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Chapter 1: Specific Aims 
 

Type 1 diabetes (T1D) education focuses on managing blood glucose by estimating 

carbohydrate (CHO) meal content and dosing mealtime insulin based on an insulin to 

carbohydrate ratio. In general, one unit of rapid-acting insulin is administered per an 

individualized gram amount of carbohydrates in a meal. Although the primary macronutrient 

affecting postprandial glycemia is considered carbohydrates, other dietary factors including 

proteins and fats also have an impact. Several feeding studies have demonstrated high protein 

and fat meals delay the time to peak glucose and increase postprandial glucose levels. 

However, there is limited information about how high protein and fat meals influence 

postprandial glucose among adults with T1D in a free-living setting. This project fills the gap to 

identify how, in a free-living situation, high fat and high protein meals affect postprandial 

glycemia in people living with type 1 diabetics.  

A delay in the time to postprandial glucose (PPG) peak and an increase of postprandial 

glucose area under the curve (AUC) has been reported in feeding studies focused on high 

protein and high fat meals. Increasing fat content resulted in a delayed peak and longer 

duration of PPG. Likewise,  increasing protein in a protein drink resulted in a late peak in PPG. 

For meals that contained both high protein and high fat, there was a twofold increase in the 

glucose incremental AUC. To date, feeding studies in a controlled environment have examined 

variable protein and fat content impacts on PPG but how these different macronutrient 

distributions effect PPG in a free-living situation is currently unknown. 

However, measuring both dietary intake and postprandial glycemia in a free-living 

situation is prone to high amounts of measurement error. Current dietary recall methods such 
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as a 24-hour dietary recall or recorded food diary, require participants to have sufficient 

memory skills and or be diligent in recording intake. Incomplete documentation and inaccurate 

food measurements can impact or skew dietary intake results. These traditional dietary 

reporting  methods result in underreporting ranging from 11 to 41 percent.1 Overreporting is 

not common. Similarly, measuring PPG is problematic and frequent measures have in the past 

required multiple blood draws or finger sticks. The advent of continuous glucose monitoring has 

dramatically changed the landscape for measuring PPG.2 The T1Dexi pilot study was designed to 

address these issues by using innovative technologies to measure dietary intake and PPG.  

The overall goal of the Type 1 Diabetes Exercise Initiative (T1Dexi) pilot study was to 

establish methods to measure the impact of different types of exercise on glycemic control 

among individuals with T1D. The pilot study enrolled 48 participants and used a novel phone 

app for collecting exercise and dietary intake data. Glycemia was measured with continuous 

glucose monitoring. Thus, the T1Dexi pilot data is a unique data set that captured both nutrient 

intake and continuous glucose data to measure post-prandial glycemic response in subjects 

with T1D. We examined the effects of high protein and high fat meals within subjects on 

postprandial glycemia using this data set. We hypothesized that increased protein and fat will 

delay time to peak PPG and increase the total PPG response similar to studies in several 

controlled feeding studies. To test this hypothesis, we looked at the following specific aims: 

Aim 1: To determine the effects of protein and fat in mixed meals on time to peak glucose in 

participants with type 1 diabetes.  

Hypothesis: We hypothesize that meals higher in protein and fat will delay time to peak 

postprandial glucose.  
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Aim 2: To determine the effects of protein and fat in mixed meals on post-prandial glucose AUC 

in participants with type 1 diabetes.  

Hypothesis: We hypothesize that meals higher in protein and fat will increase postprandial 

glucose AUC.  

Chapter 2: Background and Review of the Literature 
 

Type 1 diabetes mellitus, T1DM, is a condition which results in the inability secrete 

adequate insulin to maintain normal blood glucose. During 2016, it was estimated that T1DM 

affected 0.55 percent or 1.3 million adults in the United States of America.3,4 Individuals with 

T1DM experience the destruction of pancreatic beta-cells by the immune system which results 

in insulin insufficiency.3 Without insulin, the body is unable to properly utilize the glucose that 

accumulates in the bloodstream. Nutrition management for T1DM focuses on managing blood 

glucose by estimating carbohydrate meal content and dosing mealtime insulin based on an 

insulin-to-carbohydrate ratio.5,6 To prevent ketoacidosis and mortality, individuals with T1DM 

are dependent on exogenous insulin. In general, one unit of rapid-acting insulin dose is 

administered per an individualized gram amount of carbohydrates in a meal. Although 

carbohydrates are closely monitored for insulin administration estimations, individuals with 

T1DM continue to experience difficulty in controlling blood glucose when consuming mixed 

meals containing proteins and fats.2,7,8 Some studies have suggested that the efficacy of 

mealtime insulin administration should be determined with the consideration of macronutrient 

distribution consumed at each meal.9-12 However, guidelines have not been established to 

account for those additional meal components.  
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2.1 Insulin 

Insulin is a peptide hormone that is secreted by pancreatic beta-cells in response to the 

rise in blood glucose to initiate glucose disposal and maintain euglycemia (Figure 1). The 

glucose-mediated insulin secretion process begins with glucose entering the cell through the 

glucose transporter GLUT-2.13 Glucokinase, found in the cell, will respond to cytosolic glucose 

by phosphorylating it into glucose-6-phosphate (G6P). Rapid rise in intracellular ATP from 

glycolysis of G6P initiates depolarization of the beta-cell. The depolarization of the cell will 

activate the voltage gated Ca2+ channel to open and increase the Ca2+ concentration. The influx 

of Ca2+ will signal for the release of insulin into the blood.14 From the blood, the insulin will bind 

to the insulin receptor on the adipose or muscle tissue cells and intracellular signaling will result 

in GLUT-4 translocation to the plasma membrane to allow glucose uptake by the cell. Insulin 

signaling in the hepatocytes suppresses endogenous glucose release into the blood. Thus, 

insulin secretion will cause glucose disposal into muscle and adipose with a decrease in 

endogenous glucose release from the liver resulting in lower blood glucose concentrations. 

Patients with T1DM have a loss of pancreatic beta-cells leading to the absence of insulin 

secretion in response to hyperglycemia and reliance on exogenous insulin to manage blood 

glucose concentrations.  

Figure 1: Insulin action to lower blood sugar 
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Insulin resistance occurs when higher than normal insulin levels are required to 

maintain normal blood glucose.13 Although commonly seen in individuals with T2DM, insulin 

resistance can occur in those with T1DM. The effects of insulin resistance results in the inability 

of target tissues such as muscle and adipose to effectively respond to insulin and promote 

glucose uptake. Insulin levels are low while in basal state and high during the fed sates in the 

normal condition; insulin levels are higher during fed states with insulin resistance.13 Increased 

insulin resistance makes it difficult for individuals to maintain euglycemia. 

In response to glucose, insulin secretion in a healthy individual is biphasic. During the 

first phase, insulin will be released within 1 minute, peak between 3-5 minutes, and last a 

duration of approximately 10 minutes.13 This is a rapid response that represents the insulin 

stored in secretory granules. During the second phase, insulin will be released after a glucose 

bolus, approximately 10 minutes later and last the duration of the hyperglycemic event. The 

second phase represents the insulin that is being newly synthesized.13 The ultimate goal of 

T1DM management is to mimic the action of the pancreas with exogenous insulin delivery and 

maintain normal blood glucose levels. Several different methods are currently used by patients 

to deliver exogenous insulin.  
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2.2 Insulin: MDI vs. Pump 

Individuals with diabetes can receive supplemental exogenous insulin through injection or 

by pump. Multiple daily injections, MDI, therapy involves administering exogenous insulin 

throughout the day by way of syringe, pen, or prefilled pen. Injections are administered 

subcutaneously at the abdominal, arms, and thigh. However, subcutaneous injections at the 

abdomen is preferred due to the quicker absorption into the bloodstream.15 MDI for the 

treatment of T1DM is a combination of bolus and basal insulin and vary by its onset, peak, and 

duration.16 Bolus insulin is given during meals and is considered rapid-acting. Basal insulin is 

given at set times throughout the day and can be intermediate- or long-acting. Basal insulin 

analogues are a sub-group of human insulin medications that are generated in the lab and are 

often preferred over Neutral Protamine Hagedorn or NPH, due to the efficacy, safety and 

patient satisfaction.16 NPH insulin is produced through the precipitation of recombinant 

synthesized human insulin with zinc and protamine.15 Either NPH or a long-acting analog are 

typically used along with meal-time short-acting bolus insulin to manage glycemia via MDI. 

An insulin pump is another method used to deliver insulin. Individuals who use a pump will 

receive continuous supply of insulin. The pump is often used by those who have difficulty 

meeting treatment targets or experience frequent or severe hypoglycemia.16 Insulin pumps 

provide insulin through normal, square-wave, and dual-wave boluses.17 The continuous nature 

of the pump may mimic physiologic insulin delivery more closely when compared to the MDI 

method. Temporary changes to the infusion rate of the pump can be conducted to prevent 

imminent hypoglycemia or glucose swings.16 Pump technology is advancing and modern pumps 

can have sensor-augmented systems to prevent insulin delivery to prevent hypoglycemia during 
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low blood glucose levels.16 Automated insulin delivery systems are now available, including 

670G and Control IQ. Automatic bolus calculators can be used by those who have insulin pumps 

to determine bolus insulin dose by entering estimated carbohydrate intake for the meal, 

information about recent glucose concentration, and considering estimates of insulin 

sensitivity.12 This type of insulin dosing is beneficial for aiding with PPG concentration control. 

Regardless of the method of delivery, either MDI or pump, exogenous insulin therapy does not 

completely replicate the endogenous glucose control and further study to improve these 

systems such as improved bolus calculators and artificial pancreas systems are ongoing.  

2.3 Nutrition Intervention  
 

Insulin therapy and glucose monitoring is needed to achieve optimal glycemic control. 

Prescribed insulin dose regimens range from 0.4-1.0 units/kg/day.16 If an individual has an 

elevated pre-prandial blood glucose reading, an insulin “correction dose” may be administered 

to ensure blood glucose does not remain elevated.16 An insulin correction dose can be 

determined by the individuals’ insulin correction factor or insulin sensitivity factor. Bolus insulin 

dosing is based on carbohydrate counting and insulin-to-carbohydrate regimens to aid with 

maintaining appropriate blood sugar levels after eating.18 Other considerations for bolus insulin 

administration includes planned exercise and illness.16 The method of carbohydrate counting 

involves estimating the number of carbohydrate grams in a meal or snack and matching it to 

the insulin dose. In general, 1 unit of rapid-acting insulin is administered per 12-15g of 

carbohyrdates.16 Carbohydrate counting with adjusted insulin boluses improves glycemic 

control when insulin is adjusted accordingly.6 The insulin-to-carbohydrate ratio is dependent 

upon the individual’s insulin sensitivity. Insulin dosage per gram of carbohydrate is typically 
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prescribed by the patient’s physician and is individualized based on the patient’s glycemic 

control. This method allows for more freedom when choosing foods to eat, but does leave 

room for inconsistent carbohydrate intake throughout the day.6 Patients may experience 

episodes of hyper- and hypoglycemia when under- and overestimating  carbohydrates in a 

meal.19,20 Although carbohydrates are identified as the primary macronutrient effecting PPG, it 

has been observed that other meal components, such as protein and fat, can alter the 

postprandial glycemic curve and may lead to delayed glucose peaks. It has been suggested that 

adjusting insulin dosage to include protein and fat may further improve glycemic control.9,10 

2.4 Postprandial Glycemia 

Postprandial glycemia, PPG, is the concentration of plasma glucose after eating.21  In 

non-diabetic individuals, fasting glucose concentrations are typically less than 100 mg/dL. After 

the start of a meal, approximately 10 minutes, the absorption of dietary carbohydrates begins 

and the concentration of blood glucose rises.21 The composition, quality, and timing of meals 

eaten impact the extent and time of blood glucose concentrations.21 In non-diabetic individuals, 

the peak of blood glucose may reach up to 140mg/dL approximately 1 hour after the start of 

the meal and descends to pre-prandial levels after 2-3 hours.21 For individuals with T1DM, 

blood glucose peak and duration are determined by the amount of exogenous insulin 

administered. Uncontrollable blood glucose, such as hyper- or hypoglycemia, can lead to 

adverse health effects.22  

2.5 Hyper- vs Hypoglycemia  
 

Either hyper- or hypoglycemia can have adverse effects and the goal of insulin therapy is 

to avoid glycemic extremes. Hyperglycemia is described as elevated blood glucose and can be a 
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result of insulin deficiency.23 It is described as having blood glucose reading of >130mg/dL after 

fasting or >180mg/dL two-hours after a meal. Uncontrolled hyperglycemia is a risk factor for 

microvascular complications that can manifest into nephropathy, neuropathy, and 

retinopathy.12,23 Symptoms of hypoglycemia or low blood glucose include palpitations, cognitive 

impairment, seizures and unconsciousness.23 Mild hypoglycemia is described by a blood glucose 

reading of <70mg/dL, moderate hypoglycemia is a reading of 55-70 mg/dL, and severe 

hypoglycemia is <55mg/dL.  

2.6 PPG for T1DM and T2DM 

Suboptimal glycemic control contributes to elevated PPG. When compared to 

nondiabetic individuals, both T1DM and T2DM experience elevated and more prolonged PPG 

excursions. This change in PPG excursions is related to the abnormal secretion of insulin and 

glucagon, hepatic glucose uptake, reduction in hepatic glucose production, and peripheral 

glucose uptake (figure 1).21 There are slight differences between the PPG excursions of 

individuals with T1DM and T2DM. For T1DM individuals, the time and height of peak of insulin 

concentration and PPG is dependent upon the type, amount, and route of the administered 

exogenous insulin.21 Those with non-insulin dependent T2DM experience a delay of peak insulin 

levels and insufficient control of PPG excursions due to inadequate endogenous insulin.21 

Several additional factors can influence PPG including meal composition and gastric emptying 

that will be discussed in more detail below.  

2.7 Gastric Emptying 
 

Gastric emptying impacts the time it takes to reach glycemia peaks. Blood glucose and 

gastric emptying have a bidirectional relationship; the rate of the gastric emptying influences 
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the level of PPG and the amount of blood glucose present in the bloodstream will impact the 

rate of gastric emptying.8 Patients with T1DM often experience delayed gastric emptying that 

can lead to prolonged hyperglycemia.8 Gastric emptying is influenced by the composition of the 

meal whether solid or liquid, the amount of energy present, and mixture of macronutrient 

components.8 Delayed gastric emptying times are seen for solid foods due to the duration 

needed for mechanical digestion whereas liquids increase gastric emptying.8 Consuming meals 

that have a high energy content will delay gastric emptying. Dietary fiber, fat, and protein have 

also been shown to delay gastric emptying due to the slower breakdown of those foods. Dietary 

fats and proteins have been shown to increase PPG excursions, potentially related to the 

delayed gastric emptying.5,24 Although dietary fat and proteins impact glycemia independently, 

meals are often eaten with combination of macronutrients and both have an additive effect on 

the PPG.24,25   

2.8 Protein and Glycemia 

Dietary protein it is broken down into amino acids to be used in processes such as 

synthesis of bodily proteins for the building of cell structures, production of hormones and 

enzymes, and glucose production. Amino acid digestion, absorption and uptake into b-cells can 

independently stimulate a postprandial insulin response.26 The consumption of protein in a 

mixed meal or alone had been shown to delay, sustain, and increase PPG concentrations and 

excursions.24 Protein tends to impact PPG towards the end of the glycemic excursion, several 

hours after a meal.2,12 There are two methods in which protein is thought to influence PPG: 

alteration of hormones that are used to maintain glucose homeostasis and the conversion of 

amino acids to glucose through gluconeogenesis.24  
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The hormones involved with PPG include glucagon and cortisol. Eating a high protein 

meal increases plasma glucagon levels in the blood.24,27 For those with T1DM, insufficient 

insulin and an increase in glucagon will cause hyperglycemia. Although not well understood, it is 

speculated that the hormone cortisol may also effect PPG.24 It is speculated that high-protein 

meals increase cortisol concentrations which can increase insulin requirements. High cortisol is 

thought to play a role in insulin resistance.27  

High protein meals may increase PPG by stimulating gluconeogenesis in the liver. 

Gluconeogenesis is the production of glucose through non-carbohydrate sources including the 

keto acids of a variety of different amino acids. Amino acids are utilized as an energy source 

through the conversion into glucose or production of ketone bodies.24 Insulin inhibits 

gluconeogenesis, however inadequate insulin will promote the increase in gluconeogenesis 

which will result in an increase in hepatic glucose output and potentially an increase in blood 

glucose.24  

High-protein meals appear to increase the time to peak glucose after a meal. It was 

observed in one study that the addition of 35 grams of protein to 30 grams of carbohydrates in 

a meal lead to an increase in PPG levels by 48mg/dl at 5 hours post-prandially.25 In another 

study using 30g carbohydrate drinks with varying amounts of protein (12.5, 25, 50, and 75g), it 

was observed that the addition of protein led to glycemic excursions between 150 and 300 

minutes post-prandially. 28 These studies suggest that the addition of protein increases the 

duration of blood glucose elevation (5 hours rather than 2-3) and delays time to peak glucose. 

The combination of carbohydrates with protein has an additive effect that is different than 

when protein is eaten alone.2,29 Subjects consuming small amounts of protein alone did not 
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have a change in PPG; when subjects consumed more than 75 grams of protein alone there was 

a significant elevated PPG excursion.29 In contrast, as little as 12.5 grams of protein with 

carbohydrate delayed peak PPG. Meals containing only protein may need a different insulin 

dosing regimen when compared to a mixed meal of carbohydrates and protein.2 However, it 

should be noted that most meals are mixed containing carbohydrates, proteins and fats. There 

have been different suggestions to how insulin dosages can be adjusted to account for protein 

in meals. One study has suggested that for a meal with 50 grams of protein with carbohydrates 

and no fat, adding 30 percent more insulin to the dose will help with glycemic control.30 

However, it has also been suggested that 100 kcals of protein and fat is equivalent to the bolus 

insulin dosage for 10 grams of carbohydrates.31   

2.9 Lipids and Glycemia  

Dietary fat is broken down into fatty acids from triglycerides and absorbed across the GI, 

circulate as part of lipoprotein molecules or free fatty acids throughout the body and stored in 

the body for future energy use.24 There are four methods in which glycemic response can be 

influenced by dietary triglycerides: delayed gastric emptying, increased free fatty acids, changes 

in hormones, and increased gluconeogenesis from the glycerol. When dietary fat is consumed, 

gastric emptying is delayed which causes a delayed glycemic peak.2,12,24  Elevated free fatty 

acids that are in circulation stimulate a greater  insulin response among those without T1DM. 

Among T1DM individuals the absence of a normal beta cell response when free fatty acids are 

elevated suggests that bolus insulin doses based solely on carbohydrates will be insufficient to 

prevent postprandial hyperglycemia. In regards to hormones, dietary fats play a role in the 

release of glucagon which increases gluconeogenesis.24,32 Lipids can be utilized in 
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gluconeogenesis though the use glycerol. Glycerol comes from triglycerides and is broken down 

into pyruvate which can be used in gluconeogenesis for energy production.24  

How insulin dosage could potentially be adjusted to account for the changes in blood 

glucose caused by a diet high in lipids is currently debated. In a randomized within-subject trial, 

the relationship between dietary lipid amount and glycemia was investigated to determine the 

optimal insulin adjustment for dietary lipid.7 It was determined that there was not a significant 

difference in glycemia based on the source of dietary lipid such as saturated, monosaturated or 

polysaturated fats. However, increasing the amount of fat did change the glucose curve; the 

early postprandial glucose response is lower and late postprandial response is higher with a 

high fat meal.7 The findings of the this study suggest that adjusting insulin dosage will aid in 

minimizing the risk of hyperglycemia and that an additional 20 percent of insulin be given when 

consuming a meal with 60 grams or more of fat.7 In another study, participants required 42 

percent more insulin when consuming a high-fat meal compared with consuming a similar low-

fat meal with a similar amounts of carbohydates.11  

2.10 Controlled feeding-study vs. Free-living situations 

Feeding studies refers to a specific study design in which food of known composition is 

provided to the participants. In a controlled feeding-study, food and beverages are precisely 

prepared by the study staff for the individual to consume.33,34 Individuals will be either be 

admitted to a clinical research center or come to the center to eat a meal and pick up additional 

meals of a specified nutrient content. For a controlled setting, there is less variability when 

estimating nutrient and energy but participants have limited food choices. Challenges include 

adhering to the diet and refraining from temptations from foods not a part of the study.33 
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However, all the current studies available to assess the effects of varied macronutrient 

distributions on PPG in subjects with T1DM have used the controlled-feeding method. Although 

the controlled-feeding method is ideal for studying specific dietary effects on biological 

processes, the generalizability of these studies is limited. 

In a free-living situation, the study staff monitor the participant’s dietary intake. 

Estimating energy intake for individuals partaking in a free-living situation is plagued with 

difficulties due to the requirement of self-reporting.35 Variability of the diet intake and 

inaccuracies of food recalls make it difficult to accurately measure both the types of foods and 

how much the individual actually consumed. However, free-living dietary intake studies are 

able to provide insight into typical dietary patterns of participants.  

2.11 Methods to measure dietary intake 
  

Traditional dietary assessment tools such as 24-hour recalls, diet records, and food 

frequency questionnaires are reliant upon the participants’ ability to recall all foods eaten and 

provide estimations of the amount. For a 24-hour recall, an interview is conducted and 

responses are recorded by the interviewer.36 This method of diet assessment requires 

participants to recall and report all foods and beverages consumed in the last 24 hours. 

Limitations to this method includes the inaccurate relay of diet consumption related to 

knowledge, memory, or interview probing. A single 24-hour recall may not be representative of 

the participant’s typical diet and multiple days of recalls may be warranted. Diet records 

require participants to record food and beverage amounts, ideally at the time of consumption, 

over one or more days.36 Limitations include the alteration of food choice and amount 

consumed related to reactivity bias and burden of the participant to diligently record intake.36 
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Food frequency questionnaires require participants to recall usual intake of a specific list of 

foods and beverages during a specific period of time. Limitations include having a food list that 

is appropriate for the population being observed, such as the inclusion of culturally specific 

foods, and the results of the assessment may provide crude estimates of intake and may not be 

reflective of the portion sizes the individual would typically choose.36 Traditional methods all 

have limitations and novel methods to accurately measure dietary intake are being explored 

including digital food photography. 

Digital food photography is an innovative method for collecting and estimating dietary 

intake. This method utilizes mobile technology such as a smartphone or other similar device to 

self-report dietary intake and provide documentation for food portion sizes using visual 

estimations.37 A digital diet record is a valid and feasible method for dietary assessment and 

improves estimations of macronutrient content in meals. 38,39 Studies validating digital food 

photography demonstrated energy intake using this method was better than traditional 

methods.40 

The T1 Dexi pilot project uses the Remote Food Photography Method © (RFPM©) which 

is a validated method for assessing diet intake41 in free-living and laboratory conditions.40,42 The 

use of the RFPM provides detailed information about food selection, consumption and waste.40 

RFPM© uses ecological momentary assessment (EMA) methods to improve data quality and 

reduce missing data through automated reminders for participants to capture images of their 

foods.43,44 This method of food recall does not required the participant to estimate portion 

sizes. Trained evaluators use the before and after meal photos to estimate portion sizes which 

increases accuracy and improves estimation of nutrient intake.41,43  
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The use of remote food photography has the advantage of reducing patient burden and 

incorporating computer automation for improving accuracy.44 Energy intake calculated using 

the RFPM was compared to measured total energy expenditure by doubly labeled water; RFPM 

captured total energy intake within 3.7% of the TEE representing a significant improvement 

over traditional methods of dietary intake assessment.43 Specific foods and portion sizes are 

entered into The Food Photography Application© software that calculates the energy and 

nutrient content of those foods based on values from the Food and Nutrient Database for 

Dietary Studies.44 The process for estimating intake involves the use of trained registered 

dietitians (RDs) who compare the images of food selections and waste to images of standard 

portions.44  

2.12 T1-Dexi Publications 
 
 Two manuscripts that have been published based on the T1-Dexi pilot data set. The 

primary findings of these publications are summarized below.   

 The ability of patients with T1DM to accurately estimate meal content, particularly the 

protein and fat content of meals is relatively unknown. In this analysis, participant estimates 

the meal were compared with expert nutrition analyses performed via the Remote Food 

Photography Method© (RFPM©). Participants were asked to take photos of meals/snacks on 

the day of and day after scheduled exercise, enter carbohydrate estimates, and categorize 

meals as low, typical, or high protein and fat. Glycemia was measured via continuous glucose 

monitoring. Participants (n=48) were 15-68 years (34± 14 years); 40% were female. The 

majority (70%) of both low protein and low-fat meals were accurately classified as such by 

participants. However, only 22% of high protein meals and 17% of high fat meals were 
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accurately classified. Forty-nine percent of meals with <30 g of carbohydrates was 

overestimated by an average of 25.7±17.2 g. The majority (64%) of large carbohydrate meals 

(≥60 g) were underestimated by an average of 53.6±33.8 g.45 Glycemic response to large 

carbohydrate meals was similar between participants who underestimated or overestimated 

carbohydrate content, suggesting that factors beyond carbohydrate counting may impact 

postprandial glycemic response.45  This is an interesting finding in the context of the current 

proposal. It is possible that other factors such as pre-prandial glucose, exercise or other factors 

will impact PPG regardless of the protein and fat content of the meal. Controlling for these 

factors will be an important aspect of this analysis. 

 A subsequent study examined the 24-h effects of exercise on glycemic control as 

measured by continuous glucose monitoring (CGM). Participants in the Ti-Dexi pilot study were 

randomly assigned to complete twice-weekly aerobic, high-intensity. interval, or resistance-

based exercise sessions in addition to their personal exercise sessions for a period of 4 weeks. 

Exercise was tracked with wearables and glucose concentrations assessed using CGM. An 

exercise day was defined as a 24-h period after the end of exercise, while a sedentary day was 

defined as any 24-h period with no recorded exercise +/-10 minutes long. Sedentary days start 

at least 24 h after the end of exercise. Mean glucose was lower (150 – 45 vs. 166 – 49 mg/dL, P 

= 0.01), % time in range [70–180 mg/dL] higher (62% – 23% vs. 56% – 25%, P = 0.03), % time 

>180 mg/dL lower (28% – 23% vs. 37% – 26%, P = 0.01), and % time <70 mg/dL higher (9.3% – 

11.0% vs. 7.1% – 9.1%, P = 0.04) on exercise days compared with sedentary days.46 Glucose 

variability and % time <54 mg/dL did not differ significantly between exercise and sedentary 
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days. No significant differences in glucose control by exercise type were observed.46 This study 

illustrates the substantial impact of exercise on PPG independent of macronutrient intake.  

2.13 Conclusion 
 
 In conclusion, we investigated how protein and fat content of meals impacts PPG of 

subjects with T1DM enrolled in the T1Dexi Pilot study. This analysis addressed the gap in the 

current literature on the impact of high protein and high fat meals on PPG among subjects with 

T1DM. There is some evidence that high protein and high fat meals delay time to peak PPG and 

increase total AUC of PPG in patients with T1 DM. To date, studies have tested the effects of 

protein and fat on PPG using controlled feeding study designs. The analysis in this project will 

use data collected from free-living subjects with T1DM collected using the T1-Dexi app and 

CGM.  

Chapter 3: Methods 
 
 This was a secondary analysis of a previously collected dataset. The study was a 

prospective cohort of adolescents and adults with T1DM. Participants were recruited and 

randomized into groups of: aerobic, resistance, or High Intensity Interval Training *HIIT), and 

followed prospectively. Inclusion criteria included: age between 15-70 years, use of either 

multiple daily insulin injections (MDI) or an insulin pump, and a diabetes duration for at least 2 

years. For this analysis, the key outcome variables included macronutrient content of the meal, 

the time to peak glucose, and the area under the curve of post-prandial glucose. A brief 

description of how the data was collected is provided below. 
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3.1 Primary Study Description 

 In the primary study, participants were trained to use the T-1 Dexi app, to record 

exercises and collect images/photos of food selection before meals and plate waste after meals 

for up to 16 days during the 4-week protocol. The 48 participants ranked meals as low, typical 

or high protein; low, typical, or high fat; small, medium or large meal size; and entered the 

estimated grams of carbohydrates for that meal into the app. Meal insulin bolus data was 

collected through Tidepool/Medtronic if the subject was using an insulin pump and by Clipsulin 

or written logs if the subject was an MDI user. The 2,731 meal photos were analyzed by the 

Ingestive Behavior Laboratory at the Pennington Biomedical Research Center using the Remote 

Food Photography Method© (RFPM©) to estimate nutrient content.  

3.2 Tidepool and Carelink 

 Bolus and basal insulin data were collected through the server software Tidepool (Palo 

Alto, CA) or Carelink by Medtronic MiniMed (Devonshire, CA). This data was collected through 

the participants use of a Medtronic insulin pump and wireless Bluetooth-enabled smart insulin 

pen (Clipsulin). For participants using the MDI method, data was collected through written logs.  

3.3 Continuous Glucose Monitoring 

 Participants’ blood glucose was estimated using continuous glucose monitoring (CGM). 

The participants used their personal CGM (50% Dexcom; 10% Medtronic, 2% Abbott) and those 

who were not current CGM users had a blinded GCM (38% Dexcom G4 with 505 or G5). Meal 

entries were compared to the glucose levels to observe PPG excursion were related to the 

carbohydrate estimation and nutrient intake data captured by RFPM©. 
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3.4 Remote Food Photography Method 

 Participants utilized the T1-Dexi App to document and measure nutrient intake. A 

smartphone was used by the participant to capture images of their food before consumption 

and food waste after. When using the app, food images were captured at an arm’s distance 

away and at a 45-degree angle with a reference card or fiduciary marker. A reference card or 

fiduciary marker was provided to the participant before the data collection and was used as a 

reference point of measure. Two images were captured per eating occurrence and transmitted 

to the server for analysis. The food images were analyzed by a trained human rater that used a 

computer program that linked the foods in the images to the Food and Nutrient Database for 

Dietary Studies and other sources, such as manufacturer’s information.  

 The human rater assessed the foods in the image and linked them to a nutrient 

reference in the Food and Nutrient Database for Dietary Studies.47 Reference images were from 

a food image archive and had known quantities of foods. The rater compared the reference 

image to the participant image and estimated food selection, portion sizes, and plate waste. 

This method of estimation relied on existing and validated visual comparison methodology.37   

3.5 Statistical Methods 

 The statistical software, STATA IC 16, was used for the analyses. Summary descriptive 

statistics included mean, standard deviation, and 95% confidence intervals. Primary dependent 

variables included time to peak postprandial glucose and PPG area under the curve. 

Independent variables included pre-meal glucose concentration, meal energy, carbohydrate, 

protein and fat content, insulin bolus, sex, age, body weight, previous exercise and time of meal 

consumption. Variable distributions were tested for normality and co-linearity before analysis. 
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Several decisions regarding data inclusion/exclusion were determined after data 

alignment and cleaning. These included PPG data from end of the meal until the beginning of 

the next meal; meals with less than 180 minutes of PPG were excluded. Meals with rescue 

carbohydrate intake within 60 minutes, and meals with missing insulin data. 

Mixed effect multiple linear regression models were implemented for each specific 

hypothesis. Time to peak glucose was the response variable for the first model. Fixed effects 

included meal energy, carbohydrate, protein and fat with participant as a random effect.  

PPG area under the curve (AUC) was calculated using the trapezoidal method. PPG AUC 

was the response variable for the second model. Similar to the first model, fixed effects 

included meal energy, carbohydrate, protein and fat content with participant as a random 

effect. The model residuals were assessed for skewness; no transformation was employed due 

to normal distribution.  

Missing CGM data for the glucose reading at minute 0 and 180 was interpolated using 

linear interpolation. For the linear interpolation method, the nearest 3 CGM measurements 

were used to interpolate the missing value. Missing pre-meal and time 180 glucose values were 

interpolated before total area under the curve (AUC) was calculated. Incremental AUC was 

calculated by subtracting the area below the pre-meal glucose concentration as a measure of 

glucose excursion after a meal. 

Chapter 4: Results 
4.1: Subject characteristics 
  
 Characteristics of the study participants are given in Table 1. The study enrolled 48 

participants. Thirteen participants were excluded due to the absence of quality meal photos 
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from which to analyze nutrient intake. The remaining participants (n=35) had from 2-40 meals, 

with an average of 18.7 meals per participant with corresponding nutrient analysis. Participants 

ranged in age from 16 to 68 years and 68.6% were male. They had a mean T1DM duration of 

20.4 ± 13.6 years. All the participants identified as white non-Hispanic. They had a mean HbA1c 

of 7.2%.  

Table 1. Subject Characteristics (N = 35)  
Characteristics Summary Statistics 

Age (yrs.) 
Mean (SD) 
Range  
15-25 
26-44 
45-70 

 
35.9 (15) 
16 to 68 

10 (28.6%) 
16 (45.7%) 
9 (25.7%) 

Gender 
Male n (%) 
Female n (%) 

 
24 (68.6) 
11 (31.4) 

TID Duration (yrs.) 
Mean (SD) 
Range 

 
20.4 (13.6) 

3 to 57 
Age at Diagnosis (yrs.) 

Mean (SD) 
Range 

 
15.4 (10.2) 

2 to 53 
Body-Mass Index (kg/m2) 

Male 
Mean (SD) 
Range 

Female 
Mean (SD) 
Range 

 
N = 24 

26.6 (4.3) 
18.5 to 39.9 

N = 11 
26.5 (2.9) 

23.9 to 34.2 
Height (cm) 

Male 
Mean (SD) 
Range 

Female 
Mean (SD) 
Range 

 
N=24 

178.5 (7.5) 
167 to 198  

N=11 
165 (6.4) 

152 to 173 
Weight (kg) 

Male 
Mean (SD) 
Range 

Female 
Mean (SD) 
Range 

 
N=24 

84.9 (14.5) 
65 to 119.3 

N=11 
72.4 (13.0) 
58 to 102.1 

Race/Ethnicity n (%) 
White Non-Hispanic or Latino 

 
35 (100) 

Daily Insulin Units mean (SD) 
Basal 
Bolus 
Total 

 
21.7 (9.3) 
7.2 (4.5) 

42.7 (17.4) 
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Insulin Modality at Enrollment n (%) 
Injections 
Pump 
Both 
Not Reported 

 
29 (54.3) 
7 (20.0) 
1 (2.9) 

8 (22.9) 
HbA1c Test  

Mean (SD) 
Range  

 
7.2 (1.1) 

5.8 to 10.4 
A comparison of characteristics between subjects with Type I Diabetes Mellitus 
(N=35) enrolled in the T1Dexi Pilot study. 
Results are means ± standard deviation of the mean (SD). Range of values expressed 
as the low – high observations. 

 

4.2: Inclusion and exclusion criteria for meals 

 To address our specific research questions, meals were reviewed and exclusion criteria 

applied to arrive at the final meal data for the analysis (Figure 2). Based on previous research, 

high protein and high fat meals delay time to peak glucose and increase post-prandial glucose 

excursions several hours after the meal. We initially excluded all meals with a time to peak 

glucose prior to the minute 0 and those with less than 180 minutes of post-prandial glucose 

CGM data before the next meal. We then excluded “meals” with less than 150 kcals with the 

reasoning that fat and protein are unlikely to impact post-prandial glycemia of very small meals 

or snacks and we excluded meals that had substantial missing post-prandial CGM readings (>30 

minutes) due to CGM errors or data acquisition and download gaps. Finally, we deleted 

duplicate meals. The final group of meals that met our inclusion criteria was 654 meals. 
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Figure 2. Flow diagram of the approach used to identify meals for assessment. 

  
 
 

4.3: Meal Description 

 The characteristics of the meals assessed are given in Table 2. The (n=654) meals ranged 

from 150 to 2444 calories. Of the total calories, an average meal contained 47.3% 

carbohydrates, 15.9% protein, and 36.2% fat. 

1750 meals assessed 
for 35 participants

Excluded meals with 
no rise in post-

prandial glucose; 170 
observations

1580 meals

990 meals

781 meals

657 meals

654 meals
Excluded duplicate 

meals; 3 
observations

Excluded meals with 
more than 30 min 
missing PPG; 124 

observations

Excluded meals with 
<150 kcals; 209 

observations

Excluded meals with 
<180minutes of PPG 

excursions; 590 
observations
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Table 2. Meal Composition  
 

Characteristics 
Summary Statistics 

(N=654) 
Calories (kcals) 

Mean (SD) 
Range 

 
498.6 (338.9) 
150 to 2444 

Carbohydrates (% of total kcals) 
Mean (SD) 
Range 

 
47.9 (20.5) 
3.7 to 100 

Protein (% of total kcals) 
Mean (SD) 
Range 

 
15.9 (9.9) 
0 to 57.5 

Fat (% of total kcals) 
Mean (SD) 
Range 

 
36.2 (16.9) 
0 to 86.9 

Total AUC (PPG excursion 0-180 minutes, mg/dL*minute) 
Mean (SD) 
Range 

 
28495.8 (11175.2) 
7515 to 70099.0 

iAUC (incremental AUC, mg/dL*minute) 
Mean (SD) 
Range 

 
5460.45 (9951.0) 

-30063.5 to 40732.9 
Time to Peak (PPG excursion 0-180 minutes) 

Mean (SD) 
Range 

 
105.6 (57.8) 

0 to 180 
Peak Post Prandial Glucose 

Mean (SD) 
Range 

 
205.9 (73.2) 

62 to 401 
Pre-meal Glucose 

Mean (SD) 
Range 

 
128.5 (65.7) 

39 to 401 
Dietary intake of the subjects was based on food photography captured with the T1-Dexi App. Nutrient content was 
measured by a human rater that analyzed foods in the images and linked them to a nutrient reference in the Food and 
Nutrient Database for Dietary Studies.  
Results are means ± standard deviation of the mean (SD). Range of values expressed as the low – high observations.  
* = iAUC was calculated by subtracting the area below the pre-meal glucose concentrations from the total AUC.  
Pre-meal glucose describes the glucose reading at the start of the meal. 
 

 

4.4: Effects of protein and fat on time to peak PPG 

 We hypothesized that meals higher in protein and fat would delay time to peak 

postprandial glucose. The distribution for time to peak glucose was skewed. A variety of 

transformation were assessed but none normalized the results. We ran a mixed effects model 

with the following fixed effects: total calories consumed, carbohydrates (% total calories), 

protein (% total calories), fat (% total calories), and pre-meal glucose. Carbohydrates (% total 

calories) was calculated using the following equation: 100-(% meal protein + % meal fat). The 
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random effect was participant. The residuals of the mixed effects model were also skewed. 

Thus, parametric analysis with a mixed effects model was not valid for the dependent variable 

with time to peak glucose.  

 Next, we analyzed the data with a nonparametric approach. Meals were classified as 

low, medium, or high protein, based on a previous study.45 The time to peak glucose was 

compared by categories of low: <13% protein (n=262), medium: 14-18% protein (n=183), and 

high: >19% protein (n=209) by a Kruskal Wallis test. There was not a significant difference 

(p=0.23) in time to peak glucose between the low, medium, and high protein groups, described 

in Figure 3A. 

 Next, meals were classified as low, medium or high fat. The time to peak glucose was 

compared by categories of low: <25% fat (n=166), medium: 26-32% fat (n=89), and high: >33% 

fat (n=399) by a Kruskal Wallis test. There was no significant difference (p=0.79) in time to peak 

glucose between the low, medium, and high fat groups, based on a previous study,45 described 

in Figure 3B. 
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Figure 3. Boxplot distribution of time to peak glucose A) grouped by low, medium, and high 
protein. Blue represents low protein (<13%, n=262). Green represents medium protein (14-
18%, n=183). Orange represents high protein ( >19%, n=209). B) grouped by low, medium and 
high fat. Blue represents low fat (<25%, n=166). Green represents medium fat (26-32%, n=89). 
Orange represents high fat (>33%, n=399). Bars represent the lowest and highest time to peak 
value of each category. There is no significant difference seen for time to peak glucose by 
protein or fat.  
 

4.5: Does protein or fat content of the meal increase post-prandial glucose excursion 
when expressed as a percent of total calories?  
 
 We hypothesized that meals higher in protein and fat would increase postprandial 

glucose excursion as measured by area under the post-prandial glucose curve (AUC). Total AUC 
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was calculated by the trapezoid method in STATA. For meals with missing pre-meal glucose a 

linear interpolation was used to estimate the value. To account for pre-meal glucose 

concentration, an incremental AUC (iAUC) was calculated by subtracting the area below the 

pre-meal glucose concentration. iAUC represents the total area above or below the pre-meal 

glucose concentration or glucose excursion after the meal. The iAUC was normally distributed 

and used as the dependent variable in the following models. Based on a scatterplot matrix, no 

outliers were identified. The variables carbohydrate (% total calories) and fat (% total calories) 

of the meal where co-correlated (R2=0.77) and only 1 variable was entered into the model.  

A mixed effects model was run with the following fixed effects: total calories consumed, 

protein (% total calories), carbohydrate (% total calories), and pre-meal glucose. The random 

effect was the participant (Table 4 model 1). A reduced model that removed protein (% total 

calories), a non-significant effect, was run (model 2). A simple multiple-linear regression model 

was used for model 3. The R2 of the simple multiple-linear model was 0.25, which indicated that 

25% of the change in PPG was explained by the percent of total calories, carbohydrates of the 

meal, and pre-meal glucose concentrations. The protein of the meals did not have a significant 

effect on PPG in the mixed effect models. Figure 4 illustrates the linear relationships between 

iAUC and A) total calories consumed, B) carbohydrates (% total calories), C) protein (% total 

calories), and D) pre-meal glucose (glucose reading at the start of the meal).  

Table 4: Incremental AUC mixed effects models using percent  
 Mixed Effects Model  Simple Linear Regression  
 Model 1  Model 2  Model 3  

Coef. 95% CI p>|t| Coef. 95% CI p>|t| Coef. 95% CI p>|t| 

Fixed effects 
Calories  
Consumed 

3.719669 1.779735    
5.659602 

0.000 3.735493 1.799625     
5.67136 

0.000 3.628491 1.637123    
5.619859 

0.000 

Carbohydrate* 50.79333 12.44948    
89.13718 

0.009 47.78314 15.13358    
80.43271 

0.004 65.66605 32.59586    
98.73624 

0.000 
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Protein* 11.87651 -66.93855    
90.69157 

0.768       

Pre-Meal 
Glucose 

-89.01624 -99.18542   
-78.84706 

0.000 -88.97225 -99.132     
-78.8125 

0.000 -72.67961 -82.7174   
-62.64181 

0.000 

Random effects 
 Estimate 95% CI Std. Err Estimate 95% CI Std. Err   
Participant 1.36e+07 7172664    

2.59e+07 
4463368 1.36e+07 7140717    

2.58e+07 
4445282    

 
Model 1 used a mixed effects model. Model 2 used a mixed effects model. Fixed effects with p>0.05 were considered 
insignificant and excluded. Model 3 used a simple linear regression. 
* = The total percentage of calories per meal from carbohydrates, protein, and fat. 
Pre-Meal Glucose is defined as the glucose reading at the start of the meal. 
 

 

 
 
Figure 4. Scatterplot of incremental AUC of the fixed effects as described in Table 4. A) iAUC and 
meal energy B) iAUC and % energy from carbohydrates C) iAUC and % energy from protein, D) 
iAUC and pre-meal glucose. The carbohydrates and protein are expressed as the percent of 
total calories. The strongest correlation was between iAUC and pre-meal glucose. 
 
 

In the previous model using incremental AUC, higher pre-meal glucose was associated 

with lower glucose excursion. This initially seemed counter-intuitive so we further explored the 

relationship of pre-meal glucose to total AUC. We ran another mixed-effects model using total 
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AUC with the following fixed effects: total calories consumed, protein (% total calories), 

carbohydrate (% total calories), and pre-meal glucose. The random effect was the participant 

(Table 5 model 1). A reduced model that removed protein (% total calories), a non-significant 

effect, was run (model 2). A simple multiple-linear regression model was used for model 3. The 

R2 of the simple multiple-linear model was 0.41, which indicated that 41% of the change in PPG 

was explained by the percent of total calories, carbohydrates of the meal, and pre-meal glucose 

concentrations. The protein of the meals did not have a significant effect on PPG in the mixed 

effect models. However, not surprisingly, higher pre-meal glucose is associated with higher 

total AUC after the meal. Figure 5 illustrates the linear relationships between total AUC and A) 

total calories consumed, B) carbohydrates (% total calories), C) protein (% total calories), and D) 

pre-meal glucose (glucose reading at the start of the meal). 

Table 5: Total AUC mixed effects models using percent 
 Mixed Effects Model  Simple Linear Regression  
 Model 1  Model 2  Model 3  

Coef. 95% CI p>|t| Coef. 95% CI p>|t| Coef. 95% CI p>|t| 

Fixed effects 
Calories  
Consumed 

3.719669 1.779735    
5.659602 

0.000 3.735493 1.799625     
5.67136 

0.000 3.628491 1.637123    
5.619859 

0.000 

Carbohydrate* 50.79333 12.44948    
89.13718 

0.009 47.78314 15.13358    
80.43271 

0.004 65.66605 32.59586    
98.73624 

0.000 

Protein* 11.87651 -66.93855    
90.69157 

0.768       

Pre-Meal 
Glucose 

90.98376 80.81458    
101.1529 

0.000 91.02775 80.868    
101.1875 

0.000 107.3204 97.2826    
117.3582 

0.000 

Random effects 
 Estimate 95% CI Std. Err Estimate 95% CI Std. Err   
Participant 1.36e+07 7172664    

2.59e+07 
4463368 1.36e+07 7140717    

2.58e+07 
4445282    

 
Model 1 used a mixed effects model. Model 2 used a mixed effects model. Fixed effects with p>0.05 were considered 
insignificant and excluded. Model 3 used a simple linear regression. 
* = The total percentage of calories per meal from carbohydrates, protein, and fat. 
Pre-Meal Glucose is defined as the glucose reading at the start of the meal. 
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Figure 5. Scatterplot of  the total AUC (variable named glucose_auc) of the fixed effects as 
described in Table 5. A) total AUC and meal energy B) total AUC and % energy from 
carbohydrates C) total AUC and % energy from protein, D) total AUC and pre-meal glucose. The 
carbohydrates and protein are expressed as the percent of total calories. The strongest 
correlation was between total AUC and pre-meal glucose. 
 
4.6: Post prandial glucose excursion as a percent of total calories 
 

To visualize the change in post prandial glucose, we graphed the mean and 95% 

confidence intervals of PPG grouped by protein (Figure 6A) and fat content of the meals (Figure 

6B). Mean pre-meal glucose concentrations were similar across groups. While there appears to 

be a subtle difference to the shape of the PPG excursion, there is a great deal of overlap 

between the high, medium and low protein groups and high, medium and low fat groups as a 

percentage of total energy. It is notable that protein as a percent of total calories was not a 
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significant factor in the models shown in Tables 4 and 5. Fat was not included in the models due 

to the high correlation with carbohydrates. The differences in PPG curve we observed in this 

figure were not reflected in our mixed model effects 

 

Figure 6: Post-prandial glucose curves A) mean and 95% confidence interval of low, medium, 
high protein meals. Green represents low protein (<13%, n=262). Blue represents medium 



  33 

protein (14-18%, n=183). Orange represents high protein ( >19%, n=209). B) mean and 95% 
confidence interval of low, medium, high fat meals. Green represents low fat (<25%, n=166). 
Blue represents medium fat (26-32%, n=89). Orange represents high fat (>33%, n=399). Dots 
and lines represent the mean of the meals at each 10-minute interval. Shaded area represents 
the 95% confidence interval of the PPG excursion.  
 

4.7: Does protein or fat content of the meal increase post-prandial glucose excursion 
when expressed in grams? 
 

Previous literature described the effects of protein and fat on PPG based on grams of 

protein28,29 and fat.7,11 Were some of the relationships observed in our models based on 

expressing protein and fat as a % of the total energy? To test the impact of different units, we 

re-ran the analysis using grams and found slightly different results. A mixed effects model was 

run with grams of carbohydrate, protein, and fat in a meal. The random effect was the 

participant (Table 6 model 1). In this model, total calories, pre-meal glucose, protein and 

carbohydrates were significant, but fat was not a significant factor. A reduced model that 

removed fat (grams fat in the meal), a non-significant effect, was run (model 2). A simple 

multiple-linear regression model was used for model 3. The R2 of the simple linear-model was 

0.27, which indicated that 27% of the change in PPG was explained by the percent of total 

calories, grams of protein and carbohydrates in a meal, and pre-meal glucose. In the mixed 

effects model, grams of fat did not have a significant effect on PPG. Protein did a have positive 

effect on AUC, similar to what has been seen in the literature. However, calories consumed has 

a negative impact on PPG in this model. This association seems counter intuitive perhaps 

suggesting other factors may be influencing PPG that we have not controlled for in this model.  

Table 6: Incremental AUC mixed effects models using grams 
 Mixed Effects Model  Simple Linear Regression  
 Model 1  Model 2  Model 3  

Coef. 95% CI p>|t| Coef. 95% CI p>|t| Coef. 95% CI p>|t| 
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Fixed effects 
Calories  
Consumed 

-20.16604 -37.21511   
-3.116973 

0.020 -6.225744 -11.75697   
-.6945169 

0.027 -5.846911 -11.6443   
-.0495257 

0.048 

Carbohydrate* 124.8275 56.63899     
193.016 

0.000 72.53312 41.0953    
103.9709 

0.000 76.01453 43.85596    
108.1731 

0.000 

Protein* 104.6252 18.56655    
190.6839 

0.017 49.03011 -8.276581    
106.3368 

0.094 27.41818 -31.7996    
86.63595 

0.364 

Fat* 135.7521 -21.32946    
292.8336 

0.090       

Pre-Meal 
Glucose 

-88.09878 -98.16903   
-78.02854 

0.000 -88.69364 -98.75006    
-78.63722 

0.000 -72.42743 -82.39681   
-62.45805 

0.000 

Random effects 
 Estimate 95% CI Std. Err Estimate 95% CI Std. Err   
Participant  1.39e+07 7389233    

2.62e+07 
4500101 1.38e+07 7305503    

2.60e+07 
4462902    

 
Model 1 used a mixed effects model. Model 2 used a mixed effects model. Fixed effects with p>0.05 were considered 
insignificant and excluded. Model 3 used a simple linear regression. 
* = The total grams per meal from carbohydrates, protein, and fat. 
Pre-Meal Glucose is defined as the glucose reading at the start of the meal. 
 

 
 Again, we observed high pre-meal glucose concentrations was associated with a lower 

glucose excursion after the meal. We looked at the effects of pre-meal glucose and on total 

AUC as described above. A mixed effects model with the dependent variable total AUC included 

pre-meal glucose, total calories, grams of carbohydrate, protein and fat in a meal. The random 

effect was the participant (Table 7 model 1). In this model, total calories, pre-meal glucose, 

protein and carbohydrates were significant, but fat was not a significant factor. A reduced 

model that removed fat (grams fat in the meal), a non-significant effect, was run (model 2). A 

simple multiple-linear regression model was used for model 3. The R2 of the simple linear-

model was 0.42, which indicated that 42% of the change in PPG was explained by the percent of 

total calories, grams of protein and carbohydrates in a meal, and pre-meal glucose. In this 

model, pre-meal glucose, carbohydrates, and protein had a positive effect on AUC.  

 In both models represented in Tables 6 and 7, we did observe that the coefficient for 

calories consumed is a negative value. The relationship of protein and fat with calories 
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consumed when expressed as a percent of total calories demonstrated a positive relationship 

whereas protein and fats expressed in grams demonstrated a negative relationship. The change 

in direction of the coefficients are counter-intuitive.  

 
Table 7: Total AUC mixed effects models using grams 

 Mixed Effects Model  Simple Linear Regression  
 Model 1  Model 2  Model 3  

Coef. 95% CI p>|t| Coef. 95% CI p>|t| Coef. 95% CI p>|t| 

Fixed effects 
Calories  
Consumed 

-20.16604 -37.21511   
-3.116973 

0.020 -6.225744 -11.75697   
-.6945169 

0.027 -5.846911 -11.6443   
-.0495257 

0.048 

Carbohydrate* 124.8275 56.63899     
193.016 

0.000 72.53312 41.0953    
103.9709 

0.000 76.01453 43.85596    
108.1731 

0.000 

Protein* 104.6252 18.56655    
190.6839 

0.017 49.03011 -8.276581    
106.3368 

0.094 27.41818 -31.7996    
86.63595 

0.364 

Fat* 135.7521 -21.32946    
292.8336 

0.090       

Pre-Meal 
Glucose 

91.90122 81.83097    
101.9715 

0.000 91.30636 81.24994    
101.3628 

0.000 107.5726 97.60319    
117.5419 

0.000 

Random effects 
 Estimate 95% CI Std. Err Estimate 95% CI Std. Err   
Participant 1.39e+07 7389233    

2.62e+07 
4500101 1.38e+07 7305503    

2.60e+07 
4462902    

 
Model 1 used a mixed effects model. Model 2 used a mixed effects model. Fixed effects with p>0.05 were considered 
insignificant and excluded. Model 3 used a simple linear regression. 
* = The total grams per meal from carbohydrates, protein, and fat. 
Pre-Meal Glucose is defined as the glucose reading at the start of the meal. 
 

 
4.8: The variability between participants 
 
 The coefficient for participant, the random effect, in all of our models was small but 

significant. Could the difference in our mixed effects models between the models that 

expressed macronutrient content as a % of calories versus grams be related to variability within 

participants? To understand the variability of meal composition by individual participants, we 

looked at the histogram distribution for each participant by % of total energy compared to 

grams in the meal. Figure 7A provides a visual histogram of the distribution of fat consumption 

as a percent of total calories for each participant. In this figure, many individual participants’ fat 



  36 

consumption typically falls within 25 to 50% of total calories. Consumption of ranged from 0 to 

75% of total kcals. However, in Figure 7B, we see the distribution of fat consumption by grams 

was more condensed around 0 to 25 grams at a meal Some larger meals contained as much as 

125 grams. The difference in units, % of total calories or grams of fat in a meal, changed the 

shape and distribution of the data within participants.  

 

 
Figure 7: Distribution of fat consumption by participant, (n=35) A) Meal fat by % of total 
calories. Each blue line represents the distribution of the individual participant’s fat 
consumption. B) Meal fat by gram. Each red line represents the individual participant’s fat 
consumption. 
 
 A similar graph of the protein content of the meals is provided in Figure 8. In Figure 8A, 

we see that for many individuals, the percent of calories from protein in the meals consolidates 

heavily between 10 to 20% of total calories from protein. In Figure 8B, there is a larger range of 

grams of protein in a meal from 0 to 240 gm, with most meals containing 0 to 15 gm. 
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Figure 8: Distribution of protein consumption by participant (n=35) A) Meal protein by % of 
total calories. Each blue line represents the individual participant’s protein consumption. B) 
Meal protein by gram. Each red line represents the individual participant’s protein 
consumption. 
 
4.9: Effect of Pre-Meal Glucose on AUC 
 

The effect of pre-meal glucose varied between the dependent variables iAUC and total 

AUC. The results suggested high pre-meal AUC was associated with a decrease in glucose 

excursion after the meal but that total AUC was in fact higher due to the elevated pre-meal 

glucose concentrations. In assessing the data, 27% of the meals (n=176) had a negative 

incremental AUC, thus suggesting that the AUC decreased after the meal. These meals had a 

mean pre-meal glucose of 174.8 ± 70.6 mg/dL. There was 73% of meals (n=487) that had a 

positive incremental AUC. These meals had a mean pre-meal glucose of 110.7±54.7 mg/dL. We 

could speculate that the negative incremental AUC may be related to individuals taking a 
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correction insulin dose or higher bolus dose at the start of the meal to correct for the high pre-

meal glucose.  

4.10: Are our models underpowered to detect differences in PPG? 

 We considered that our models may be underpowered to detect changes in PPG AUC 

and ran a post-hoc power analysis of grams of protein and fat for the model shown in Table 6. 

For protein content of the meal, we had only 35% power to detect a 550 mg/dL/min change in 

iAUC with 600 meals. Similarly, for fat content of the meal we had only 25% power to detect a 

450 mg/dL/min change in iAUC with 600 meals. Our analysis is most likely underpowered 

despite including 654 meals.  

Chapter 5: Discussion  
 

In this cohort of free-living participants with type 1 diabetes, percent of energy from 

protein and fat had minor effects on the time to peak post-prandial glucose and the total post-

prandial glucose excursion. We initially hypothesized that high fat and protein meals would 

delay the time to peak to later and extend the PPG excursion increasing the total area under 

the curve. However, we saw that there was no difference in time to peak PPG when comparing 

low, medium and high protein or fat meals expressed as a % of the total energy. The percent 

of % of carbohydrate increased PPG AUC and by inference % fat lowered PPG AUC. During the 

assessment for AUC, we observed that high carbohydrate percent was reciprocally correlated 

with low-fat percent and represented the same value in the model (Table 4). In our models, the 

tight correlation of high carbohydrate and low-fat percent of the meal showed that 
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carbohydrates raised glucose excursions but fats lowered it. However, the effect of fats 

lowering AUC has not been observed in previous literature.  

We reviewed the previous literature regarding protein and fat and the PPG response. In 

most of these studies, carbohydrates were kept constant and protein and fat was added in 

addition to the carbohydrate in the meals. Protein and fat were expressed as gram amounts 

rather than % of total energy. To address this difference, we repeated the mixed linear models 

using grams of carbohydrate, protein and fat in the meal. In this model grams of protein did 

significantly increase PPG AUC; grams of fat were not a significant factor in PPG AUC. 

Why was there a difference in the mixed models between % of total energy from fat and 

protein and grams of fat and protein in the meal? The two measures are related; grams of fat 

and protein are used to calculate the macronutrient distribution. On possible explanation could 

be the spread of the data is greater when expressed in grams versus % of total energy. The 

histogram distributions graphs of participant variability by grams and % of total energy (Figure 7 

and Figure 8) illustrate the difference in scale. Another possible explanation could be biological. 

Previous studies found no effect of less than 12 grams of protein but an additive effect with 12 

or more grams in combination with carbohydrate. Likewise, protein alone did not change PPG 

with small amounts of protein was consumed but more than 70 gm elicit a PPG excursion. 

Regardless of the % of total calories, perhaps an intake of at least 12 grams is needed to impact 

the gastric emptying, alter hormone concentrations such as cortisol and increase 

gluconeogenesis in the liver. It is possible to have a “high protein” meal with 25% of the energy 

from protein containing 150 calories that is in fact less than 12 grams of protein. It is also 
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possible to have a “low protein” meal with 10% energy from protein containing 1500 calories 

that has more than 37 grams of protein. 

Previous literature has shown that increasing protein in a meal can lead to an increase in 

PPG levels by 48mg/dl at 5 hours post-prandially25 and glycemic excursions between 150 and 

300 minutes post-prandially.28 These previous studies have suggested that protein increased 

the duration of blood glucose elevation to 5 hours rather than 2-3 and delayed time to peak 

glucose. Our results are not consistent with these results; although we did see that increased 

protein content (gm) increased PPG AUC, we did not see an impact on time to peak PPG. It is 

notable that these feeding studies were conducted under very tightly controlled feeding 

environments, whereas this current study is a free-living situation. The meals in this study 

varied in size (total kcals from 150-2444), varied in carbohydrate content (2.7-328.9 gm/meal; 

3.6-100% of the meal) and varied in protein and fat. Other important differences in free-living 

data is that meals are consumed at variable times throughout the day and time between the 

current meal and the previous meal is not controlled.  

In all of our models, pre-meal glucose concentrations, carbohydrate intake and the size 

of the meal impacted PPG AUC. Participants with pre-meal glucose concentrations within 

treatment range had lower PPG excursions. Larger meals (higher kcals) and more carbohydrate 

(high % of energy from carbohydrate) induced a greater PPG excursion. For clinical application, 

discussions with patients around meal size and total calories consumed could help with blood 

glucose management. In this study, we saw a wide range of meal sizes from 150 calories to 

2444 calories with the larger meals leading to increases in PPG curves. Regular moderate-sized 

meals rather than less frequent large-sized meals (high calories) may improve PPG. The percent 
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of carbohydrates in a meal had significant effects on time to peak and AUC. Continuing to 

educate those with diabetes about carbohydrate counting can also be beneficial for improving 

glycemia. 

There were many strengths to our study. They study’s sample size was large with a total 

of 35 eligible participants and 654 meals with nutrient analysis. The diets of the participants 

were captured using remote food photography. Remote food photography improves dietary 

reporting and estimation of meal nutrient composition when compared to the traditional 

dietary assessment tools like the 24-hour recall and diet food frequency questionnaires. Lastly, 

the mixed effects model controlled for the variability between participants enrolled in the 

study. We recognize that the meals eaten by one particular participant are not independent 

observations; the participant’s response to the meal are not independent events but rather a 

cluster of responses within an individual. 

Limitations of this study includes the following: non-diverse population being assessed, 

free-living situation, and missing GCM data. The population being assessed all identified as 

white and had very controlled diabetes, as seen in the range of HgA1c. The information 

reported does not accurately represent all peoples and may not be applicable to all individuals 

with diabetes. A free-living situation is ideal for assessing unaltered eating patterns of the 

participants. However, this free-living environment made it difficult to tightly control for and 

evaluate the impacts of the food groups of interest (fat and protein) as eating occurrences and 

meal components where highly variable. A post-hoc power analysis also indicated our mixed 

effects models were underpowered to detect differences in iAUC from changes in protein and 

fat content of meals. Lastly, missing CGM data values impacted the analysis. Although CGM 
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values were to be recorded in 5-minute intervals, many meals had missing values which lead to 

either the exclusion from the analysis or possible alteration to the AUC curve being observed.  

 Future directions for this dataset include controlling for additional effects and assessing 

AUC by increments of time. It is possible that controlling for insulin dose and insulin sensitivity 

could help to explain some of the unexpected associations we observed in our mixed models. 

For instance, the high fasting pre-meal glucose could have been considered by the participant 

by including a higher insulin bolus dose at the start of the meal. A higher insulin dose could 

change the relationship of the pre-meal glucose to the area under the curve. Previous 

literature, has seen the impact of protein on glucose excursions several hours after the meal in 

the late postprandial period.7,28,29 In our analysis, including total AUC may have caused us to 

miss the effect of protein and fat during the early and late phase postprandial periods. It is 

possible that analyzing the data by separate phases of early and late PPG excursion may help 

explain the relationship of increased protein and fat in the meal.  

In conclusion, the protein and fat content of the meal did not demonstrate a substantial 

influence on time to peak post-prandial glucose, but protein did have a small but significant 

impact on total post-prandial glucose excursion (AUC). This study does confirm that meal size, 

pre-meal glucose, and carbohydrates are important factors to monitor for the daily 

management of blood glucose among patients with type 1 diabetes.  
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