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Abstract 

The functional heterogeneity of human tissues—despite their descendance from a single progenitor 

cell—poses a substantial complication to interpretation of tissue developmental molecular studies 

and tissue-specific diseases, such as cancer. This complication significantly impedes the 

development of precision therapies for individual patients. To address this shortcoming, I have 

reviewed the major RNA-seq tissue expression data repositories, transformed mRNA transcript 

counts into coordinates within biochemical reactions in which their protein products participate 

and generated a human tissue-specific data resource containing 9,115 human tissue samples across 

10,726 reactions. This data transformation recapitulates the sample structure found within mRNA 

transcript abundance values while positioning human tissue samples within the human Reactome 

preceding/following reaction network and Reactome pathway hierarchy. This additional 

contextualization enables novel insights using existing reaction and pathway annotations as well 

as network analytical techniques at the reaction level such as network-based classifiers. I 

demonstrate the advantage of this approach by executing a novel pathway enrichment method and 

generating geometric deep learning architectures representative of biological networks, training 

them to accurately classify human tissue samples in a way that may be described by biochemistry. 

By investing my trained models, I generate new human tissue hierarchies and find the Reactome 

preceding/following reaction network exhibits non-random topology, suggesting a novel signature 

of evolution is embedded within biochemical reaction relationships themselves. 
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Chapter 1: Introduction and Background 

Introduction 

While it is known that human tissues harbor characteristic gene expression patterns, gene products 

exhibit complex relationships with cellular behaviors which hampers straightforward extrapolation 

from gene expression values to the biochemical reactions carrying out tissues’ functions. 

Unfortunately, even with the considerable advances of contemporary omics-based biological 

studies, this complexity remains largely hidden from us. Achieving high confidence for which 

reactions are likely to occur within particular tissue contexts is paramount in order to understand 

the biochemical mechanisms of tissue development, tissue-specific functions and the etiology of 

tissue-specific disease. 

 

Within a tissue, proteins, small molecules and other types of molecules participate in interactions 

and react with each other to form a network. Different tissues are likely characterized by their own 

discrete reaction networks. Prior decades have seen many large-scale, tissue-specific gene 

expression datasets generated, processed and stored in multiple data repositories. I hypothesize I 

can infer tissue-specific reaction networks by using large-scale gene expression data, thereby 

contributing to the understanding of tissues’ functional heterogeneity. To test this, I will leverage 

the human-annotated biochemical reactions in Reactome, the most comprehensive open source 

pathway knowledgebase, and apply classical and novel statistical methods and machine learning 

strategies to connect biochemical reactions with particular tissues. 
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Background 

My research sought to expand our understanding of healthy human tissue function by identifying 

components of biological networks that exhibit differences among them. If models of human tissue 

function are able to mechanistically explain specific variations observed across the human 

population, subtle deviations from healthy function may become detectable at the individua l 

patient level, enabling precise medical intervention. 

 

Precision medicine is a healthcare model that has shown promise in treating cardiovascular disease 

(Dainis and Ashley, 2018), cystic fibrosis (Manfredi et al., 2019), obesity (Frühbeck et al., 2018), 

and cancer (Arnedos et al., 2015, Schwaederie et al., 2015, Friedman et al., 2015,  Vargas et al., 

2016, Dienstmann et al., 2017 and Galle et al., 2018) by considering individual patients' disease 

characteristics (Ashley, 2015 and Ashley, 2016). A classic example of this approach is patient 

stratification by ABO blood group when considering blood transfusion while a more contemporary 

example is classification of the most common type of liver cancer, hepatocellular carcinoma 

(HCC). HCC has been classified into stages according to the Barcelona-Clinic Liver Cancer 

staging system whereby patients are classified into one of stage 0, A, B, C or D based on 

established prognostic criteria (Galle et al., 2018) and each treated according to their stage. Patients 

diagnosed with stages 0 or A respond to resection, liver transplantation and local ablation while 

those diagnosed with stage D are instead treated with nutritional, psychological and pain 

management support (Llovet et al., 2018). Considered together, clinical implementations of 

precision medicine effect dramatic change in patients' lives where this strategy—across many 

cancers—has demonstrated increased median response rate, progression free survival and overall 
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survival rates (Schwaederie et al., 2015). This model holds increasing promise as our detection 

techniques, data collection, integration and analytical methods improve and I better understand the 

similarities and differences both among and within our bodies. The human population exhibits 

phenotypic variation as a result of both environmental and genetic differences. Human tissues and 

even individual cells display phenotypic variation owing largely to their lineage and 

microenvironment. A key to maximizing the potential benefits of precision medicine is addressing 

the question, "Given the degree of expected variation, how do I best categorize various disease 

presentations?".  

 

Considering the introduction of high-throughput cellular and molecular experimental techniques 

such as flow cytometry and single-cell sequencing, one answer to this question is to achieve a 

superior understanding of both the etiology and teleology of cellular behavior by developing high-

fidelity models of biological networks. Though entire biological networks may never be exactly 

duplicated in nature, some parts are typified by general patterns and amenable to inference; 

functional components, after identification and annotation, may be repeatedly observed and 

eventually mechanistically understood. 

 

Cell behavior is dictated by the state of a cell's biochemical reactions, currently unobservable to 

us, though a ready measurement I may collect from a cell is its pattern of gene expression. Using 

RNA-sequencing (Mortazavi et al., 2008), experimentalists are able to approximate the abundance 

of mRNA present in a cell or group of cells. Though many biochemical reactions involve protein-

protein interactions and not interactions of mRNA, specific mRNA synthesis is required for 

specific protein synthesis and thus mRNA patterns are associated with protein-regulated 



    9 

phenotypes and cell states. Total mRNA abundance is clearly correlated with protein abundance 

(R2 = 0.41 on log-log scale and R2 = 0.44 following nonlinear transformation, Schwanhäusser et 

al, 2011) and, when approximate steady state conditions are met, protein abundance has been 

shown to be primarily determined by mRNA abundance (Liu et al., 2016) with between 56% and 

84% of variation in protein abundance shown to be explained by mRNA abundance (Li et al., 

2014). However, there may not be direct correspondence between a protein's abundance and its 

availability to participate in a biochemical reaction, for example, due to competitive occupancy 

among binding partners or post translational modifications (PTMs). Despite these barriers, I may 

be able to infer which biochemical reactions are characteristic to particular tissues by identifying 

repeated patterns among the mRNA transcripts coding for proteins that participate in biochemical 

reactions, such as collections of transcripts whose products participate the same reaction tending 

to be expressed at similar levels for particular tissues. I find it reasonable to suggest such patterns 

of mRNA that associate with particular tissues imply patterns of protein abundance and 

biochemical reaction states characteristic of those tissues. 

 

Cell phenotypes are defined from myriad perspectives and, at more elementary units of analysis 

may be considered cell lines, cell types, cell populations or, more abstractly, clusters of similar 

cells determined by some (here undefined) cell attributes; at more composite units of analysis, cell 

phenotypes may be thought of as tissue types or disease states. 

 

Though both more elementary and more composite perspectives are of staggering importance to 

translational medical research, three considerations suggest the latter as currently more amenable 

to our intention of conducting systematic analysis. First, observations may be captured via so-
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called bulk RNA-sequencing, a technology that's been around longer (Mortazavi et al., 2008) than 

those required for observations of more elementary units of analysis such as scRNA-sequencing 

(see Wang et al., 2009; Metzker, 2010; Ozsolak et al., 2011; Shapiro et al., 2013; Eberwine et al., 

2014; Wu et al., 2014; Chen et al., 2018 for apropos review). Assuming a longer period of market 

availability translates to more thorough debugging, relying on older technology decreases the 

likelihood of errors entering our analyses from unknown sources. For example, bulk RNA-

sequencing datasets are often scale-normalized when drawn from different experiments to account 

for potential batch effects (Robinson et al., 2010) that may dampen true signals. Second, not 

unrelated to the period of market availability, many samples annotated at more composite units of 

analysis have already been systematically collected, processed and made available to the 

community by both individual investigators and consortia alike. Though a large volume of data 

has been gathered through scRNA-sequencing and other experimental techniques relating to more 

elementary units of analysis, to our knowledge, experimental results generated from systematic 

processing of tissue-specific samples using these techniques with sample sizes approaching those 

of existing bulk RNA-sequencing repositories are not currently available. Third, cancer has 

received a tremendous amount of attention in recent years and the realization that its genetic and 

phenotypic presentation varies among tissues (Blokzijl et al., 2016) has resulted in available 

datasets containing thousands of bulk RNA-sequencing results from both healthy tissues and 

tumors, potentiating near-term analytical findings relevant to human health. The choice to rely 

upon bulk RNA-sequencing is not without its drawbacks. Healthy human tissues themselves are 

host to a diversity of cell types, each capable of performing the functions arrived at by evolution. 

I expect this within-tissue cell type heterogeneity will dilute subtle signals but that the large sample 
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sizes available will empower us to identify patterns of the most prominent cell types within human 

tissues. 

 

Though particular mutations, genes or gene products may appear insignificantly rare when 

independently considered, the so-called "pathway principle" (Krogan et al., 2015) holds that the 

inherent organization of molecular biology is such that their individual effects will coalesce into 

more robust signals, revealing inherent features undetectable from the narrow perspective of 

individual genes or proteins. This perspective supports the concept that without the 

contextualization of individual mRNA expression values offered by the structure of biological 

networks, meaningful signals are scattered about and the hope for consolidating our insights into 

a systematic comprehension remains futile. For example, within "hallmark" cancer pathways 

(Hanahan and Weinberg, 2011), mutations tend to be mutually exclusive, with typically no more 

than a single mutation per tumor in a particular hallmark pathway, which is taken as evidence for 

diminishing selective advantage of within-pathway mutations (Ciriello et al., 2012). This supports 

the pathway principle because it shows mutations are not uniformly random; rather, they are more 

likely to appear in certain places dictated by pathway architecture. The pathway and network 

perspective can be leveraged to investigate healthy tissue biology because the same pathway 

architecture responsible for observed mutational biases similarly governs interactions among 

unmutated proteins and despite their—more or less—identical DNA, tissues remain able to 

perform specific functions through characteristic pathway activation states (Huttlin, E., et al., 

2010). I argue this observed tissue-specific variation in activation states supports the notion that 

tissues' pathway architectures vary in characteristic ways and set out to describe this variation 

through pathway architecture-constrained mRNA expression analysis. 
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The concept of tissue-specific pathway activation states is well-supported by the literature. For 

example, tissue-specific pathway activation, measured in ratios of total protein copy numbers 

relative to mRNA transcripts in mammalian cells, vary across tissues: e.g. murine embryonic 

NH3T3 cell line protein-mRNA abundance ratio estimated at 2,800 (Schwanhausser et al., 2011) 

and the protein-mRNA abundance ratio of murine liver cells estimated at 10,000 (Azimifar et al., 

2014). These differences suggest striking differential regulation mechanisms. Further, there exists  

differential chemical and structural microenvironments that enable various immune system 

interactions and act as nidi for wound healing processes but are also implicated in tissue-specific 

inflammatory responses and tumorigenesis (Coussens and Werb, 2002). Finally, cancer type-

specific mutational frequencies, for example, in the Wnt signaling pathway, which has been shown 

to be mutated in over 90% of core gastrointestinal cancers and under 10% of genitourinary cancers 

(Sanchez-Vega et al., 2018), further exemplifies its tissue-specific activity. 

 

Tissue-Specific Networks 

Recent years have seen a variety of approaches developed to infer tissue-specific networks. For 

dynamic system models that describe spatiotemporal changes, approaches to resolve biochemical 

networks commonly consider network refinement a filtering problem, relying upon models 

incorporating ordinary differential equations (ODEs) (see Klipp et al., 2006; Aldridge et al., 2006; 

Tyson et al., 2018 and Loskot et al., 2019 for apropos reviews). These models must be 

parameterized by accurate estimates of initial chemical concentrations and reaction rates using 

spatiotemporally resolved data, such as time-series mRNA or protein expression samples. The 

requirement of accurate parameter estimation for ODE strategies introduces their primary 
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drawback as sufficiently accurate estimates of these parameters remain computationally intractable 

for complex models despite attention from the field (Nakatsui et al., 2010). For example, dynamic 

models of the ERK cascade (Rubinfeld et al., 2005) consist of around 100 reactions and 100 protein 

species (Orton et al., 2005). 

 

Static system models lack spatiotemporal resolution but require fewer parameters to construct and 

thus scale more efficiently to large systems and require lower-complexity experimental procedures 

(e.g. time-series gene expression assays are not required). For example, Saha et al. (2017) 

generated tissue-specific co-expression networks consisting of around 15,000 nodes representing 

mRNA expression levels and isoform ratios and around 60,000 edges. Static biological networks 

have been studied using a variety of approaches typically relying upon machine learning/statist ical 

inference. In addition to Saha et al., contemporary examples of studies investigating static 

biological networks include the construction of a within-tissue gene expression correlation 

network integrated with existent transcription regulatory networks (Sonawane et al., 2017), 

Bayesian network generation using Monte Carlo sampling of ensemble simulations (Gendelman 

et al., 2017), and Bayesian inference relying upon manually curated human proteins integrating 

with manually curated tissue ontologies (Greene et al., 2015). 

 

Sonawane et al. (2017) constructed tissue-specific networks by combining transcription regulatory 

(Weirauch et al., 2014) and the protein-protein interaction (Szklarczyk et al., 2015) networks using 

PANDA, an acronym for  Passing Attributes between Networks for Data Assimilation (Glass et 

al. 2013) that was designed to predict regulatory relationships by integrating multiple biological 

data sources. Tissue specificity was called based on comparing Jaccard indices of each gene's 

expression distributions with its connected partners within and among tissues. Inferences regarding 
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tissue function were drawn both from network centrality measures and gene set enrichment 

analysis. Among their conclusions was the suggestion that tissue-specific transcription regulation 

occurs at an "intermediate scale" whereby tissue-specific genes tend to be more centrally located 

in regulatory pathways, rather than by exerting control on dense subnetworks or network hubs. I 

argue this finding suggests focusing analysis on particular genes or gene products—even highly 

connected ones—will never yield a satisfactory understanding of differential tissue function and 

that this intermediate level of abstraction is captured only by carefully expanding focus and 

constraining analysis with a network perspective. 

 

An investigation of oncogenic breast tissue-specific signaling networks (Gendelman et al., 2017) 

was conducted using a strategy that calculated Bayesian scores for small subnetworks, constructed 

ensembles of these small subnetworks, and used a Monte Carlo method to select those consistent 

with data gleaned from breast cancer cell lines using microarrays. Scoring small subnetworks was 

conducted by considering all possible combinations of two or three variables considering 149 

significant and 20 known associated genes. Functional interpretation of their results was based on 

gene set enrichment analysis and concordance with prior literature. The unconstrained search used 

in this approach does not scale well, limiting the size of small subnetworks searched and the 

number of genes considered. Furthermore, the generative nature of this approach disallows 

contextualization within a broader network, ignoring potential insights granted by previously 

reported biological network structures and annotations. 

 

Greene et al. generated tissue-specific networks by first integrating several interaction datasets and 

refining it using gene expression data from GEO along with annotations from the BRENDA Tissue 

Ontology (BTO) (Gremse et al., 2010) and other sources, such as  the Human Protein Reference 



    15 

Database (HPRD) (Keshava Prasad et al., 2008; Greene et al., 2015). Their initial interaction 

network was placed within the BTO tissue/cell-type hierarchy which allowed for interaction 

network nodes representing genes to be separated into three classes. A class they labeled T' 

consisted of genes annotated to tissues judged to be "unrelated" based on BTO category. A class 

labeled U consisted of genes found to be either "widely expressed" in a prior tissue-specific gene 

expression study, genes for proteins found to be expressed in >75% of tissues assayed in the human 

protein atlas (Uhlen et al., 2017) or curated "ubiquitous genes" from HPRD. The final class, labeled 

T consisted of genes annotated to a tissue in the BTO and in neither T' nor U. The interaction 

network edges were then stratified into four classes, inferring functional roles only within the class 

where edges connected either an element in T to another element in T or connected an element in 

T to an element in U. Tissue-specific weights were learned by assessing coexpression within each 

class using a Bayesian (tissue) classifier. Though this strategy of constraining search space to 

within each of the four edge classes is protective against multiple hypothesis testing, it does not 

facilitate discovery of more complex relationships involving dissimilar tissues or more than two 

genes. To interpret their results, the authors considered results with marginal statistical 

significance from GWAS studies; this is a novel methodology utilised for functional inference 

validation in their project. However, neither their interaction network nor the BTO correspond 

directly to biochemical reactions or annotated pathways, limiting mechanistic insights. 

 

Machine Learning 

The aforementioned attempts to develop and refine tissue-specific biological networks use 

generative or bottom-up approaches; however, recent work has shown promise in discriminat ive 

or top-down network inference (Ma et al. 2018). Such analysis strategies consider the set 



    16 

theoretical union of connections across all comparable biological constructs, relying upon 

statistical relationships between molecular data and observed phenotype, restricting degrees of 

freedom using relationships specified by said network. I briefly review machine learning that I 

may express this concept more thoroughly. 

 

Machine learning may be broadly divided into two categories: unsupervised learning, which 

applies labels to unlabeled data based on comparing and clustering element attributes and 

supervised learning, which operates on labeled data to identify patterns of features characteristic 

to particular labels. 

 

Early on, unsupervised clustering of gene expression data was used to identify temporal mRNA 

patterns among human and yeast cells (Eisen et al., 1998) and shortly thereafter was used for 

comparing human tumors with normal colon tissue (Alon et al., 1999). The same year, supervised 

learning was applied to leukemia subtype identification, separating acute myeloid leukemia 

(AML) from acute lymphoblastic leukemia (ALL) samples (Golub et al., 1999). Clinically distinct 

subgroups of large B cell lymphoma and hepatitis B virus-positive metastatic hepatocellular 

carcinoma specimens were discovered using supervised learning on gene expression data (Wright 

et al., 2003 and Ye et al., 2003), representing early contributions of gene expression analysis and 

machine learning to medicine. 

 

Machine learning has become an increasingly prominent analytical technique in biology and 

medicine as data collection, storage and processing methods improve and society further advances 

into the information age (see Kourou et al., 2015; Mamoshina et al., 2016; Camacho et al., 2018 
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and Zitnik et al., 2019 for apropos reviews). An ongoing streak of successful development in the 

field has imparted general strategies such as incorporating subject matter expertise into feature 

selection procedures (Costello et al., 2014 and Bilal et al., 2013), sharing features among predicted 

variables (Costello et al., 2014 and Eduati et al., 2015), testing for both linear and nonlinear 

relationships between features and predicted variables (Costello et al., 2014 and Eduati et al., 2015) 

and combining models into ensembles (Bilal et al., 2013). 

 

A machine learning strategy performing discrimination on biological networks is the DCell Visible 

Neural Network (VNN) generated by Ma et al. (2018), whose architecture was constructed to 

represent both the Gene Ontology (GO) (Gene Ontology Consortium, 2016) and Clique-extracted 

Ontology (CliXO) (Kramer et al., 2014). This work resulted in networks containing 97,181 and 

22,167 artificial neurons, respectively, representing 2,526 cellular subsystems. This project acts as 

a touchstone for performing nonlinear inference on biological networks noting the opacity of fully-

connected artificial neural network (ANN) models and the fervent desire for model interpretability. 

With this system, several million yeast single- and double-KO samples from TheCellMap.org (Van 

Leeuwen et al., 2016; Costanzo et al., 2016 and Usaj et al., 2017), a data repository for yeast 

genetic interactions, were used to infer the biochemical phenomena underlying both growth rate 

and resistance to ultraviolet radiation phenotypes and were able to assess whether such phenotypes 

were primarily the outcomes of a only few cell subsystems or many, finding—for these 

phenotypes—that ~20% of the subsystems confer ~80% of the importance. 
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Reactome 

For the purpose of modeling human tissue biochemistry, the preeminent network is provided by 

the Reactome preceding/following reaction network. A hybrid portmanteau of Latin react- "done 

again" and Greek -some "body" partial cognate -ome, reactome may be defined at face value as 

"repertoire of chemical reactions" but is typically used to refer to  the Reactome Pathway 

Knowledgebase (Fabregat et al., 2017 and Jassal et al., 2020), currently, the most comprehensive 

and popular open access, manually curated biological pathway knowledgebase. Reactome is freely 

available online at https://www.reactome.org; exemplary visualizations from the Reactome 

webpage are shown in Figure 1. The most recent version at the time of this writing (release 77, 

June 2021) contains 11,084 proteins, 13,662 complexes, 13,827 reactions and 2,536 pathways 

covering over 50% of total human protein-coding genes and supported by 30,000 published papers. 

Human pathways in Reactome are manually curated by experienced curators and peer-reviewed 

by expert reviewers ensuring consistent high quality. Reactome includes annotations that map 

genes, gene products and other reactants to biochemical reactions and pathways as well as 

annotations connecting biochemical reactions to each other, forming a reaction network structure. 

In addition to relationships among reactions, Reactome provides pathway annotations, organized 

in a hierarchical way based on containing/contained by relationships. These pathway annotations 

and reaction networks are provided for multiple species, including human; however, it does not 

contain tissue-specific annotations. 

 

https://www.reactome.org/
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Figure 1: The Reactome knowledgebase is an academically-developed open source database of manually-curated biological 

pathways that describe biochemical reactions with mechanistic detail. a) A cell diagram from Reactome where pathways are 

labeled with blue boxes about the perimeter of the cell and their constituents and relationships are shown within. b) The curated 

hierarchy considers biochemical reactions and their organization into pathways. Biochemical reactions have relationships with 

lower-level pathways, which have relationships with higher-level pathways. c) The reactant-product network considers the 
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reactants, catalysts, inhibitors, activators and products of biochemical reactions and connects biochemical reactions when these 

are shared. 

 

Current biological network analysis strategies leveraging the Reactome tend to use the entire 

network, including some biochemical relationships thus far experimentally confirmed only in 

model organisms, such as yeast. Limited by current cost-intensive and low-throughput 

experimental techniques, human tissues' biochemical reaction networks have not been specifically 

described; rather, the Reactome contains a single manually-curated human reaction network that 

describes the superset of reactions thought to occur with high confidence in human cells. 

 

Hypothesis Development 

We have abundant evidence about which proteins and small molecules are able to participate in 

which lower-level reactions and which of those combine to form higher-levels, such as pathways; 

however, I have incomplete comprehension of two important aspects of this network. First, it is 

unclear how the microenvironment of reaction participants affect the reaction output. For example, 

a reaction whose stoichiometry requires an equal number of two proteins to occur may not occur 

as expected despite equal concentrations of those proteins in the same cellular compartment if 

those proteins' structural stability, folding or mutual interaction are affected by and subject to 

differential temperatures or salt concentrations (Baldwin, 1986; Formaneck et al., 2006; Pegram 

et al., 2010; Zhang, 2012; Reinhard et al., 2015). Further, it is not clear which proteins, small 

molecules and lower-level reactions are shared among particular tissues or cell types. 

 

Phosphoproteomics research has discovered robust patterns of cell signaling and pathway 

activation—as judged by protein phosphorylation—associated with tissue-development early in 
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human embryonic stem cell differentiation (Van Hoof et al., 2009) and across human, mouse and 

rat tissues (Changelian and Fearon, 1986; Huttlin et al., 2010; Karabulut and Frishman, 2016). 

This suggests network patterns would likely emerge from comprehensive human tissue-specific 

protein expression assays. Unfortunately, current experimental techniques do not allow us to 

efficiently observe proteome-wide abundance directly, which requires us to find strategies with 

which to interrogate tissue-specific biochemical reaction networks by measuring other biological 

entities. Currently, mRNA profiling appears the most promising avenue into approximating 

system-wide biochemical reaction network states. Consider, for example, it has been shown that, 

when cellular steady-state conditions are met or may be sufficiently approximated, assuming 

neither differentiation nor stress response, protein abundance levels have been shown to be 

primarily determined by mRNA abundance levels (Liu et al., 2016). Moreover, RNA-sequencing 

of like tissue has already been shown to reveal distinctive patterns (Pierson et al., 2015; Saha et 

al., 2017; Sonawane et al., 2017; Söllner et al., 2017, Hanson et al., 2017).  Furthermore, the 

prevalence of gene expression signatures predicting pathway activities in the literature (Bild et al., 

2006; Phillips et al., 2006; Lenz et al., 2008; Eroles et al., 2012; Ceccarelli et al., 2016 and Ayers 

et al., 2017) suggests pathway activity outcomes, such as signal transduction or cell cycle phase 

transition, are detectable via antecedent gene expression patterns alone, despite largely hidden 

effects of metabolite and other small molecule gradients, requisite traversal mechanisms of cellular 

compartmental boundaries, post-translational modifications, RNA and protein degradation rates et 

cetera. Considering this, our hypothesis is that gene expression signals coalesce across biochemical 

reactions to form distinct biological network patterns that stratify human tissues and reveal tissue-

specific mechanistic details underlying their functional differences. Extrapolation from mRNA 
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profiling data—already shown to separate tissues—strikes us as promising and worthwhile 

investigating from our proposed reactionwise perspective. 

 

In summary, I find our proposed analysis strategy follows naturally from our premises: 

 

1) Tissues exhibit characteristic protein expression patterns. 

2) Protein expression patterns predict pathway activation. 

3) Tissues exhibit characteristic mRNA expression patterns. 

4) mRNA expression patterns predict pathway activation. 

5) Protein abundance at steady state conditions is primarily determined by mRNA abundance. 

6) Cadaver tissue is at a steady state. 

 

Aims Overview 

In order to determine to which degree gene expression profiles communicate biochemical reaction 

network states that grant insight into human tissue functions, I tested our hypothesis by pursuing 

two specific aims. In our first aim, I performed an analytical review of relevant publicly available 

data sources along with exploratory data analysis, quality filtering, normalization and other 

preprocessing steps common to RNA-sequencing analysis pipelines and necessary for generalizing 

findings to new datasets. In this aim, I conducted gene-based clustering analysis in order to review 

our batch-effect corrections and test for biochemical reaction and network-free associations 

between human gene expression and human tissue identity. In our second aim, I developed a 

machine learning/graph analytical strategy with which to construct tissue-specific networks and 
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infer the relative importance of particular biochemical reactions and pathways among human 

tissues. 

 

Publicly available human tissue-specific RNA-sequencing datasets typically apply pipeline-

specific processing, normalization and batch-effect reduction strategies that lead to challenges for 

their collective integration. After assessing batch effects and other discrepancies across several 

data sources, I focused on healthy human tissue samples from GTEx alone. Briefly, I arrived at 

our dataset by downloading reprocessed samples from Recount2 and normalizing them using the 

DESeq2 library, combining and storing results in a single large data matrix (See Chapter 2 for 

additional details). In order to maximize community impact, I provide all intermediate data results 

and a final resource with identifiers matching Reactome, enabling straightforward integration of 

tissue-specific gene expression datasets with Reactome’s web and Cytoscape applications. This 

aim resulted in a single data repository containing a 9,115 healthy human tissue-specific RNA-

sequencing samples across 51 tissues along with software to reproduce its derivation and our 

analysis. I then used this data resource to group gene expression values according to the reactions 

in which their protein products participate in order that representative reactions may then be used 

as features in downstream machine learning techniques in order to explain particular tissues from 

a biological networks perspective. 

 

The reactions characterized in the first aim are connected separately within both the Reactome 

pathway hierarchy and the Reactome preceding/following reaction network such that 

parsimonious tissue-specific networks were discovered and—to within a reasonable degree—their 

elements contextualized. Quantitative assessment of machine learning algorithm performance with 
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held-out test error are provided and contribute to final result validation. For further validation of 

our final results, across tissue-specific networks, I performed hierarchical clustering based on input 

data and network similarity to construct several tissue clusterings and compared them among each 

other and with prior literature. 

 

In order to consider gene expression values from a reactionwise perspective, I used the data 

resource generated by our first aim to exploit the many to many gene-reaction relationships 

manually annotated in Reactome. This work resulted in a set of tissue-specific reaction networks, 

which may enhance our understanding of healthy human tissue, development and cancer. 

Additionally, this work demonstrates a computational approach that may be extended to infer cell-

type specific reaction networks and pathways based on single cell gene expression data, further 

improving our understanding of life and disease. 

 
Chapter 2: Harmonize and Integrate Human Tissue-specific RNA-seq Data 

The application of experimental results to a clinical setting is stymied without tissue-specific 

context for biological pathway and network modeling. To address this, I have processed and 

reviewed publicly available RNA-seq data from several sources, ultimately opting to use data from 

The Genotype-Tissue Expression (GTEx) project, the most comprehensive human tissue-specific 

gene expression data repository. I contextualized this data with annotations from Reactome, the 

most comprehensive open access, manually curated pathway knowledgebase. I transformed 

mRNA transcript counts into coordinates within spaces defined by biochemical reactions in which 

their protein products participate and generated a human tissue-specific data resource containing 

a total of 9,115 human tissue samples across 10,726 reactions. This data transformation preserves 

the tissue sample structure observed across mRNA transcript abundance values while positioning 
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samples within the Reactome preceding/following reaction network. This additional 

contextualization enables novel insights using extant Reactome reaction and pathway annotations 

as well as network analytical techniques at the reaction level such as graph-based machine learning 

strategies. Additionally, I validate our transformation with significant convergence of pathway 

enrichment results and follow with a demonstrative analysis of tissue proliferation at the pathway, 

reaction and gene transcript level. 

 

A prime motivation for developing large repositories of tissue-specific gene expression profiles is 

to improve our understanding of tissue-specific behavior by associating variation of gene 

expression with that of cellular function. One of the considerations in performing such association 

studies is the notion that gene products often act in concert when participating in biochemical 

reactions and that these gene product relationships themselves vary among cell and tissue types. 

Thus, by investigating the relationship between tissue-specific gene expression and the states of 

biochemical reactions, I may be able to improve our understanding of cell and tissue type variation 

in both transcriptomic and functional regards. 

 

To illustrate this point with a more concrete motivational narrative, I imagine a case where 

treatment and control groups have been shown to have significant differential gene expression for 

several genes and moderate or low differential gene expression for others. I would be interested to 

know which biochemical reactions differ between treatment and control groups but find none of 

the reactions in which the significantly differentially expressed genes participate exhibit significant 

differences. In fact, the reactions which differ most significantly, in this case, involve only gene 

products from genes which exhibit moderate or low expression differences. These reactions could 
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not possibly be recovered via enrichment analysis of significantly differentially expressed genes; 

indeed, to reveal these reactions, samples' gene expression values must be transformed and 

considered in a reactionwise manner. As this narrative is merely theoretical; to investigate systems-

level gene expression and reaction state information asymmetry, I looked to prominent human 

tissue-specific RNA-seq data sources for this study and investigated batch effects and other 

undesired variation in an effort to remove issues that may mislead or otherwise preclude 

reactionwise insights. 

 

We review data sources maintained by the National Center for Biotechnology Information (NCBI) 

that catalogue information from disparate experiments. Next I describe large-scale studies of ex 

vivo human tissue samples organized by international consortia. And finally, I discuss results of 

aggregated reprocessed data sources using combinations of the above. 

 

NCBI Data Sources 

The Gene Expression Omnibus (GEO) (Edgar et al., 2002; Barrett et al., 2012) and Sequence Read 

Archive (SRA) (Leinonen et al., 2010) are two popular resources freely available for academic use 

without constraints. They act as primary repositories for functional genomics and biological 

sequence data and each hold tens of thousands of human RNA-sequencing samples with tissue 

annotations. Because samples are neither collected nor processed uniformly, combined cross-study 

analyses using raw values from these sources are subject to biases introduced by batch effects that 

must be carefully considered and adjusted for (Gibson, 2008; Leek et al., 2010; Lazar et al., 2012; 

Tung et al., 2017). In spite of this limitation, they are relied upon by the following secondary 

repositories, subsets of which I attempted to harmonize in order to accomplish our first aim. 
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Large-Scale Human Tissue Studies 

The Genotype-Tissue Expression (GTEx) Project and The Cancer Genome Atlas (TCGA) are two 

of the largest-scale human tissue-specific RNA-sequencing studies conducted over the preceding 

decade; they have been made publicly available and are commonly subject to reanalysis. GTEx, 

available online at https://commonfund.nih.gov/gtex, provides access to human whole-genome 

DNA sequencing and non-diseased tissue-specific RNA-sequencing data from several hundred 

human cadaver samples across 53 tissues (Carithers et al., 2015). To our knowledge, this is the 

single largest source of human non-diseased tissue-specific RNA-sequencing data currently 

available. TCGA (Wang et al., 2018) is a project sponsored by both the National Cancer Institute 

(NCI) and the National Human Genome Research Institute (NHGRI) that collected the clinical and 

genetic information of over 20,000 human tumors across 33 cancer types including RNA-

sequencing data for 29 healthy normal human tissue types intended for use as comparative 

references. 

 

Aggregated Reprocessed Data Sources 

ARCHS4 makes RNA-sequencing data readily publicly available at the gene and transcript levels 

and went about uniformly processing over eighty thousand human samples from GEO and SRA 

spanning 53 tissues and 67 cell lines (Lachmann et al., 2018). This project noted the ease of use in 

performing subsequent analyses on GTEx and TCGA and sought to represent GEO data in a 

similarly accessible way, though this project did not address batch effect discovery or removal, it 

does provide raw read counts along with GEO metadata. This project performed uniform transcript 

quantification using Kallisto (Bray et al., 2016), with which they report to have achieved 
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processing costs of < $0.01 per sample (Lachmann et al., 2018). Uniform processing of multiple 

study results does reduce researcher degrees of freedom, though, without batch effect adjustment, 

systematic analysis remains statistically dubious as study-specific biases may occur upstream of 

the data processing procedure itself. 

 

Recount2 is a project aiming to uniformly process approximately seventy thousand GTEx, TCGA 

and SRA samples (Collado-Torres et al., 2017) with a single pipeline and claims to aid in reducing 

the number of researcher degrees of freedom by preselecting pipeline parameters. This project 

quantified transcripts using Rail-RNA, a cloud-based aligner with reported sample processing 

costs ranging from $0.72 to $0.91 per sample (Lackmann et al., 2018, Nellore et al., 2017). In a 

similar fashion to ARCHS4, Recount2 did not apply batch effect adjustment, impeding comparison 

of results from multiple studies. However, the decision to process large datasets such as GTEx and 

TCGA uniformly seems a boon to comprehension of post hoc analyses as study-specific effects of 

smaller studies may be better contextualized. 

 

RNASeqDB unifies GTEx and TCGA data (Wang et al., 2018) and conducted uniform processing 

and gene and transcript quantification using the STAR aligner (Dobin et al., 2013). This project 

also applied batch effect adjustment using ComBat and SVAseq (Johnson et al., 2007; Leek 2014) 

in an effort to remove undesired variation due to study, a known issue in performing comparisons 

between such datasets. 

 

To evaluate these data sources I focused both on the evaluation of the aggregated datasets from 

the above outlined reprocessing pipelines individually and the assessment of their potential for 
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integration in our methods development. I demonstrated the importance of pre-processing, 

normalization and exploratory data analysis of mRNA expression values resulting from multiple 

experiments in our previous research (Burkhart, 2016; Fourati et al., 2018), concepts already 

reinforced throughout the literature (Gibson, 2008; Leek et al., 2010; Lazar et al., 2012; Tung et 

al., 2017). Early on, Gibson suggested—as they are abiotic sources of variation—technical effects 

could be considered sources of environmental contribution to trait variation, further noting batch 

effects may impede comparative gene expression studies (Gibson, 2008). Indeed, in our prior 

studies, adjusting mRNA expression levels for technical variation improved the accuracy of 

machine learning models in predicting viral challenge outcomes on independent validation data 

held out from an initial training dataset. Our intention is to analytically explore our proposed data 

sources in order to better understand them and how compromises at this stage may affect 

downstream research efforts. 

 

Exploratory Data Analysis 

Initial quality assessment consisted of automated comparison of sample identifiers across local 

datasets and checks for missing values. I used the DESeq2::vst() function in order to adjust for 

library size and transform raw RNA-sequencing counts to log2 scale values. In order to explore 

sources of variation within tissue, I compared sample distributions using principal component 

analysis (PCA), a classical analytical technique used for representing systems via lower-

dimensional planes (Pearson, 1901); this showed differences across both data source and tissue 

type. After recognizing prominent data source-specific batch effects were present in our data, I 

applied batch effect adjustment using the limma::removeBatchEffect() function, which fits a linear 

model to batch and removes it from the data, yielding transformed values. However, performing 
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PCA once again on the transformed values showed data source-specific batches were merely 

mean-centered and not convincingly adjusted for. In order to compare variation within and among 

data sources this way, I compared sample distributions using gene-based hierarchical clustering 

across tissues for several biochemical reactions represented within our dataset. 

 

We began by tabulating the healthy human tissues available in ARCHS4, GTEx and TCGA and, 

to best comprehend data source-specific biases, sought to include tissue samples from those tissues 

present in each data source. ARCHS4 bulk tissue download R scripts were generated and 

downloaded using the https://amp.pharm.mssm.edu/archs4/data.html web interface. GTEx and 

TCGA tissue samples were downloaded using the Recount2 web interface at 

https://jhubiostatistics.shinyapps.io/recount/. Transcripts with missing or zero values across all 

samples were removed from each data source. I applied pathway overrepresentation analysis to 

test for pathway-specific biases among those missing or zero value transcripts finding no 

significant enrichment using a significance threshold of FDR <= 0.05. Remaining transcript 

identifiers were converted to Ensembl (Howe et al., 2021) gene identifier using the 

biomaRt::getBM() function. Transcripts without Ensembl gene identifiers were removed and 

tested for pathway-specific biases (as above) without finding significant enrichment. The 

remaining data from each source was combined into a single R dataframe using the 

dplyr::bind_cols() function. Datasource and tissue annotations are stored separately as character 

vectors. Because some samples have some instances of undetected transcripts (zero-values) and 

some samples have some instances of more than the maximum integer value (machine integer 

maximum) for our computing environment, the R dataframe is scaled to the machine integer 

maximum - 1 and then shifted by adding 1 to each value. This is necessary preparation for log-

https://amp.pharm.mssm.edu/archs4/data.html
https://jhubiostatistics.shinyapps.io/recount/
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transformation, which I then apply using the DESeq2::vst() function. I then created a design matrix 

using the aforementioned tissue vector and remove batch effects by parameterizing our call to 

limma::removeBatchEffects() with our datasource vector specified as batch and our tissue vector 

specified as design arguments. 

 

Liver 

 

Kidney 
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Breast 

 

Figure 2: The first  two principal components among liver, kidney and breast samples is derived from ARCHS4. 

 

Uniform processing has the effect of removing the processing-method-specific variation; however, 

there remains uncertainty about how well this addresses other study-specific or systematic biases. 

I assumed batch effects would exist across data sources and selected tissues only present in each 
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of the sources I investigated. I suspected batch effects may be appreciated visually using PCA 

plots and found a high degree of variation within tissue samples across data sources. The majority 

of within-tissue variation detected by considering the first two principal components among liver 

(~95%), kidney (~95%) and breast (~85%) samples is derived from ARCHS4 (Figure 2) while 

esophagus (~45%) and colon (~50%) within-tissue variation was not overtly driven by ARCHS4, 

with comparable variation observed in GTEx samples as well (Figure 3). Adjusting for data source 

had the effect of centering GTEx and TCGA samples within a cloud of more widely distributed 

ARCHS4 samples in liver, kidney and breast samples (Figure 4). Esophagus samples were shown 

to form a multimodal distribution with multiple distinct regions of density. In esophagus, this was 

recognised most clearly in samples from GTEx while colon samples formed a multimoda l 

distribution with distinct regions of density observed in samples from both GTEx and ARCHS4 

(Figure 5). 

 

Esophagus 
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Colon 

 

Figure 3: Esophagus and colon within-tissue variation was not overtly driven by ARCHS4, with comparable variation observed in 

GTEx samples as well. 

 

Our supposition was that perhaps considering the entire repertoire of gene products to compare 

data sources was overzealous and that meaningful variation should consider only functional gene 

products—known to be involved in biochemical reactions. I performed complete-linkage 

agglomerative hierarchical clustering to assess tissue and data source contributions to gene 

expression variation among the top three most represented Reactome reactions within our dataset, 

each representing >= 50 unique transcripts detected in our data sources and, perhaps unexpectedly 

following insights aforementioned, found data source to be a strong confounding factor overall.  
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Among reactions I analyzed, R-HSA-381750: Olfactory Receptor - G Protein olfactory trimer 

complex formation, representing 75 transcripts, showed poorest separation across tissue both 

within and across data sources. However, other reactions, such as R-HSA-975040: KRAB-ZNF / 

KAP Interaction, representing 55 transcripts, and R-HSA-2730833: Phosphorylation of TEC 

kinases by p-SYK, representing 50 transcripts, showed improved separation across tissue within 

data sources though clustering samples across data sources remained poor (Figure 6). This analysis 

did not show evidence that allowed us to reject our prior supposition and left us with the conclusion 

that data source-specific batch effects remained in our data even following batch-effect adjustment. 

 

Liver 

 

Kidney 
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Breast 

 

Figure 4: Adjusting for data source had the effect of centering GTEx and TCGA samples within a cloud of more widely distributed 

ARCHS4 samples in liver, kidney and breast samples. 

 

Continuing our investigation into the variation across data sources I observed in both our PCA 

plots and our reaction clustering analysis, I noted Recount2 used Gencode v25 annotations in its 

pipeline while ARCHS4 used GRCh38.87 annotations and, noting many transcripts were dropped 

during our filtering, suspected there may be characteristic biases introduced either in the annotation 
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process or the identifier conversion I performed with biomaRt (Durinck et al., 2009). I grouped 

transcripts by the data source from which they were dropped and whether they were dropped 

because they were either not detected among all samples within that data source or were 

unmappable by biomaRt. I performed overrepresentation analysis on Reactome pathways for each 

of the abovementioned groups of transcripts without finding significant enrichment using a 

significance threshold of false discovery rate (FDR) < 0.05; the strongest result was the 

overrepresentation of Interleukin-2 family signaling among transcripts not detected across all 

samples within GTEx, which had a non-significant FDR of merely 0.081. 

 

Esophagus 
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Colon 
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Figure 5: Esophagus samples were shown to form a multimodal distribution with multiple distinct regions of density. In esophagus, 

this was recognised most clearly in samples from GTEx while colon samples formed a multimodal distribution with distinct regions 

of density observed in samples from both GTEx and ARCHS4. 

 

Following recognition of multimodal distributions within data sources, I hypothesized modes may 

represent different cellular lineages. I considered how GTEx tissue region smtsd annotations 

compared with whole tissue annotations from other data sources as well as GTEx itself. Among 

those tissues where multimodality was observed, distinct regions of density were clearly driven by 

GTEx tissue region, a course annotation associated with cell lineage. For example, I showed the 

bimodality observed within esophagus samples could be easily explained by separating 

Gastroesophageal Junction, Mucosa and Muscularis annotations  (Figure 7). 

 

A: R-HSA-381750 
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B: R-HSA-975040 
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C: R-HSA-2730833 
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Figure 6: Panel A depicts R-HSA-381750: Olfactory Receptor - G Protein olfactory trimer complex formation, representing 75 

transcripts, which showed poorest separation across tissue both within and across data sources. Other reactions, such as R-HSA-

975040: KRAB-ZNF / KAP Interaction, representing 55 transcripts and depicted in Panel B, and R-HSA-2730833: Phosphorylation 

of TEC kinases by p-SYK, representing 50 transcripts and depicted in Panel C, showed improved separation across tissue within 

data sources though clustering samples across data sources remained poor. 

 

In order to compare Recount2 and ARCHS4 processing effects more directly, I reviewed 168 

breast tissue samples that had been processed by each pipeline separately 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58135). The study that generated this 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58135
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GEO series—in an effort to investigate the association of read-through fusion transcripts with 

breast cancer—conducted RNA-sequencing experiments using multiple breast tissue cell types 

including several breast cancer cell lines, triple negative breast cancer (TNBC) primary tumor, 

estrogen receptor positive (ER+) primary tumor, TNBC adjacent, ER+ adjacent as well as normal 

breast collected from breast reduction surgery and used as healthy controls (Varley et al., 2014). I 

discovered both technical variation between the two data sources as well as errors of annotation 

among ARCHS4 samples. 

 

A: GTEx smts annotations 

 

B: GTEx smtsd annotations 
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Figure 7: Distinct regions of density were clearly driven by GTEx tissue region, a course annotation associated with cell lineage. 

For example, relative to ARCHS4 and TCGA samples, bimodality observed within GTEx esophagus samples (Panel A) could be 

easily explained by separating Gastroesophageal Junction, Mucosa and Muscularis annotations (Panel B). 

 

We used PCA to plot samples collected from this study that had been processed by both ARCHS4 

and Recount2 and found the respective ARCHS4 samples clustered tightly with the rest of the 

ARCHS4 samples (collected from other studies) while the respective Recount2 samples clustered 

more closely with Recount2 samples from GTEx and TCGA (Figure 8). As the respective 

ARCHS4 and Recount2 sample sets are indeed drawn from the same underlying sample set, the 

observed separability is indicative of severe batch effects due to the differences in these pipelines'  

processing methods. 
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Figure 8: ARCHS4 samples clustered tightly with the rest of ARCHS4 samples (collected from other studies) while the respective 

Recount2 samples clustered more closely to those Recount2 samples from GTEx and TCGA. 

 

In order to ensure our observations were not skewed simply by the fact that Varley et al. samples 

were largely transformed (by cancer) while our GTEx and TCGA samples represented healthy 

human tissues, I annotated the Varley et al. samples by cell type in our PCA as well (Figure 9). 

Surprisingly, ARCHS4 was found to include diseased samples (Terminal session log 0.2) but lack 

the healthy control samples from Varley et al. in its list of bulk breast tissue samples, despite the 

samples existing within the ARCHS4 database under the Varley et al. study identifier itself.  

Regarding the underlying cause of this issue, it appears a parsing issue fails to recognize and 

separate GEO/SRA samples precisely as intended; however the recognition of such an error 

suggests ARCHS4 bulk human tissue listings may not serve as representative samples of healthy 

human tissue. 
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With these observations potentiating difficulty integrating ARCHS4 samples with our other data 

sources, I considered the impact removing ARCHS4 samples would have on our tissue sample 

counts. Our tissue sample distribution with ARCHS4 covers five tissues with a mean sample count 

of 1329.2 and a total of 6646 samples (Table 1). I then considered the case where only GTEx and 

TCGA samples from Recount2 were used and found the tissue coverage increased from five to 

sixteen; however the average number of samples per tissue and the total number of samples 

decreased from 1329.2 to 384.25 and from 6646 to 6148, respectively (Table 2). I compared these 

cases to that of using GTEx data from Recount2 alone and found tissue coverage increased from 

16 to 31 and total sample count from 6148 to 9662, while mean samples per tissue decreased only 

modestly from 384.25 to 311.7 (Table 3). Thus, I opted to use this GTEx data alone, forgoing 

integration of outside sources. 

Table 1: Tissue sample counts for tissues shared among GTEx, TCGA (healthy samples) and 

ARCHS4 

Tissue Label GTEx TCGA ARCHS4 Total Count 

Breast 218 112 2217 2547 

Colon 376 51 797 1224 

Esophagus 790 13 137 940 

Kidney 36 129 681 846 

Liver 136 50 903 1089 

Total Count 1556 355 4735 6646 
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Table 2: Tissue sample counts for those tissues shared between GTEx and TCGA (healthy 

samples) 

Tissue Label GTEx TCGA Total Count 

Adrenal Gland 159 3 162 

Bladder 11 19 30 

Brain 1409 5 1414 

Breast 218 112 330 

Cervix 11 3 14 

Colon 376 51 427 

Esophagus 790 13 803 

Kidney 36 129 165 

Liver 136 50 186 

Lung 374 110 484 

Pancreas 197 4 201 

Prostate 119 52 171 

Skin 974 1 975 

Stomach 204 37 241 

Thyroid 361 59 420 

Uterus 90 35 125 

Total Count 5465 683 6148 

 



    48 

Table 3: Tissue sample counts for those tissues included in GTEx 

Tissue Label GTEx Sample Count 

Adipose Tissue 620 

Adrenal Gland 159 

Bladder 11 

Blood 595 

Blood Vessel 750 

Bone Marrow 102 

Brain 1409 

Breast 218 

Cervix Uteri 11 

Colon 376 

Esophagus 790 

Fallopian Tube 7 

Heart 489 

Kidney 36 

Liver 136 

Lung 374 

Muscle 475 

Nerve 335 

Ovary 108 

Pancreas 197 
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Pituitary 124 

Prostate 119 

Salivary Gland 70 

Skin 974 

Small Intestine 104 

Spleen 118 

Stomach 204 

Testis 203 

Thyroid 361 

Uterus 90 

Vagina 97 

Total Count 9662 
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Figure 9: Varley et al. samples annotated by cell type and compared within our PCA. 

 

Reactionwise Principal Component Coordinate Transformation 

In order for any particular reaction to occur, its necessary reactants must be present. Some reaction 

components such as siRNA, metal ions and other organic and inorganic compounds are currently 

unquantified in a tissue-specific manner appropriate for integration with this work; however, 

biochemical reactions are mediated by enzymes and proteins resulting from translation of mRNA, 

which influence reaction rate. Across human tissues, mRNA abundance varies, affecting which 

and to what degree biochemical reactions take place. This differential reaction utilization is 

observed across tissues and is responsible for differential tissue-specific function. In order to 

generate values for each reaction which approximate reaction utilization, I applied principal 

component analysis across transcript sets annotated for each reaction as a conceptually simple, 

computationally efficient and outcome-naive aggregation strategy (Figure 10). 
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Figure 10: Panel A shows a first  principal component (PC1) positioned within a space representing a reaction to which three 

proteins are annotated. Axes represent three transcript abundance levels corresponding to the reaction's three proteins. Circles 

represent tissue samples. Circle color represents sample tissue type. Circle size is varied to suggest image depth. Panel B shows 

reactions composed as three information sets: proteins (light green boxes), other components (orange boxes) and reaction 

mechanics (purple boxes). Protein sets are shown to be connected to a pathway hierarchy (dark green boxes) by curved connectors. 

Reaction mechanics are shown to be connected by open-headed arrows. 

 

GTEx RNA-seq data files were downloaded from the Recount2 project website at 

https://jhubiostatistics.shinyapps.io/recount/ and records annotated with healthy tissue labels were 

retained. Samples removed included those annotated as Cells - Transformed fibroblasts (306), 

Cells - Leukemia cell line (CML) (102), Cells - EBV-transformed lymphocytes (139) and those 
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with no tissue label (5). Transcripts whose identifiers were not annotated as participating in 

Reactome reactions were removed. Values were scaled up to the machine maximum integer value 

- 1 and added to 1, producing transcript pseudocounts (Love MI et al., 2019; Love MI et al., 2015), 

and processed using the variance stabilizing transform (Anders S et al., 2010) provided by DESeq2 

(Love MI et al., 2014). 

 

Transcripts were grouped in a many-to-many fashion according to the Reactome reactions in which 

their protein products participated. Principal component analysis was conducted using the prcomp 

function (https://stat.ethz.ch/R-manual/R-patched/library/stats/html/prcomp.html)  from the R 

stats package (R Core Team, 2013) and resulting principal component result objects were stored. 

The distribution of proportion of variance explained by each principal component across reactions 

is shown in Figure 11 with the median first principal component explaining approximately 50% 

of variance, the median second principal component explaining approximately 25% of variance 

and the subsequent principal components tending to explain less variance, as would be expected. 

The first principal component value from each reaction was recorded for each sample, forming a 

matrix. This routine transformed a matrix representing 6,323 transcripts representing 6,323 unique 

genes across 9,115 tissue samples to a matrix representing 10,726 reactions across those same 

9,115 samples. 
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Figure 11: Panel A shows tissue sample counts across tissues. Panel B shows principal component distributions of proportions of 

variance explained across the first  10 principal components. Panel C shows a log-log plot of reaction vs transcript counts. Panel D 

shows the tissue sample dendrograms from both reaction PC1 (left) and transcript counts (right) are correlated significantly. 

Heatmaps shown are downsampled from the underlying matrices for visualization purposes. 

 

Tissue sample counts ranged from 5 (Endocervix) to 475 (Skeletal muscle), indicated in Figure 

11A. Reaction transcript counts ranged from 1 (multiple reactions) to 214 Olfactory Receptor - G 

Protein olfactory trimer complex formation (R-HSA-381750), indicated in Figure 11C. 

 



    54 

Reactionwise Statistical Analysis 

To demonstrate tissue-specific patterns across reactions, I applied a K=1 Nearest Neighbor (KNN) 

classifier (Fix & Hodges, 1951; Cover & Hart, 1967), calculating for each reaction and across all 

tissues, both the adjusted rand index (ARI)—which may be considered as an approximation of 

overall tissue classification accuracy (Hubert L et al., 1985)—and tissue-specific classification 

accuracy (ACC). Reactions with the highest ARI values are included in Table 4. If one were to 

assume some reactions acted simply as better predictors than others, we could place each reaction 

upon a diagonal whereby ACC for individual tissues equals ARI; however, tissuewise plots show 

reaction point clouds where ACC deviates from ARI, indicating distinct tissue-specific reaction 

states are assumed for some tissues while, at a system-wide scale, these same reactions are not 

reliable tissue predictors overall. To show this bias more clearly, I scaled both ACC and ARI to 

the interval [0,1] and subtract ARI from ACC, showing resulting plots for both Breast and Lung 

tissue (Figure 12). Reactions with the highest ACC values for Breast and Lung are included in 

Tables 5 and 6, respectively. To show these tissue-specific patterns across all tissues, I calculated 

the accuracy for each reaction for each tissue and generated a dendrogram where, generally, tissues 

grouped near each other are classified at similar rates by the same reactions whereas those grouped 

further apart are classified at differential rates by those reactions (Figure 12F). 

 

Table 4: Reactions with highest ARI values 

Reaction Name Reaction ID ARI 

RAS GEFs promote RAS nucleotide exchange R-HSA-5672965 0.8342 

Liganded Gq/11-activating GPCRs act as GEFs for Gq/11 R-HSA-379048 0.8331 
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Liganded Gq-activating GPCRs bind inactive heterotrimeric Gq R-HSA-749448 0.8331 

The Ligand:GPCR:Gq complex dissociates R-HSA-749452 0.8331 

Liganded Gi-activating GPCR acts as a GEF for Gi R-HSA-380073 0.8244 

The Ligand:GPCR:Gi complex dissociates R-HSA-749454 0.8234 

Liganded Gi-activating GPCRs bind inactive heterotrimeric G-protein Gi R-HSA-749456 0.8234 

Liganded Gs-activating GPCR acts as a GEF for Gs R-HSA-379044 0.8207 

The Ligand:GPCR:Gs complex dissociates R-HSA-744886 0.8207 

Liganded Gs-activating GPCRs bind inactive heterotrimeric Gs R-HSA-744887 0.8207 

 

Table 5: Reactions with highest Breast ACC values 

Reaction Name Reaction ID ARI Breast ACC 

PI3K inhibitors block PI3K catalytic activity R-HSA-2400009 0.8099 0.9918 

GPLD1 hydrolyses GPI-anchors from proteins R-HSA-8940388 0.7760 0.9916 

RAS GEFs promote RAS nucleotide exchange R-HSA-5672965 0.8342 0.9914 

The Ligand:GPCR:Gi complex dissociates R-HSA-749454 0.8234 0.9912 

Liganded Gi-activating GPCRs bind inactive 

heterotrimeric G-protein Gi 

R-HSA-749456 0.8234 0.9912 

Liganded Gq/11-activating GPCRs act as GEFs for 

Gq/11 

R-HSA-379048 0.8331 0.9912 

Liganded Gq-activating GPCRs bind inactive 

heterotrimeric Gq 

R-HSA-749448 0.8331 0.9912 
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The Ligand:GPCR:Gq complex dissociates R-HSA-749452 0.8331 0.9912 

 PI3K phosphorylates PIP2 to PIP3 R-HSA-2316434 0.8060 0.9911 

 Liganded Gi-activating GPCR acts as a GEF for Gi R-HSA-380073 0.8244 0.9910 

 

Table 6: Reactions with highest Lung ACC values 

Reaction Name Reaction ID ARI Lung ACC 

Vesicle budding R-HSA-203973 0.7265 0.9998 

SEC31:SEC13 and v-SNARE recruitment R-HSA-204008 0.7265 0.9998 

 SEC16 complex binds SAR1B:GTP:SEC23:SEC24 R-HSA-5694417 0.7165 0.9998 

HSPA8-mediated ATP hydrolysis promotes vesicle 

uncoating 

R-HSA-8868658 0.8178 0.9998 

Auxilin recruits HSPA8:ATP to the clathrin-coated 

vesicle 

R-HSA-8868660 0.8178 0.9998 

CSNK1D phosphorylates SEC23 R-HSA-5694441 0.7294 0.9997 

SNX9 recruits components of the actin polymerizing 

machinery 

R-HSA-8868230 0.8171 0.9997 

F- and N- BAR domain proteins bind the clathrin-coated 

pit  

R-HSA-8867754 0.8116 0.9997 

 FAM20C phosphorylates FAM20C substrates R-HSA-8952289 0.8112 0.9997 

BAR domain proteins recruit  dynamin R-HSA-8868236 0.8181 0.9997 
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Figure 12: Panel A shows positive correlations between mean reaction expression difference and reactionwise KNN accuracy for 

each tissue. Panel B shows a histogram of ARI across all reactions. Panel C shows ARI for each reaction, scaled to the interval 

[0,1]. Panel D shows breast t issue KNN accuracy scaled to the interval [0,1]. Panel E shows lung tissue KNN accuracy scaled to 

the interval [0,1]. Panel F shows tissues hierarchically clustered by reactionwise KNN accuracy. Panel G shows scaled ARI (from 

C) subtracted from scaled breast t issue KNN accuracy (from D). Panel H shows scaled ARI (from C) subtracted from scaled lung 

tissue KNN accuracy (from E). Panel I shows a histogram of data in G. Panel J shows a histogram of data in H. 

 

Recapitulation of mRNA Transcript Abundance Sample Structure 

One common method to assess gene expression information across samples is to perform 

hierarchical clustering, which may reveal the structure among samples by considering overall 

samplewise similarity. In order to determine whether calculating reactionwise principal 
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component summarization significantly degraded or otherwise influenced this structure, I 

calculated the Euclidean distance between samples and performed agglomerative hierarchical 

clustering using Ward's D (Ward Jr JH 1963; Murtagh F et al., 2014) on both reaction principal 

component coordinates and transcript counts across all samples and compared the resulting 

dendrograms. The Cophenetic correlation (Sokal RR et al., 1962; Sneath PH, 1973) between these 

dendrograms was calculated as 0.9248, which was shown to be significant by permuting over the 

reaction dendrogram labels as specified in the function documentation 

(https://rdrr.io/cran/dendextend/man/cor_cophenetic.html) 10,000 times (p-value < 1.0E-5). This 

demonstrates the reactionwise principal component coordinate values group tissue samples 

similarly to transcript counts, strengthening the hypothesis that the human Reactome reactions 

assume distinct tissue-specific states. The advantage of expressing this information as reaction 

states, rather than transcript counts, is that reactions form a network distinct from other networks 

formed by transcripts alone. The transformation of transcript count information into reactionwise 

information offers the opportunity to leverage gene expression information through a novel lens, 

that of the human biochemical network. 

 

Phenotypic Validation 

In order to validate our transformation, I sought to compare two groups of tissues with known 

biochemical variation. Using the results produced from a metaanalysis that examined cell 

proliferation among 31 tissues (Richardson et al., 2014), I separated our samples into three groups 

with a reported estimated representative mean value of cell turnover less than one month, between 

one month and one year and over one year in length. Removing sex-specific tissues and comparing 

high- and medium-turnover samples as well as medium- and low-turnover samples with two-tailed 
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Wilcoxon tests, I combine resulting p-values using Fisher's method and calculate a false discovery 

rate (FDR) for each reaction to adjust for multiple hypothesis testing. This analysis reveals the 

reactions with significantly differential first principal components between both high- and 

medium-turnover tissues and medium- and low-turnover tissues and reveals a list of reactions 

that—despite significant differential gene expression among these groups of samples—cannot be 

arrived upon using traditional differential gene expression analytical techniques. 

 

Traditional pathway enrichment analysis considering reactions as genesets would not be 

appropriate here as genes are duplicated across reactions and attempting pathway enrichment with 

gene identifiers won't be able to capture this multiple-participation paradigm. Also, pathway 

enrichment using genes in cases where only a few (of many) genes who participate in a given 

reaction are present in this dataset would not show significant representation of that reaction's 

corresponding pathways, despite these few genes providing otherwise good tissue separability, 

leading to the potential for high false negative (Figure 13). This concept is exemplified in the 

difference between significant reaction and transcript pathway enrichment results. 
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Figure 13: Panel A shows a log-log plot of reaction and pathway enrichment with four significance sections numbered and colored: 

1/pink) pathways significant in both reaction and transcript enrichments, 2/green) pathways significant in transcript enrichment 

alone, 3/cyan) pathways not found to be significant in either enrichment analysis and 4/purple) pathways significant in reaction 

enrichment alone. Significance was defined as an FDR < 0.05 using hypergeometric test. The overlap set of pathways significant 

in both reaction and transcript enrichments is shown to be significant itself (Fisher exact p-value = 0.002037. Panel B shows 

reactions plotted by their combined Wilcoxon FDR and high vs low proliferation group mean PC1 difference with those from 

Fcgamma receptor (FCGR) dependent phagocytosis (R-HSA-2029480) the top-rightmost pathway (from A) labelled in pink. Panel 

C shows transcripts plotted by their combined Wilcoxon FDR and high vs low proliferation group mean expression difference with 

those from Recruitment of VAV1 to p-6Y-SYK (R-HSA-2029458) labelled in pink. Panel D shows tissue samples positioned within 

a space whose axes are the first  three principal components of transcripts annotated to Recruitment of VAV1 to p-6Y-SYK (R-HSA-

2029458) with high, medium and low proliferation samples labelled in green, blue and orange, respectively. A reactome diagram 

of the reaction is inset. Panel E shows expression distributions of SRC (ENSG00000197122) across the three proliferation groups 

with colors matching D. These distributions are shown to differ significantly with Kruskal-Wallis and Pairwise Wilcoxon FDR 



    61 

results stated in the main text and shown in the panel itself. Panels F, G and H show distributions of transcripts, reactions and mean 

transcripts per reaction across pathways, respectively. Distributions represent pathways within significance sections from A with 

corresponding number labels and colors. These distributions are shown to differ significantly with Kruskal-Wallis and Pairwise 

Wilcoxon FDR results stated in the main text and shown in the panels themselves. 

 

Setting an alpha = 0.05 and considering the overlapping enriched pathways between reaction and 

transcript enrichment approaches, I see these pathways are drawn from the same underlying 

distribution (Fisher Exact p-value = 0.002). Further, reviewing prior literature apropos of our 

significantly enriched pathways, I find support for cell proliferation-related mechanisms. Using 

Fisher's method to combine p-values, the most significant pathways have all been associated with 

proliferation: Regulation of actin dynamics for phagocytic cup formation, Fcgamma receptor 

(FCGR) dependent phagocytosis and FCGR activation (Luo Y et al., 2010); CD22 mediated BCR 

regulation (Matsubara N et al., 2018) and Classical antibody-mediated complement activation 

(Ghebrehiwet B. 2018). The 10 most significant pathways using the Fisher's method are reported 

in Table 7 along with results for reaction enrichment significance in Table 8 and transcript 

enrichment significance in Table 9. 

 

Table 7: Enriched pathways with highest combined FDR 

Pathway Name Pathway ID Combined FDR 

Regulation of actin dynamics for phagocytic cup formation R-HSA-2029482 1.731E-019 

Fcgamma receptor (FCGR) dependent phagocytosis R-HSA-2029480 6.187E-019 

CD22 mediated BCR regulation R-HSA-5690714 9.745E-019 
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Classical antibody-mediated complement activation R-HSA-173623 9.745E-019 

FCGR activation R-HSA-2029481 1.289E-018 

Antigen activates B Cell Receptor (BCR) leading to generation 

of second messengers 

R-HSA-983695 2.520E-018 

Role of LAT2/NTAL/LAB on calcium mobilization R-HSA-2730905 3.258E-017 

Creation of C4 and C2 activators R-HSA-166786 1.002E-015 

Chromatin organization R-HSA-4839726 2.859E-015 

 Chromatin modifying enzymes R-HSA-3247509 2.859E-015 

 

Table 8: Enriched pathways with highest reaction FDR 

Pathway Name Pathway ID Reaction FDR 

Chromatin organization R-HSA-4839726 3.836E-016 

Chromatin modifying enzymes R-HSA-3247509 3.836E-016 

RUNX1 and FOXP3 control the development of regulatory T  

lymphocytes (Tregs) 

R-HSA-8877330 0.0000003280 

 Fcgamma receptor (FCGR) dependent phagocytosis R-HSA-2029480 0.0000003624 

HDMs demethylate histones R-HSA-3214842 0.000004028 

O-linked glycosylation of mucins R-HSA-913709 0.000004028 

Interleukin-35 Signalling R-HSA-8984722 0.000004485 

Base Excision Repair R-HSA-73884 0.000005247 
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Signaling by Non-Receptor Tyrosine Kinases R-HSA-9006927 0.000005607 

Signaling by PTK6 R-HSA-8848021 0.000005607 

 

Table 9: Enriched pathways with highest transcript FDR 

Pathway Name Pathway ID Transcript FDR 

Classical antibody-mediated complement activation R-HSA-173623 6.227E-019 

CD22 mediated BCR regulation R-HSA-5690714 2.327E-018 

FCGR activation R-HSA-2029481 2.446E-017 

Creation of C4 and C2 activators R-HSA-166786 5.442E-017 

Role of LAT2/NTAL/LAB on calcium mobilization R-HSA-2730905 1.132E-016 

Scavenging of heme from plasma R-HSA-2168880 2.451E-016 

Antigen activates B Cell Receptor (BCR) leading to 

generation of second messengers 

R-HSA-983695 3.193E-016 

Regulation of actin dynamics for phagocytic cup 

formation 

R-HSA-2029482 3.296E-015 

Role of phospholipids in phagocytosis R-HSA-2029485 0.00000000000002231 

Initial triggering of complement R-HSA-166663 0.000000000001223 

 

Though pathway enrichment result overlap is significant, reaction and transcript results exhibit 

compositional differences. I investigated our enrichment results by separating pathways into 

significance sections 1) significant using both reaction and transcript enrichment approaches, 2) 
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significant using the transcript approach only, 3) not significant using either approach and 4) 

significant using the reaction approach only. Transcript counts within pathways across these 

sections vary significantly (Kruskal-Wallis p-value < 2.2e-16) as well as between sections 2 and 3 

(Pairwise Wilcoxon FDR = 7.1e-12), 2 and 4 (Pairwise Wilcoxon FDR = 7.7e-5) and 3 and 4 

(Pairwise Wilcoxon FDR = 7.1e-12). Reaction counts within pathways vary significantly across 

section (Kruskal-Wallis p-value < 2.2e-16) as well as between sections 1 and 3 (Pairwise Wilcoxon 

FDR = 0.01234), 2 and 3 (Pairwise Wilcoxon FDR = 0.00081) and 3 and 4 (Pairwise Wilcoxon 

FDR < 2e-16). Investigating further, the mean transcript counts within reactions within pathways 

differ significantly across section (Kruskal-Wallis p-value = 1.077e-14) as well as between 

sections 1 and 3 (Pairwise Wilcoxon FDR = 0.00050), 1 and 4 (Pairwise Wilcoxon FDR = 

0.00130), 2 and 3 (Pairwise Wilcoxon FDR = 1.2e-7), 2 and 4 (Pairwise Wilcoxon FDR = 0.00024) 

and 3 and 4 (Pairwise Wilcoxon FDR = 1.6e-6). 

 

After performing pathway enrichment analysis using the reaction-based approach above, I 

investigated the significant pathway Fcgamma receptor (FCGR) dependent phagocytosis (R-

HSA-2029480) at the reaction level. A volcano plot highlights the reaction first principal 

component difference between high and low tissue proliferation groups plotted against FDR values 

resulting from Wilcoxon p-values comparing high and medium and medium and low proliferation 

groups combined using Fisher's method (Figure 13B). Reactions in R-HSA-2029480 are labelled 

in pink. By selecting the significant reaction Recruitment of VAV1 to p-6Y-SYK (R-HSA-2029458), 

one can investigate further by showing sample structure within this reaction-defined space using 

the first three principal components where high, medium and low proliferation groups are indicated 

in green, blue and orange, respectively, along with an inset reaction diagram provided by Reactome 
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(Figure 13D). Next, in a similar fashion to above, a volcano plot shows transcript expression value 

mean difference between high and low tissue proliferation groups plotted against FDR values 

resulting from Wilcoxon p-values comparing high and medium and medium and low proliferation 

groups combined using Fisher's method. Transcripts in reaction R-HSA-2029458 are labelled in 

pink. I now select transcript ENSG0000017122 (SRC) and investigate further using by showing 

its expression distributions across proliferation group. SRC is a known proto-oncogene 

(https://www.genecards.org/cgi-bin/carddisp.pl?gene=SRC) and has been associated with cell 

proliferation in prior work (Sánchez-Bailón MP, 2012). Indeed, its expression is directly associated 

with proliferation and varies significantly among these three groups (Kruskal-Wallis p-value < 

2.2e-16) as well as between pairs (Pairwise Wilcoxon FDR < 2e-16 between each pair). 

 

Pathways significantly enriched by reactions or transcripts—but not both—are co-constituents of 

some top-level pathways but appear alone in others. The top-level pathways sharing results from 

both enrichment results are Immune System, Signal Transduction and Hemostasis. Reaction 

enrichment alone represents pathways belonging to Chromatin organization, Gene expression, 

Metabolism of proteins, DNA Repair, Cell Cycle, Cellular responses to external stimuli, DNA 

Replication, Programmed Cell Death, Metabolism and Cell-Cell communication. And transcript 

enrichment alone represents pathways belonging to Vesicle-mediated transport, Sensory 

Perception and Muscle contraction. The breadth of top-level pathway representation observed 

demonstrates the complementary nature of reaction-based pathway analysis performed on the 

underlying principal component data, relative to traditional enrichment analysis (see Appendix A). 
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Chapter 3: Infer Human Tissue-specific Reaction Networks 

Geometric Deep Learning Architecture 

In order to infer tissue-specific biochemical networks, I used known pathway hierarchy and 

reaction network structural annotations to generate geometric deep learning architectures with 

corresponding features (Figure 14). I then trained these architectures to classify tissue labels based 

on our reaction PC1 values and perform analysis on edge weightings arrived at by these 

architectures. I consider the biochemical network as a combination of an underlying 

preceding/following reaction network with an overarching pathway hierarchy. I separate these 

networks, generate deep learning architectures which represent them and train these architectures 

independently using the same 10,726 reaction PC1 values. Both architectures rely upon the 1-GNN 

described by Morris et al., (2019) and implemented in the Pytorch Geometric (Fey & Lenssen, 

2019) GraphConv() function, using a summing aggregator and three layers of size 64, as described 

in the original article. This structure was benchmarked using an independent dataset, TU-

molecular dataset (Morris et al., 2020), showing 64 the most performant batch size, which I used 

for our deep learning architectures. I select cross-entropy as our loss function and report accuracy 

as proportion of correct tissue classifications. 
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Figure 14: Panel A depicts the reactome pathway hierarchy and reaction network. Panel B shows the pathway hierarchy with edges 

connecting reactions to top-level pathways removed. Panel C shows the reaction network. Panel D shows the pathway hierarchy 

decomposition for the pathway hierarchy deep learning architecture. Panel E shows the reaction network decomposition for the 

reaction network deep learning architecture. Panel F shows both the pathway hierarchy and reaction network architectures with the 

default GraphConv aggregator function, passed through three layers of size 64 and trained to classify 51 tissue types.  

 

The reaction network contains directed edges connecting pairs of reactions which is decomposed 

into 10,726 sub networks where each component is represented by a following reaction and its 

preceding reactions. The preceding reactions are considered the following reaction's neighborhood 

and their values are aggregated with a summation function. The pathway hierarchy was 

downloaded using the Reactome.org content service (available at 
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https://reactome.org/dev/content-service) and differs from a pathway hierarchy used for pathway 

enrichment analysis in that its edges connect reactions to their nearest ancestral pathways, rather 

than pathways at all levels of the pathway hierarchy to which they belong. This results in input 

data consisting of the same 10,726 reaction PC1 values as well as 2,248 pathways. To add these 

pathways to our network structure in an unbiased way, I set each pathway vertex value to 1 across 

all samples. 

 

Experimental Controls 

To approximate an upper bound on the degree to which our reaction PC1 values explain tissue 

label, I used Resnet18 (He et al., 2016), a deep learning model recommended as a default selection 

(Pointer, 2019). Resnet18 was developed by Microsoft to classify images with 18 convolutiona l 

layers. Because Resnet18 is an image classifier, I reshaped our reaction PC1 values from a 1-

dimensional vector of length 10,726 to two 2-dimensional vectors of height 173 and width 31 using 

the PyTorch (Paszke et al., 2017) reshape() function after redefining the first layer as a 2-channel, 

rather than the default Resnet18 3-channel used for RGB images. I also modified the final layer to 

output tissue labels. It may be possible for additional information about biological network 

structure to be subtly encoded in this input data by positioning biologically-related reaction PC1 

values near each other in the resulting 2-channel matrix pairs. To test whether this was the case, I 

shuffled the reaction PC1 values and retrained our Resnet18 model; however, these results were 

indistinguishable, suggesting such additional information does not contribute to our Resnet18 

model performance. To set lower bounds on our performance, I used our biologically-inspired 

deep learning architectures with randomly shuffled reaction PC1 values within samples and 

randomly shuffled tissue labels across samples. Curiously, I see randomly shuffling our reaction 

https://reactome.org/dev/content-service
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PC1 values merely reduces accuracy to about 50% while randomly shuffling tissue labels reduces 

accuracy to about 5%, approximately random chance. I can imagine a case where the sum of 

reaction PC1 values for some tissue is high and the sum of reaction PC1 values for another tissue 

is low; such may be the case with the relatively high accuracy of the randomly shuffled reaction 

PC1 value negative control. Given our tissue sample sizes are uneven, one would not expect a 

random classifier to perform quite as poorly as 1/51 (< 2%); the approximately 5% accuracy of 

randomly shuffled tissue labels is a reflection of this sample size imbalance (Figure 15). 

 

Figure 15: Panel A shows the reaction pc1 values reshaped into image-like tensors for Resnet18, used to classify 51 tissues as a 

positive control. Panel B shows both randomly shuffled reaction pc1 values and randomly shuffled tissue labels are used as features 

and targets, respectively, as negative controls. Panel C shows the performance as proportion correct for both our biologically-

inspired deep learning architectures as well as our controls. 
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Results 

In order to arrive at reaction networks specific to each tissue, I extracted edge weights for each 

tissue label using the Integrated Gradients technique described by Sundararajan et al. (2017) as 

implemented in the Captum PyTorch library (Kokhlikyan et al., 2009). Edge weights are arrived 

upon by averaging gradients from predicted output to input features. Across all tissues, there is a 

positive Pearson Correlation Coefficient (PCC) between edge weight and both ARI and ACC of 

the preceding reaction, calculated using our KNN classifier (Figure 16). Similarly, using the 

pathway hierarchy architecture, we see edge weights correlated with both ARI and ACC across 

edges whose preceding vertex is a reaction and we see edge weights correlated with tissue-specific 

pathway enrichment across edges whose preceding vertex is a pathway. For example, pathway Fc 

epsilon receptor (FCERI) signaling (R-HSA-2454202) is heavily weighted (~0.88), significant ly 

enriched in lung tissue based on wilcoxon upper tail transcript expression FDR < 0.05 and 

hypergeometric enrichment FDR (FDR = 9.586511e-10) and is supported by the literature as a 

critical regulator in lung tissue (Gounni et al., 2006). 
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Figure 16: Panel A depicts the existing model of the reaction network with unweighted edges used to generate tissue-specific 

reactomes with weighted edges along with an example of a tissue-specific reactome. Panel B shows positive pearson correlation 

coefficients across all t issues of reaction network edge weights with the preceding reaction ARI, calculated using our KNN model. 

Panel C shows positive pearson correlation coefficients across all t issues of reaction network edge weights with the preceding 

reaction ACC, calculated using our KNN model. Panels D and E exemplify data underlying B and C for Lung tissue. 

 

To investigate the superstructure from which our tissue-specific biochemical networks are derived, 

I generated 10 artificial reaction networks with degree-preserving randomization (Ray et al., 2012), 

each representing a random reaction network (Figure 17). I trained these artificial reaction 

networks to classify tissue using the same reaction PC1 values as our original reaction network 

only without any held-out samples. This allowed our artificial reaction network models to see all 

samples during training and overfit it, if they were able. I compared the training accuracy of these 
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artificial results to the held-out test accuracy of our original reaction network. The original reaction 

network acted as a better learning structure (upper-tail wilcoxon p-value = 0.0014), which suggests 

the shape of the biochemical network itself is biologically meaningful and that tissue chemistry is 

able to take advantage of this structure to organize information across tissue. Deviation from this 

network structure negatively affects information content such that rewired deep learning 

architectures achieve significantly lower accuracy, though still performing better than our random 

data negative controls. 

 

 

Figure 17: Panel A shows the real reaction network is used with real reaction pc1 values to generate a distribution of test accuracy 

values for held-out data from 10 cross-validation folds. Panel B shows 10 artificial reaction networks are generated using degree-
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preserving rewiring with real data to generate a distribution of training accuracy values for the entire dataset. Panel C shows the 

real network performs significantly better on held-out test data than the artificial networks do on real training data. 

 

To assess the reaction network and the pathway hierarchy structure more generally, I performed 

hierarchical clustering on each network's edge weights across tissue and quantitatively compare 

the results with hierarchical clusterings of our reaction PC1 values and our KNN misclassification 

rates across tissue (Figure 18). I calculate the cophenetic correlation of these hierarchies showing 

the reaction PC1 tissue clustering is more closely correlated with the pathway hierarchy and KNN 

tissue clustering results than the reaction network tissue clustering. 

 

Figure 18: Panel A shows four tissue hierarchical clustering dendrograms giving a high-level overview of how each dataset 

organizes tissues. Panel B shows cophenetic correlation among the four dendrograms. 
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A tissue hierarchy published in prior literature and reproduced here in Figure 19 from Pierson et 

al., 2015 cannot be quantitatively compared in the same way as the data explicitly specifying their 

tree structure (e.g. underlying Euclidean distance matrix) is not provided but merely depicted in 

the figure. However, several patterns depicted are observed in our tissue hierarchies as well. The 

authors highlight clusters for several tissue groups including the cerebellum, other brain tissue, 

digestive tissue, artery, adipose tissue, heart and skin. In our reaction PC1 tissue clustering, 

cerebellum, other brain tissue, artery, adipose, heart and skin are grouped similarly while digestive 

tissue is largely grouped together except that Sigmoid Colon (not present in Pierson et al.) is 

grouped with esophagus. In our KNN tissue clustering, cerebellum is grouped together but other 

brain tissue differs from the literature and appears more widely distributed, digestive tissue is 

largely grouped together but Small Intestine (not present in Pierson et al.) is grouped separately. 

Artery tissue is not grouped together but adipose tissue, heart and skin are grouped similarly. In 

our reaction network tissue clustering, cerebellum and other brain tissues are not grouped similarly 

to Pierson et al. though basal ganglia is. Colon is grouped together but Small Intestine and Stomach 

are not. Artery tissue is grouped together and adipose tissue is grouped similarly as well as heart 

and skin tissues. In our pathway hierarchy tissue clustering, cerebellum is grouped together as is 

basal ganglia. Other brain tissues are more distributed. Colon tissues are grouped together but 

Stomach and Small Intestine are separate. Artery tissues are not grouped together and adipose and 

heart tissues are not grouped similarly but skin is. 
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Figure 19: T issue hierarchical clustering dendrogram from Pierson et al., 2015 (Reproduced with permission from the editor). 
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Chapter 4: Discussion and Future Directions 

Summary 

This project sought to identify and explain the biochemical reactions responsible for differential 

healthy human tissue functions by classifying healthy human tissues using biochemical reaction 

states inferred using machine learning models. In order to accomplish this, I used healthy human 

tissue-specific gene expression data, testing for batch effects and other sources of error, storing the 

data and our software in a common form, amenable to network analytic methods and accessible to 

the community. I arrived at a mapping from genes to biochemical reactions that the community 

may leverage to transform mRNA expression values and express within a network context. 

Constraining potential relationships to those found within the Reactome pathway hierarchy and 

the Reactome preceding/following reaction network, I generated deep learning architectures 

representing hierarchical pathway relationships and reactant-product relationships, respectively. I 

assessed the significance of our findings by controlling with positive and negative performance 

controls along with randomly rewiring in a degree-preserving way and compared final tissue 

hierarchies with those built using our input data and reported in prior literature. Finally, I conclude 

our work and suggest future directions of our project that may further enhance its contribution to 

translational medicine. 

 

Technical Contributions 

We consider three technological contributions developed in this project. The first is our reaction 

PCA pathway analysis method, which provides a multi-level perspective of pathway enrichment, 

complementing traditional gene expression-based analysis. Next, I consider our fully-trained deep 

learning models may be adapted for other classification, clustering or regression tasks related to 
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human tissue or other phenotype associations. Finally, I believe our tissue-specific edge-sets may 

be used to construct refined geometric deep learning architectures, restricting degrees of freedom. 

 

Findings 

The Reactome preceding/following reaction network exhibits a non-random shape, suggesting a 

novel signature of evolution. It strikes us as natural to assume tissue biochemistry leverages 

differential subcomponents of the overall biochemical network to perform certain functions; 

however, at a global scale, it is not obvious that a significantly more accurate architecture must 

emerge. I look forward to further research that may shed light on this curious finding. 

 

The novel human tissue hierarchies developed by our reaction PCA, nearest neighbor 

misclassification and geometric deep learning architectures largely recapitulate local tissue 

groupings observed in prior work but remote tissue groupings show variability. I envision future 

consideration of the tissue organizations I observe may drive future hypotheses. 

 

Considerations 

This project was limited by several factors and compromises that must be considered alongside 

our results. Firstly, the data I perform our analysis with exhibits several issues. Our sample size of 

merely 9,115 represents an infinitesimal fraction of the human population and is much smaller 

than I had set out to use. I chose to use this sample size after careful review of available data, 

finding no additional data suitable for our purposes at the time of writing. This data itself has 

several limitations. Consider, I use samples collected from cadaver tissue, indicating all donors 

experienced death due to some cause. The tissues from which the samples were collected may 
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have appeared healthy; however, a donor may have suffered an unidentified illness, such as 

metastatic cancer, or experienced some temperature fluctuation or other environmental exposure 

perhaps leading to misrepresented healthy tissue gene expression patterns. The samples were 

collected using bulk-RNA sequencing, which provides only an average value of gene expression 

for each tissue. We know tissues are host to many cell types of varying lineage and it may be the 

case that only the primary cell types in these tissue samples are represented in our input data. I use 

RNA-seq data itself to approximate states of biochemical reactions but know transcript abundance 

only correlates with protein abundance, and not to reaction state itself. In the future, large-scale 

tissue-specific phosphoproteomic data may be able to address this shortcoming. Next, the 

biochemical networks described by Reactome are incomplete. I used only 6,323 transcripts for 

each sample that we believe act in reactions but know the human genome contains many more 

protein-coding genes. Reactome is increasing coverage over time but is not yet complete. Finally, 

our methods lose some information. I chose principal component analysis as a method for 

transcript set to reaction dimensionality reduction because it was a simple method, making no 

assumptions about our data, allowing us to maintain maximum naivete. Increasingly sophisticated 

methods are developed for studying RNA transcript values, utilization of which may explain more 

than a median of 50% of the variance our first principal component did. And parameters for our 

geometric deep learning architectures were left unaltered from the literature in which they were 

described. This choice likely translated into underperformance but allowed us to compare our 

results with random networks and negative controls in an unbiased way. Tuning parameters based 

on our biologically-inspired networks would have been dubious and brought results from our 

controls into question. 
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Future Directions 

Breast tumor subtype—previously classified as belonging to one of either ERPR, Her2 positive or 

TN—is now thought to belong to an expanded set of the classes Luminal A, Luminal B, Her2-

enriched and basal-like and may even be further considered as belonging to one of ten varieties 

identified using clustering analysis (Curtis et al., 2012 and Tyanova et al., 2016). By analyzing 

primary tumors from TCGA within the context of their tissue-specific biochemical networks, we 

may be able to identify cancer subtype-specific patterns within and among Reactome pathways. 

Crucially, because our final model will have been trained on mRNA expression values alone, we'll 

be able to compare results across samples with varying mutational burdens and protein 

abundancies and generate testable hypotheses about individual protein-mRNA relationships and 

individual mutations' downstream consequences. 

 

With the scaling of scRNA-sequencing experiments (Svensson et al., 2018) and the aggregation 

of their results in publicly available databases (Cao et al., 2017), the generation of cell type- and 

cell subtype-specific Reactome pathway hierarchies and Reactome preceding/following reaction 

networks become near-term possibilities. In a single-cell sequencing setting, I may be able to apply 

this machine learning strategy to produce within-tissue cell population-specific network models, 

allowing us to better understand biological processes such as development, response to injury, 

innate immunity and cellular disease at finer resolution. 

 

Our discriminative, top-down approach to tissue-specific biochemical network generation 

essentially down-weights connections between reactions considered less characteristic of that 

tissue. This approach succeeds in limiting the false positive rate to that of Reactome but provides 
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no guidance regarding novel connections likely characteristic of a given tissue. Experimental 

approaches require time and resources. In a similar fashion to the way our approach addresses false 

positives by constraining our resulting tissue-specific networks' edge sets to subsets of each 

Reactome network's edge set, by leveraging our reaction mean expression, ACC, ARI and non-

random network structure findings, I may be able to expand the network by adding potential 

reaction relationship edges, initiated with some small weights, that will allow machine learning 

algorithms to consider reaction connections not currently specified by Reactome. 
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Appendices 

Appendix A: Pathways Significantly Enriched Only by Reactions or Transcripts 

Pathways enriched for mean cell proliferation rate tissue group by reactions only are shown 
below highlighted in purple. Those enriched by transcripts only are highlighted in green. 
Pathways are displayed within their hierarchical contexts. 
 

• Chromatin organization (Homo sapiens) (R-HSA-4839726) 
o Chromatin modifying enzymes (Homo sapiens) (R-HSA-3247509) 

 HDMs demethylate histones (Homo sapiens) (R-HSA-3214842) 
 PKMTs methylate histone lysines (Homo sapiens) (R-HSA-3214841) 
 HATs acetylate histones (Homo sapiens) (R-HSA-3214847) 
 RMTs methylate histone arginines (Homo sapiens) (R-HSA-3214858) 

• Gene expression (Transcription) (Homo sapiens) (R-HSA-74160) 
o RNA Polymerase II Transcription (Homo sapiens) (R-HSA-73857) 

 Generic Transcription Pathway (Homo sapiens) (R-HSA-212436) 
 FOXO-mediated transcription (Homo sapiens) (R-HSA-9614085) 
 Transcriptional regulation by RUNX1 (Homo sapiens) (R-HSA-8878171) 

 RUNX1 and FOXP3 control the development of regulatory T  lymphocytes 
(Tregs) (Homo sapiens) (R-HSA-8877330) 

 RUNX1 regulates expression of components of tight junctions (Homo sapiens) 
(R-HSA-8935964) 

 Transcriptional regulation by RUNX2 (Homo sapiens) (R-HSA-8878166) 
 Transcriptional regulation by RUNX3 (Homo sapiens) (R-HSA-8878159) 

• Metabolism of proteins (Homo sapiens) 
o Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding 

Proteins (IGFBPs) (Homo sapiens) (R-HSA-381426) 
o Post-translational protein modification (Homo sapiens) 

 O-linked glycosylation (Homo sapiens) (R-HSA-5173105) 
 O-linked glycosylation of mucins (Homo sapiens) (R-HSA-913709) 

• Immune System (Homo sapiens) 
o Adaptive Immune System (Homo sapiens) 

 Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell (Homo sapiens) (R-
HSA-198933) 

 Signaling by the B Cell Receptor (BCR) (Homo sapiens) 
 CD22 mediated BCR regulation (Homo sapiens) (R-HSA-5690714) 

o Innate Immune System (Homo sapiens) 
 Fcgamma receptor (FCGR) dependent phagocytosis (Homo sapiens) 

 Role of phospholipids in phagocytosis (Homo sapiens) (R-HSA-2029485) 
 Fc epsilon receptor (FCERI) signaling (Homo sapiens) (R-HSA-2454202) 

 FCERI mediated NF-kB activation (Homo sapiens) (R-HSA-2871837) 
 FCERI mediated Ca+2 mobilization (Homo sapiens) (R-HSA-2871809) 
 Role of LAT2/NTAL/LAB on calcium mobilization (Homo sapiens) (R-HSA-2730905) 
 FCERI mediated MAPK activation (Homo sapiens) (R-HSA-2871796) 

 Complement cascade (Homo sapiens) (R-HSA-166658) 
 Regulation of Complement cascade (Homo sapiens) (R-HSA-977606) 
 Initial triggering of complement (Homo sapiens) (R-HSA-166663) 

 Creation of C4 and C2 activators (Homo sapiens) (R-HSA-166786) 
 Classical antibody-mediated complement activation (Homo sapiens) 

(R-HSA-173623) 
 Toll-like Receptor Cascades (Homo sapiens) 

 Toll Like Receptor 7/8 (TLR7/8) Cascade (Homo sapiens) (R-HSA-168181) 
 Toll Like Receptor 9 (TLR9) Cascade (Homo sapiens) (R-HSA-168138) 

o Cytokine Signaling in Immune system (Homo sapiens) (R-HSA-1280215) 
 Growth hormone receptor signaling (Homo sapiens)(R-HSA-982772) 
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 Signaling by Interleukins (Homo sapiens) (R-HSA-449147) 
 Interleukin-2 family signaling (Homo sapiens) (R-HSA-451927) 
 Interleukin-4 and Interleukin-13 signaling (Homo sapiens) (R-HSA-6785807) 
 Interleukin-12 family signaling (Homo sapiens) (R-HSA-447115) 

 Interleukin-35 Signalling (Homo sapiens) (R-HSA-8984722) 
• DNA Repair (Homo sapiens) (R-HSA-73894) 

o Nucleotide Excision Repair (Homo sapiens) 
 Global Genome Nucleotide Excision Repair (GG-NER) (Homo sapiens) (R-HSA-5696399) 

 Formation of Incision Complex in GG-NER (Homo sapiens) (R-HSA-5696395) 
o Base Excision Repair (Homo sapiens) (R-HSA-73884) 

 Resolution of Abasic Sites (AP sites) (Homo sapiens) (R-HSA-73933) 
 Resolution of AP sites via the multiple-nucleotide patch replacement pathway (Homo 

sapiens) 
 PCNA-Dependent Long Patch Base Excision Repair (Homo sapiens) (R-HSA-

5651801) 
 APEX1-Independent Resolution of AP Sites via the Single Nucleotide Replacement 

Pathway (Homo sapiens) (R-HSA-5649702) 
o Fanconi Anemia Pathway (Homo sapiens) (R-HSA-6783310) 
o DNA Damage Bypass (Homo sapiens) (R-HSA-73893) 

 Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA template (Homo 
sapiens) (R-HSA-110313) 
 Termination of translesion DNA synthesis (Homo sapiens) (R-HSA-5656169) 

o DNA Double-Strand Break Repair (Homo sapiens) 
 Homology Directed Repair (Homo sapiens) 

 HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) 
(Homo sapiens) 
 HDR through Homologous Recombination (HRR) (Homo sapiens) (R-HSA-

5685942) 
• Signal Transduction (Homo sapiens) 

o Intracellular signaling by second messengers (Homo sapiens) 
 PIP3 activates AKT signaling (Homo sapiens) 

 PTEN Regulation (Homo sapiens) 
 Regulation of PTEN stability and activity (Homo sapiens) (R-HSA-8948751) 

o Signaling by Receptor Tyrosine Kinases (Homo sapiens) 
 Signaling by FGFR (Homo sapiens) 

 Signaling by FGFR1 (Homo sapiens) 
 Downstream signaling of activated FGFR1 (Homo sapiens) (R-HSA-5654687) 

 PI-3K cascade:FGFR1 (Homo sapiens) (R-HSA-5654689) 
o Signaling by Non-Receptor Tyrosine Kinases (Homo sapiens) (R-HSA-9006927) 

 Signaling by PTK6 (Homo sapiens) (R-HSA-8848021) 
 PTK6 Regulates Proteins Involved in RNA Processing (Homo sapiens) (R-HSA-

8849468) 
 PTK6 Regulates RHO GTPases, RAS GTPase and MAP kinases (Homo sapiens) (R-

HSA-8849471) 
o Signaling by NOTCH (Homo sapiens) (R-HSA-157118) 

 Signaling by NOTCH3 (Homo sapiens) (R-HSA-9012852) 
 NOTCH3 Intracellular Domain Regulates Transcription (Homo sapiens) (R-HSA-

9013508) 
 Signaling by NOTCH4 (Homo sapiens) (R-HSA-9013694) 

 NOTCH4 Intracellular Domain Regulates Transcription (Homo sapiens) (R-HSA-
9013695) 

o Signaling by Leptin (Homo sapiens) (R-HSA-2586552) 
o Signaling by Nuclear Receptors (Homo sapiens) 

 ESR-mediated signaling (Homo sapiens) (R-HSA-8939211) 
 Estrogen-dependent gene expression (Homo sapiens) (R-HSA-9018519) 

o Signaling by GPCR (Homo sapiens) (R-HSA-372790) 
 GPCR downstream signalling (Homo sapiens) (R-HSA-388396) 

 G alpha (s) signalling events (Homo sapiens) (R-HSA-418555) 
 G alpha (z) signalling events (Homo sapiens) (R-HSA-418597) 
 G-protein beta:gamma signalling (Homo sapiens) (R-HSA-397795) 
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o Signaling by Hedgehog (Homo sapiens) 
 Hedgehog 'on' state (Homo sapiens) (R-HSA-5632684) 

• Cell Cycle (Homo sapiens) (R-HSA-1640170) 
o Chromosome Maintenance (Homo sapiens) (R-HSA-73886) 

 Telomere Maintenance (Homo sapiens) 
 Extension of Telomeres (Homo sapiens) (R-HSA-180786) 

 Telomere C-strand (Lagging Strand) Synthesis (Homo sapiens) (R-HSA-
174417) 
 Processive synthesis on the C-strand of the telomere (Homo sapiens) 

(R-HSA-174414) 
o Cell Cycle Checkpoints (Homo sapiens) 

 Mitotic Spindle Checkpoint (Homo sapiens) (R-HSA-69618) 
 G2/M Checkpoints (Homo sapiens) (R-HSA-69481) 

 G2/M DNA damage checkpoint (Homo sapiens) (R-HSA-69473) 
o Cell Cycle, Mitotic (Homo sapiens) 

 Mitotic G2-G2/M phases (Homo sapiens) 
 G2/M Transition (Homo sapiens) 

 Polo-like kinase mediated events (Homo sapiens) (R-HSA-156711) 
 S Phase (Homo sapiens) 

 Synthesis of DNA (Homo sapiens) (R-HSA-69239) 
 DNA strand elongation (Homo sapiens) (R-HSA-69190) 

 Lagging Strand Synthesis (Homo sapiens) (R-HSA-69186) 
• Cellular responses to external stimuli (Homo sapiens) 

o Cellular responses to stress (Homo sapiens) 
 Cellular response to starvation (Homo sapiens) 

 Amino acids regulate mTORC1 (Homo sapiens) (R-HSA-9639288) 
• DNA Replication (Homo sapiens) (R-HSA-69306) 

o Synthesis of DNA (Homo sapiens) (R-HSA-69239) 
 DNA strand elongation (Homo sapiens) (R-HSA-69190) 

• Lagging Strand Synthesis (Homo sapiens) (R-HSA-69186) 
• Hemostasis (Homo sapiens) (R-HSA-109582) 

o Platelet activation, signaling and aggregation (Homo sapiens) 
 Signal amplification (Homo sapiens) (R-HSA-392518) 

o Cell surface interactions at the vascular wall (Homo sapiens) (R-HSA-202733) 
 Tie2 Signaling (Homo sapiens) (R-HSA-210993) 

• Programmed Cell Death (Homo sapiens) (R-HSA-5357801) 
o Apoptosis (Homo sapiens) 

 Apoptotic execution phase (Homo sapiens) 
 Apoptotic cleavage of cellular proteins (Homo sapiens) (R-HSA-111465) 

 Apoptotic cleavage of cell adhesion proteins (Homo sapiens) (R-HSA-351906) 
• Metabolism (Homo sapiens) 

o Metabolism of vitamins and cofactors (Homo sapiens) 
 Metabolism of water-soluble vitamins and cofactors (Homo sapiens) 

 Cobalamin (Cbl, vitamin B12) transport and metabolism (Homo sapiens) (R-HSA-
196741) 

o Integration of energy metabolism (Homo sapiens) 
 Regulation of insulin secretion (Homo sapiens) 

 Adrenaline,noradrenaline inhibits insulin secretion (Homo sapiens) (R-HSA-400042) 
• Cell-Cell communication (Homo sapiens) 

o Cell junction organization (Homo sapiens) 
 Type I hemidesmosome assembly (Homo sapiens) (R-HSA-446107) 

• Vesicle-mediated transport (Homo sapiens) (R-HSA-5653656) 
o Binding and Uptake of Ligands by Scavenger Receptors (Homo sapiens) (R-HSA-2173782) 

 Scavenging of heme from plasma (Homo sapiens) (R-HSA-2168880) 
• Sensory Perception (Homo sapiens) 

o Olfactory Signaling Pathway (Homo sapiens) (R-HSA-381753) 
• Muscle contraction (Homo sapiens) 

o Striated Muscle Contraction (Homo sapiens) (R-HSA-390522) 
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Appendix B: Data Availability 

Recount2 GTEx RNA-seq data this project used is available online at 

https://jhubiostatistics.shinyapps.io/recount/. 

Reactome data is available online at https://reactome.org/download-data and 

https://reactome.org/dev/content-service. This project used Reactome version 71, released 

December, 2019. 

 

Appendix C: Source Code Availability 

Source code used to perform analysis and generate figures is available by request for academic 

use and version-controlled in our online repository at https://github.com/joshuaburkhart/reticula. 

 

https://jhubiostatistics.shinyapps.io/recount/
https://reactome.org/download-data
https://reactome.org/dev/content-service
https://github.com/joshuaburkhart/reticula
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