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Abstract 

 In changing environments, adaptive decision-making requires balancing when to choose 

familiar, known options with when to explore new, unknown options. This balancing act, known 

as the explore-exploit tradeoff, is critical to how we make choices that can maximize reward. 

Specifically, exploration supports optimal decision-making by reducing the uncertainty 

associated with previously unknown choices. Exploration is often seen as phasic, where the 

decision to explore depends on peaks in uncertainty that signal when the benefit of exploring is 

greatest. However, exploration can also be tonic, occurring more regularly in time. While tonic 

exploration has been demonstrated in settings where uncertainty is limited to discrete, 

unexpected rule changes, it is unclear how tonic exploration relates to expected uncertainty from 

stochastic reward outcomes. Here, we use a Bayesian modeling approach to show that 

spontaneous errors (i.e. lapses) in the reversal phase of a two-armed bandit reversal learning task 

reflect a form of tonic exploration. This tonic exploration coexists with phasic exploration in the 

task and does not scale with environmental uncertainty. Further, we find that tonic exploration is 

directed rather than random, as lapses can be accurately predicted by Bayesian estimates of 

unpredictability and choice consistency. Our results demonstrate how tonic exploration 

complements phasic exploration in changing environments as a directed strategy to reduce 

uncertainty and maximize reward. 
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Introduction 

To make adaptive choices in complex environments, decision-makers must weigh and 

evaluate what they know about their available options. One important consideration for decision-

making is the value of a given option, or the mean expected outcome that will result from 

selecting it. Some options, which have been chosen frequently, have a rich history of outcome 

information that inform the estimated value of choosing that option (Sutton & Barto, 1998). For 

other options, which have not been chosen as frequently, a smaller number of outcomes results in 

a less certain estimate of the mean or expected value. This leads to a fundamental dilemma for 

decision-makers, known as the explore-exploit dilemma: is it better to choose a familiar option 

whose reward value is known, or to choose an unfamiliar option that is less known but 

potentially more valuable (Addicott et al., 2017; Averbeck, 2015)? To choose the familiar option 

– to exploit – maximizes rewards in the short-term, but it is relatively uninformative as nothing is 

learned about other potentially rewarding options. To choose the unfamiliar option – to explore – 

reduces uncertainty and can maximize reward in the long-term, but it may be risky and 

unsuccessful (Barack & Gold, 2016).  

Understanding how humans balance exploration and exploitation also has implications 

for cases of maladaptive or pathological decision-making. For example, the compulsive habitual 

behavior seen in many substance use disorders (Everitt & Robbins, 2016) can be characterized in 

the framework of exploration and exploitation. In both alcohol use disorder and chronic cocaine 

use, substance use has been shown to lead to reduced exploratory behaviors as well as reduced 

feedback sensitivity (Morris et al., 2016; Zhukovsky et al., 2019), resulting in a tendency to over-

exploit (i.e. perseverate) despite negative outcomes. In the field of psychiatry, while there is little 

evidence for a causal link between maladaptive exploration and psychiatric disease, individual 
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tendencies to explore or exploit can serve as an additional dimensional construct for the 

classification of mental disorders (Addicott et al., 2017; Scholl & Klein-Flugge, 2018). For 

example, demonstrating that uncertainty-driven exploration is reduced in people diagnosed with 

schizophrenia (Strauss et al., 2011; Waltz et al., 2020) has provided new avenues for exploring 

the potential neural mechanisms that are altered in the disease. Thus, understanding the 

mechanisms that govern exploratory behavior may prove useful in treating addiction and in 

understanding psychiatric disease.  

Despite a long history of research in many model systems (Krebs et al., 1978; Sims et al., 

2008; Thatcher et al., 2019) and in fields from behavioral ecology to mathematics to psychiatry, 

there is no known optimal policy for trading off exploration and exploitation (Averbeck, 2015; 

Cohen et al., 2007; Gittins, 1979). From a computational perspective, this is because making an 

optimal decision (i.e. one that will maximize future reward in the long-term) requires a great deal 

of calculation. In theory, the best policy for exploring multiple options is to calculate the average 

value of each option for the current choice, the next choice, and so on over all possible futures 

even before the current choice is made (Feng et al., 2021). This calculation of future values, 

however, is incredibly taxing and requires a great deal of cognitive resources. Therefore, work 

examining the neural and behavioral bases of exploration focus on identifying simpler, more 

feasible strategies the brain implements instead of this optimal, but less tractable one (Averbeck, 

2015; Daw et al., 2006, Sutton & Barto, 1998).    

There are many decision-making paradigms used to probe the strategies that underlie 

explore-exploit decisions (Constantino and Daw, 2015; Costa et al., 2014; Glass et al., 2011; 

Wilson et al., 2014). In order to assess whether decisions are exploratory or exploitative, subjects 

must be presented with multiple options to choose from. Typically, these options have a 
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predetermined and unknown (to the subject) reward structure which requires trial-by-trial 

learning from the subject to estimate the current and future reward values (Sutton & Barto, 

1998). Importantly, the more a given option is chosen, the less uncertain subjects are about its 

current and future value (Wilson et al., 2014). When selecting between the multiple available 

options, then, there are two ways to approach maximizing long-term reward in the presence of 

uncertainty: subjects can use their current value estimates to choose the most rewarding option 

(and risk missing out on a better one) or they can further reduce uncertainty by choosing a less 

known option (but risk not being rewarded for it).  

One very common example of a task used to study exploration is the n-armed bandit. 

Often compared to playing on multiple (n) adjacent slot machines, a multi-armed bandit task 

presents subjects with multiple possible actions that each have their own expected reward value 

(Sutton & Barto, 1998). Subjects in a bandit task are not told the values of choosing each option, 

rather they must form estimates by repeatedly sampling different options. Imagine, for example, 

a subject who is presented with a row of four slot machines and has only one hour to play them. 

In order to maximize reward during that hour, the subject must decide which machines to play, 

how many times to play each machine, and when to bail on a machine that seems unlucky. In 

these ways, the bandit task forces subjects to balance exploration and exploitation to get the most 

reward in the long term (Sutton & Barto, 1998). As with other paradigms probing explore-exploit 

strategies, the bandit task leverages uncertainty to drive exploration. 

Uncertainty in these paradigms can be subdivided into two different types (Bland & 

Schaefer, 2012; Soltani & Izquierdo, 2019; Yu & Dayan, 2005). The first, expected uncertainty, 

is related to the variability of choice outcomes based on our expectations of what could occur 

(Cohen et al., 2007b; Fiorillo et al., 2003; Paulus et al., 2004; Polezzi et al., 2008; Volz et al., 
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2003). Expected uncertainty can be thought of as the known risk of not getting rewarded, 

reflecting some unavoidable but known variability in an environment (Soltani & Izquierdo, 

2019; Yu and Dayan, 2005). Unexpected uncertainty, on the other hand, is related to the 

variability of the environment or rules themselves (Behrens et al., 2007; Courville et al., 2006; 

Doya, 2008; Krugel et al., 2009; Nassar et al., 2010; Payzan-LeNestour & Bossaerts, 2011; Piray 

& Daw, 2020a; Piray & Daw, 2020b; Rushworth & Behrens, 2008). Importantly, unexpected 

uncertainty reflects a violation of the subject’s estimate of expected uncertainty in their 

environment (Soltani & Izquierdo, 2019; Yu and Dayan, 2005). 

Both of these types of uncertainty are fundamental in tipping the balance between 

exploration and exploitation (Badre et al., 2012; Gershman, 2018; Schulz & Gershman, 2019). A 

powerful method for understanding how this happens is to generate mathematical models that 

quantify uncertainty and then see how well those models are able to describe behavior. For 

example, in pioneering work by Daw and colleagues (2006), experimenters proposed three 

separate mathematical models that might explain how subjects guide their choices to explore or 

exploit in an unstable environment. In the first model, known as an ‘epsilon-greedy’ model 

(Sutton and Barto, 1998), decision-makers keep track of the value of each option and usually 

exploit by choosing the one with the highest value, but at some fixed rate (specified by an 

‘epsilon’ value) they explore and randomly select another option. In the second model, known as 

the ‘softmax’ model, decision-makers choose each option at a rate proportional to its expected 

value (also known as probability matching), and thus are more likely to choose the most 

rewarding option. However, this tendency to exploit is ‘softened’ by an additional parameter that 

accounts for different sensitivities to the contrast in values between options; when this parameter, 

often referred to as the temperature, is low, subjects’ choices are highly exploitative and 
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constrained by relative value. In contrast, when the temperature is high, decision-makers respond 

more randomly with respect to relative value, leading them to explore more. Lastly, the third 

model was identical to the second with the exception of one added parameter, a so-called 

‘uncertainty-bonus’ that increases the probability of choosing options whose outcomes are less 

certain because they have not been selected as often.  

After human participants performed a four-armed bandit task, Daw et al. (2006) 

compared their choice behavior to predictions from each of the three models and found that their 

behavior was best fit by the softmax decision model. By examining how well theoretical or 

mathematical solutions to the explore-exploit dilemma mapped onto observed human behavior, 

Daw et al. (2006) provided critical insight into how humans are solving this problem. Further, 

the mathematical models used provide concrete parameter estimates that can facilitate the 

identification of brain regions helping to solve the explore-exploit dilemma. For example, in the 

same work by Daw and colleagues (2006), they showed that activity in the ventromedial 

prefrontal cortex (vmPFC) scaled positively with the model’s estimated expected value for a 

given choice, where activity in the dorsolateral prefrontal cortex (dlPFC) scaled negatively with 

the same parameter. Overall, these findings demonstrate the utility of mathematical models in 

characterizing the computations and mechanisms that allow humans and animals to navigate the 

explore-exploit dilemma.  

 Most computational models attempting to describe a solution to the explore-exploit 

dilemma quantify uncertainty in one of two ways. First, some models introduce an explicit bias 

towards information that is often expressed as an added ‘bonus’ to the value of novel or 

uncertain options (Gershman, 2018). In this way, so-called directed exploration targets high-

uncertainty options to gather information and ensure maximum reward in the long-term 
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(Gershman, 2018). The second class of models, known as random exploration algorithms, 

introduce random noise into choice behavior (Thompson, 1933; Wilson et al., 2014). Typically, 

this noise in behavior is set to scale with uncertainty in the environment. Therefore, where 

directed exploration is sensitive to the relative uncertainty of certain options, random exploration 

is sensitive to the total uncertainty of the environment (Gershman, 2018). 

Humans have been shown to employ both random and directed exploration within the 

same task structure, as was first demonstrated by Wilson et al. (2014). In their study, Wilson and 

colleagues had participants play a series of games in which they made choices between two 

options with different probabilistic rewards. By accounting for the correlation between 

information (i.e. how much is known about an option based on how often it is sampled) and 

reward, investigators were able to parse both directed and random exploration. Where directed 

exploration was expressed as a bias towards information seeking over reward, random 

exploration was expressed as randomness in choice behavior (Wilson et al., 2014). More 

recently, computational modeling has supported that hybrids of random and directed algorithms 

for exploration most efficiently solve the explore-exploit dilemma (Gershman et al., 2018).  

Under conditions of uncertainty, decision makers must decide not only if and how it is 

best to explore, but also when it is best to explore. In many instances, deciding when to explore 

is obvious when external changes in choice or reward contingencies introduce peaks in 

uncertainty about the current strategy. These peaks, in turn, signal that exploration would be 

beneficial. However, phasic exploration requires calculating the potential benefits of exploring 

each time uncertainty peaks, and thus can be a difficult or costly strategy to implement when 

there are additional sources of uncertainty (e.g. noisy stimulus-reward associations) that hinder 

our ability to correctly infer when exploration is warranted. In such instances it may be more 
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advantageous for us to explore more regularly, consistently switching back and forth between 

decisions to explore or exploit. Tonic exploration, therefore, is more distributed throughout time 

but, like phasic exploration, is a form of directed exploration that remains focused on gathering 

information to reduce uncertainty and maximize reward. 

Though it is largely assumed that directed exploration is phasic, driven by discrete 

periods of expected or unexpected uncertainty, there is evidence that tonic exploration is also a 

useful strategy when navigating changing environments. In a recent study by Ebitz et al. (2019), 

experimenters sought to identify a behavioral metric for tonic exploration. To do so, they 

analyzed the behavior of animals during an adapted version of the Conceptual Set-Shifting Task 

(CSST) to study prefrontal cognitive function in non-human primates (Moore et al., 2005). In the 

task, animals are presented with three visual stimuli, each with a unique shape and color. Of 

these six possible stimulus features (three shapes + three colors), one was randomly selected as 

the rewarding feature for each block. In other words, to earn reward, animals had to learn to 

respond only to stimuli that possessed a specific color or shape feature. For example, in a block 

where the rewarded feature was ‘blue,’ animals should choose the blue stimulus regardless of its 

shape to get a juice reward. Once animals made fifteen correct choices under a given feature rule, 

the rewarded feature was switched, and animals had to flexibly adapt their behavior to sample 

other options and discover the new rule.  

Using this paradigm, Ebitz et al. (2019) identified two distinct types of errors that were 

relevant to exploratory behavior. The first was perseverative errors, which they define 

specifically as choices adhering to the previously correct rule that occurred within five trials of a 

rule change. Making fewer perseverative errors reflects increased behavioral flexibility in their 

task and suggests a more efficient use of phasic exploration when rules change. Secondly, they 



 13 

identified errors made in the ten trials before the most recent rule change as lapses. Typically, 

these kinds of errors are thought to reflect inattention or poor learning of some sort, but Ebitz et 

al. (2019) posit that they may instead be an expression of tonic exploratory noise in behavior. 

Consequently, instead of these two error types representing distinct and separate processes, the 

authors suggest that they may jointly reflect a broader, underlying exploratory drive that is 

upregulated during periods of high uncertainty (i.e. when the rules change) and downregulated 

during stable periods of the task.  

When Ebitz et al. (2019) examined the relationship between lapses and perseverative 

errors, they found that the two were negatively correlated. Thus, in blocks where animals made 

more lapses during stable periods, they also tended to be more flexible and make fewer errors 

during periods of rapid change. This is the opposite of what we would expect if animals simply 

failed to learn, as that would lead to increased lapses as well as increased perseverative errors. 

Ebitz and colleagues (2019) also fit reinforcement learning models to quantify how much 

animals were using previous outcomes to update their current beliefs with a learning rate 

parameter. They found that, on average, blocks with higher lapse rates also had higher learning 

rates. In addition, they observed that perseverative errors in one block could not be explained by 

lapses in the preceding block, which would be expected if the perseverative errors were the result 

of poor learning in the previous block. Taken together, these results indicate that not all lapses 

during stable periods reflect a failure to learn, and instead some have an underlying exploratory 

cause that facilitates learning.  

Interestingly, Ebitz et al. (2019) also found that chronic cocaine use altered the 

expression of tonic exploration. After assessing performance in the task at baseline, animals were 

trained to self-administer cocaine and subsequently tested during a period of chronic use. 
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Experimenters found that cocaine self-administration simultaneously increased perseverative 

errors and decreased the number of lapses made. Though both types of errors were affected, the 

negative correlation between them was not. In other words, the line of best fit for their 

relationship did not change in slope, it merely shifted along the axes. These results suggest that 

chronic cocaine use affects the common cause driving tonic and phasic exploration, implicating 

mechanisms of dopaminergic transmission in tonic exploration.  

In addition to being the first to coin the use of ‘phasic’ and ‘tonic’ to describe exploratory 

states, Ebitz et al. (2019) establish a flexible framework for assessing tonic exploration. By 

demonstrating that seemingly random errors during stable periods of their task are meaningfully 

related to errors during critical periods of change and flexibility, their work implies that we may 

be prematurely dismissing lapses in choice behavior in other environments. They show evidence 

for tonic exploration in a very specific task environment where there is no randomness in choice 

feedback, only unexpected uncertainty in the form of rapid rule changes. As a result, the work of 

Ebitz et al. (2019) raises many questions about if and how tonic exploration exists in relation to 

other types of uncertainty. For example, in what other frameworks is tonic exploration useful? 

How might tonic exploration manifest as a response to different types of uncertainty?    

To address these questions, we examine behavior during a reversal learning task where 

expected uncertainty is created by a single reversal in learned cue-reward relationships, as well 

as by variability in reward feedback. Importantly, we take a Bayesian approach to analyzing 

reversal learning and identifying exploration (Costa et al., 2015). Bayes’ theorem, at the core of 

all Bayesian analyses, is a model for learning from evidence. First described by Thomas Bayes in 

1774, Bayes’ theorem has three central components (Finetti, 2017). The first, known as a prior, 

represents the prior knowledge we have about a given phenomenon before any observations are 
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made. For example, most people would confidently assume that all of the coins in their wallet are 

‘fair’ coins that have an equal chance of landing heads as tails when flipped. In that case, our 

prior belief for the probability a coin is fair would be 1. The second component of Bayes’ 

theorem is the likelihood, or the probability that, given our prior beliefs, we observe the current 

evidence. So, for example, the likelihood of flipping heads if our belief about all coins being fair 

is true would be 0.5. The third component in Bayes’ theorem is known as the posterior. The 

posterior integrates the prior and the likelihood, indicating the probability that our belief is true 

given the evidence we’ve observed. So, after flipping the coin ten times and having it come up 

heads every time, our posterior probability that coins are fair would decrease to be lower than 1 

to reflect how this new evidence affected our beliefs about fair coins.   

Recent work by Costa and colleagues (2015) exemplifies the advantage of a Bayesian 

approach to studying decision-making in reversal-learning tasks. In a reversal learning task 

where the relationships between two cues and their assigned reward values are programmed to 

switch halfway through each block, it follows that animals may develop a prior belief about the 

occurrence of a reversal as they become more experienced with the task. Further, if they have 

learned to expect an abrupt change in rules, they might use that knowledge to guide their 

behavior. Costa et al. (2015) test these intuitions by assigning a Bayesian prior to the period 

where animals may expect a reversal in cue-reward mappings. The likelihood, in this experiment, 

was the probability of observing the animals’ choices (and the subsequent reward outcomes) 

given their prior belief about when a reversal would occur. With this information, Costa et al. 

(2015) calculate the animals’ posterior belief that a reversal will occur on each trial, given the 

choice and reward data observed. Then, by assessing the distribution of this posterior belief 

across the span of each task block, Costa et al. (2015) are able to estimate the point at which 
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animals make a switch in their choice behavior. Critically, this reversal in the animals’ behavior 

does not necessarily correspond to the point in the task program where the cue-reward 

contingencies reverse. Instead, analyzing behavior with respect to this Bayesian estimate of the 

reversal point clarifies how the animal is accumulating evidence and using it to decide when to 

explore. In other words, the model put forward by Costa et al. (2015) allows us to flexibly 

analyze behavior with respect to the structure the animal infers from the task, rather than with 

respect to the rigid structure of the task design.  

Lastly, we also incorporate analyses based on the matching law of behavior to clarify 

whether or not animals employ tonic exploration in our task. Matching law describes how, when 

selecting between multiple rewarding alternatives, animals tend to allocate their responses 

proportionally to the reinforcement associated with each alternative (Herrnstein, 1961). Across 

many primate and non-primate species, matching law has been shown to explain global choice 

behavior (de Villiers & Herrnstein, 1976; Lau & Glimcher, 2013; Pierce & Epling, 1983) 

However, actual choice often deviates from matching. For example, animals may choose high 

reward alternatives less than the matching law predicts. This deviation from matching, known as 

undermatching, has previously been interpreted as poor learning of the relative values of the two 

alternatives (Baum, 1974; Baum, 1979) or as randomness in the neural mechanisms that support 

decision-making (Soltani et al., 2006). In this way, choices that result from undermatching bear a 

resemblance to the lapse choices that Ebitz et al. (2019) observed during the stable periods of 

their task – both result in more frequent sampling of a less-rewarding alternative. Therefore, 

matching law provides an alternative framework for identifying and quantifying variation in 

decision-making that may complement existing analyses of tonic exploration.   
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Summary of Experiments 

To determine whether animals strategically employ both tonic and phasic exploration 

during probabilistic learning, we reexamined monkeys’ choice behavior during a two-arm bandit 

reversal learning task (Costa et al., 2015). Here, we leverage the same Bayesian analysis used by 

Costa et al. (2015) to quantify both the animals’ belief that a reversal has occurred and their 

belief in how often choices will be rewarded – two types of information with the potential to 

generate uncertainty that facilitates exploration. Using these estimates, along with other task-

relevant performance measures, we apply a similar framework to Ebitz et al. (2019) and examine 

lapses as a metric for tonic exploratory noise in behavior. Further, because the work of Ebitz et 

al. (2019) shows that the mechanism supporting tonic exploration may be regulated by 

dopaminergic systems, we examine the effects that two dopaminergic drugs – levodopa and 

haloperidol – have on exploration in the bandit task. Levodopa (L-dopa) is a precursor for 

dopamine that is commonly used to restore dopamine levels in patients with Parkinson’s disease. 

When administered orally, it crosses the blood-brain barrier to be taken up by dopamine neurons, 

converted to dopamine, and released synaptically when those dopamine neurons are stimulated 

(Robinson et al, 2005). Haloperidol works by blocking D2 receptors, but it is not selective for the 

D2 receptor; it also has noradrenergic and cholinergic blocking action (Rahman & Marwaha, 

2021). These drugs were chosen because they have been shown to exert opposing effects on 

reversal learning behavior (Cools et al., 2006; Cools et al., 2007; Frank & O’Reilly, 2006; Ridley 

et al., 1982; Shohamy et al., 2006), and may also have effects on directed exploration (Chakroun 

et al., 2020) that extend to the use of tonic exploration.  

We show that while the use of phasic exploration and the number of lapses made in the 

reversal phase of our task depend heavily on the expected reward uncertainty, the use of tonic 
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exploration does not. Additionally, neither phasic nor tonic exploration is affected by the 

administration of L-dopa or haloperidol. Moreover, the evidence we find for tonic exploration 

cannot be accounted for solely by the extent to which animals deviate from matching their 

responding to the reward rate of each option during the reversal phase of the task. Further, we 

find that lapses are predicted by trial-by-trial changes in the monkey’s subjective beliefs about 

whether or not a reversal has occurred and whether or not a correct choice will be rewarded, 

indicating that tonic exploration is directed towards reducing task-related uncertainty.  
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Methods 

All data used was collected and previously reported on by Costa et al., (2015).  

Animals  

Methods originally reported by Costa et al. (2015):  

“Three male rhesus monkeys (Macaca mulatta), aged 5– 6 years with weights 
ranging from 6.5 to 9.3 kg, were studied. All monkeys were placed on water control 
for the duration of the study and, on test days, earned all of their fluid through 
performance on the task. Experimental procedures for all monkeys were performed in 
accordance with the National Institutes of Health Guide for the Care and Use of 
Laboratory Animals and were approved by the Animal Care and Use Committee of 
the National Institute of Mental Health.” 

 
Reversal learning task  

Methods originally reported by Costa et al. (2015):  

“The monkeys completed 4–44 (20.93 +/- 0.93, mean +/- SE) blocks per session of 
a two-arm bandit problem. Each block consisted of 80 trials and involved a single 
reversal of the stimulus– reward contingencies (Fig. 1). On each trial, the monkeys 
had to first acquire and hold a central fixation point (250 –750 ms). After the mon- 
key fixated for the required duration, two stimuli appeared to the left and right (6° 
visual angle) of the central fixation point. Stimuli varied in shape and color, and 
stimulus location (left vs right for each shape) was randomized within a block. 
Monkeys chose between stimuli by making a saccade to one of the two stimuli and 
fixating the cue for a minimum of 500 ms. One of the stimuli had a high reward 
probability, and one had a low reward probability. Juice rewards were probabilistically 
delivered at the end of each trial, followed by a fixed 1.5 s intertrial interval. A failure 
to acquire/hold central fixation or to make a choice within 750 ms resulted in a repeat 
of the previous trial. The three reward schedules used were 80/20%, 70/30%, and 
60/40%. Use of these three reward schedules anticorrelates the mean reward 
probabilities of the bandit arms. The trial on which the cue–reward mapping reversed 
within each block was selected pseudorandomly from a uniform distribution across 
trials 30 –50. The reversal trial did not depend on the monkey reaching a performance 
criterion. Reward schedules were always constant within a block but could (and 
usually did) change across blocks.” 

  
Reward schedules that have two stimuli with a greater difference in reward probabilities (i.e. 
80/20) are referred to here as ‘easier’ schedules for two reasons: First, because increasing the 
difference between the two reward probabilities assigned to the stimuli reduces the difficulty in 
determining which of the two stimuli is more frequently rewarded. Second, because increasing 
the discriminability between the assigned reward probabilities of the two stimuli also decreases 
the difficulty in detecting when the stimuli-reward mappings are reversed. Conversely, 
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schedules that have two stimuli was a smaller difference in reward probabilities are referred to 
here as ‘harder’ or more difficult because of the decreased discriminability between the true 
reward probabilities of each stimuli.  

 
“Stimuli consisted of simple images of a circle and square in one of three colors 

(red, green, and blue). The two choice options always differed in color and shape. This 
resulted in six unique stimulus combinations. When these combinations were crossed 
with the three reward schedules and whether a particular shape was more or less 
initially rewarding (e.g., whether the blue square was the best choice before or after 
the reversal), this resulted in 36 block combinations. Block presentations were fully 
randomized without replacement. This ensured that a specific stimulus–reward 
combination was never repeated directly until all 36 block com- binations were 
experienced (< 4% of sessions). Although combinations were potentially repeated 
across sessions, during inspection, there was no evidence of improved performance 
across sessions. 

Each monkey received 10–14 d of initial training on the described reversal learning 
task until they were routinely completing 15–20 blocks per session. Animals first 
learned the structure of the task under a deter- ministic reward schedule. Probabilistic 
reward schedules were then in- troduced progressively until the animals exhibited 
stable performance on the tested reward schedules. 

Stimulus presentation and behavioral monitoring were controlled by a personal 
computer running the Monkeylogic (version 1.1) MATLAB toolbox (Asaad and 
Eskandar, 2008). Eye movements were monitored using an Arrington Viewpoint eye-
tracking system (Arrington Research) and sampled at 1 kHz. Stimuli were displayed 
on an LCD monitor (1024 x 768 resolution) situated 40 cm from the monkey’s eyes. 
On rewarded trials, 0.085 ml of apple juice was delivered through a pressur- ized 
plastic tube gated by a computer-controlled solenoid valve (Mitz, 2005).” 

 

 
Figure 1: Block and trial structure in the two-arm bandit reversal learning task (taken from Costa et al., 
2015). Each block contained 80 trials. The cue-reward mapping was reversed on a single trial randomly chosen 
between 30 and 50. Trials before the reversal are referred to as acquisition, and trials after the reversal are referred to 
as reversal. The reward schedule was always constant within a block (i.e., 80/20, 70/30, or 60/40%), but it usually 
changed across blocks. ITI = Intertrial interval. 
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Drug administration  
 
Methods originally reported by Costa et al. (2015):  

“Before drug testing, monkeys were first habituated to intramuscular needle 
injections of saline given in conjunction with free juice (pH 7.4, 0.1 ml/kg). After this 
habituation period, monkeys readily presented their leg for injections. At the start of 
each placebo session—while chaired and outside of the test box—the monkeys 
received an intramuscular injection of saline (1 ml) while they drank 6 ml of apple 
juice from a plastic syringe. They were then head posted and placed inside the test 
box. The eye-tracking system was then calibrated to avoid drug-related effects on eye-
tracking sensitivity. During the remainder of the wait period, the animals viewed a 
nature movie. This placebo procedure was consistent with the two methods of drug 
administration. Free juice was similarly delivered at the start of each drug session 
before waiting 30 min to start the task.  

On days the monkeys received L-DOPA, we dissolved, under sonication, a 
pulverized fixed dose tablet of L-DOPA (100 mg/25 mg carbidopa; Actavis) into the 
delivered free juice and paired it with an intramuscular injection of saline. On days the 
monkeys received haloperidol, free juice was delivered in conjunction with an 
intramuscular injection of haloperidol (6.5 𝜇g/kg; Bedford Laboratoies). This dose 
was consistent with doses shown previously to have behavioral effects (Turchi et al., 
2010). Injections were prepared by first dissolving a fixed dose of haloperidol (100 
𝜇g) under sonication into PBS under strict sterile conditions and stored at 4°C for use 
within the week. On the day of the drug injections, aliquots were resonicated and 
allowed to reach room temperature before injection. Injections were given 
intramuscularly into the lateral hindlimb. 

The monkeys completed multiple sessions under each drug condition. On L-DOPA, 
monkey E completed seven sessions comprising 138 total blocks, monkey G 
completed six sessions comprising 159 total blocks, and monkey M completed seven 
sessions comprising 193 total blocks. On haloperidol, monkey E completed seven 
sessions comprising 100 total blocks, monkey G completed eight sessions comprising 
142 total blocks, and monkey M completed seven sessions comprising 143 total 
blocks. The total number of placebo sessions ranged from 15 to 24 sessions per animal 
(22 for E, 24 for G, and 16 for M), comprising 370 – 479 blocks. Haloperidol sessions 
were spaced a minimum of 7d apart to facilitate washout, whereas the faster clearance 
of L-DOPA permitted a minimum spacing of 3d between sessions. L-DOPA and 
haloperidol sessions were interleaved and counterbalanced for the day of the week to 
minimize routine caretaking effects on behavior. Each drug session was preceded by 
at least one placebo session, and all placebo sessions lagged the most recent drug 
session by a minimum of 2d to minimize carryover effects.” 
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Bayesian model  

The Bayesian model was developed and originally implemented in MATLAB by Dr. 

Vincent Costa and Dr. Bruno Averbeck (Averbeck & Costa, 2017; Costa et al., 2015). Here, the 

generation of Bayesian posterior distributions and estimation of reversal points represents work 

done to confirm the prior model findings by adapting the code for Python.  

Briefly, the goal of the Bayesian modeling approach here was to quantify the amount of 

posterior evidence animals had that 1) a reversal occurred or 2) that their choices would be 

rewarded, given their choice and outcome histories. The model by Costa et al. (2015) can do this 

from the perspective of an ideal observer who has information about both choice and reward 

histories, and therefore whose posterior estimate of a reversal or reward reflects all of the 

evidence that was available to the animal. The model can also do this from the perspective of the 

animal, using only information about their history of choices, to get a posterior estimate that is 

more reflective of their subjective beliefs. Posterior estimates are calculated for each trial from 0 

to 80, resulting in a posterior distribution that reflects the changes in evidence (or belief) as they 

evolve throughout each block of the task. Using these posterior distributions, we can also use the 

model to estimate the specific point at which the ideal observer or animal switched their choice 

preference. For clarity on the structure of the model, the original methods from the Costa et al. 

(2015) manuscript are copied below: 

“We fit three Bayesian models that estimated the posterior probability that reversals 
occurred on each trial, under various assumptions. To estimate the models, we fit a 
likelihood function given by the following: 

𝑓(𝑥, 𝑦|𝑟, 𝑝, ℎ,𝑀) = 	/q(k)
!

"#$

 

(1) 
 

where r is the trial on which the reward mapping reversed (r ∈ 0 – 81), and p is the 
probability of reward for the high reward option (models 1 and 3) or the consistency 
with which the animals chose their preferred option (model 2). The variable h encodes 
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whether option 1 or option 2 begins the block as the high reward option (h ∈ 1, 2), k 
indexes trial number in the block, and T is the current trial. The variable r ranges from 
0 to 81 because we allowed the model to assume that reversals occurred before the 
block started or after the block ended. In either of these cases, there would be no switch 
within the block (the model estimated no reversal in <1% of the total blocks analyzed), 
and the posterior probability of a switch would be equally weighted for r equal to 0 or 
81. The data are given by the vectors x and y, where the elements of x are the rewards 
(𝑥% ∈ 0, 1), and the elements of y are the choices (𝑦% ∈ 1, 2) in trial i. We fit three 
variants of this model indicated by M (M ∈ 1, 2, 3). M = 1 is the ideal observer. This 
model was used to estimate the evidence the animal had available to it when it made 
its decisions, as well as the ideal reversal point. M = 2 is the behavioral choice model. 
This model was used to estimate where the animal reversed its choice behavior.” The 
third model, M = 3, is a causal version of the ideal observer model (M = 1).   

“The behavioral choice model (M = 2) estimates the trial on which the animals 
switched their choice behavior. This only depends on the pattern of choices, not on 
whether they were rewarded. We assumed that the animal had a stable choice 
preference that switched at some point in the block from one stimulus to the other. 
Given the choice preference, the animals occasionally chose the wrong stimulus (i.e., 
the stimulus inconsistent with their choice preference) at some lapse rate 1 - p. Thus, 
for k < r and h = 1, choosing option 1, q(k) = p; and choosing option 2, q(k) = p. For k 
= r and h = 1, choosing option 1, q(k) = 1 = p; and choosing option 2, q(k) = p. 
Correspondingly, for k = r and h = 2, choosing option 2, q(k) = p, etc. Thus, this model 
assumed that the monkey preferred one option before switching and preferred the 
other option after switching. It most often chose its preferred option (p < 0.5), but it 
occasionally chose the wrong target perhaps as a result of lapses in attention. For all 
reported analyses, we marginalized over the correct choice rate p. Therefore, we 
assumed that the animals were maximizing and not doing probability matching. These 
values for q(k) were filled in for the entire block, because we were performing this 
analysis post hoc to estimate where the animal reversed. 

For models 1 and 3, we estimated whether a reversal had occurred conditioning 
only on outcomes before the current trial, T. This provided an estimate of the 
information on which the animal was making its choice. For these models, values of 
q(k) for each schedule were given by the following mappings from choices to 
outcomes. For k < r and h = 1 (before reversal and target 1 is the high probability 
target), choose 1 and get rewarded q(k) = p; choose 1 and not get rewarded, q(k) = 1 - 
p; choose 2 and get rewarded, q(k) = 1 - p; and choose 2 and not get rewarded, q(k) = 
p. For k ≥ r, these probabilities flip. Correspondingly, for k < r and h = 2, the 
probabilities are also complimented. These values were filled in [for the entire block 
for model 1, and] up to the current trial, T [for model 3].  

Given these mappings for q(k), we could then calculate the likelihood as a function 
of r, p, and h for each block of trials. The posterior is given by the following: 

 

𝑝(𝑟, 𝑝, ℎ|𝑥, 𝑦,𝑀) = 	
𝑓(𝑥, 𝑦|𝑟, 𝑝, ℎ,𝑀)𝑝(𝑟|𝑀)𝑝(𝑝, ℎ|𝑀)

𝑝(𝑥, 𝑦|𝑀)  

(2) 
 



 24 

The priors on p, h, and r were flat for all models. Given the priors, the posterior 
over switch trial could be calculated by marginalizing over p and h. Specifically, 

 
𝑝(𝑟|𝑥, 𝑦,𝑀) = 	4 𝑝(𝑟, 𝑝, ℎ|𝑥, 𝑦,𝑀)

&,(
 

(3) 
 

Similarly, the posterior over the probability of reward for the high probability option 
could be calculated by marginalizing over r and h: 

 
𝑝(𝑝|𝑥, 𝑦,𝑀) = 	4 𝑝(𝑟, 𝑝, ℎ|𝑥, 𝑦,𝑀)

),(
 

(4) 
 

After the posterior over r for both models was calculated, the expected reversal point 
was calculated as: 

< 𝑟|𝑀 >	= 	4𝑟 ∗ 𝑝(𝑟, 𝑝, ℎ|𝑥, 𝑦,𝑀)
*$

)+,

 

(5) 
 

Because the estimated reversal point was not guaranteed to be an integer, it was rounded 
to the nearest integer when it served as an index of summation. Trials less than {r|M} were 
assigned to the acquisition phase, whereas trials greater than or equal to {r|M} were 
assigned to the reversal phase.” 

 

Analysis of phasic and tonic exploration 

We quantified phasic exploration as the signed deviation of the monkey’s reversal point 

(M=2) from that of the ideal observer (M=1). For each model, the reversal point in a given block 

was calculated as the weighted mean of the posterior probability of reversal across all 80 trials, 

as expressed in equation (5) above. Because the estimated reversal point was not guaranteed to 

be a whole number, it was rounded to the nearest whole number after summation. We then 

compared the estimated reversal points of the ideal observer (M=1) and behavioral choice (M=2) 

models to capture how monkeys performed relative to an observer with full knowledge of the 

environment. Because the ideal observer model captures the full scope of evidence that was 

available to the animal (Costa et al., 2015), comparing the animal’s reversal point to that of the 
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ideal observer gives us a proxy for how much or how little evidence the animal accumulated 

before reversing its choice behavior, and thus is indicative of how the animal was using phasic 

exploration.  

We quantified tonic exploration as the rate of lapses (choices of the low probability 

option) in the last twenty trials of each block. We chose this period, specifically, because at trial 

50 in the task program a reversal must have occurred. After this point, cue-reward mappings are 

stable and monkeys (or the ideal observer) have sufficient information to infer a reversal. For this 

reason, blocks in which the estimated reversal point in the monkeys’ behavior was past trial 60 

were excluded from analyses (<1% of all blocks). Values were calculated for each block and 

then averaged in each session separately for each reward schedule.  

 

Deviation from matching behavior 

For choices in the reversal phase, we calculated the rate at which monkeys deviated from 

matching to the high value option as (Reed & Kaplan, 2011): 

 

𝐷𝑀-. = 𝑃(𝑐ℎ𝑜𝑠𝑒𝑛)-. −	
𝑅𝑒𝑤𝑎𝑟𝑑𝑅𝑎𝑡𝑒-.

𝑅𝑒𝑤𝑎𝑟𝑑𝑅𝑎𝑡𝑒-. +	𝑅𝑒𝑤𝑎𝑟𝑑𝑅𝑎𝑡𝑒/.
 

(6) 

where fractions (𝑅𝑒𝑤𝑎𝑟𝑑𝑅𝑎𝑡𝑒-., 𝑅𝑒𝑤𝑎𝑟𝑑𝑅𝑎𝑡𝑒/.), the rewards rates for the high and low value 

options, are defined as:  

 

𝑅𝑒𝑤𝑎𝑟𝑑𝑅𝑎𝑡𝑒 = 	𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑅𝑒𝑤𝑎𝑟𝑑𝑅𝑎𝑡𝑒 ∗ 𝑝(𝑐ℎ𝑜𝑠𝑒𝑛) 

(7) 
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Statistical analyses 

Statistical analyses employed mixed-model ANOVAs, carried out in JMP 14 (SAS). 

Drug, schedule, and monkey were all specified as fixed effects with interactions, while session 

(nested under monkey) was specified as a random effect. Dependent variables (in separate 

models) included the signed difference in reversal points, the absolute difference in reversal 

points, and lapse rates. Post hoc analyses of significant main effects used Tukey’s HSD test to 

simultaneously test all pairwise comparisons while controlling for the family-wise error rate of 

multiple comparisons.  

A hierarchical linear model was used to estimate the effects of posterior beliefs on the 

animals’ choice behavior, and was also carried out in JMP 14. We first ran fit logistic regression 

with choice behavior on a given trial as the dependent variable (lapse/no lapse) reward on 

previous trial, posterior on schedule, and posterior on reversal as predictors by each 

schedule*drug*monkey combination. Then, we extracted the beta weights for each of these 

predictors in the models and used them as observations for a mixed-effects ANOVA model using 

schedule, and drug as fixed effects and monkey as a random effect.  

Pearson’s correlations were carried out in Python 3.7.10 using the Scipy library. 

Correlations were used to examine the relationship between the signed difference in reversal 

points and lapse rates. Partial correlations were used to further examine the relationship between 

the signed difference in reversal points with either lapse rate or deviation from matching 

independently while accounting for the variance explained by the other. To do this, we fit an 

ANOVA model in JMP 14 (SAS) using monkey drug, lapse rates and deviation from matching 

as fixed effects and session (nested under Monkey) as a random effect to predict the signed 

difference in reversal points. Then we reconstructed the expected values for the signed difference 
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in reversal points using the observed values, model intercept and model beta values for either 

lapse rate or deviation from matching.  
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Results 

Use of phasic exploration in a two-armed bandit task reversal learning task 

We replicated the Bayesian modeling approach outlined by Costa et al. (2015) to 

calculate the probability of detection of a reversal based on both an ideal observer (M=1) and on 

monkeys’ choice behavior (M=2) in every block. From these distributions, the model allowed us 

to estimate the trial on which the ideal observer (M=1) and the monkey (M=2) reversed their 

behavior (see Methods). First, we replicated analyses of schedule-related effects on the average 

posterior probability distribution for reversals in the monkey’s (M=2, Fig. 2a) and the ideal 

observer’s (M=1, Fig. 2b) modeled behavior. This replication confirmed the finding of Costa et 

al. (2015), using new code adapted for Python 3.7.10, that posterior probability distributions 

were broader and had a larger left tail in more difficult schedules, reflecting the increased 

difficulty of detecting reversals when reward uncertainty was higher. 

We also replicated analyses done by Costa et al. (2015) to examine whether reward 

schedule affected the amount of evidence necessary to trigger a reversal. To do this, Costa et al. 

(2015) re-aligned the posterior evidence of the ideal observer (M=1) that a reversal occurred to 

the trials surrounding the monkey’s reversal (Fig. 2c). As was found by Costa et al. (2015), we 

saw in our replication that reversal points in the monkey’s choices clearly followed peaks in the 

posterior distribution (Fig. 2c). As the reward schedule became more uncertain, monkeys’ 

reversals followed smaller peaks in the posterior distribution (schedule, F(2,138) = 931.70, p < 

0.001), confirming that evidence for reversal scales negatively with the uncertainty in reward 

feedback.  
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We then sought to quantify the monkeys’ use of phasic exploration (i.e. reversing their 

choice behavior during the window where the benefit of exploring was greatest). We assumed 

the monkeys had learned that there would be a single reversal of the reward contingencies, and 

Costa et al. (2015) previously reported that they try to anticipate the contingency reversals. With 

full knowledge of the environment (M=1), an ideal observer can calculate the benefit of 

switching choice strategy and do so when uncertainty peaks. By looking at how closely the 

Figure 2: Bayesian posteriors on reversal by reward schedule. Shading indicates one standard error of the mean 
(SEM), and grey bars indicate the trial range in which a reversal could have occurred. (A) Mean posterior 
probability on reversal for the ideal observer model (M = 1) for each reward schedule. (B) Mean posterior 
probability on reversal for the behavioral choice model (M = 2) for each reward schedule. (C) Mean posterior 
probability on reversal for the ideal observer model (M = 1) by schedule, aligned to the estimated trial on which the 
animals reversed their choice behavior (always trial = 0 here).  (D) Summary of choice behavior in the task, aligned 
to the estimated trial on which the animals reversed their choice behavior (always trial = 0 here).  
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monkey’s reversal in choice behavior (M=2) is aligned to that of the ideal observer (M=1), then, 

we can capture the extent to which the monkey is successfully using phasic exploration. Analysis 

of the signed reversal points revealed that monkeys reversed their behavior earlier, with respect 

to the ideal observer, on average (t(80) = -4.79, p < 0.001), and that this effect varied across the 

three reward schedules (Schedule, F(2,169) = 53.35, p < 0.001). On average and in reference to the 

ideal observer (Fig. 3a), the monkeys reversed their behavior earlier during 60/40% blocks 

compared with 70/30% (t(89) = 4.77, p < 0.001) or 80/20% blocks (t(89) = 8.77, p < 0.001). In 

blocks where animals received L-dopa or haloperidol, there were no effects of drug on the signed 

difference in reversal points between the animal and the ideal observer (Fig. 3b).  

To confirm that phasic exploration involves monkeys triggering off of accumulating 

evidence, we correlated the signed difference in reversal points with the cumulative sum of the 

ideal observer’s posterior (Fig. 3c). Intuitively, we found a positive correlation between the 

signed difference in reversal points and the accumulated evidence at the monkey’s reversal point 

at the session level (r(74) = 0.75, se = 0.018) illustrating that an increased readiness to employ 

phasic exploration corresponds with reversing behavior on the basis of smaller evidence peaks. 

We also correlated the cumulative sum of the ideal observer’s posterior with the absolute 

difference in reversal points (Fig. 3d) and observed a negative correlation across schedules (t(273) 

= -2.174, p = 0.031), reinforcing the idea that animals were able to reverse more accurately to 

ideal when that reversal was based off of more evidence. With respect to drug, animals given 

haloperidol showed a significantly less negative correlation between evidence accumulated and 

absolute difference in reversal point than animals given L-dopa (t(85) = 2.56, p = 0.006) or saline 

(t(87) = 2.74, p = 0.004). This effect replicated the finding from Costa et al (2015) that haloperidol 

strengthens the monkeys’ prior on when a reversal will occur. Here, however, we are using 
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evidence accumulation (rather than a set assumption on the prior) to assay the model’s belief a 

reversal has occurred (see Methods). 

 

Figure 3: Reward uncertainty, not drug, affects the use of phasic exploration. (A) Dots represent individual data 
points, white circle on each boxplot indicates the mean value. The signed difference in the model-estimated reversal 
points for the behavioral choice (M=2) and the ideal observer (M=1) models, averaged by (A) schedule or (B) drug. 
(C) Error bars represent one SEM. Correlation (r-value) between the amount of evidence accumulated by the ideal 
observer at the animal’s reversal point and (C) the signed difference in reversal points or (D) the absolute difference 
in reversal points.  
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Lapses, as a behavioral metric, quantify the use of a tonic exploration strategy  

First, we examined the monkeys’ choice behavior after trial 60 to determine how often 

they were lapsing during the stable period of the reversal phase (see Methods). There was a 

significant effect of reward schedule (F(2,135) = 150.18, p < 0.001) on the amount of lapses made 

(Fig. 4a). Post-hoc comparisons showed that monkeys generally had lower lapse rates in the 

80/20 schedule than in the 70/30 schedule (t(129) = -7.17, p < 0.0001) and in the 60/40 schedule 

(t(129) = -17.29, p < 0.0001). There was no effect of drug on the number or rate of lapse choices 

within sessions (Fig. 4b). Broadly, these comparisons indicate schedule-dependent lapses in task 

performance that scale positively with reward uncertainty.  

 

Figure 4: Reward uncertainty, not drug, affects lapse rates. (A) Dots represent individual data points, white 
circle on each boxplot indicates the mean value. The number of lapses made in the last twenty trials of each block, 
averaged by (A) schedule or (B) drug. 
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In order to establish that lapses, in our task, are an appropriate measure of tonic 

exploration, we sought to determine whether or not they were related to the signed difference in 

reversal points - a measure of phasic exploration. If lapses do reflect a form of tonic exploration 

driven by the same process as phasic exploration, we would expect a negative correlation 

between the two measures (i.e. more lapses as the animals reverse earlier with respect to the ideal 

and vice versa). If lapses are, on the other hand, some nuisance process, we would not expect 

them to be related (or positively correlated with) the difference in reversal points (Fig. 5a).  

Because lapses could also result from undermatching, the tendency to randomly allocate 

responses to a choice alternative without regard for the rate of reinforcement (Wearden, 1983) 

we examined the correlation between lapses and phasic exploration while accounting for choice 

variability due to undermatching during the entire reversal phase. Undermatching was inversely 

correlated with lapse rates in a schedule dependent manner (Fig 5b; r(60/40) = -0.48, r(70/30) = -0.85, 

r(80/20) = -0.89), all p < 0.001) and did predict reversal learning performance (Fig. 5c). Even so, 

lapse rates over the last 20 trials were still predictive of the relative amount of evidence acquired 

at the time the monkeys' decided to switch their choice preference (Fig 5d; (F(1, 446) = 35.53, p < 

0.001) and this effect did not vary by reward schedule. Not only does this suggest that lapses 

reflect tonic exploratory noise in behavior, it indicates that the use of tonic exploration is not 

dependent on reward uncertainty. 
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Figure 5: Evidence that lapses have an underlying exploratory cause. (A) Schematic adopted from Ebitz et al. 
(2019) depicting the possible relationships between lapses and the signed difference in reversal points. (B) 
Relationship between calculated deviation from matching and lapse rate in the last twenty trials of each block, 
shown by reward schedule. Dots represent individual data points, with regression lines plotted. Shaded area 
represents 95% confidence interval for the regression line. (C) Partial correlation, shown by schedule and drug, the 
signed difference in reversal points and (C) lapse rates or (D) deviation from matching, each after accounting for the 
variance explained by the other.   
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Lapses serve as a directed, not random, form of exploration 

To test whether tonic exploration was driven by changes in the monkey’s posterior 

beliefs, we implemented a logistic regression analysis to predict when the monkeys would make 

lapses over the last 20 trials of each block. We determined if we could predict lapses using the 

posterior probability that a reversal had occurred and the subjective reward rate (i.e. how 

consistently the monkeys’ choice of the correct option was rewarded) calculated up until the 

immediately preceding trial. The posterior probability on reversal for the current trial (β = 1.04, 

t(8) = 7.25, p < 0.001) and the subjective reward rate for the current trial (β = -1.44, t(8) = -12.64, 

p < 0.001) both predicted lapses on the subsequent trial (Fig. 6). In addition, both of these 

estimates predicted lapses such that they were inversely related (F(1,2) = 71.00, p = 0.014). The 

consistent relationship between these different posterior beliefs and lapses indicate that lapses do 

not occur randomly in time. Instead, our findings suggest that lapses track transient peaks in 

uncertainty during the stable period of the task, acting as a directed form of exploration.  

 

Figure 6: Lapses are predicted by beliefs about expected uncertainty. Coefficient values from a logistic 
regression using, on a given trial, the posterior probabilities (M=2) that a reversal occurred and that a choice would 
be rewarded to predict lapse choices on the subsequent trial. Shown by drug and animal. Error bars represent one 
SEM.  
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Discussion 

Here, we examined the effects of expected uncertainty on different types of exploratory 

behavior in a probabilistic reward environment. We established that the use of phasic 

exploration, operationalized as the difference between the animal’s reversal point and that of an 

ideal observer, varied by reward schedule. In easier schedules, with less reward uncertainty, 

animals reversed more closely to the ideal reversal point. In harder schedules, with more reward 

uncertainty, animals tended to reverse significantly earlier than ideal. Lapses in choice 

performance were also sensitive to reward uncertainty, with animals lapsing less in easier 

schedules and more in harder schedules. The use of phasic exploration and the lapse rate were 

both unaffected by the administration of L-dopa or haloperidol. We showed that lapses were 

negatively correlated with reversal accuracy, suggesting that they share some common 

exploratory cause (Ebitz et al., 2019). Further, this correlation was consistent across all three 

probabilistic reward schedules, indicating that tonic exploration occurs independently of the level 

of expected uncertainty animals have with respect to the value of their choices. Lastly, we found 

that lapses were predicted by the animals’ subjective beliefs about expected uncertainty in their 

environment. Specifically, animals were more likely to lapse when their belief that a reversal had 

occurred was high and their estimation of the reward rate was low, suggesting that lapses are 

directed towards reducing moment-to-moment uncertainty. Taken together, these results show 

that lapses reflect a form of directed, tonic exploratory noise in response to expected uncertainty.  

Our results build off of work by Ebitz et al. (2019), who first demonstrated that lapses 

can represent a form of tonic exploratory noise. The reward feedback in the task used by Ebitz et 

al. (2019) was deterministic, meaning that it had no variation and therefore was fully informative 

about whether or not each choice was correct. As a result, the only uncertainty in the task 
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stemmed from the unsignaled rule changes. While this was likely an unexpected source of 

uncertainty at first, animals were trained to criterion on the task and continued to perform it 

throughout a two-month period of chronic cocaine self-administration. Therefore, the animals 

likely had a model of the task structure that includes rule changes as a form of expected 

uncertainty. In this kind of environment, where rule changes are expected and occur fairly often, 

tonic exploration is a useful strategy because monkeys can regularly make information-gathering 

choices instead of calculating the potential benefit of phasic exploration on every trial.  

In our task, expected uncertainty is also created by a rule change, however there is only a 

single rule change that animals learn to anticipate in the middle of the block (Costa et al., 2015). 

As a result, animals do not necessarily need tonic exploration to succeed. Rather, they could 

simply accumulate evidence from the outcomes of their choices and employ phasic exploration 

when enough evidence accumulates that their current preferred choice is no longer the best one. 

If that was the case, and tonic exploration was not present, we would not expect to see any lapses 

in the reversal period of the task. Instead, what we see is that animals continue to make 

exploratory lapses well after they have employed phasic exploration. These data support the 

notion that tonic exploration is inherently coupled to the same process drive that supports phasic 

exploration and is a more general phenomenon that extends across paradigms. Surprisingly, 

given that lapse rates were highly affected by reward schedule in our task, the negative 

correlation between lapses and reversal accuracy was not schedule-dependent. Thus, tonic 

exploration seems to be insensitive to changing levels of expected uncertainty. Distinctions 

between tonic and phasic exploration and how they respond differently to unexpected versus 

expected uncertainty should be further examined to better understand how animals are able to 

implement these complex exploratory strategies.  
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Our results are consistent with those of Ebitz et al. (2019) in that we find tonic 

exploration to be directed towards the reduction of uncertainty. However, where Ebitz et al. 

(2019) find the timing of lapses to be random with respect to the task, we find that they are 

predicted moment-to-moment by animals’ subjective beliefs about environmental uncertainty. 

One key advantage of our Bayesian modeling approach here is that it enables us to estimate, on a 

trial-by-trial basis, the monkeys’ subjective beliefs with respect to two different aspects of 

expected uncertainty: whether or not a reversal in reward contingencies has occurred, and the 

reward rate for a chosen option. We find that both of these estimates on a given trial jointly 

predict whether or not animals will lapse on the subsequent trial. Thus, our results suggest that 

tonic exploration is directed towards gathering information when estimates of expected 

uncertainty fluctuate. Because we find the timing of lapses to be less random than Ebitz et al. 

(2019), it is possible that phasic and tonic exploration are more akin to the ends of a continuous 

spectrum rather than distinct processes. In this way, differing demands of expected or 

unexpected uncertainty may regulate the extent to which tonic exploration is spontaneous, 

compared to phasic exploration which is highly dependent on external constraints for its timing. 

Future work investigating the question of when to explore should continue to probe the 

continuity between phasic and tonic exploration, which may provide insight into the common 

mechanism(s) supporting them.  

 

Expected uncertainty, volatility, and unpredictability 

While we were framing phasic and tonic exploration in terms of expected uncertainty in 

our analysis, other models of decision-making in similar paradigms have proposed a hierarchical 

model of uncertainty that shapes dynamic learning, and that may be relevant here (Behrens et al., 
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2007; Piray & Daw, 2020). In these models, volatility reflects the rate of change (or noise) in the 

true cue values while unpredictability reflects how noisy the outcomes of choosing those cues are 

(Piray & Daw, 2020). The expected uncertainty in our task is due to both volatility and 

unpredictability; we can think of the stochasticity in reward outcomes as generating 

unpredictability, while the reversal in cue-outcome contingencies generates volatility. Our 

Bayesian model’s estimate of the subjective reward rate (the probability a given choice will be 

rewarded) provides a rough approximation of the perceived unpredictability. Our model’s 

estimate of whether or not a reversal occurred, however, does not directly capture volatility as it 

is defined in these models: it is an inference about whether the state of the environment has 

changed, not the rate at which the environment is changing. A clear next step is to manipulate 

unpredictability and volatility independently with respect to tonic exploration and observe how 

these types of uncertainty affect the computations we believe to underlie phasic and tonic 

exploration. For example, it is possible that tonic exploration is more useful in volatile 

environments as it allows decision-makers to maintain the flexibility needed to locate a 

constantly changing best option. Phasic exploration, on the other hand, might be better used in 

unpredictable environments to gate exploration by a higher threshold of uncertainty.  

 

Application of the matching law 

 It is important to note the differences between our task and those traditionally used to 

study matching behavior when interpreting the deviation from matching scores in our results. 

The matching law was originally developed and studied using concurrent schedules of 

reinforcement for two alternatives, each delivering reinforcement on a variable interval schedule 

(Baum, 1974; Herrnstein, 1961).  The use of ‘concurrent’ schedules simply indicates that the 
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schedule for one alternative is independent of the schedule for the other. In our task, even though 

the probabilities of reward are related in that the two will always sum to one-hundred, the actual 

delivery of reward on each alternative is independent of the other. One could argue that the 

probabilistic delivery of reward in our task resembles either a variable interval (VI) schedule – 

where reinforcement is given after a specific, but varying amount of time – or a variable ratio 

(VR) schedule – where reinforcement is given after a specific, but varying number of responses 

(Zuriff, 1970). Because our task program uses varying probabilities to determine when reward is 

given, it closely resembles the varying ratios in a VR schedule. However, previous work has 

shown that in concurrent VR schedules, behavior closely adheres to what matching law predicts 

(Herrnstein & Loveland, 1975), which is not what we observe here. This may be because the 

rigid trial structure in our task (i.e. fixed intervals set for how long the animal has to respond, 

how long they need to fixate on a cue to ‘select’ it, etc.) imposes temporal structure that is not 

present in traditional operant paradigms used to study matching behavior. Typically, these 

paradigms use a ‘free-operant’ setup where one stimulus is continuously available for operant 

responses (Morris, 1987), unlike the trials in our task where stimuli are available for responding 

during discrete periods of time.  As a result, our task may occupy a space somewhere in between 

VR and VI reinforcement schedules that makes application of the matching law less 

straightforward.  

 Another departure from traditional matching behavior analyses in the work here is our 

calculation of the experienced reward rates. Most commonly, the Generalized Matching 

Equation (GME) is used to calculate how much animals are deviating from matching behavior 

(Baum, 1974). In this equation, which compares the relative rates of response to the relative rates 

of reinforcement for two alternatives, it is always the obtained rates of each that are used. In 
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other words, the GME uses the value of how much reinforcement was actually obtained by an 

animal when they chose one alternative instead of the assigned probabilistic rate of 

reinforcement for that alternative (Baum, 1974). In our calculation of scores for the deviation 

from matching, we calculate reinforcement for a given alternative as the product of the assigned 

reinforcement rate of that alternative and the probability that the animal chose it. While this 

value will eventually come to approximate the experienced reward rate in large datasets with 

many trials, like ours, it is still not an exact calculation of the experienced reward and therefore 

may deviate from other calculations of undermatching.  

 More recent work has also emphasized the ways in which matching behavior evolves on 

smaller, compared to larger or more global, timescales (Iigaya et al., 2019; Trepka et al., 2021). 

Based on the overarching hypothesis that matching behavior on a larger timescale develops from 

smaller adjustments of behavior based on trial-by-trial choices and outcomes (Trepka et al., 

2021), we may also want to evaluate matching alongside lapse rates across different timescales 

in our task. For example, future work could expand or shrink the window in which we examine 

lapses during the task to see if lapses correspond with more local or more global undermatching 

behavior.  

 

Neuromodulators and tonic exploration 

Broad evidence suggests that dopamine helps regulate the explore-exploit tradeoff. 

Midbrain dopamine encodes reward prediction errors (Schultz & Dicksinson, 2000), which in 

turn help to encode the representations of cue value or action value (Collins & Frank, 2016; 

Flagel et al., 2011; Hamid et al., 2016) that guide explore-exploit decisions. However, because 

dopamine is also involved in processes besides learning such as energy expenditure (Beeler et 
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al., 2012; Salamone et al., 2005), risk-taking behavior (Stopper et al., 2014), and motivation (Niv 

et al., 2007), parsing its precise role in exploration proves difficult.  

Increasingly, work in the field of decision-making points to a role for dopamine signaling 

in directed exploration. For example, the systemic administration of L-dopa, putatively 

increasing tonic dopamine levels, has been shown to reduce directed but not random exploration 

by weakening neural representations of uncertainty (Chakroun et al., 2020). Interestingly, in the 

same study, the systemic administration of haloperidol had no effects on directed or random 

exploration. There is also evidence that dopamine mediates the signaling of an ‘uncertainty 

bonus’ that biases humans or animals to choose novel, less certain options (Costa et al.. 2014; 

Costa et al., 2019; Frank et al., 2009; Gershman & Tzovaras, 2018; Kayser et al., 2015; 

Wittmann et al., 2008). Genetic profiling studies have identified that variations in the catechol-o-

methyltransferase (COMT) gene that increase available prefrontal dopamine are associated 

specifically with increases in uncertainty-driven, directed exploration (Frank et al., 2009). 

Novelty alone activates the nigrostriatal dopamine pathway (Bunzeck & Düzel, 2006) and this 

activation seems to drive novelty-driven choice behavior (Wittmann et al., 2008) characteristic of 

directed exploration. This is consistent with work showing that increasing available dopamine 

via systemic blockade of dopamine active transporter (DAT) increases the initial value monkeys 

assign to novel options and leads them to be more novelty-prone in their decision-making (Costa 

et al., 2014). However, seemingly in contrast to the findings of Wittmann et al. (2008), it has 

been shown that a variation in the DARPP-32 gene that increases striatal dopamine levels was 

associated with a decrease in directed, uncertainty-driven exploration (Gershman & Tzovaras, 

2018). Here, we find that systemic increases in dopamine via L-dopa administration have no 

effect on tonic, directed exploration, in contrast with the findings of Chakroun et al. (2020). One 
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difficulty in connecting our findings to the work laid out here is the gap between systemic and 

regional manipulations. However, given some of the bidirectional effects of dopamine on 

directed exploration when examined in the prefrontal cortex (Frank et al., 2009) versus in the 

striatum (Gershman & Tzovaras, 2018), our null finding could represent the blurring or 

nullifying of these competing regional effects.     

With respect to random exploration, studies examining the role of dopamine have equally 

mixed results.  For example, while some studies have shown that decreasing tonic dopamine 

increases random exploration (Cinotti et al., 2019), others have shown that increasing tonic 

dopamine has a similar effect on behavior (Beeler et al., 2012). When examining striatal 

dopamine, one theory is that D1-mediated signaling in the striatum regulate the randomness of 

action selection during explore-exploit decision-making (Humphries et al., 2012). Specifically, 

Humphries et al. (2012) propose that higher D1 receptor activation in the striatum leads to less 

random exploration, which tracks with evidence from genetic studies associating increased levels 

of DARPP-32 in the striatum with reductions in random exploration (Gershman & Tzovaras, 

2018).  It is also important to note that activation of D2 receptors in both the striatum and 

prefrontal cortex is often associated with increased behavioral flexibility (Barker et al., 2013; 

Beeler et al., 2014; Nelson & Killcross, 2013; Klanker et al., 2013), and thus likely plays a role 

in the willingness to explore novel options. However, in the work of Chakroun et al., (2020) 

systemic administration of the D2 antagonist haloperidol was found to have no effect on random 

or directed exploration. 

With respect to tonic exploration, Ebitz et al. (2019) found that chronic cocaine self-

administration decreased tonic exploratory noise. This caused animals to be less flexible both 

when rules changed (perseverating more) and when the environment was stable (lapsing less), 
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but the slope of the line of best fit describing the relationship between the two types of errors was 

unaffected. First, this effect supports the notion that perseverative errors and lapses share an 

underlying exploratory cause because a single perturbation shifted them both along the same axis 

that they originally co-varied on (Ebitz et al., 2019). Second, the effect of cocaine on tonic 

exploration lends support to theories of increased tonic dopamine driving directed exploration. In 

contrast, our work here shows no effect of increasing tonic dopamine on tonic exploration.  

It is possible that this discrepancy is due to the different mechanisms by which cocaine 

and L-dopa increase tonic dopamine levels. L-dopa, the dopamine precursor, acts mainly through 

providing a phasic dopaminergic stimulation as new dopamine is produced intracellularly and 

released (Robinson et al., 2005; Poletti & Bonuccelli, 2012). Cocaine, on the other hand, blocks 

DAT and thus increases tonic levels of extracellular dopamine (Verma, 2015). In addition, 

cocaine has far-reaching impacts on different aspects of phasic dopamine signaling. For example, 

cocaine has been shown to increase the amount of striatal dopamine produced by the excitation 

of dopaminergic cells in that region (Venton et al., 2006). Further, cocaine intake for as little as 

two weeks has been shown to prolong the activation of D1-receptors (Buchta & Riegel, 2015; 

Park et al., 2013) while decreasing the availability of D2 receptors (Volkow et al., 1993), shifting 

the balance between excitatory and inhibitory signaling. Thus, it is likely that the effects of 

cocaine Ebitz et al. (2019) observe are tied to one (or many) of these receptor-specific signaling 

changes not induced by short-term use of L-dopa. It is equally possibly that they could be due to 

the known effects of cocaine on noradrenergic (Beveridge et al., 2005; Burchett & Bannon, 

1997; Macey et al., 2003) and cholinergic (Gifford & Johnson, 1992; Hurd et al., 1990) signaling 

mechanisms that we did not examine in our study.  
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An important caveat for our null results with respect to dopamine in the current study is 

that dose levels were chosen based off of those shown previously to have effects in the literature 

(Cools et al., 2007; Costa et al., 2015; Turchi et al., 2010). However, given the mixed results 

described above, as well as the differences in pre- versus post- synaptic effects for L-dopa and 

haloperidol, it is unclear whether different doses of these drugs would have produced different 

behavioral effects. For example, the effects of L-dopa on reversal learning performance have 

been shown to depend on baseline dopamine tone (Cools et al., 2007). Similarly, the effects of 

haloperidol blocking striatal D2 receptors on reversal learning performance have been shown to 

follow a U-shaped curve where very low and very high doses seem to impair performance, while 

moderate doses enhance it (Horst et al., 2019). Therefore, without completing a dose-response 

analysis for the effects of these two drugs or accounting for potential region-specific effects, we 

cannot prematurely conclude that they truly have no effect on exploratory behavior in the task.  

Dopamine itself is also precursor for norepinephrine, a neuromodulator that has been 

implicated in regulating exploration (Yu and Dayan, 2005; Aston-Jones & Cohen. 2005). 

Adaptive gain theory, for example, posits that the locus coeruleus (LC) and norepinephrine 

system are crucial for regulating the balance between exploratory and exploitative states (Aston-

Jones & Cohen, 2005). In this framework, the LC’s two ‘modes’ map onto exploratory states. In 

its phasic mode, LC activity favors learning and exploitation by releasing norepinephrine when 

some task-relevant event occurs. In its tonic mode, LC activity has increased noise, favoring 

disengagement from the current behavior and pursuit of others (Aston-Jones & Cohen, 2005). 

Work using designer receptors exclusively activated by designer drugs (DREADDs) expressed in 

the LC has supported a causal relationship between increased tonic LC activity and 

disengagement from ongoing behavior (Kane et al., 2017). However, pharmacological studies 
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more directly examining the explore-exploit dilemma have shown that increases in tonic 

norepinephrine lead to decreases in random exploration (Warren et al. 2017) or have no effect at 

all (Jepma et al., 2010). Many of these studies utilize systemic drugs administered in humans, 

and it is clear from the mixed results that more pathway- or region- specific studies are needed to 

parse the role that norepinephrine plays in exploration, broadly. Moreover, because none of these 

studies looked at tonic exploration, its relation to the LC and noradrenergic systems is unknown.  

 

Neural circuity supporting tonic exploration  

Previous work has focused on the role that various cortical regions play in exploratory 

behavior. Activity in prefrontal regions has been linked to evidence accumulation and evolving 

value representations in decision-making tasks, both of which are critical in signaling when to 

explore. The medial orbitofrontal and adjacent medial prefrontal cortices, known together as the 

ventromedial prefrontal cortex (vmPFC), have consistently been implicated in tracking evidence 

accumulation (Blanchard & Garshman, 2018; Vaidya & Badre, 2020) and representing decision 

values (Chib et al., 2009; Hare et al., 2008; Kable & Glimcher, 2007; Rudebeck et al., 2017; 

Smith et al., 2010). In decision-making tasks, patients with lesions of the vmPFC opt for choices 

yielding high immediate rewards without regard for future losses (Bechara et al., 2000), 

characteristic of a more exploitative state. Further, functional magnetic resonance imaging of 

participants with an intact vmPFC has shown that this region’s activity is significantly correlated 

with decision values during exploitative choices (Daw et al., 2006). It has been proposed that, in 

line with these roles in evidence accumulation and value representation, the vmPFC encodes the 

reliability of a current action plan relative to expected action outcomes in such a way that signals 

the necessity for either exploration or exploitation (Domenech et al., 2020). Taken together, 
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these findings point to an important role for the vmPFC in exploration that is directed at 

maximizing reward. Since we find here that tonic exploration is reward maximizing, it is likely 

that vmPFC engagement is critical to the execution of tonic exploration.  

Another region consistently implicated in the switch from exploitation to exploration is 

the most rostral subdivision of the prefrontal cortex, commonly known as the frontopolar cortex 

(FPC). Because this region is important in high-level behavioral control and mediation between 

multiple goals (Miller et al., 2001; Ramnani et al., 2004; Koechlin and Hyafil, 2007; Boorman et 

al., 2009), it is an intuitive candidate for implementing exploratory states. Elevated FPC activity 

has been directly implicated in driving exploratory choices (Daw et al., 2006; Beharelle et al., 

2015; Zajkowski et al., 2017) and, importantly, FPC activity has been shown to track trial-by-

trial changes in relative uncertainty that informs exploration (Badre et al., 2012).  While our 

measures of relative uncertainty, expressed as the posterior probabilities of reversal and of 

reward, are computationally different from those in Badre and colleagues’ (2012) work, the joint 

implications of the FPC in exploratory states and in uncertainty tracking suggests this region is 

also involved in tonic exploration.  

The dorsolateral prefrontal cortex (dlPFC) is commonly implicated in behavioral 

flexibility, and thus may also be important for tonic exploration. Beginning with early work 

showing that patients with dlPFC damage showed deficits in behavioral flexibility during a set-

shifting task (Milner, 1963), the region has been implicated broadly in encoding information 

about environmental states and the transitions between those states (Genovesio et al., 2006; 

Rushworth & Behrens, 2008, Watanabe & Sakagami, 2007). For example, when human 

participants are making their way through a maze, their level of uncertainty about their progress 

through that maze correlates with activity in the dlPFC (Yoshida & Ishii, 2006). Similarly, in 
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macaques, dlPFC activity has been associated with particular routes through mazes when 

animals become more certain about the most rewarding route to take (Averbeck et al., 2006). 

Interestingly, Bartolo & Averbeck (2020) use the same two-armed bandit task as we do 

here and the same Bayesian model characterizing choice behavior to examine the role of the 

dlPFC in state switches during reversal learning. In their study, Bartolo & Averbeck (2020) 

recorded the activity of neural populations in both the left and right dlPFC while monkeys 

performed the two-armed bandit reversal learning task. They found that the activity of a group of 

neurons in this region corresponded with the posterior probability of a reversal – the same 

posterior probability from our behavioral choice model (M = 2) that we use to predict lapses. 

Looking more closely at the neural signals associated with this posterior, Bartolo & Averbeck 

(2020) found that the dlPFC signal specifically emerged in the trial before the animal switched 

its choice behavior, directly implicating the region in some state-switching process that supports 

reversal in the two-armed bandit task. To investigate whether this region also supports tonic 

exploration in the task, future work could test whether the dlPFC activity, in addition to 

corresponding with the posterior probability of a reversal before the switch in choice behavior 

occurs, also corresponds with that same posterior before lapses occur. For example, given how 

phasic exploration (i.e. how animals reverse their behavior) is negatively correlated with lapses 

in behavior, neural activity in the DLPFC that encodes the switch may be negatively correlated 

with activity in the same region during lapses if this region is involved in tonic exploration.  

While it is often assumed that cortical areas are the primary drivers of higher order 

behaviors such as deciding whether to explore, recent work has also highlighted the contributions 

of subcortical areas to exploration. For example, both the amygdala (Averbeck and Costa, 2017; 

Belova et al., 2008; Morrison and Salzman, 2010; Paton et al., 2006) and the ventral striatum 
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(Cai et al., 2011; Jocham et al., 2011; Shidara et al., 1998; Simmons et al., 2007; Strait et al., 

2015) represent value across a range of decision-making tasks. In a study by Costa et al. (2016) 

using the same two-armed bandit reversal learning task we used here, animals performed the task 

after receiving lesions of either the amygdala or the ventral striatum (VS). Costa et al. (2016) 

found that animals with lesions of the VS and animals with lesions of the amygdala chose the 

high value option less consistently compared to control animals in all three of the probabilistic 

reward schedules (80/20, 70/30, 60/40). While this decreased choice consistency may indicate 

that the animals simply had more randomness in their choice behavior, it may also reflect 

increased tonic exploration when the amygdala or ventral striatum is lesioned.  

The effects of striatal lesions that Costa et al. (2016) observe are consistent with the 

theory that reduced D1-mediated signaling in the striatum increases the randomness of action 

selection during explore-exploit decision-making (Humphries et al., 2012). It is possible, then, 

that decreased choice consistency in VS-lesioned animals represents an increase in tonic 

exploration stemming from the reduced influence of D1 projections to cortical areas. For 

example, given the known connectivity between ventral areas of the striatum and the vmPFC 

(Haber, 2016) as well as the role of the vmPFC in representing value during exploitative choice 

(Daw et al., 2006), reduced D1-mediated activation of vmPFC by the VS may reduce animals’ 

exploitative tendencies and in turn generate tonic exploratory noise in behavior. Similarly, work 

in rodents has shown that D1 receptors are primarily expressed in the basolateral nucleus of the 

amygdala (Abraham et al., 2014; Muly et al., 2009; Weiner et al. 1991), which sends projections 

to the medial prefrontal cortex in rodents (Hoover & Vertes, 2007) and in primates (Kim et al. 

2011). Thus, a similar mechanism could be at play in the amygdala-lesioned animals whose 

choice consistency was lower, where reduced D1 input to medial prefrontal cortices increases 
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tonic exploratory noise in behavior. However, without applying similar behavioral analyses as 

we do here to rule out nuisance causes of this randomness in behavior, it is unclear whether or 

not the effects of subcortical lesions on choice consistency represent an effect of cortico-

striatal/amygdalo-cortical dopaminergic projections on tonic exploration. To test whether the 

noisy decision-making in the lesion groups’ behavior is due to tonic exploration, future work 

could use the same methods as we did here (i.e. correlating phasic exploration with lapses during 

the reversal phase of the task) and observe the relationship. First, these analyses would need to 

establish a negative correlation in control animals between the two measures to establish that 

tonic exploration is being used in the task. Second, these analyses could examine if and how 

lesions of the VS or amygdala affect this relationship correlation in order to determine possible 

effects of either region on tonic exploration.  
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Summary and Conclusions 
 
 In summary, lapses in decision-making during the reversal phase of a two-armed bandit 

may serve as a behavioral metric for tonic, directed exploration. Adding to the existing literature, 

we show that tonic exploration is a viable strategy in probabilistic reward environments and that 

its implementation is not dependent on the overall levels of expected uncertainty in the 

environment. Importantly, we also find that L-dopa and haloperidol have no effect on the use of 

tonic exploration. Additional studies are needed to validate the use of tonic exploration across 

experimental paradigms and across species, as well as to elucidate the mechanisms that support 

this kind of behavior.  

 Given the importance of uncertainty in driving exploration, future studies should assess if 

and how tonic exploration is employed with respect to unexpected uncertainty, volatility, and 

unpredictability in stimulus-outcome or action-outcome relationships. Additionally, our lack of 

dopamine effects here stand in contrast to other work that has identified dopamine as a critical 

modulator of the explore-exploit tradeoff. Future studies must take advantage of more targeted 

(i.e. regional, chemogenetic) manipulations to parse out the role of dopamine (or norepinephrine) 

in regulating tonic exploration. Lastly, future studies should leverage imaging techniques as well 

as manipulating region- and pathway-specific activity during tasks where tonic exploration is 

used to better understand the neuroanatomy that supports tonic exploration.  

 In conclusion, the work outlined in this thesis highlights the importance of incorporating 

measures of tonic exploration into solutions of the explore-exploit dilemma. By showing that 

tonic exploration is being employed to reduce uncertainty in complex learning environments, we 

demonstrate the potential relevance of tonic exploratory noise to current theories of exploratory 

decision-making.  
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