-seq library was purified by immobilization onto 

AMPure XP PCR purification system (Beckman Coulter). The library fragments originated 

from rRNA and mitochondrial rRNA were treated with ZapR v2 and R-Probes according 

to manufacturer’s protocol. For final RNA-seq library amplification, 16 cycles of PCR 

were performed and final 20 ul was eluted in Tris buffer following amplified RNA-seq 

library purification. The amplified RNA-seq library was stored at -20°C for sequencing.  

 

Sequencing data processing and quality control 

Each sample was sequenced to more than 20 million paired-end reads using an 

Illumina Nextseq or HiSeq sequencer. Adapter sequences were trimmed using sickle tool 

[256]. After trimming, the quality of the reads were checked using FastQC (v0.11.7)  [257, 

258] and RSeQC (v2.6.4)  [259]. Reads were aligned to the hg38 human genome using the 

STAR aligner (v2.5.3a)  [115] with two pass mode flag. Duplicated reads were removed 

using the picard tool (v1.119) [260]. Read counts for each gene were calculated using the 

htseq-count tool (v0.11.2)  [261] in intersection-strict mode. The number of mapped reads 
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to each gene were normalized to the total number of reads in the whole transcriptome 

(Reads Per Million - RPM). For each sample, we calculate exon, intron, intergenic fractions 

and protein coding fractions (CDS exons) using RSeQC [262]. Samples with an exon 

fraction larger than 0.35 were kept for further analysis. 

 

Identification of cfRNA biomarkers (DESeq and LVQ and GO analysis) 

Two independent methods were applied to select cfRNA features for building 

classification models. Differentiating genes between all pairwise comparisons were 

identified with the R package DESeq2 (v1.24.0) using the Wald test [263]. The second 

method for feature selection using the LVQ algorithm built in an R package caret (v6.0-

84) - with 10 fold cross validation repeated 3 times [264]. The top 10 most important 

features were selected by ranking the varImp parameter. Gene Ontology (GO) analysis was 

implemented on the top differentiating genes from the DESeq2 analysis with padj > 0.01 

using the package topGO (v2.37.0) and a Fischer statistical test to measure significant 

enrichment of each Gene Ontology term [265]. 

 

Cancer type classification (LDA and RF) 

Two methods were used to build models for classifying cancer types using feature 

sets identified from pairwise comparison using DESeq2 and LVQ methods. LDA models 

are built using the R package MASS (v7.3-51.4) [266]. Random Forest models were built 

using the R package randomForest (v4.6-14) [267]. 
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Statistical consideration (permutation test and leave one out cross validation) 

To test if the difference in pairwise comparison between each cancer type and healthy 

control was specific, a permutation test in which differential expression analysis using 

DESeq2 package was performed between two groups of randomized samples. For each 

pair, 500 permutations of random shuffling were performed and the number of 

differentiating genes with padj < 0.01 were documented for building a histogram, and 

compared to the number of significant genes (padj < 0.01) for the group with correct 

labeling. To determine the significance and accuracy of our classification models, we 

employed the LOOCV method. Briefly, in LOOCV, LDA or RF algorithms classifies each 

sample based on the training models obtained from all other samples (total number of 

samples in each pair minus the testing sample). The test was repeated until all individual 

samples were classified and cross-validated. 

4.4  Results  

cfRNA profiles distinguish between healthy individuals and those with cancer  

We prospectively collected blood samples from a pilot set of 34 cancer patients 

including 15 LuCa, 10 MM and 8 HCC; 13 pre-malignant conditions including 9 MGUS 

and 4 Cirr; and 20 age and gender matched healthy donors. Samples were randomly 

shuffled for RNA extraction, library preparation and sequencing in Illumina flow cells 

(Figure 4.1a). Libraries were sequenced to a mean of 34M raw reads with a range of 28M 

to 52M (Supplementary Table S4.1, Supplementary Figure S4.1). After selecting for 

reads that mapped uniquely to the human genome, the cfRNA libraries had effective read 

depth of 7M with a range from 2M to 22M. On average, 79% of reads mapped to exons 
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Figure 4.1 | cfRNA profiles distinguish between cancer vs. healthy donors. 

(a) Schematic overview of the cfRNA profiling workflow as starting from 3 mL of plasma 

collected from the patients and healthy donors in EDTA-coated tubes, cfRNA extraction, 

sequencing, feature selection and classification. (b-d) PCA analysis using top 500 genes 

with largest variance across healthy and lung cancer samples (b), or multiple myeloma (c) 

or liver cancer sample (d). (e-g) Linear Discriminant Analysis (LDA) using DE genes with 

padj < 0.01 and top 10 most important genes identified by LVQ analysis. P-value is derived 

from Wilcoxon test. (h-j) ROC curves of the two classification models LDA and random 

Forest (RF) model with two feature sets DE and LVQ. (k-m) LOOCV with the two models 

LDA and RF with two feature sets DE and LVQ.  
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(Supplementary Table S4.1, Supplementary Figure S4.2). A total of 40,226 annotated 

features were detected with at least 1 mapped read across all samples. The majority of 

detected RNAs are protein coding with a mean fraction of 81% in the range from 65% to 

89% (Supplementary Table S4.1, Supplementary Figure S4.3). The fraction of reads 

mapping to exons and the distribution of read depths were uniform across all sample groups 

(Supplementary Figure S4.1-S4.2). 

We determined whether cfRNA profiles can distinguish cancer from normal 

controls for all 3 tested cancer types: lung cancer, liver cancer and multiple myeloma. 

Unbiased Principal Component Analysis (PCA) using the top 500 genes with the largest 

variance across all samples through pairwise comparison showed separation of LuCa, HCC 

and MM cfRNA profiles from that of healthy donors (Figure 4.1b-4.1d). Differential 

expression (DE) analysis of pairwise comparison between individual cancer types with 

respect to healthy donors using DEseq2 yielded 1864, 110, and 12 differentiating genes 

(adjusted p-value < 0.01) for LuCa, MM and HCC, respectively (Supplementary Figure 

S4.4). To confirm the significance of our differential expression results for each pairwise 

comparison of cancer to healthy donors, we performed a permutation test in which 

differential expression analysis between two groups of randomized samples was compared. 

Permutations of random sample shuffling in each pair with 500 rounds resulted in zero 

significant differentiating genes (padj < 0.01) in more than 95%, 95% and 94% of 

permutations for each pair comparing LuCa, MM, and HCC to healthy donors, respectively 

(Supplementary Figure S4.5). GO analysis revealed that up-regulated genes in LuCa were 

enriched for neutrophil activation and aggregation (Supplementary Figure S4.6a). In 

MM, oxygen and gas transport were the most enriched processes in the up-regulated gene 
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set (Supplementary Figure S4.6b). In HCC, the up-regulated gene set was enriched for 

plasminogen activation (Supplementary Figure S4.6c). This data collectively indicates 

the separation of cfRNA profiles in LuCa, HCC and MM compared to healthy donors. 

To explore the potential of cell-free RNA for cancer detection, we applied Linear 

Discriminant Analysis (LDA) and a Random Forest (RF) algorithm to find combinations 

of discriminating genes to separate cancer from healthy individuals. Two independent 

methods were used to identify specific input gene lists for the classifying algorithms. First, 

discriminating genes using DESeq2 analysis with False Discovery Rate (FDR/adjusted p-

value) < 0.01 were used as one feature set (DE gene set). Second, we implemented the 

learning vector quantization (LVQ) method to find the most important features that 

distinguish the two groups and selected the top 10 as another feature set (LVQ gene set). 

The linear combination for each gene set by LDA showed significant separation between 

LuCa, HCC and MM from healthy donors with p-value of 5.6x10-7 and 6.2x10-10, 6.7x10-

8 and 6.7x10-10 and 6.4x10-7 and 6.4x10-7 using the DE and top 10 LVQ gene sets, 

respectively (Figure 4.1e-4.1g). We further employed the Random Forest (RF) method to 

develop orthogonal classification models. The area under the receiver operating 

characteristic (ROC) curve (AUC) is higher than 0.92 in both LDA and RF models for both 

DE and LVQ feature sets of all three cancer types (Figure 4.1h-4.1j).  

To evaluate the significance and accuracy of our classification models, we 

employed the leave-one-out cross validation (LOOCV) method. Briefly, in LOOCV, one 

sample was iteratively removed for testing, with the remaining samples used for training 

by the LDA or RF algorithms to create a classifying model. LDA or RF algorithms 

classified each left out sample based on these training models. The test was repeated until 
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all individual samples were classified and cross-validated. Both LDA and RF algorithms 

were trained on the described DE and LVQ gene sets, resulting in four classification models 

(Figure 4.1k-4.1m). Classifying LuCa from healthy donors yielded accuracies of 91% 

(32/35), 88% (31/35) when using the LDA method, and 91% (32/35), 83% (29/35) when 

using the RF method with LVQ and DE feature sets. The overall successful prediction rates 

for differentiating MM from healthy donors are greater than 90% (27/30) for all four 

combinations. HCC were correctly differentiated from healthy donors with accuracies of 

100% (28/28) and 93% (26/28) when using the LDA method and 96% (27/28) and 96% 

(27/28) when using the RF method with LVQ and DE feature sets. Overall, the LOOCV 

test confirmed that the biomarker sets determined by DESeq2 and LVQ methods combined 

with our classification models using LDA and RF algorithms are statistically significant.  

 

cfRNA profiles enable multiclass cancer detection 

The feature sets identified by both DESeq2 and LVQ methods are cancer- and organ 

site- specific (LuCa, HCC and MM) compared to healthy donors (Figure 4.2a-4.2c). For 

example, the top 5 most significant genes from the LVQ analysis discriminates LuCa from 

healthy donors with a p-value of less than 10-7 but when comparing other cancer groups 

(HCC and MM) to healthy donors the p-value is not significant (Figure 4.2a). Similarly, 

the gene sets for MM (Figure 4.2b) and HCC (Figure 4.2c) are significantly different for 

these groups compared to healthy donors with a p-value of less than 10-5, whereas cross 

comparison of the other cancer types to healthy donors gave non-significant p-values. 

Therefore, we attempted to develop multi-class classification models to explore if cfRNA 

profiles could enable pan-cancer detection. The top 5 most important in 6 pairwise  
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Figure 4.2 | cfRNA profiles enable classification of pan-cancers. 

(a-c) Box plots of representative top 5 most important genes resulted from LVQ analysis 

for three pairs: multiple myeloma (a), lung cancer (b) and liver cancer (c) versus healthy. 

(d) Multiclass discrimination using LDA classification with combination of 5 most 

important genes identified LVQ analysis from pairwise comparison of six pairs between 

lung, liver, multiple myeloma and healthy. (e) LOOCV using RF algorithm.  

 

comparisons between each cancer type, healthy controls and other cancer types from the 

LVQ analysis are combined as a feature set of 30 genes for multi-class classification. LDA 

using the combination of genes in this feature set displayed clear separation between three 

cancer types and healthy donors (Figure 4.2d). The RF algorithm classified across cancer 

types with high accuracy as assessed by LOOCV (Figure 4.2e). The RF model accurately 
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categorized 20/20 healthy donors, 14/15 LuCa, 10/10 MM and 5/8 HCC samples (92.5% 

accuracy overall). Cohen’s kappa coefficient showed approximately 84% agreement 

between the RF model and the actual diagnosis. This result demonstrates the feasibility of 

our cfRNA platform to detect not only the presence of cancer, but also the specificity of 

the cancer tissue of origin.  

 

cfRNA profiles distinguish multiple myeloma from its premalignant condition, 

MGUS, and MGUS from healthy 

We examined if cfRNA profiles were able to recapitulate the transition from a pre-

cancerous condition to a cancerous one, and distinguish between them. We chose to test 

our hypothesis on multiple myeloma (MM) as it has a well-defined pre-cancerous 

condition, MGUS. The top ten most significant genes that discriminate MM from HD as 

identified by LVQ displayed a gradual transition in cfRNA level from the HD through 

MGUS to MM (Figure 4.3a). Among these ten most significant genes, nine genes (AIDA, 

CA1, CENPE, CPOX, EPB42, HBG1, HBG2, NEK2 and NUSAP1) are expressed higher 

in B cells and bone marrow compared to other tissue and cell types [268]. Three out of the 

ten most important genes resulting from the LVQ analysis are related to cell cycle 

processes: Centromere protein E (CENPE), a kinesin-like motor protein that accumulates 

in the G2 phase of the cell cycle and is highly expressed in bone marrow [269, 270]; 

Serine/threonine-protein kinase (NEK2), which is involved in mitotic regulation [270, 

271]; and Nucleolar and spindle associated protein 1 (NUSAP1), a nucleolar-spindle-

associated protein that plays a role in spindle microtubule organization [272].  



106 

 

 

Figure 4.3 | cfRNA profiles distinguish between healthy, MGUS and multiple 

myeloma donors:  

(a) Box plots of representative top 10 most significant genes resulted from learning vector 

quantization analysis for multiple myeloma versus healthy. (b) LDA plot using 10 genes 

from pairwise analysis across healthy - MGUS and healthy - multiple myeloma samples 

using the learning vector quantization method. (c-e) LOOCV using 2 models (LDA and 

RF) with top 10 lvq genes to discriminate MGUS and healthy (c), multiple myeloma vs 

MGUS (d) and three groups healthy, MGUS and multiple myeloma (e).  

 

An LDA plot using a combination of the top 10 LVQ genes from pairwise 

comparisons MM- healthy donor, and MGUS- healthy donor displayed the separation of 

all three groups (Figure 4.3b). A RF model using the top 10 most important LVQ genes 

from MGUS- healthy donor pairwise comparison yielded an accuracy of 88.6% (20/20 

healthy donors and 6/9 MGUS patients) (Figure 4.3c). Classification of MM from MGUS 

yielded an accuracy of 89.5% (8/9 MGUS and 9/10 MM) using LOOCV with the RF 
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classification method using the top 10 most important genes from LVQ analysis of MM 

versus HD comparison as a feature set (Figure 4.3d). The 3-group classification resulted 

in an accuracy of 82% (19/20 healthy, 4/9 MGUS and 9/10 MM) defined by LOOCV using 

the RF method with the feature set composed of the combination of the top 10 LVQ genes 

from the comparison MM versus HD and MGUS versus HD (Figure 4.3e). 

 

cfRNA profiles distinguish liver cancer from its pre-malignant condition, cirrhosis, 

and cirrhosis from healthy 

Next, we asked if we could distinguish between a solid tumor such as hepatocellular 

carcinoma (HCC) from its pre-cancerous condition, liver cirrhosis (Cirr). Among the top 

ten most important genes that discriminate HCC from HD identified by the LVQ analysis, 

five genes also significantly differentiate HCC from Cirr (Figure 4.4a). Interestingly, 8 out 

of the top 10 genes are expressed specifically in the liver and the corresponding  proteins 

are secreted to the plasma [268]. Apolipoprotein E (APOE) binds to a specific liver and 

peripheral cell receptor and is essential for normal catabolism of triglyceride-rich 

lipoprotein constituents [273]. Complement C3 (C3) is synthesized in the liver and is 

involved in both innate and adaptive immune responses [274]. Ceruloplasmin (CP) is a 

secreted plasma metalloprotein from the liver that binds copper and is involved in the 

peroxidation of Fe (II) transferrin to Fe (III) transferrin [275]. 24-dehydrocholesterol 

reductase DHCR24 catalyzes the reduction of sterol intermediates [276]. Fibrinogen Alpha 

Chain (FGA), fibrinogen Beta Chain (FGB) and Fibrinogen Gamma Chain (FGG) encode 

the coagulation factor fibrinogen, which is a component of blood clotting [277]. Histidine 

Rich Glycoprotein (HRG) is a plasma glycoprotein that binds heparin sulfate on the surface 

of the liver, lung, kidney and heart endothelial cells [278]. 
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Figure 4.4 | cfRNA profiles distinguish between healthy, liver cirrhosis and liver 

cancer donors: 

(a) Box plots of representative top 10 most significant genes resulted from learning vector 

quantization analysis for liver cancer versus healthy. (b) LDA plot using top 10 genes from 

each pairwise analysis between healthy - liver cirrhosis and healthy - liver cancer samples 

using the learning vector quantization. (c-e) LOOCV using 2 models (LDA and RF) with 

top 10 lvq genes to discriminate liver cirrhosis and healthy (c), liver cancer vs cirrhosis (d) 

and three groups healthy, liver cirrhosis and liver cancer (e).  

 

Current practices for HCC surveillance include screening on Cirr patients using 

imaging techniques, such as ultrasound and MRI. These methods are expensive and can 

have limited accessibility [218]. In addition, detection of Cirr is mostly based on clinical 

symptoms which are often displayed at late stages of the disease [279]. Therefore, easy-to-

use, reliable and specific biomarkers with accompanying prediction models are needed to 

improve detection of both HCC and Cirr. We explored the potential of cfRNA to 
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distinguish HCC from Cirr and Cirr from healthy individuals. An LDA plot using the 

feature set comprised of a combination of the top 10 LVQ genes identified for the pairwise 

comparisons of HCC- healthy donor and Cirr- healthy donor, shows a distinct separation 

between these groups (Figure 4.4b). RF methods using the top 10 important genes from 

Cirr- healthy donor pairwise comparisons yielded 100% accuracy in classifying Cirr from 

healthy donor samples using LOOCV (Figure 4.4c). Classification of HCC from Cirr also 

yielded 100% accuracy using LOOCV with RF (Figure 4.4d). We further attempted to 

classify three classes including HD, Cirr and HCC in one model. The 3-group classification 

resulted in 90.6% accuracy using LOOCV with RF (Figure 4.4e). 

4.5  Discussion  

We sequenced cfRNA from patients with three types of cancer (LuCa, HCC and 

MM), two pre-cancerous conditions (Cirr and MGUS) and healthy donors. All three cancer 

types can be distinguished using their cfRNA profiles which allowed the use of machine 

learning algorithms trained with a panel of cell-free RNA transcripts to accurately classify 

the three cancer types. To differentiate each cancer type from healthy individuals, the 

combination of ten genes identified by learning vector quantization (LVQ) analysis in each 

pairwise comparison yields similar accuracy compared to the use of a larger set of 

differentiating genes evaluated by leave one out cross validation. Two classification 

models built on linear discriminant analysis (LDA) and the random forest (RF) algorithm 

resulted in similar classification performance in each pairwise comparison of cancer to 

healthy donors. To distinguish each group in a multiclass panel including LuCa, HCC, MM 

and healthy donors, a panel of 30 genes gave a classification accuracy of 92.5% using a RF 
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model. The use of a small gene panel potentially enables a cost-effective assay for pan-

cancer detection that could be performed in a doctor’s office.  

To date, most investigations into the potential of blood-based methods for cancer 

detection have only focused on distinguishing cancers from healthy controls [228, 235, 

238, 239, 241, 249]. However, many cancer types have a long period of precursor states 

such as MGUS for MM and Cirr for HCC. Here, we report that cfRNA profiles can 

recapitulate the transition from a pre-cancerous condition to cancer. We therefore propose 

that cfRNA panels containing a small number of genes may distinguish cancers from pre-

malignant conditions and precursors from healthy individuals. This development can 

potentially enable a cost-effective screening strategy for early cancer detection during 

routine exams in high-risk pre-malignant patients within the general population.  

Lung, liver and bone marrow have been reported to contribute heavily to the 

abundance of cell-free nucleic acids in plasma [253]. This may explain the source of 

cfRNA biomarkers found in these three cancer types. In LuCa, upregulated genes are 

enriched for immunity markers related to neutrophil activation, which might partially 

reflect inflammation of the tumor microenvironment. In HCC, nine out of the top ten genes 

used in the classification model are specifically synthesized in the liver and encode secreted 

proteins found in blood that mediate plasminogen activation and fibrinolysis processes. In 

MM, seven out of ten genes among the most important cfRNA biomarkers have relatively 

high expression in B cells and bone marrow compared to other tissue and cell types and 

are related to cell cycle processes. These findings indicate that the cfRNA biomarkers 

identified likely originate from the tissue of origin of the tumor. 
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Our pilot study has important limitations. The discovery was performed using a 

small sample cohort and does not contain large scale independent sample sets. Further they 

do not represent the distribution of cancer and precursor lesions in the overall population. 

In addition, we have not fully characterized the stability of cell-free RNA and the biological 

origin of the identified cfRNA biomarkers. Before the tests developed from this work can 

be clinically applied, large-scale clinical studies will be required to validate the potential 

of cfRNA and to build robust classification models. 

4.6  Conclusions 

In summary, we report the first proof-of-principle that global profiling of cell-free 

mRNA has the potential to enable a multiclass cancer detection. This work lays the 

foundation for developing inexpensive assays that measure transcript levels of mRNA in 

plasma for a small panel of genes that can differentiate pan-cancer from pre-malignant 

conditions and otherwise healthy donors. Organ-specific mRNA transcripts were identified 

as biomarkers that indicate the tissue of origin for the tumor. These cell-free plasma RNA 

profiles could be readily combined with other nucleic acids-based and protein-based 

approaches for potentially increased diagnostic sensitivity and specificity. 
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5.1  Abstract  

Cell-free messenger RNA (cf-mRNA) circulates in the bloodstream and has shown 

potential to be developed as blood-based biomarkers to distinguish cancer and high-risk 

groups. However, there is limited understanding of what the potential carriers of cf-mRNA 

are in human plasma, and which cf-mRNAs may exist in either in extracellular vesicle or 

non-vesicle associated fractions. Additionally, how cf-mRNA packaging profiles are 

associated with cancer progression is not well understood. Here, we used size exclusion 

chromatography to characterize cf-mRNA in human plasma samples from three different 

cancer types (lung cancer, liver cancer, and multiple myeloma), two high-risk groups 

(monoclonal gammopathy of undetermined significance and liver cirrhosis), and healthy 

controls. By separating and sequencing potential carriers of cf-mRNA in their respective 

extracellular vesicle and non-vesicle associated fraction, we found that the majority of cf-

mRNA was enriched in extracellular vesicles. Furthermore, cf-mRNA was also protected 

in membrane-bound vesicles, revealing a remarkable stability in RNase-rich environments. 

To reveal cf-mRNA packaging associated with cancer progression, cf-mRNA transcripts 

levels between cancer and high-risk or healthy cohorts were identified in each fraction. Our 

results suggest that cf-mRNA is not only predominately associated with the EV enriched 

fraction, but also suggest cancer-distinguishing cf-mRNA transcripts are selectively 

packaged within human plasma.  

5.2  Introduction  

Cell-free RNA (cfRNA), also called extracellular RNA, in the blood has shown 

great potential as a biomarker of disease [280-283]. Cell-free RNA contains both protein-
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coding and non-coding RNA. Prior studies have focused primarily on cell-free miRNAs 

(cf-miRNAs), which are approximately 22 nucleotides in length, and frequently 

dysregulated in cancer [68]. Although cell-free RNA has been considered more fragile than 

cell-free DNA because of high RNase levels in blood [140], several studies have 

demonstrated that miRNAs are present in blood in a remarkably stable form [39, 68]. This 

stability is likely the reason why the majority of cfRNA studies exploring their role as 

cancer biomarkers have focused on characterizing cf-miRNA [39, 68]. Although cell-free 

messenger RNAs (cf-mRNA) are potentially more fragmented and less abundant than cf-

miRNAs, recent reports have demonstrated cf-mRNAs carry disease specific signatures 

that can be exploited as non-invasive biomarkers [70, 284] & [cfRNA paper]. In our 

previous study, we have also shown increased levels of cf-mRNA correlated with the 

diagnosis of cancer and with disease progression [cfRNA paper]. Although there are 

reports of cf-mRNA as ideal non-invasive biomarker, a comprehensive study of how cf-

mRNA is protected within endogeneous RNase enriched plasma remains unknown. 

Understanding the stability of cf-mRNA is an important prerequisite for utility as a blood 

based biomarker. 

This point led us to speculate that cf-mRNA may have been protected in 

extracellular vesicles [139, 285-288]. Extracellular vesicles (EVs) are a collective term for 

various vesicles separated based on their size and biogenesis [30]. EVs which are > 100 

nm have been categorized as medium EVs, while EVs < 100 nm have been categorized as  

small EVs [152]. Recently, exomeres, defined as < 50 nm non-membranous nanoparticles, 

were identified [30, 288]. EVs are known to harbor variable molecular cargoes including 

nucleic acids and proteins associated with their cells of origin, providing a great potential 
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for diagnostics and prognostics [280, 289, 290]. The discovery of EVs containing cfRNA 

has sparked considerable interest in understanding the role of these vesicles in intercellular 

communication and the potential clinical applications [139, 287]. However, little is known 

regarding i) whether EVs or protein complexes are the major carrier of cell-free mRNA in 

complex biofluids such as plasma, and ii) whether circulating cfRNA associated with EVs 

(EV-RNA) can distinguish cancer patients from healthy controls. Investigation of cfRNA 

carriers which provide form of stability in plasma and molecular composition of disease 

specific EV cfRNA may reveal the basic biology, function and clinical translation 

potential. 

Extracellular miRNA have shown to either enclosed within extracellular vesicles 

or associated with protein complexes [39, 63, 291-293]. Since RNA binding proteins (e.g. 

Argonaut 2) are known to contain miRNA binding sites, prior studies have investigated 

whether these complexes are the major form of miRNA carriers [39, 286, 294]. For the 

first time, presence of miRNA in circulation were found to be primarily associated with 

the Argonaut 2, which adds even further to the complexity of several potential cf-RNA 

carries [39]. Therefore, the exRNA atlas, a data repository of the NIH extracellular RNA 

communication consortium, analyzed cell-free miRNA cargo types from various human 

biofluids covering 23 healthy conditions across 19 different studies [138]. Understanding 

type of encapsulation is important as they are related to their roles, functions, and even 

their destinations [287, 295]. Murillo et al. integrated computational analysis revealed 

major types of non-coding RNA carriers: extracellular vesicles, RNA binding proteins, or 

as part of lipoprotein particles, mostly HDL [138, 296]. Despite progress made in 
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understanding non-coding RNA carries, it remains unclear how cf-mRNAs are associated 

with different types of carriers. 

In the context of cancer progression, oncogenes such as KRAS have been shown to 

influence the selective packaging of genetic materials into vesicles in cell culture media 

[63]. Post-transcriptional regulation of Argonaut 2 (Ago2) resulted in dysregulation of 

miRNAs into exosomes. These exosomal miRNA were demonstrated to potentially affect 

recipient cell phenotypes, including gene expression, and even cancer invasiveness [63]. 

Similarly, EV-mediated miRNA delivery to recipient cells has been suggested to form pre-

metastatic niche and promote tumorigenesis [291, 297]. Ongoing efforts to understand how 

extracellular RNA, including long noncoding RNA, is regulated by oncogenic signaling 

into EVs have been demonstrated in cell culture [139]. Despite recent works demonstrating 

selective RNA packaging in relation to cancer in cells, identifying mRNA content of EVs 

in human plasma has remained challenging. 

In this study, we utilized size exclusion chromatography to characterize vesicle 

associated RNA and non-vesicular carrier such as lipoprotein or RNA binding protein 

complexes. We fractionated plasma into three fractions associated with medium EVs, small 

EVs, and exomeres, and three non-EV fractions associated with early-, center-, and late-

protein elution peaks. These fractions were confirmed by physical characterization of EVs 

and protein. Subsequently, we extracted and sequenced RNA content of the six fractions 

of five healthy donors, five lung cancer, five liver cancer, five multiple myeloma, four liver 

cirrhosis and four monoclonal gammopathy of undetermined significance patients. In total, 

RNA sequencing was performed on 168 samples and the majority of detected total RNA 

were protein coding transcripts. Through implementation of novel RNA normalization 
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across plasma fractions with an external RNA control spike-in, we found that cf-mRNA is 

predominately found in EV fractions. Furthermore, we identified sets of genes within each 

fraction whose expression is altered in cancer and high-risk patients compared to healthy 

donors.  

5.3  Materials and Methods  

Clinical sample and preparation of plasma 

Blood samples from healthy individuals and patients with monoclonal gammopathy 

of undetermined significance (MGUS), multiple myeloma, liver cirrhosis, liver cancer, and 

lung cancer were obtained from Oregon Health and Science University (OHSU) by Knight 

Cancer Institute Biolibrary and Oregon Clinical and Translational Research Institute 

(OCTRI). All samples were collected under institutional review board (IRB) approved 

protocols with informed consent from all participants for research use. Healthy donors were 

individuals who had no recorded previous history of cancer. All lung and liver cancer 

patients were treatment naïve at the time of blood collection. Treatment naïve was not an 

excluded criteria for Multiple Myeloma patients. All samples were collected and processed 

using a uniform protocol by the same staff at Oregon Health and Science University. 

Samples for analysis were matched between cancer and control groups with respect to age 

and gender of participants. Whole blood was collected from all clinical samples in 10 mL 

in K2EDTA tubes (BD Vacutainer, Becton Dickinson, 36643). Tubes were transported 

vertically at room temperature before processing. Within 1 hour of blood withdrawal, 

plasma was prepared by centrifugation (Eppendorf 5810-R centrifuge, S-4-104 Rotor, 

Eppendorf) by double spin condition. 10 ml of whole blood was first spun at 1,000 × g for 
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10 minutes at 4°C. The supernatant was collected 10 mm above the buffy coat. The second 

centrifugation was done at 15,000 x g for 10 minutes at 4°C. Aliquots of platelet-depleted 

plasma were transferred to 1.5 mL microcentrifuge tubes (VWR, 89126-714) and stored 

immediately at −80 °C. 

 

Plasma fractionation using size exclusion chromatography 

Size exclusion chromatography was conducted using commercially-available 

qEV2 SEC column (Izon Science Ltd, New Zealand) according to the manufacturer’s 

instructions. In brief, the column was equilibrated with 0.1 µm filtered D-PBS without 

calcium and magnesium (Thermo Fisher Scientific, 14190250) at room temperature. 2 ml 

plasma was loaded on column, and 14 ml of void volume was discarded. The exact 4 ml of 

6 fractions (FR14, FR58, FR912, FR1619, FR2326, and FR3033) of SEC column were 

collected in 50 ml of canonical tube (Falcon) on ice and was immediately followed by RNA 

extraction. 

 

Size measurement of EVs using qNano and dynamic light scattering  

Concentration of particles in isolated EV fraction from size-exclusion 

chromatography was measured using tunable resistive pulse sensing by qNano (Izon, 

Cambridege, MA, USA) following instruction manuals. The calibration particles (Izon, 

CPC100) and EV fraction collected from size-exclusion chromatography was placed in 

nanopore (Izon, NP150, A37355). Particle concentration was determined by Izon software. 

Size distribution of particles eluted from size-exclusion chromatography was measured 

using Zetasizer nanoseries instrument (Malvern Nano zeta sizer).  
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EV size distribution measurement using transmission electron microscopy 

Ultrathin carbon film on lacey carbon support with 400 mesh on copper (Ted Pella, 

01824) was glow discharged for 30 seconds using PELCO easiGlow glow discharger (Ted 

Pella). Isolated EV samples were put on charged grids for 1 min, washed for 30 seconds 

with MilliQ water, and fixed with 1% uranyl acetate for 30 seconds. Grids with stained 

samples were air dried at least 30 minutes before imaging. Prepared samples were imaged 

at 120 kV using FEI Tecnai™ Spirit TEM system. FEI- Tecnai™ Spirit TEM system was 

interfaced to a bottom mounted Eagle™ 2K TEM CCD multiscan camera and to a 

NanoSprint12S-B cMOS camera from Advanced Microscopy Techniques (AMT) fast side 

mounted TEM CCD Camera. Images were collected at 8,000-80,000x magnification under 

1-2μm defocus. Images were acquired as 2048 × 2048 pixel, 16-bit gray scale files using 

the FEI’s TEM Imaging & Analysis (TIA) interface on an Eagle™ 2K CCD multiscan 

camera.   

 

Immunoprecipitation and western blotting 

For immunoprecipitation, 200 μL of Magna Bind goat anti-mouse IgG Magnetic 

Bead slurry (Thermo Scientific, PI21354) were washed with PBS solution and incubated 

with 10 μg of mouse monoclonal anti-Ago2 (Abcam, ab57113), anti-CD9 antibody 

(Abcam, ab58989), anti-Apolipoprotein (Santa Cruz Biotechnology, sc-376818) or mouse 

normal IgG (Santa Cruz Biotechnology, sc-2025) antibodies for 2 h at 4 °C. To account for 

smaller volumes, the exact 4 ml of 6 fractions (FR14, FR58, FR912, FR1619, FR2326, and 

FR3033) of SEC column were concentrated by ultracentrifugation at 150,000 g x 6 hours. 
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The resulting pellet was lysed in 200 μL of IP lysis buffer (Thermofisher Scientific, 87787) 

supplemented with a halt protease inhibitor cocktail (Thermofisher, 78430). Total of 200 

μL of IP lysed samples were mixed with 200 μL of PBS. The preincubated beads and 

antibody were then added to the 400 μL of sample and incubated overnight at 4 °C.  Beads 

were washed three times with 1% Nonidet P-40 buffer (Sigma Aldrich, 11332473001) and 

then eluted in 20 μl of NuPage LDS/reducing agent mix and incubated for 10 min at 70 °C 

to elute the sample. Samples eluted off from the beads were used for western blotting. 

Western blot was run using Bolt 4-12% Bis-Tris Plus gel (Life technologies, NW04122) 

and transferred onto PVDF membrane (Thermofisher scientific, LC2002). The membrane 

was blocked with 1X TBST containing 5% milk and incubated with primary antibodies 

overnight at 4°C (Sigma Aldrich, M7409-5BTL). The anti-Argonaut-2 antibody (Abcam, 

ab32381), anti-CD9 (Abcam, ab223052), and anti-apolipoprotein A1 (Abcam, ab64308) 

were used. After washing with 1X TBST, membrane was incubated with horseradish 

peroxidase conjugated anti-rabbit secondary antibodies (Cell Signaling, 7074) and washed 

again to remove unbound antibody. Bound antibodies were detected with supersignal west 

pico plus chemiluminescent substrate (Thermofisher, 34577). 

 

RNA extraction from fractionated plasma   

RNA was extracted from 4mL of fractionated plasma using plasma/serum 

circulating and exosomal RNA purification kit (Norgen Biotek, 42800) according to the 

manufacturer’s protocol with some modifications. After fractionated plasma samples were 

lysed at 60°C for 10 min and mixed with ethanol, 10µl of 106 diluted ERCC RNA spike-

in control mix (Thermofisher, 4456740) was added on ice as an external RNA control for 
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normalization. ERCC spiked in samples were followed by centrifugation at 1,000 RPM for 

2 min. At that point, the manufacturer’s protocol was followed and RNA was eluted in 

100µl. To digest trace amounts of contaminating DNA, RNA was treated with 10X 

Baseline-ZERO DNase. DNase I treated RNA samples were purified and further 

concentrated using RNA clean and concentrator-5 (Zymo Research, R1014) according to 

the manufacture’s manuals. Final eluted RNA was aliquoted and stored at -80°C 

immediately. 

 

Library preparation 

We prepared stranded RNA-Seq libraries using Clontech SMARTer stranded total 

RNA-seq kit v2- pico input mammalian (Takara Bio, 634414) according to the 

manufacturer’s instructions. For cDNA synthesis, we used option 2 (without 

fragmentation), starting from highly degraded RNA. Input of 7ul of RNA samples were 

used to generate cDNA libraries suitable for next-generation sequencing. For addition of 

adapters and indexes, we employed SMARTer RNA unique dual index kit -96 U (Takara 

Bio, 634452). SMARTer RNA unique dual index of each 5’ and 3’ PCR primer were added 

to each sample to distinguish pooled libraries from each other. The amplified RNA-seq 

library was purified by immobilization onto AMPure XP PCR purification system 

(Beckman Coulter, A63881). The library fragments originated from rRNA and 

mitochondrial rRNA were treated with ZapR v2 and R-Probes according to manufacturer’s 

protocol. For final RNA-seq library amplification, 16 cycles of PCR were performed and 

final 20 ul was eluted in Tris buffer following amplified RNA-seq library purification. The 

amplified RNA-seq library was stored at -20°C for sequencing.  
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Sequencing data processing and quality control 

All fractionated plasma samples isolated by SEC were randomized to reduce 

sample batch effects and were uniformly processed for RNA extraction, library 

preparation, and sequencing in Illumina flow cells. All 168 premade RNA-seq library 

sample were sequenced using NovaSeq 6000 system by Novogene company (Sacramento, 

CA). The premade RNA-seq library samples were equally distributed over three of 

NovaSeq S4 lanes for pair-end reads x 150 bp. Adapter sequences were trimmed using 

sickle tool [256]. After trimming, the quality of the reads were checked using FastQC 

(v0.11.7) [257, 258] and RSeQC (v2.6.4) [259]. Reads were aligned to the 

hg38.Ens_94.biomart human genome annotation using the STAR aligner (v2.5.3a) [115] 

with two pass mode flag. Duplicated reads were removed using the picard tool (v1.119) 

[260]. Read counts for each gene were calculated using the htseq-count tool (v0.11.2) [261] 

in intersection-strict mode. For each sample, we calculated exon, intron, intergenic 

fractions and protein coding fractions (CDS exons) using RSeQC [262]. 

5.4  Results  

Characterization of Human Plasma Size Fractionation 

In order to identify potential carriers of RNA in human plasma, we employed size-

exclusion columns (SEC) to separate extracellular vesicles from non-vesicle associated 

fractions. Distinct physical properties of the individual fractions were characterized by 

tunable resistive pulse sensing technology (qNano), absorbance, dynamic light scattering 

(DLS), and transmission electron microscopy (TEM) (Figure 5.1). We measured 

concentration of extracellular vesicles (particles/ ml) along with the elution volume using 
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Figure 5.1 | Characterization of distinct EV subtypes through plasma fractionation 

(A) Bar graph of EV concentration measured by tunable resistive pulse sensing using 

qNano on left-axis, and line plot of protein abundance measured by absorbance at 280 nm 

on right-axis with respect to plasma fractionation. X-axis indicates each fraction from size 

exclusion column. (B) Bar graph of mean hydrodynamic size (nm) distribution measured 

by dynamic light scattering on left-axis, and line plot of relative nucleic acid abundance 

measured by ratio of absorbance at 260 nm over 280 nm (A260/A80) on right-axis with 

respect to plasma fractionation. (C) Representative transmission electron microscopy 

images of particle subtypes in individual fraction containing medium EVs (fraction 4), 

small EVs (fraction 6), small EVs with exomeres (fraction 8), majority of exomeres 

(fraction 10), and exomeres (fraction 12) with scale bars, 100 nm. (D) Pie chart of percent 

distribution of particles with corresponding size ranges in fractions identified using TEM. 

(E) Histogram of particle size measured by transmission electron microscopy are shown 

for each fraction.  
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qNano (Figure 5.1A). Recovery of extracellular vesicles obtained from each fraction 

containing 2 ml volume resulted in range of 109 to 1010 vesicles per ml in fraction 2, 4, 6, 

8, 10, and 12. Fraction 14 and onwards were below the detection limit of qNano. As 

expected, elution of vesicle peaks were found in fractions 4 and 6. We also analyzed elution 

of plasma soluble proteins using absorbance at 280 nm (A280) which had maximum peaks 

eluting in much later fractions 24 and 26 (Figure 5.1A). Additional measurement using 

dynamic light scattering (DLS) revealed hydrodynamic size of particles correlated with 

absorbance A260nm/A280nm ratio, indicating relatively high nucleic acid abundance in 

EV associated fractions (Figure 5.1B). In addition, size distribution measured by DLS 

indicated decreasing particle size with further elution fractions. To further characterize the 

distribution of heterogeneous EV sizes, we analyzed the morphology of EVs by TEM 

(Figure 5.1C). The proportion of distinct size ranges are shown for each fraction (Figure 

5.1D). Fraction 4 contained the highest proportion (51.5%) of particle size ≥ 100 nm. 

Fraction 6 contained highest proportion (84%) of particle size between 50 nm and 100 nm. 

Fraction 12 contained highest proportion (98.4%) of particle size smaller than 50 nm 

(Figure 5.1D). Similar to qNano, fraction 14 and onwards composed of much higher 

amount of protein aggregates, which hindered direct visualization by TEM. The histogram 

of particle sizes displayed three distinct ranges: smaller than 50 nm, between 50 – 100 nm, 

and larger than 100 nm (Figure 5.1E). Based on qNano and TEM analysis, we further 

divided EV fractions into i) medium EVs (fractions 1-4: FR14) which major contribution 

from particles size ≥ 100 nm, ii) small EVs (fractions 5-8: FR58) which contained majority 

of particles between 50 and 100 nm, and iii) exomeres (fractions 9-12: FR912) which 

contained the majority of particles < 50 nm (Figure 5.1E). Utilizing A280 protein 
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adsorption, soluble protein components of plasma were divided into i) early protein peaks 

(fractions 16-19: FR1619), center of the protein peaks (fractions 23-26: FR2326), and iii) 

late protein peaks (fractions 30-33: FR3033) for downstream analysis (Figure 5.1A). 

 

Transcriptomic Analysis of EVs and Non-vesicles  

To determine the expression profile of cell-free RNAs across plasma fractions, we 

utilized aforementioned plasma fractions for our sample cohort which includes healthy 

donors (n=5), lung cancer (n=5), multiple myeloma (n=5), liver cancer (n=5), liver 

cirrhosis (n=4), and monoclonal gammopathy of undetermined significance (n=4). (Figure 

5.2A). Across total of 168 fractionated plasma samples, total mean of 51.7 million (M) raw 

reads in the range of 25.9 M to 109.9 M were detected (Supplementary Figure S5.1A, 

S5.1B). After duplicate read removal, we observed a mean of 4.0 M uniquely mapped reads 

in the range of 70,152 to 34.2M. We found the percent of uniquely mapped reads declined 

towards protein-association fractions: 17.4 % (FR14), 10.5% (FR58), 4.0% (FR912), 5.0 

% (FR1619), 4.4% (FR2326), and 1.6% (FR3033) (Supplementary Figure S5.1C). These 

findings were consistent with decrease of exon fraction maximum at 97% to minimum at 

7% towards later protein fractions (Supplementary Figure S5.2A). While the global exon 

fraction declined towards protein enriched fractions, intron and intergenic fractions 

increased towards protein-enriched fractions (Supplementary Figure S5.2B, S5.2C). 

Among the ~12,000 distinct cfRNA transcripts found in fractionated plasma, 94 ± 0% of 

the cfRNA biotype were identified as protein coding transcripts which results were 

consistent across different clinical sample types and fractions (Supplementary Figure 

S5.3A, S5.3B).  
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Figure 5.2 | Transcriptomic Analysis of EVs and Non-vesicles 

(A) Schematic of total of 168 RNA sequencing samples derived from fractionated plasma. 

Plasma samples from healthy, high-risk (MGUS and LCir), and cancer patients (MM, LV, 

LG) were fractionated into EV and non-vesicle associated fractions. (B) Box plot of 

relative log expression of normalized read counts across EV and protein fractions. (C) 

Principal component analysis of top 500 genes with largest variance across individual 

fractions within healthy controls. (D) Heatmap expression of all genes from all conditions 

across all fractions revealing majority of cell-free mRNA are within FR14 and FR58. 

 

In order to identify gene expression differences across all fractions within patient 

cohorts, we plotted boxplot of relative log expression across 168 fractionated plasma 

samples (Figure 5.2A, 5.2B). The results revealed the majority of cell-free mRNAs is 

found in FR14 and FR58 corresponding to medium and small EVs in contrast to exomere 

and protein enriched fractions (Figure 5.2B). Unsupervised principal component analysis 
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(PCA) was conducted using top 500 genes with the largest variance. The first two principal 

components of PCA clearly separated medium and small EVs from other plasma fractions 

(Figure 5.2C). Based on PCA, the exomere enriched fraction (FR912) exhibited a higher 

degree of similarity to protein enriched fractions than medium or small EV enriched 

fractions. Agreeing with this finding, a heatmap analysis performed on all detected genes 

displayed that cf-mRNA were predominantly enriched in medium EV and small EV 

enriched fractions (Figure 5.2D). Similar results were found when hierarchical clustering 

of expression profiles was plotted per disease type (Supplementary Figure S5.4A-S5.4F).   

     

Cell-free mRNA are Present and Protected in Extracellular Vesicles 

To evaluate if other potential carriers of RNA such as lipoproteins, and RNA 

binding proteins cofractionate with EV fractions, we performed immunoprecipitation using 

antibodies against canonical EVs markers (CD9), apolipoprotein (APOA1) and Argonaut 

complexes (Ago2) (Figure 5.3A). CD9 was preferentially enriched in FR14 and FR58 

confirmed the presence of EVs. In contrast, APOA1 and Ago2 were enriched in protein 

fractions and showed no measureable level in EV fractions (FR14 and FR58). To examine 

whether EVs protect cf-mRNAs from endogeneous RNase in human plasma, we treated 

the control RNA (total human liver tissue RNA) and EV fraction with either RNase A, 

detergent Triton X-100 to disrupt membrane bound EVs, and both RNase A and Triton X-

100 or buffer alone. Negative raw ct value was plotted against different treatment for 

control RNA and EVs (Figure 5.3B). When treated with RNase A alone, we found control 

RNA is degraded similar to when RNase A and Triton X-100 were treated together. 

However, PCR signal for vesicles treated with RNase A remains similar to when buffer or 
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triton X-100 was treated alone. In addition, vesicle derived RNA treated with both RNase 

A and Triton X-100 led to near total digestion of RNAs, confirming that circulating cf-

mRNAs are protected in membrane bound vesicles. Taken together, our results indicate 

that cell-free mRNAs are present and protected within extracellular vesicles in plasma. 

 

Figure 5.3 | Relative quantification of RNA by qRT-PCR and immunoprecipitation 

(A) Expression of protein markers (CD9, APOA1, and Ago2) using immunoprecipitation 

across plasma fractions. (B) A line plot of negative raw ct of individual gene with RNase 

and/or detergent using qRT-PCR. RNA isolated from EV fraction and control RNA from 

three healthy individuals were treated with RNase and/or detergent. 

 

Selective Packaging of Cancer Differentiating Genes  

We hypothesized that cancer may dysregulate the mRNA content of circulating EV 

subpopulations. To identify the enrichment of cancer differentiating genes in specific 

fractions, hierarchical clustering analysis was performed on significantly differentially 

expressed genes between healthy and cancer per plasma fraction. We found specific genes 

significantly upregulated in lung cancer that are contained within medium EVs, small EVs, 

and exomeres (Figure 5.4A). In addition, fewer sets of lung cancer differentially expressed 

genes were identified in early, peak, and late eluting protein fractions (Supplementary 
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Figure S5.5A). In order to predict the classification, linear discriminant analysis (LDA) 

was performed on lung cancer differentially expressed (DE) gene sets per fraction. By 

employing leave-one-out cross validation (LOOCV), we revealed individual samples 

trained on the DE gene sets identified from EVs were more accurately classified compared 

to DE gene sets identified from protein enriched fractions (Figure 5.4B, Supplementary 

Figure S5.5B). Moreover, we also identified genes present in EV and protein fractions 

differentially expressed for liver cancer and for multiple myeloma (Supplementary 

Figure S5.6A and S5.7A). To assess if cancer distinguishing genes exhibited global or 

selective increase across individual fractions, we characterized the number of genes which 

were unique or shared across individual fractions. This revealed that majority of 

differentially expressed genes were found in unique fractions (Supplemental Figure 

S5.8). In order to compare the relative gene expression profiles in healthy and cancer 

plasma across fractions, we performed hierarchical clustering analysis on the identified DE 

gene sets. Unique cancer distinguishing genes per fraction were assigned as clusters 

corresponding to their fraction enrichment (FR14, FR58, FR912, FR1619, FR2326, 

FR3033 as clusters 1-6 respectively). Intriguingly, our supervised clustering analysis 

revealed six distinct groups whose gene expressions were enriched in cancer relative to 

healthy in a specific fraction (Figure 5.4C). Majority of the cancer differentiating genes 

were found in FR14 and FR58 enriched in medium and small EVs. We found a similar 

selective enrichment of cancer differentiating genes identified in distinct EV or protein 

fractions for multiple myeloma and liver cancer (Supplementary Figure S5.6B and 

S5.7B). Our results revealed cancer-associated cell-free RNA signatures are distinctively 

packaged in patient plasma. 



132 

 

 

Figure 5.4 | Distinct cancer differentiating cell-free mRNA across fractions in 

human plasma  

(A) Heatmap of log counts of lung cancer differentially expressed genes within individual 

fractions enriched in medium EVs, small EVs, and exomeres were compared between lung 

cancer and healthy. Differentially expressed genes which showed statistical significance 

(student’s t test, p-value < 0.05) were used. (B) Leave-one-out cross validation testing 

accuracy of linear discriminant analysis algorithm for classification using lung cancer 

upregulated genes specific to individual fraction. (C) Heatmap of gene expression in lung 

cancer relative to healthy across fractions. A total of 800 significantly differentially 

expressed genes were used. Clusters were assigned to genes corresponding to their enriched 

fraction based on log 2 fold changes (FR14, FR58, FR912, FR1619, FR2326, FR3033 as 

clusters 1-6 respectively).    
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To assess the potential roles of these unique cancer distinguishing gene sets 

revealed per fraction, we performed gene set enrichment analysis (GSEA) curated on 

biological, chemical and genetic perturbation. We found that genes enriched in FR14 

(medium EVs) derived from liver cancer patients shared genes matching the human liver 

cell atlas [298] (Supplementary Figure S5.9A). Additionally, our liver cancer 

differentiating genes in medium EVs (i.e. C1S, F5, and ADH1B) were found in human 

liver cell atlas and liver tissue specific expression analysis [299]. Other gene sets including 

MR1, RGS5, XXXXYLT1, FAT1, CYSTM1, CNEP1R1, VAMP5, MYNN, CPVL, and 

PALLD identified in medium EVs (FR14) of liver cancer plasma were upregulated in 

hepatocellular carcinoma patient tissues compared to normal liver samples [300]. The 

differentiating gene cluster associated with small EVs (FR58) also contained liver-specific 

genes related to hepatocyte differentiation [298, 299, 301, 302] (Supplementary Figure 

S5.9B). Notably, lung cancer differentiating genes in medium EVs (i.e. KIF2C, PSAT1, 

CCNA2, SCD, DTYMK, PFN2, and CDCA8) were associated with lung cancer poor 

survival prognosis [303]. (Supplementary Figure S5.9C). Finally, for multiple myeloma, 

genes upregulated in the medium EV cluster (FR14) were associated with epithelial 

mesenchymal transitions, a hallmark of increased aggressiveness, invasion, and metastatic 

potential [304] (Supplementary Figure S5.9D). Overall, our gene sets uniquely enriched 

in each fraction revealed relevant biological significance associated with aberrant gene sets 

identified in corresponding tumor tissue samples and predicted cancer patients’ poor 

survival outcome. 
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Specific cfRNA Signatures Associated with High-risk Group and Cancer 

Next, to assess the potential of distinct cf-mRNA carriers in cancer progression, we 

investigated the selective packaging of transcriptomic signatures associated with high-risk 

groups (liver cirrhosis and MGUS) and their corresponding cancer types (liver cancer or 

multiple myeloma, respectively). We performed pairwise comparisons between healthy, 

high-risk groups, and their corresponding cancer types by associated fraction. By 

combining these DE gene sets identified from each fraction, we found that there are 6 

patterns of differentiating genes, denoted as clusters: clusters 1-3 included genes uniquely 

enriched for specific conditions (healthy, high-risk group, or cancer respectively), and 

clusters 4-6 which included genes enriched in paired conditions (i.e. high-risk and cancer 

in cluster 6) (Figure 5.5A, 5.5D). In order to reflect genes associated with each fraction 

from these clusters, the number of differentially expressed genes in each fraction per cluster 

was generated (Figure 5.5B, 5.5E). Interestingly, healthy-upregulated genes (cluster 1) 

were mostly found in the protein enriched fraction FR2326. In contrast, high-risk and 

cancer upregulated genes (cluster 2 and 3 respectively) were mostly found in medium and 

small EVs (FR14 and FR58). Specifically, liver cancer upregulated genes were 

preferentially found in small EVs (FR58), while MM upregulated genes were enriched in 

medium EVs (FR14) (Figure 5.5B, 5.5E). Although further studies including a larger 

sample size are required to further validate this model, our findings constitute a proof-of-

principle that cell-free mRNA in human plasma are selectively found in extracellular 

vesicles and that their packaging differences are associated with cancer progression. 
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Figure 5.5 | Specific cfRNA signatures associated with high risk group and cancer 

Heatmap of log counts of differentially expressed genes (A) between healthy (HD), liver 

cirrhosis (LCir) and liver cancer  (LV) and (D) between HD, monoclonal gammopathy of 

undetermined significance (MGUS) and multiple myeloma (MM). Differentially expressed 

genes (student’s t-test, p-value < 0.01) within individual fraction were identified by pair-

wise comparison which results in 6 distinct patterns. Representative bar plot of number of 

genes identified in each cluster across fraction (B) between HD, LCir, and LV and (E) 

between HD, MGUS, and MM. Gene set enrichment analysis (GSEA) was performed on 

(C) LCir upregulated genes and (F) MGUS upregulated genes. GSEA was performed from 

Molecular signatures database using C5:BP derived from biological process ontology. 
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To relate gene products in terms of biological properties, we performed gene 

ontology on 6 clusters identified for high-risk groups. In the case of healthy, liver cirrhosis 

and liver cancer comparisons, cluster 1 contained gene sets regulating organelle 

organization (Supplementary Figure S5.10A). Cluster 2 which is specific to liver 

cirrhosis, was found to be involved with exocytosis, secretion, and regulation of 

transmembrane transports (Figure 5.5C). Cluster 3, which is specific to liver cancer, was 

found to be involved with chylomicron remodeling and lipoprotein particle remodeling 

which is a major function of liver (Supplementary Figure S5.10B). Cluster 4, which are 

upregulated in both healthy and liver cirrhosis, contained regulation of response to stimulus 

and signaling (Supplementary Figure S5.10C). Cluster 5, which is both upregulated in 

liver cirrhosis and liver cancer, contained gene sets involved in the regulation of fatty acid 

transport and regulation of cell death (Supplementary Figure S5.10D). In the case of 

healthy, MGUS and multiple myeloma comparisons, cluster 1 was involved in regulation 

of cellular transport and organization (Supplementary Figure S5.11A). Cluster 2, which 

is specific to MGUS, was found to be involved with immune system processes and 

lymphocyte activation (Figure 5.5F). Cluster 3, which is specific to multiple myeloma, 

was found to be involved with oxygen transport and blood coagulation (Supplementary 

Figure S5.11B). Cluster 4, which are upregulated in both healthy and MGUS, was involved 

in protein targeting to membrane or endoplasmic reticulum (Supplementary Figure 

S5.11C). Lastly, cluster 5 which is both upregulated in MGUS and multiple myeloma 

contained gene sets involved in metabolic processes (Supplementary Figure S5.11D).    
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5.5  Discussion  

Although recent studies have supported circulating cf-mRNA as promising cancer-

differentiating biomarkers, how these RNAs reside within plasma remains unknown. 

Discerning which types of RNA are being carried in the context of disease progression will 

be highly valuable for disease diagnosis. While numerous reports have shown miRNA 

cargo types, studies on circulating mRNA cargo types is limited. Recent studies have 

revealed different potential extracellular miRNA cargo types, including both EVs and non-

vesicle carriers [39, 138]. The NIH extracellular RNA communication consortium created 

exRNA atlas resource which major carrier of miRNA were extensively compared across 

19 studies [138]. Comparative statistical studies on miRNA carrier subclasses were 

determined, revealing distinct miRNA biotype composition within each cargoes [79]. By 

investigating potential cell-free mRNA carrier into each category (medium EVs, small 

EVs, exomeres, and early-, middle-, and late-eluted protein fractions) using size exclusion 

column, we discovered that 98.9% of mRNAs in the circulation are present in vesicle 

associated fraction. 

To our knowledge, this is the first study analyzing cf-mRNA contents within 

fractionated plasma, allowing for characterization into their respective extracellular vesicle 

or soluble plasma protein fractions. Although total of 168 isolated RNA from fractionated 

samples revealed uniform processing and input reads, we observed the significant 

difference in relative log expression between extracellular vesicles and soluble plasma 

proteins. Synthetic spike-in RNA is utilized in many studies as processing and 

normalization controls [295, 305]. Normalization using synthetic RNA spike-in control 

enabled accurate assessment of cell-free mRNA across fractions, revealing EVs are 
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primary carrier of cell-free mRNAs. Further characterization using RNase treatment with 

and without detergent to disrupt the membrane bound form revealed remarkable stability 

of circulating mRNA is attributed to extracellular vesicles. To assess different RNA 

carriers, we used immunoprecipitation on well-characterized non-vesicular carriers such as 

lipoproteins (APOA1) and the RNA binding protein (Ago2) as being enriched in protein 

fractions, revealing those were not the major types of circulating mRNA carriers.  

Previous reports have shown miRNA found in human plasma were primarily found 

in ribonucleoprotein complexes, revealing Argonaut2 complexes as major carrier of 

miRNAs [39]. Arroyo et al. confirmed Argonaut2 was observed in the plasma fraction 

coeluted with other miRNAs (miR-16, miR-92, and miR-122) [39]. However, some 

miRNA, let-7a, which might originate from cell types known to generate vesicles could 

also detected in EVs [39]. Other studies revealed almost all of the miRNAs in normal 

human plasma could be immunoprecipitated by Ago2 antibodies [138, 292]. In contrast, 

another study following similar immunoprecipitation protocol revealed presence of Ago2 

in EV and detected miRNA associated with EVs [286]. We further investigated this 

controversial result and revealed Ago2 is mainly detected in protein enriched fraction in 

the absence of lysis buffer meanwhile Ago2 can also be detected inside EV when EVs were 

lysed. Treatment of isolated EV samples with or without lysis buffer critically affected the 

abundance of Ago2 in human plasma. Therefore, associated study of exRNA carriers 

should be carried by taking this effect into consideration.  

It is not well known whether heterogeneous EV cargo composition significantly 

vary due to the disease progression. While numerous reports have shown functional 

delivery of miRNA by extracellular vesicles promotes tumorigenesis, invasion, and cell 
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proliferation in culture medium [306, 307], studies validating using clinical samples is 

limited. Importantly, the presence of oncogenes such KRAS has been shown to suppress 

Ago2 interactions with endosomes, resulting in different miRNA secretion into exosomes 

[63]. Selective sorting of different miRNA into vesicles in cancer cell lines supports our 

hypothesis that selective packaging of cancer differentiating genes can be found in EVs. 

Interestingly, we found majority of cancer upregulated genes were packaged within 

medium EV and small EV enriched fraction while cancer downregulated genes were 

packaged in protein-enriched fraction. Additional analysis was performed to investigate 

whether high-risk group can be distinguished from healthy and cancer. Our results 

highlighted 6 distinct patterns that may be altered due to disease progression. Collectively, 

our results suggest how ensembles of genes are either shared or distinctively dysregulated 

throughout disease progression.  

 Although larger clinical cohorts are necessary to investigate the clinical potential 

of this approach, gene set enrichment analysis revealed the identified gene sets enriched in 

each cluster were also overlapped with relevant clinical studies with larger cohorts [298-

303]. From chemical and genetic alteration, we found our gene sets enriched in EV 

fractions showed an overlap with RNA upregulated tumor tissue samples for non-small 

cell lung cancer and hepatocellular carcinoma [298-303]. Gene sets identified in EV 

fraction from multiple myeloma was associated with epithelial mesenchymal transition 

(EMT) associated with increased aggressiveness, invasion, and metastatic potential [304]. 

Overall, our gene sets identified in unique fractions revealed relevant biological 

significance potentially associated with aberrant tissue specific genes across cancer. 
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5.6  Conclusions  

In conclusion, comprehensive investigation of cell-free mRNA distribution across 

size-based fractionated plasma was performed from three different cancer types (lung 

cancer, liver cancer, and multiple myeloma) as well as high-risk group (liver cirrhosis and 

MGUS), highlighting the important roles of EVs as potential cell-free mRNA carriers. 

These results presented here will serve as valuable resource in understanding the 

remarkable stability of circulating mRNA attributed to extracellular vesicles as well as how 

dysregulated RNA packaging into different sizes of EVs were found in human plasma.  
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Chapter five is a draft of the manuscript entitled: “Selective packaging of 

extracellular vesicles RNA association with cancer progression”, Hyun Ji Kim, Breeshey 

Roskams-Hieter, Matthew Rames, Josephine Briand, Josiah Wagner, Aaron Doe, and Thuy 

T. M. Ngo, In preparation (2021). The author of this dissertation is the first author of this 

manuscript. 
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Supplementary Figure S2.1 | Flow cytometry experimental assay controls 

Representative flow cytometry dot plot of antibody with (A) unstained S1 and S2 plasma, 

(B) Alexa Fluor 647 conjugated CD9 or Alexa Fluor 488 conjugated CD63 with buffer 

alone, and (C) Alexa Fluor 647 conjugated or Alexa Fluor 488 conjugated isotypes in S1 

and S2 plasma. (D) Scatter plots of CD9+ and CD63+ EVs dilution controls. 
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Supplementary Figure S2.2 | Freeze thaw effect and plasma EV detergent treatment 

Representative dot plots EVs from S1 and S2 plasma, respective freeze-thaw processing 

(S1FR and S2FR), and detergent controls on (A) CD9+ EVs and (B) CD63+ EVs. S1FR 

and S2FR were treated with detergent (2% SDS) prior to staining. 
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Supplementary Figure S3.1 | Total number of droplets accepted by the QX200 

ddPCR droplet reader for nucleic acid quantitation.  

Number of droplets for each draw are shown for cfDNA ddPCR analysis.  Technical 

replicates for each sample were averaged.  
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Supplementary Figure S3.2 | Negative controls for ddPCR measurement of cfDNA.   

Data points are from the two independent cfDNA extractions performed in this work. 

Negative controls were measured using ddPCR at the same time as the plasma samples 
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Supplementary Figure S3.3 | Nonparametric spearman correlations 

Nonparametric Spearman correlation coefficients (rs) calculated between cfDNA 

extraction 1 and extraction 2 using Qubit measurements (A) and between Qubit and ddPCR 

(TERT and NAGK averaged) measurements of cfDNA (B).  The correlations for both 

comparisons were statistically significant. 
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Supplementary Figure S3.4 | Total number of droplets accepted by the QX200 

ddPCR droplet reader for nucleic acid quantitation.  

Number of droplets for each draw are shown for cfRNA ddPCR analysis.  Technical 

replicates for each sample were averaged.  
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Supplementary Figure S3.5 | Negative controls for ddPCR measurement of cDNA 

derived from cfRNA.  

Negative controls were measured using ddPCR at the same time as the plasma samples. 
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Supplementary Figure S3.6 | Flow cytometry set-up and gating for detection of 

plasma EVs.   

(A) Calibration of SSC and fluorescence signal using polystyrene beads as a relative size 

reference shown in SSC/FL plot. Side scatter (SSC) intensity was set at 104 aligned to 200-

nm bead reference. (B) Positioning of calibration beads with respect to gating areas for 

plasma EVs in SSC/FL plot. (C) Representative plasma EVs detected by CD41, CD63, 

CD9, and CD81 fluorescence for one blood draw of patient HD4. 
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Supplementary Figure S3.7 | Flow cytometry assay controls for plasma EV 

measurement.   

Dot plot of SSC/FL with respective assay controls: (A) antibody mix only, (B) unstained 

plasma EVs, (C) CD9 stained plasma EVs, (D) CD63 stained plasma EVs, (E) CD81 

stained plasma EVs, (F) CD41 stained plasma EVs, and (G) plasma EVs stained with 

antibody mix.  
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HD1 HD2 HD3 HD4 Overall 

Number of values 10 10 10 10 4 

Minimuma 1.28 2.39 2.32 1.81 1.82 

Mediana 1.88 3.46 3.56 2.47 2.89 

Maximuma 2.49 4.13 12.56 2.86 4.61 

Meana 1.82 3.31 4.61 2.47 3.05 

Std. Deviationa 0.34 0.64 3.10 0.33 1.20 

Lower 95% CI of meana 1.58 2.85 2.39 2.23 1.14 

Upper 95% CI of meana 2.07 3.76 6.82 2.71 4.96 
      

Post-hoc pairwise comparison P-value Adjusted P Summaryb 

HD1 - HD2 0.005 0.030 * 

HD1 - HD3 0.020 0.030 * 

HD1 - HD4 0.016 0.030 * 

HD2 - HD3 0.142 0.142 ns 

HD2 - HD4 0.016 0.030 * 

HD3 - HD4 0.040 0.049 * 

ang per ml plasma 

b *, P < 0.05; ns, not significant. 

 

Supplementary Table S3.1 | Total plasma cfDNA concentration summaries and 

statistics as measured by Qubit. 
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HD1 HD2 HD3 HD4 Overall 

Number of values 10 10 10 10 4 

Minimuma 329.5 541.8 476.9 420.5 461.2 

Mediana 452.2 878.9 779.8 612.5 722 

Maximuma 610.3 1018 3282 846.4 1129 

Meana 461.2 815.5 1129 628.5 758.6 

Std. Deviationa 90.9 150.3 870.2 139.2 286.2 

Lower 95% CI of meana 396.2 708 506.5 528.9 303.1 

Upper 95% CI of meana 526.3 923 1752 728.1 1214 

 

Post-hoc pairwise comparison P-value Adjusted P Summaryb 

HD1 - HD2 0.006 0.035 * 

HD1 - HD3 0.027 0.048 * 

HD1 - HD4 0.032 0.048 * 

HD2 - HD3 0.176 0.176 ns 

HD2 - HD4 0.032 0.048 * 

HD3 - HD4 0.060 0.073 ns 

acopies per ml plasma 

b *, P < 0.05; ns, not significant. 

 

Supplementary Table S3.2 | Plasma TERT concentration summaries and statistics as 

measured by ddPCR. 

 

 

 

 



154 

 

 

HD1 HD2 HD3 HD4 Overall 

Number of values 10 10 10 10 4 

Minimuma 242.1 569.7 430.3 389.7 407 

Mediana 409.1 786.6 779.5 603.3 692 

Maximuma 619.4 997.1 3037 800.5 1103 

Meana 407 798.3 1103 585.6 723.5 

Std. Deviationa 106.6 141.4 771.9 106.2 299.3 

Lower 95% CI of meana 330.7 697.1 551 509.6 247.2 

Upper 95% CI of meana 483.2 899.5 1655 661.6 1200 

 

Post-hoc pairwise comparison P-value Adjusted P Summaryb 

HD1 - HD2 0.005 0.029 * 

HD1 - HD3 0.023 0.035 * 

HD1 - HD4 0.019 0.035 * 

HD2 - HD3 0.177 0.177 ns 

HD2 - HD4 0.015 0.035 * 

HD3 - HD4 0.051 0.061 ns 

acopies per ml plasma 

b *, P < 0.05; ns, not significant. 

 

Supplementary Table S3.3 | Plasma NAGK concentration summaries and statistics 

as measured by ddPCR. 

 

 

 

 



155 

 

 

HD1 HD2 HD3 HD4 Overall 

Number of values 10 10 10 10 4 

Minimuma 1.036 0.966 0.805 0.777 1.439 

Mediana 1.428 1.638 1.369 1.663 1.558 

Maximuma 2.576 2.072 2.667 2.072 1.575 

Meana 1.57 1.546 1.439 1.575 1.533 

Std. Deviationa 0.492 0.3864 0.511 0.406 0.0636 

Lower 95% CI of meana 1.218 1.27 1.073 1.284 1.431 

Upper 95% CI of meana 1.922 1.823 1.804 1.866 1.634 

ang per ml plasma 

 

Supplementary Table S3.4 | Total plasma cfRNA concentration summaries and 

statistics as measured by Bioanalyzer. 
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HD1 HD2 HD3 HD4 Overall 

Number of values 10 10 10 10 4 

Minimuma 4,739 7,230 12,188 7,812 18,632 

Mediana 19,413 33,055 20,199 27,020 25,652 

Maximuma 28,658 44,420 39,692 64,888 30,153 

Meana 18,632 29,989 21,314 30,153 25,022 

Std. Deviationa 7,069 12,483 9,323 15,813 5,932 

Lower 95% CI of meana 13,575 21,059 14,645 18,841 15,582 

Upper 95% CI of meana 23,689 38,918 27,983 41,466 34,462 

acopies per ml plasma 

 

Supplementary Table S3.5 | Plasma ACTB cDNA concentration summaries and 

statistics as measured by ddPCR. 
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HD1 HD2 HD3 HD4 Overall 

Number of values 10 10 10 10 4 

Minimuma 786 1,498 3,040 1,284 4,532 

Mediana 5,821 9,666 4,353 5,479 5,478 

Maximuma 7,656 11,525 7,582 8,839 8,444 

Meana 5,597 8,444 4,532 5,359 5,983 

Std. Deviationa 2,151 3,372 1,484 2,031 1,703 

Lower 95% CI of meana 4,059 6,032 3,471 3,907 3,273 

Upper 95% CI of meana 7,136 10,856 5,594 6,812 8,693 

 

Post-hoc pairwise comparison P-value Adjusted P Summaryb 

HD1 - HD2 0.084 0.169 ns 

HD1 - HD3 0.169 0.254 ns 

HD1 - HD4 0.695 0.695 ns 

HD2 - HD3 0.039 0.169 ns 

HD2 - HD4 0.067 0.169 ns 

HD3 - HD4 0.245 0.294 ns 

acopies per ml plasma 

bns, not significant. 

 

Supplementary Table S3.6 | Plasma GAPDH cDNA concentration summaries and 

statistics as measured by ddPCR. 
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HD1 HD2 HD3 HD4 Overall 

Number of values 10 10 10 10 4 

Minimuma 94 189 210 382.5 153.5 

Mediana 132.5 371.5 259 411.5 327.6 

Maximuma 266 489 372 481 420.3 

Meana 153.5 376 279.2 420.3 307.3 

Std. Deviationa 55.06 89 46.99 36.26 118.2 

Lower 95% CI of meana 114.1 312.3 245.6 394.3 119.1 

Upper 95% CI of meana 192.8 439.7 312.8 446.2 495.4 

 

Post-hoc pairwise comparison P-value Adjusted P Summaryb 

HD1 - HD2 0.004 0.012 * 

HD1 - HD3 0.008 0.012 * 

HD1 - HD4 0.003 0.012 * 

HD2 - HD3 0.026 0.032 * 

HD2 - HD4 0.121 0.121 ns 

HD3 - HD4 0.007 0.012 * 

acounts 

b *, P < 0.05; ns, not significant. 

 

Supplementary Table S3.7 | Plasma CD81+ EV count summaries and statistics as 

measured by flow cytometry. 
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HD1 HD2 HD3 HD4 Overall 

Number of values 10 10 10 10 4 

Minimuma 302.5 205 72 3921 177.1 

Mediana 572.8 397 112 5004 493.6 

Maximuma 1043 570 742 5739 4843 

Meana 592.5 394.7 177.1 4843 1502 

Std. Deviationa 198.2 114 201.1 577.5 2234 

Lower 95% CI of meana 450.7 313.1 33.26 4429 -2053 

Upper 95% CI of meana 734.2 476.3 320.9 5256 5056 

 

Post-hoc pairwise comparison P-value Adjusted P Summaryb 

HD1 - HD2 0.034 0.034 * 

HD1 - HD3 0.010 0.014 * 

HD1 - HD4 0.003 0.006 ** 

HD2 - HD3 0.033 0.034 * 

HD2 - HD4 0.003 0.006 ** 

HD3 - HD4 0.003 0.006 ** 

acounts 

b *, P < 0.05; **, P < 0.01; ns, not significant. 

 

Supplementary Table S3.8 | Plasma CD63+ EV count summaries and statistics as 

measured by flow cytometry. 

 

 

 

 



160 

 

 

HD1 HD2 HD3 HD4 Overall 

Number of values 10 10 10 10 4 

Minimuma 2340 2822 678 3837 2620 

Mediana 3200 3177 1485 5082 3183 

Maximuma 3619 3766 14028 6782 5075 

Meana 3140 3226 2620 5075 3515 

Std. Deviationa 353.9 273.5 4038 772.3 1074 

Lower 95% CI of meana 2886 3030 -268.1 4523 1807 

Upper 95% CI of meana 3393 3421 5509 5628 5224 

acounts 

 

Supplementary Table S3.9 | Plasma CD41+ EV count summaries and statistics as 

measured by flow cytometry. 
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HD1 HD2 HD3 HD4 Overall 

Number of values 10 10 10 10 4 

Minimuma 1022 363 512 439.5 487.3 

Mediana 1471 469.5 957 818 1143 

Maximuma 2445 642 5340 1880 1485 

Meana 1485 487.3 1362 924.2 1065 

Std. Deviationa 460.1 103.1 1429 437.8 453.9 

Lower 95% CI of meana 1156 413.5 339.5 611 342.3 

Upper 95% CI of meana 1814 561.1 2384 1237 1787 

acounts 

 

Supplementary Table S3.10 | Plasma CD9+ EV count summaries and statistics as 

measured by flow cytometry. 
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Supplementary Table S4.1 | Summary of input reads, unique reads, exon fraction, 

intron fraction, intergenic fraction, and protein coding fraction. 

  

PP_ID RNA Extraction Library Preparation Total Number of Reads Number of Unique Reads Exon Fraction Intron Fraction Intergenic Fraction Protein Coding Fraction

PP002 batch 1 batch 1 33192487 9477957 0.93 0.05 0.02 0.81

PP003 batch 1 batch 1 29467052 4214981 0.86 0.11 0.03 0.82

PP004 batch 1 batch 1 29574675 3825380 0.82 0.13 0.04 0.85

PP005 batch 1 batch 1 33768635 4088109 0.86 0.1 0.03 0.83

PP007 batch 1 batch 1 31698177 1171491 0.84 0.13 0.03 0.89

PP008 batch 1 batch 1 30079806 10677465 0.74 0.19 0.07 0.74

PP010 batch 2 batch 1 38503355 3863232 0.76 0.18 0.06 0.81

PP011 batch 2 batch 1 31034252 4395327 0.86 0.11 0.04 0.84

PP012 batch 2 batch 1 35799309 4766786 0.92 0.07 0.02 0.83

PP014 batch 2 batch 1 27630599 3280679 0.85 0.11 0.04 0.86

PP015 batch 2 batch 1 30093097 6852599 0.84 0.12 0.04 0.87

PP016 batch 2 batch 1 29890017 6853766 0.86 0.1 0.04 0.81

PP017 batch 3 batch 1 34646834 6092611 0.69 0.23 0.08 0.77

PP018 batch 3 batch 1 35833774 3469637 0.59 0.3 0.1 0.81

PP019 batch 3 batch 1 36506970 4711445 0.72 0.21 0.07 0.76

PP020 batch 3 batch 1 34201040 5321020 0.8 0.15 0.05 0.76

PP026 batch 4 batch 1 40104631 3473624 0.83 0.13 0.05 0.84

PP027 batch 4 batch 1 34476121 17271358 0.85 0.11 0.04 0.74

PP028 batch 4 batch 1 33168567 10433701 0.78 0.17 0.06 0.77

PP029 batch 4 batch 1 30273014 3882069 0.9 0.08 0.02 0.84

PP031 batch 4 batch 1 35139077 9791729 0.7 0.25 0.06 0.76

PP032 batch 4 batch 1 31904022 4016176 0.87 0.1 0.04 0.83

PP034 batch 4 batch 2 36949075 2421501 0.8 0.16 0.05 0.87

PP035 batch 4 batch 2 30996985 13700958 0.86 0.11 0.04 0.78

PP036 batch 4 batch 2 36919622 7006298 0.71 0.22 0.07 0.8

PP038 batch 4 batch 2 33199864 2412155 0.84 0.12 0.04 0.85

PP039 batch 4 batch 2 35675985 5024440 0.77 0.18 0.06 0.83

PP041 batch 5 batch 2 35773928 6240377 0.83 0.13 0.04 0.82

PP042 batch 5 batch 2 35650935 3999501 0.86 0.11 0.03 0.87

PP043 batch 5 batch 2 31753026 7231832 0.71 0.22 0.07 0.81

PP046 batch 5 batch 2 30298636 4380430 0.84 0.13 0.04 0.84

PP047 batch 5 batch 2 31468616 13876029 0.93 0.05 0.02 0.81

PP048 batch 5 batch 2 32642636 8534075 0.82 0.14 0.05 0.81

PP049 batch 6 batch 2 37084139 9845748 0.88 0.08 0.03 0.89

PP050 batch 6 batch 2 40532989 5076857 0.87 0.1 0.03 0.87

PP052 batch 6 batch 2 34404394 6241844 0.9 0.08 0.02 0.87

PP055 batch 6 batch 2 34851176 15323436 0.91 0.07 0.02 0.83

PP056 batch 6 batch 2 41922873 4579812 0.85 0.11 0.03 0.86

PP058 batch 7 batch 2 36866771 5758608 0.9 0.08 0.02 0.85

PP060 batch 7 batch 2 37126236 4991733 0.75 0.19 0.06 0.82

PP061 batch 7 batch 2 37509562 13009859 0.78 0.18 0.03 0.78

PP062 batch 7 batch 2 36883791 21874141 0.9 0.08 0.03 0.83

PP063 batch 7 batch 2 43184305 5024575 0.75 0.19 0.06 0.88

PP067 batch 7 batch 3 38201238 4939376 0.7 0.23 0.07 0.87

PP073 batch 8 batch 3 43566479 2482378 0.8 0.16 0.04 0.87

PP074 batch 8 batch 3 34208260 5631056 0.92 0.06 0.02 0.85

PP075 batch 8 batch 3 31957614 5211761 0.84 0.12 0.04 0.84

PP077 batch 8 batch 3 38776982 4057998 0.52 0.36 0.12 0.81

PP078 batch 8 batch 3 36596920 14457187 0.89 0.08 0.03 0.78

PP084 batch 9 batch 3 52307262 10415932 0.43 0.42 0.15 0.71

PP087 batch 9 batch 3 34570617 2699261 0.8 0.15 0.05 0.84

PP091 batch 10 batch 3 38121200 3181309 0.82 0.14 0.04 0.83

PP097 batch 11 batch 4 27998299 3867357 0.81 0.15 0.05 0.84

PP098 batch 11 batch 4 27748334 14243418 0.68 0.24 0.08 0.75

PP099 batch 11 batch 4 28514250 6664874 0.77 0.18 0.06 0.8

PP101 batch 11 batch 4 27393529 15434647 0.53 0.35 0.12 0.72

PP102 batch 11 batch 4 28850027 7551982 0.89 0.09 0.03 0.83

PP103 batch 11 batch 4 27808286 14620805 0.45 0.4 0.15 0.65

PP105 batch 11 batch 4 30350083 8031052 0.83 0.13 0.04 0.82

PP107 batch 12 batch 4 28853047 9469998 0.75 0.19 0.06 0.79

PP109 batch 12 batch 4 28245277 14323721 0.71 0.21 0.08 0.74

PP111 batch 12 batch 4 33349408 7413209 0.77 0.17 0.06 0.83

PP112 batch 12 batch 4 30195039 8694949 0.83 0.13 0.04 0.79

PP114 batch 12 batch 4 33053778 2478571 0.73 0.2 0.06 0.86

PP115 batch 12 batch 4 32223434 1498604 0.78 0.17 0.05 0.88

PP116 batch 12 batch 4 31973526 4755722 0.87 0.11 0.03 0.85
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Supplementary Figure S4.1 | Distribution of sequencing reads across all 71 samples. 
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Supplementary Figure S4.2 | Distribution of exon/intro and intergenic fractions 

across all 71 samples. 
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Supplementary Figure S4.3 | Coverage of the transcriptome across all 71 samples 

 

 

 

 

 

 

 

 

 

 

 

 



166 

 

  

Supplementary Figure S4.4 | Volcano plots from cfRNA pairwise cohorts 

Volcano plots between false discovery rate and fold changes for all genes of pairwise 

comparison between healthy donors (HD) and lung cancer (LG, panel A), liver cancer 

(LCx, panel B) and multiple myeloma (MM, panel C) analyzed by DESeq2. 
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Supplementary Figure S4.5 | Differential gene expression permutation tests 

Histograms of number of significant genes differentiating two groups from random 

permutation between samples across healthy donors and lung cancer (A), liver cancer (B) 

or multiple myeloma (C). Differential expression analysis was performed using DESeq2 

with Wald test and padj value cut off at 0.01. 
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Supplementary Figure S4.6 | cfRNA Gene Ontology 

Gene Ontology analysis show the enrichment of biological processes for significant gene 

panels identified by DESeq2 analysis for pairwise comparison between healthy and lung 

cancer (A), liver cancer (B) and multiple myeloma (C). 
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Supplementary Figure S5.1 | Description of input reads, unique reads, exon, intron 

and intergenic fraction 

(A) Table of description of global reads, unique reads, exon fraction, intron fraction, and 

intergenic fraction across 168 sequencing sample. The average, minimum and maximum 

values are shown from RNA-seq quality control package (RSeQc). (B) Bar graph of 

number of input reads across 168 sequencing sample colored by conditions. (C) The violin 

plot of unique reads percentage grouped by each condition across fractions. 
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Supplementary Figure S5.2 | Distribution of exon, intron, and intergenic fractions 

across fractions  

Violin plots across plasma fractions (FR14, FR58, FR912, FR1619, FR2326, and FR3033) 

grouped by each conditions showing the respective fraction of (A) Exons, (B) Introns, (C) 

Intergenic reads.  
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Supplementary Figure S5.3 | Summary of proportion of transcript types across all 

samples 

(A) Table of biotype categories including protein coding, transcribed unprocessed 

pseudogene, processed transcript, processed pseudogene, lincRNA, antisense, and others. 

The average, minimum and maximum values are shown. (B) A stack column representing 

fraction of each biotype across 168 samples. 
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Supplementary Figure S5.4 | Transcriptomic analysis of EVs and non-vesicles per 

condition 

Heatmap expression of all genes across all fractions from (A) healthy sample, (B) liver 

cirrhosis, (C) monoclonal gammopathy of undetermined significance, (D) lung cancer, (E) 

liver cancer, and (F) multiple myeloma. HD: healthy, LCir: liver cirrhosis, MG: 

monoclonal gammopathy of undetermined significance, LG: lung cancer, LV: liver cancer, 

and MM: multiple myeloma. 
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Supplementary Figure S5.5 | Lung cancer associated genes packaged in protein 

enriched fraction 

(A) Heatmap of log counts of lung cancer differentially expressed genes within individual 

fractions enriched in early-, peak-, and late-eluting proteins were compared between lung 

cancer and healthy. Differentially expressed genes which showed statistical significance 

(student’s t test, p-value < 0.05) were used. (B) Leave-one-out cross validation to test linear 

discriminant analysis algorithm accuracy for classification using DE gene sets identified 

from early-, peak-, and late-eluting fraction up-regulated in lung cancer compared to 

healthy. 
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Supplementary Figure S5.6 | Liver cancer associated genes across fractions in 

human plasma  

(A) Heatmap of log counts of liver cancer differentially expressed genes within individual 

fractions between each cancer type and healthy. Differentially expressed genes which 

showed statistical significance (student’s t test, p-value < 0.05) were used. (B) Heatmap of 

gene expression in liver cancer relative to healthy across fractions. A total of 270 

significantly differentially expressed genes were used. Clusters were assigned to genes 

corresponding to their enriched fraction based on log 2 fold changes (FR14, FR58, FR912, 

FR1619, FR2326, FR3033 as clusters 1-6 respectively).  
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Supplementary Figure S5.7 | Multiple myeloma associated genes across fractions in 

human plasma 

(A) Heatmap of log counts of lung cancer differentially expressed genes within individual 

fractions between each multiple myeloma and healthy. Differentially expressed genes 

which showed statistical significance (student’s t test, p-value < 0.05) were used. (B) 

Heatmap of gene expression in multiple myeloma relative to healthy across fractions. A 

total of 381 significantly differentially expressed genes were used. Clusters were assigned 

to genes corresponding to their enriched fraction based on log 2 fold changes (FR14, FR58, 

FR912, FR1619, FR2326, FR3033 as clusters 1-6 respectively).  
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Supplementary Figure S5.8 | Intersection of cancer distinguishing genes across 

plasma fractions 

Upset plot for cancer distinguishing genes identified in individual fraction for (A) lung 

cancer, (B) liver cancer, and (C) multiple myeloma 
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Supplementary Figure S5.9 | Gene set enrichment for cancer distinguishing genes  

Gene set enrichment analysis (GSEA) was performed on cancer distinguishing genes 

enriched in specific fraction. GSEA was performed from Molecular signatures database 

(MSigDB, https://www.broadinstitute.org/gsea/msigdb/) using C2:CGP chemical and 

genetic perturbation for (A) liver cancer genes enriched in fraction 1-4 (FR14), (B) liver 

cancer genes enriched in fraction 5-8 (FR58), (C) lung cancer genes enriched in FR14, and 

(D) multiple myeloma genes enriched in FR14. 
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Supplementary Figure S5.10 | Gene set enrichment analysis associated with healthy, 

liver cirrhosis, and liver cancer comparisons 

Gene set enrichment analysis (GSEA) was performed on specific cfRNA signatures 

associated with liver cirrhosis and liver cancer. GSEA was performed from Molecular 

signatures database (MSigDB, https://www.broadinstitute.org/gsea/msigdb/) using C5:BP 

derived from biological process ontology for (A) healthy upregulated genes, (B) liver 

cancer upregulated genes, (C) healthy and liver cirrhosis upregulated genes, and (D) liver 

cirrhosis and liver cancer upregulated genes. 
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Supplementary Figure S5.11 | Gene ontology analysis associated with healthy, 

MGUS, and multiple myeloma comparisons 

Gene set enrichment analysis (GSEA) was performed on specific cfRNA signatures 

associated with monoclonal gammopathy of undetermined significance (MGUS) and 

multiple myeloma. GSEA was performed from Molecular signatures database (MSigDB, 

https://www.broadinstitute.org/gsea/msigdb/) using C5:BP derived from biological 

process ontology for (A) healthy upregulated genes, (B) multiple myeloma upregulated 

genes, (C) healthy and MGUS upregulated genes, and (D) MGUS and multiple myeloma 

upregulated genes. 
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