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Abstract 
Next generation sequencing (NGS) and single-cell sequencing technologies have enabled 
unparalleled resolution of the cell's molecular machinery; however, gleaning accurate 
knowledge from sequencing data is often stymied by high-dimensionality, measurement 
noise and biological complexity. Numerous methods have been proposed to address this 
by mapping high-dimensional inputs to informative low-dimensional representations. One 
such dimensionality reduction method is the variational autoencoder (VAE), which 
attempts to learn the probability distribution of given data through a low-dimensional 
latent variable, and has been shown to competitively separate cell types and to 
characterize functional differences of cell state1,2. A limitation of deep learning methods 
like VAE's are 1) understanding the internal operations of the model (interpretability) and 
2) the generalization of a model to new data (overfitting). Recent work by the Ideker lab 
has proposed Visible Neural Networks3,4 (VNN) to address these issues by constraining 
feature interactions using literature curated biological hierarchies. In this talk, we present 
our preliminary results implementing a novel VAE model that incorporates prior 
knowledge through a VNN to create low-dimensional cell-state representations using bulk 
and single-cell RNA expression features. We hypothesize that this will reduce model 
complexity (number of parameters) while maintaining or improving model performance 
and creating a biologically relevant low-dimensional representation of sequencing data. 
Successful execution of this research will provide an interpretable and informative deep 
learning dimensionality reduction algorithm. This work was originally motivated by 
challenges in precision oncology, but may have application in many biological domains.  
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