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ABSTRACT:

Today’s genomics data requires a great deal of preprocessing before it can be
utilized in analysis of biological questions. This work details the steps and requirements
for processing genome-wide association studies (GWAS) in preparation for analysis. The
scripting language ‘Python’ is employed to open and read files of genomic datasets
including phenotypic data, genotypic data, and demographics data, of a GWAS
performed by the Harvard Brain Tissue Resource Center (HBTRC) as well as the
Alzheimer’s Disease Neuroimaging Initiative (ADNI). The data files’ subjects remain de-
identified. These raw files are then processed by the scripting language ‘Python’ to
create hypothesis-dependent edited versions of those files suitable for use in a
bioinformatics investigative genomics study. Exploratory data analysis (EDA) is
performed using ‘R’ to describe the datasets and explore their suitability for the
investigative study, including simple graphs. Reasons for dataset rejection as well as
acceptance are discussed. Data cleaning methods are then utilized to remove non-
informant subject data (those missing data necessary to the project’s biological question
and hypothesis) from the accepted dataset files, with EDA then performed on the
cleaned data files. The resultant ADNI data files are suitable for use by ‘R’ for an
investigative study project. Data request procedures as well as data use agreements are
discussed, as are remote file access, scripting naming conventions, file management,
and data security. Scripts described are included as addenda.



. INTRODUCTION
A. REASON FOR PROJECT

Preparation of a genomic dataset for an investigative project (hereafter referred to
simply as “this project”) entails the exploratory data analysis and data cleaning of
electronic genomics files prior to their selection for use for research purposes, as well as
and data manipulation/formatting to prepare the data for use in the research study.

Prior to selecting any dataset for a study it must be explored to determine its
suitability for the study. This exploratory data analysis (EDA) examines the important
aspects of the dataset as relates to its use in the proposed study. These aspects might
include: sample size (N) before and after any data cleaning; the inclusion or omission of
necessary information, variables or covariates related to the proposed study; the
methods employed to gather the data. EDA seeks both to get a better general
understanding of the dataset and to determine whether or not the dataset is suitable
for use in any particular research study. This “study suitability determination” should be
done in such a way that non-suitable datasets can be identified and eliminated from
consideration or excluded from the research study as quickly as possible.

This project was in support of a genetic variation research study. Genetic variation
research strives to enhance our growing understanding of the linkages between genes
or gene variants, and diseases. Such research is data-intensive, often employing large,
varied datasets.' Before any genomics dataset may be used for research, it must be
cleaned. That is, it must be checked for duplicated or out-of-range values, for missing

and incomplete values, variances in syntax and semantics (especially in the case of non-



numeric data), and must often be transformed into values or styles required by its
intended application(s).2

Data cleaning requires knowledge of the data and usually cannot be performed
without the assistance of a domain expert, but must be as automated as possible due to
the size of datasets.” This project involves data cleaning and preparation for a case-

control association study of a genome-wide association study (GWAS).

B. BIOLOGICAL QUESTION

This project focused on preparing a genetic variation dataset in order to answer the
biological question, “Can pair-wise analysis of epistasis within genetic pathways using
genome-wide common genetic variants lead to the discovery of genes implicated in
Late-Onset Alzheimer’s Disease (LOAD)?” Stated another way, “Do small-effect alleles
interact within biological pathways to cause the phenotype?” The goal of the study was
the identification of novel genes and pathways involved in sporadic Alzheimer’s Disease
(sporadic AD) using often-discounted information in a Genome Wide Association Study
(GWAS).2 The project had two aims: 1) Identify pathways enriched in sporadic AD by
case-control logistic regression of single nucleotide polymorphic gene variants (SNPs),
and 2) ldentify epistatic interactions of genes in pathways enriched in sporadic AD.

This required domain knowledge of LOAD (also known as sporadic AD), its
pathology, diagnosis and predictive tests, as well as of the genomics platforms and

methods used to obtain the GWAS genetic dataset(s) used for the project.



C. LOGISTIC REGRESSION EQUATION COMPONENTS NECESSARY TO ANSWER
THE BIOLOGICAL QUESTION

Alzheimer’s Disease (AD) is the most common form of dementia and is expected to
afflict 1:85 persons world-wide by 2050.* Its neural pathology of extra-cellular mis-
folded amyloid-p plaques coupled with inter-cellular tangles of hyperphosphorylated
Tau proteins leads to neural cell disequilibrium, dysfunction and cell death, culminating
in the afflicted individual’s progressive loss of cognition and function.”®” AD is
diagnosed as “suspected” by batteries of cognitive and motor tests as well as neural
imaging — but it can only be “confirmed” by autopsy.s ¢ Mean life expectancy after a
“suspected” diagnosis is seven years.'® In 2010, the cost to care for AD patients in the
United States was $172 Billion and these costs are estimated to reach $1.1 Trillion in
2050."

LOAD is also referred to as “Sporadic AD” to differentiate it from familial, or early-
onset, AD which account for only 0.1% of AD cases and whose genetic causes are well

known.> 13

LOAD is defined as Alzheimer’s Disease having an onset at or after age 65
years.*

The first covariate is the average risk of any individual developing sporadic AD. This
has been determined to be 13 per cent for individuals age 65 and older.15 This value is
used as a baseline - the chance for any random individual in the study to have the
phenotype. This constant was to be included in the logistic regression equation as a
numeric decimal value of 0.13.

The chances of having the disease increase with age: 5% of the population at age 65

years, between 30%-50% at age 80+ years.” For this reason, the individual’s age had to
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be considered as one of the covariates in the logistic regression equation. Age was
determined from date of birth (DoB) subtracted from date of death (DoD) or date of first
diagnosis (DoFD) and was to be represented as a numeric value. DoFD minus DoB was to
be used to yield the afflicted individual’s age at onset (AaO) for comparison to non-
afflicted individuals of the same age, while DoD minus DoB was to be used to
determined age at death (AaD) for all individuals in the study. AaD was proposed as the
“age” to be used as the covariate for the study but AaO was to be collected in hopes
that it might yield interesting results when used as a covariate.

The greatest genetic link to the sporadic form of the disease has so far been the
number of copies of Apolipoprotein E gene, variant €4 (ApoE-g4). The disease is thought
to be polygenic but between 40%-80% of sporadic AD cases have at least one copy of
ApoE-£4."> '* Therefore, the individual’s ApoE-g4 allele status had to be considered as
one of the covariates in the logistic regression equation. This covariate was to be
expressed as the stratified integer number of ApoE-£4 alleles each individual had in their
genome: 0 (homozygous negative: no copies of ApoE-€4), 1 (heterozygous: 1 copy of -
€4, plus 1 copy of some other ApoE variant), or 2 (homozygous positive: both alleles of
the individual’s ApoE gene were variant -€4).

Significantly, 2/3 of the persons afflicted with LOAD or sporadic AD are female.*
Thus, the individual’s gender must be considered as one of the logistic regression
equation covariates. This is a binary value (either male or female). For this study, male

was to be represented as ‘0’ while female was to be represented as ‘1’.



Lastly, each SNP was to be tested for pair-wise epistatic interactions within its
member biological pathway(s) by genomics software outside the scope of and not
covered by this study.

These covariates result in the following logistic regression equation model:
Outcome (AD Status) = average risk of having AD + individual’s gender (0, 1) +
individual’s ApoE-£4 allele status (0, 1, 2) + each SNP tested individually.

This research study was designed to focus on significance levels of 1x10-4 for
association as opposed to the generally-accepted significance level of 1x10-7.°

This project did not perform logistic regression analysis. However, the logistic
equation covariates determined the EDA focus, data cleaning requirements, data
manipulation requirements, and ultimately the selection criteria for any dataset(s)

related to the research study. These requirements drove the project.

1. Software Tools Employed

The computational platform for this project was an Apple MacBook Pro running Mac
0OS-X version 10.6.8 with a 2.7 GHz Intel Core i7 processor and 8 GB 1333 MHz DDR3
memory. Python version 2.6.7 as well as R 64-bit version 2.14.1 software packages were
installed (both free) and used for the EDA, data cleaning, and data manipulation of this
project. This served as my computational interface with the Oregon Health and Science
“fisher” server, a firewall- and password-secured device maintained by OHSU for
housing genomic and other data files.

Python is (quoting from the python.org web site):



“...an interpreted, object-oriented, high-level programming language
with dynamic semantics... built in data structures, combined with dynamic
typing and dynamic binding... for use as a scripting or glue language to
connect existing components together. Python supports modules and
packages, which encourages program modularity and code reuse. The Python
interpreter and the extensive standard library are available in source or
binary form without charge for all major platforms, and can be freely
distributed.”"’

R is an open source programming language used for data analysis and for its graphics
capabilities.’ It has numerous “packages” - software scripts created to perform various
tasks and functions from the mundane to the very complex - available for free download
from its website, R-project.org. One commonly-used graphics package for multivariate
data employed for this project was “lattice”.'® The graphics, counts, statistics and tables
for this project were produced using the lattice software package, and software code
script shown with these are in R using the lattice package unless otherwise specified.

720

“Bioconductor”“" is a large library of bundled packages for biological and GWAS research

and one of its packages, “limma”,?! is especially useful for interpreting and modeling

microarray data.

. Dataset Selection Criteria

The biological question and method of investigation (case-control study) imposes
many requirements on the prospective dataset(s) to be studied. Beyond simply
including age, sex, and ApoE status, the prospective study sample group cases
(individuals with the condition of interest — in this case, AD) must be matched to study
sample group controls (individuals without the condition of interest) for age, sex (within

5 years) and ethnicity. That is, for every case within a given stratification of age, sex, and



ethnicity there is control of the same age (within 5 years), sex and ethnicity. A statistical
association between a given SNP and the trait in question can be due to 1) random
chance (especially when that SNP is tested repeatedly — this study proposed Bonferroni-
adjusted values) or confounding due to selection bias, 2) the SNP or allelic locus
regardless of any polymorphism is itself directly responsible for the trait (this study
hoped to identify novel loci and SNPs associated with AD), or 3) linkage disequilibrium
with another SNP or allelic locus which causes the trait (something this study was
hoping to find). Matching cases and controls negates a great part of 1), that the chance
that associated outcomes are the result of the matched variables or selection bias.

In order to match on age, sex and ethnicity a large GWAS study population was
required. As this study was geared towards identifying very small p-value information
from multiple tests (each SNP tested iteratively in pairs with every other SNP in the
GWAS), every attempt was made to ensure that sample size remained as high as
possible. In order to achieve this, the age/sex/ethnicity-stratified case and control
groups had to be similar in distribution of the matched variables of age, sex, and
ethnicity. Each individual case did not have its own individual matched control. Because
of this fact, this study was not set up to be a true case-control study, statistically-
speaking.

As this study focused on sporadic or late-onset Alzheimer’s disease, only individuals
aged 65 years or more at time of AD diagnosis were included. Any individual younger
than 65 years was excluded from the study. Any individual lacking AD-diagnostic data

(either AD-positive or AD-negative) was excluded from the study. There was some



discussion as to whether or not to allow other (non-AD) diagnoses of dementia to be
included in the control group, and whether or not to allow individuals co-diagnosed with
AD plus another form of dementia (such as Huntington’s disease) to be included in the
case group. This was a very interesting and important question since it raised the
possibility of introducing confounding any genetic information from SNPs common to
AD and other dementias. It was determined that including dementia diagnoses other
than AD was to be allowed only if a GWAS could not be found that had a large enough
sample size after stratifying on ethnicity, age and sex, that would have enough samples
in the case and control groups to have sufficient power to show associations of SNPs at
the stated p-value of 1x10™ to AD. For the purposes of this study, the GWAS was first
stratified into cases and controls by excluding co-diagnosed individuals and individuals
diagnosed with non-AD dementias.

Only individuals reported as “Caucasian” were included in the study so as to negate
the confounding effects of population stratification. Any study individual not ethnically
reported as Caucasian, including any individual missing ethnic group data, was omitted
from the study.

As mentioned previously, this study would not be a true case-control association
study where there are 1:1 controls to cases. In order to keep the post-stratification and
cleaned dataset large enough to have acceptable power, any prospective GWAS dataset
should optimally have a cleaned, post-stratified control:case ratio of between 1:1 and

4:1.%



One goal of the investigative research project was that as many resources as
possible used for the project be found in the public domain or publicly available. This
was so to enable students at any level to replicate the study, to keep costs down, and to
avoid wait times for approvals and right to use applications. This goal was not without
trade-offs. Older, smaller, less complete and comprehensive GWAS datasets might be
available in the public domain but newer, more complete datasets might not. Genomics
data analysis software available in the public domain might not be considered powerful
enough. But nonetheless, public availability was initially a primary goal of the research

project.

V. Dataset Rejection — The HBTRC GWAS Dataset

The first genome-wide association study dataset considered for this project study
was obtained from the Harvard Brain Tissue Resource Center (HBTRC) and made
available on the Sage bionetworks repository,? which is maintained by McLean Hospital
of Belmont, MA, as one of three federally-funded central collection and distribution
sites for human brain tissue used for research. The HBTRC GWAS dataset is publicly
available by online request and has been publicly available since January 2011. The
newness of this dataset also made it attractive for use by this research project.

At the time this dataset was first accessed, Sage was in beta and the HBTRC dataset
was just being moved onto the repository. Access was free to the public and granted by
an online emailed request. This policy for data access has since changed, and a web-
based tutorial regarding their rules for data use has been made available

(https://sagebionetworks/jira.com/wiki/display/SWC/Synapse+Human+Data+Privacy+R
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ules). But at the time of my request it was determined that use of the dataset was to be
that of a private (not public) access project, meaning, data access was restricted to
designated investigators on the project (myself and my advisor, Dr. Beth Wilmot, only).
Now, per Sage’s governance, a user must submit a data sharing plan and IRB approval to
Sage Bionetworks, who then determines the level of protection the dataset requires for
the project: Tier 1, open and unrestricted; Tier 2, restricted per informed consent terms
and data-specific terms of use, or; Tier 3, highly-controlled because it contains genotype
information from living individuals or rare information or includes information gathered
from vulnerable populations. If the data is not Tier 1 the user then agrees to standard
use terms, as well as data-specific terms, and again receives IRB approval, after which
the dataset(s) are released to the user.

As this dataset consisted of human genotype data obtained from deceased
individuals it is considered Tier 1 (open, or unrestricted), and would have been
considered Tier 1 at the time of my request though it was released with the
understanding and agreement that the dataset would not be released to any 3" party.
At the time | requested the dataset, all | had to do was submit an online email. However,
now all users must register with Synapse Commons and agree to their Standard Terms
of Use prior to requesting any dataset.

All human data was de-identified before being placed in their repository and coded
to ensure subject privacy per the United States’ Health Insurance Portability and

Accountability Act (HIPAA) guidelines.
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The GWAS was conducted on approximately 800 individuals (approximately 400 AD
cases, 230 Huntington’s Disease cases, and 170 controls). These were matched for age,
gender and post-mortem interval. These individuals were also to be well-characterized
for phenotyped clinical data, some of which this project would potentially utilize (age at
disease onset, and Braak scores as an indication of neuronal damage, for example).
Study individuals were genotyped on two different platforms: the lllumina
HumanHap650Y array, and a custom Perlegen 300K array focused on the detection of
what the study termed “singleton SNPs.” Clinical data included in the dataset consisted
of age at onset (Aa0Q), age at death (AaD), Braak scores (for AD+ individuals), Vonsattel
scores (for Huntington’s + individuals), and scores denoting regional brain enlargement
or atrophy.

The HBTRC files were downloaded initially onto the laptop’s hard drive as | did not
have access to the secure server. However, the files were moved onto the OHSU fisher
server after access had been granted and my secure directory created, and the files
were removed from the laptop.

Python was used to open and read the files. Genotype information was stored in
two files, one for the data obtained from an Illumina.

Files for the HBTRC study were all in plain text (.txt) format with the exception of the
Sage Bionetworks user agreement, which was in portable document format (.pdf). The
data of interest to this research study were found in the following directories and files:

hbtrc/
individuals.text

readme.txt
/phenotype

11



pheno.txt

phenotype.txt
phenotype_description.txt
phenotype_notes.txt

/genotype
illumina/
genotype.txt
marker.txt
perlegen/
genotype.txt
marker.txt

The “readme.txt” file contained the data file structure and file names as well as an
overview of the HBTRC study. It was the roadmap for which files to search for
information.

The “individuals.txt” file contained column headings with data in tab-delimited
format. The fields of interest to this project were ‘individual_rid’ (numbered 1 through
803) and ‘mrl_tid’ (both identifiers for the study individuals), “phenotypes” (meaning,
had phenotypes been collected and recorded for that individual) and “genotype”
(meaning, had genotyping been completed and recorded for that individual). R uses
indexing beginning with 1 (unlike Python, which uses zero indexing) so these were
columns 1, 2, 6, and 10.

The “pheno.txt” was a tab-delimited file containing 43 column headings, each with a
heading identifier number. In order to ascertain the information in each column it was
necessary to refer to the “phenotype_description.txt” file (for example, header
identifier “1029” was for patient gender). The “phenotype_description.txt” file was
referenced in order to determine which “pheno.txt” columns were needed for this

project.
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| created an “importData” script. Using R, | first imported (or, ‘read’) the HBTRC
“individuals.txt” file as a table | named “ind” — this file contained the “RID”, the unique
identifier number, for each individual in the HBTRC study. The RID was used as the ‘key’
to match data to individuals from the different HBTRC files. | next read the HBTRC
phenotype/phenol.txt file as a table which | named “pheno” — this file contained the RID
as well as each phenotypic marker used by the HBTRC study (by identifier number) and
its value for each individual. These were ordered numerically L-R by phenotypic marker
identifier number as the row headings, such that each column was the value for one
particular phenotypic trait for one individual. In order to make the “pheno” file usable
to humans it needed a key in language, other than simply numeric codes and
abbreviations. The HBTRC dataset had such a file, the
phenotype/phenotype_description.txt file. This was read in and given the variable name
pheno.key. | then created a variable called pheno.translate, which took the
“trait_name” entries on my pheno.key file and converted them to characters instead of
strings. | then created a names file from the pheno.translate file, pasting each trait_id
entry as a name. | then created a variable ind.pheno for each individual’s phenotype,
which meshed the ind individuals text file | had created with the pheno phenotype file |
had created, but now using text descriptors and names for headings.

| then created geno.ill and geno.ill.key variables, which stored (as tables) the
Illumina genotype information and the lllumina genotype marker keys, respectively, so
that these could be queried at a later time. When the “importData.R” file was run it

n u

created and merged these files, “ind.pheno”, “geno.il

III “"
’

geno.ill.key”, saving them as
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the ‘hbtrc.RData” file | could then examine and query. The “hbtrc.RData” file had each
individual’s RID, their phenotypic traits (column headings by name) with human-
readable values for each entry, with that individual’s Illumina genotypic information
along with the Illumina marker key for each SNP. This was what | considered a rather
massive file, but it had most of the information | would need for the investigative
project.

When Sage Bionetworks provided an updated phenotype text file (which included
gender) | took the opportunity to fix a problem my first “importData” file had, which
was, it created in table form a file in which each subsequent file read and meshed was
read down the page from top to bottom. In other words, the file was “sideways” to a
human reader. It was easier to understand (and to find data) for me if the resulting table
had each individual’s information from left to right by row. So | created an
“importData2” file using the “hbtrc.RData” file resulting from my “importData” file.

To do this, | first loaded “hbtrc.RData” and created a variable called pheno2 which
simply was the table created by reading the HBTRC phenotype/phenotype2.txt file. Then
| started “juggling” this file. | first transposed the pheno2 rows to columns, calling this
pheno3. Then | converted pheno3 into an R data frame | called pheno4. A data frame is
a table, a 2-dimensional array, where each column is for one variable and each row is an
individual case. So the phenotypic data was now in the format | wanted. But it was still
lacking usable names for rows and column headings, and | wanted each row to begin
with the individual’s RID instead of the HBTRC’s phenotype variable number identifiers.

And | wanted to use the HBTRC phenotype key names for the phenotype variables, not

14



number identifiers. Again, | was attempting to create a single data frame, readable by a
human, for the project.

As in my “importData” file described above, | read the HBTRC
phenotype/phenotype_description.txt file as a table and gave it the variable name
pheno.key. | then created the variable pheno.translate by converting the pheno.key
trait_name column entries, casting them as characters, and the pheno.key trait_id
column (from the pheno.translate variable) became the actual name (in English), a
translation from a number (HBTRC's phenotypic identifier) to a name.

Next | had to slice the pheno4 file such that the second (I-r, starting at 0) column in
the data frame table was the individual_rid values, and salled that pheno5. | then sliced
the first row off the pheno5 data frame, saving those values as rownames. This allowed
me to have a row names key, but to not have to worry about “skipping” the 1* row
when querying the pheno5 data frame — | would have only data in each row and
column, not the names of the column headers as the first row.

Reading a file (importing) as I've described results in all data in the file being seen as
strings to R. All numeric data get formatted to a string, and no arithmetic operations can
be performed on strings. The HBTRC dataset contained lots of numeric data. In order to
convert the (originally) numeric data from strings back to numeric values | created a
variable called numerical which first examined the first row of the table for fields, which
could be represented as a numerical value. Once these were found | looped over each
row, changing the appropriate columns from string to the numeric type using the

‘as.numeric’ function. Since | was over-cautious about keeping earlier working versions
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of script variables, | copied pheno5 as pheno6, and ran a nested “if” loop (i f
(nunerical[i]) ) foreachentryineach column of pheno6 which translated every
field in each column that could be represent as numeric values as numeric values in
pheno6.

Once this was completed, | read the individual2 data as a table called ind. | then
merged the individual and the phenotype data together (ind merged with pheno6) into
what | called ind.pheno. | then created a near duplicate of this ind.pheno file but which
removed any Huntington’s-positive (H+) individuals from the data frame and called this
ind.pheno2. | then saved the following variables: ind.pheno, ind.pheno2, pheno.key,
geno.ill, geno.ill.key and saved the file as “hbtrc2.Rdata.” In this way | had an “all
subjects” data frame (ind.pheno) for general, full HBTRC study population EDA; a “no
Huntington’s patients” data frame (ind.pheno2) for simplifying queries made to the
Alzheimer’s and Control population for this project (so | did not have to write script to
check for H+ subjects in future queries, as | had a data frame with those individuals
removed); the pheno.key as the key to the names HBTRC gave their phenotypic data;
the Illumina genotypes as geno.ill; the lllumina SNP identifiers as geno.ill.key. These
were the data | needed to conduct the project. There were no mis-matched data frame
sizes resulting from any of the merges (meaning, no rows or columns were lost or
omitted). It was time for EDA on the full HBTRC dataset (ind.pheno) and the non-
Huntington’s patient dataset (ind.pheno2) to obtain some descriptive statistics and

ascertain the usability of the HBTRC dataset for my project.
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| loaded the lattice library into R. A quick EDA inspection of the “pheno.txt” file first
downloaded from the Sage repository revealed that very few of the subjects had sex

recorded.

> table(ind.phenol$gender, useNA = "ifany") # count by gender of 1st
HBTRC dataset
F M <NA>
88 83 632

That represents 632 out of the total 803 individuals missing gender, or 78.70
percent.

When this was brought to the attention of Sage they quickly provided a
“phenotype2.txt” file, which contained sex for the subjects and was identical otherwise
to the original “phenotype.txt” file. All of the following is derived from that second

HBTRC phenotype2.txt file provided from Sage.

> table(ind.pheno2$gender, useNA = "ifany") # count by gender of 2nd
HBTRC dataset

F M
394 409

A summary command (summary(ind.pheno2)) of the entire ind.pheno2 data set
shows there were 803 individuals, and all 803 had phenotype information.

The HBTRC study focused on both AD and Huntington’s Disease (HD), and the study
cohort could be broken down by sex into the following groups: AD+/HD- Males,
AD+/HD- Females, AD-/HD+ Males, AD-/HD+ Females, AD+/HD+ co-morbid males,
AD+/HD+ co-morbid females, and AD-/HD- Males, AD-/HD- Females (these AD-/HD-

groups would be considered controls for this project).
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The cohort could be broken into groups by their disease status (the presence or

absence of Alzheimer’s and/or Huntington’s) by gender:

> by(ind.pheno2$gender, Tist(ind.pheno2$diseaseStatus), summary,
simplify = FALSE) # summary disease status (AD+/-, HD+/-) by gender

: AD-/HD-
F M

44 127

: AD-/HD+
F M

109 108

: AD+/HD-
F M

240 172

: AD+/HD+

FM

12

This data is more easily absorbed when displayed as a histogram:

Disease Status by Gender, HBTRC Cohort
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So of the 803 individuals, a total of 3 (1 F, 2 M) were co-morbid with both
Alzheimer’s and Huntington’s disease (AD+/HD+), and 217 (109 F, 108 M) had
Huntington’s only (AD-/HD+). These 220 individuals (27.40 percent of the total HBTRC
cohort) would not be included in the Alzheimer’s Disease project, leaving an HBTRC
subset of 412 AD+/HD- Alzheimer’s patients (240 F, 172 M) against 171 AD-/HD-
controls (44F, 127 M).

This would result in a diseased:control ratio of 412:171 or 2.41:1 when gender was
not considered. With gender was considered in the diseased:control ratio, the results
are 240:44 =5.45:1 Fand 172:127 = 1.35:1 M. The “Disease Status by Gender”
histogram (above) points out a potential issue with using the HBTRC dataset for this
project: Male controls (127) far outnumber female controls (44), for a ratio of 2.89 male
controls for every female control, nearly 3:1. In a random sampling of a population, we
would expect a ratio closer to 1:1.

The age at death for the HBTRC cohort was as follows:

> summary(ind.pheno2%$age_death) # age at death, HBTRC cohort
Min. 1st Qu. Median Mean 3rd Qu. Max.
18.00 60.00 73.00 70.65 83.00 106.00

The age at onset for the HBTRC cohort, which includes Huntington’s diseased

individuals as well as Alzheimer’s, was as follows:

> summary(ind.pheno2$age_onset) # HBTRC cohort
Min. 1st Qu. Median Mean 3rd Qu. Max . NA's
6.00 33.75 42.00 41.66 50.00 81.00 671.00

The age at disease onset can be further explored by gender and disease:

> by(ind.pheno2$age_onset, list(ind.pheno2$diseaseStatus,
ind.pheno2%$gender), summary, simplify = FALSE) # summary age onset by
disease status and gender
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: AD-/HD-

F
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
44
: AD-/HD+
: F
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

10.00 29.00 40.00 39.02 48.00 74.00 43.00

: AD+/HD-
. F
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
240
: AD+/HD+
: F
Min. 1st Qu. Median Mean 3rd Qu. Max.
68 68 68 68 68 68
: AD-/HD-
|
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
127
: AD-/HD+
|
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

6.00 35.00 45.00 43.87 53.50 81.00 45.00

: AD+/HD-
: M
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
172
: AD+/HD+
: M
Min. 1st Qu. Median Mean 3rd Qu. Max.

43.0 44.5 46.0 46.0 47.5 49.0

This table points out an interesting fact about the HBTRC dataset: There is no age at
onset data recorded for any AD+/HD- patient, female or male (refer to lines 3 and 7,

highlighted above).
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A further investigation of the age at death for the Alzheimer’s group compared to

the control group resulted in the following histogram:

number of individuals
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Viewed another way, with all ages shown, results in the following:
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Unfortunately, this EDA exercise revealed two problems with the HBTRC dataset as

regards this project: 1) age at onset was lacking in the Alzheimer’s (AD+/HD-) cohort,

and 2) when the “control” subjects are compared to the AD+/HD- subjects by age at

death, it becomes apparent that the groups are not in fact age-matched. After

discussing this fact with my advisor it was quickly decided that another dataset should

be found for the study and to abandon any further investigation of the HBTRC dataset.
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V. Dataset Acceptance — The ADNI GWAS Dataset

Another GWAS dataset was selected for consideration for this project, that of the
Alzheimer’s Disease Neuroimaging Initiative (ADNI).>* Access to their data is by
approved application only (application links available from their website).” The ADNI
Data and Publications Committee (DPC) states that they wish for the ADNI data to be
available to the general scientific community and that they do not judge who is or is not
“qualified.” They base each decision to share their data by making a judgment of each
applicant’s affiliation with a scientific or educational institution as well as the reason for
the request. They do not monitor IRB compliance though requestors must provide IRB
numbers and expiration dates. The DPC recommends full and open access of all de-
identified ADNI imaging and clinical data to any who register with ADNI, agree to the
“ADNI Data Use Agreement” and who pass the limited screening of the DPC. The
request and data use agreement are web-based. In order to facilitate investigative
collaboration, applicants area asked to update their information annually to include
titles of manuscripts being developed with their status as well as lead author’s contact
information, citations of each published manuscript which used ADNI data, plus an
uploaded file of any published manuscript(s) which used ADNI data. Failure to comply
with the required annual updates jeopardizes further access to ADNI data. Any
requestor of ADNI data agrees that the purpose of their request is scientific
investigation, teaching, or planning of clinical research. They agree that: 1) they will not
attempt to establish the identity of or contact any ADNI subjects; 2) they will not make

or attempt direct contact with ADNI primary investigators or staff concerning specific
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results of individual subjects; 3) they will require any person they authorize to use, or
any they share the ADNI data with, to adhere to the Data Use Agreement; 4) they agree
that use of the data beyond the uses outlined in the agreement, and redistribution of
the data in any manner, is prohibited; they will accurately provide requested
information for the person(s) who use the data and analyses planned using the data; 6)
they will promptly and accurately provide annual information updates; 7) they will
comply with rules and regulations of their respective institutions and its review board in
requesting the data.

My advisor, Dr. Beth Wimot, has been granted approval to use the dataset in
controlled environments — meaning, this is not a public domain dataset. This is in
compliance with current GWAS data use standards.?® In order to gain access to the
dataset it was required that | be given virtual private network (VPN) access with a
password onto OHSU’s secured server, with access to OHSU’s network using my existing
student network ID. | was granted a directory on the secure server on which to store my
data and scripts, etc. To do so, | was included in Dr. Wilmot’s Data User Agreement as
though | had signed the agreement myself. Pursuant to the Data Use Agreement, it was
agreed that at no time would any of the actual ADNI dataset genomic information be
removed from the OHSU server. | could remove “sand box” datasets — small datasets
produced from the original and containing minimal genomic information but lacking
some data fields, used to test script performance and file outputs, etc. —and my own
output files created from the original ADNI dataset so long as it contained no original

genomic information. | was very diligent to adhere to this agreement.
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In order to VPN onto OHSU’s server and work remotely, taking information from one
directory on that server and manipulating it within another directory (my directory on
the same server) or on my own computer and transferring data files back and forth, |
chose to employ Cyberduck for Mac (available at http://cyberduck.ch). Cyberduck is an
open source file transfer protocol (FTP) client and secure shell file transfer protocol (SSH
file transfer protocol, or SFTP) which allows drag and drop file transfer functionality. It is
freely available to the public for download (GNU general public license). Cyberduck
made working between a local computer and different remote server directories as
simple and intuitive as using a local computer with an installed thumb drive.

Workspace and file organization is important in any project, both for the worker and
for any individual who might have to access the files during or after a project. The
naming and filing system can be any, so long as it works for the user(s) and aids in
locating files. | created four subdirectories on my secure server directory, for code (any
scripts related to the project), data (text, tab-delimited, spreadsheet, etc. files which
resulted from my scripts acting on the original dataset files, and also the cleaned data
files | used for the project), graphs (self-explanatory), and text (for any text files which
did not result from a manipulation of data, such as my own notes).

The ADNI Files:

Opening the shared ADNI file revealed hundreds of comma separated value (.csv)
files — one for each subject of the ADNI GWAS. Each subject file was identified by the
study subject unique numerical identifier. The vast majority of these files had the

terminal extension “.gz”, indicating they were GNU zipped archive files. However, a few
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of the files had the terminal extension “.zip”. This was an important observation since
opening and extracting .gz files is different from opening and extracting .zip files since
uncompressed .gz files result in a single uncompressed file while uncompressed .zip files
result in (usually) more than a single file, only one of which is the actual data. In addition
to the subject files, the main ADNI directory contained three Illumina-specific .pdf
(Adobe portable document format) files. This revealed, without having to research, that
the ADNI study was done at least in part using lllumina (www.illumina.com/) micro-
array technology. Also within the main shared ADNI directory was an “adcs_clinical”
directory. | looked here first.

At the bottom of the list of .csv files in the shared/ADNI/adcs_clinical directory was
the README.txt file. This contained a notice regarding use authorization, where to
address questions regarding clinical data and about supplementary information about
the ADNI project, a brief description of the contents of the ADNI study including its
DATADIC (data dictionary) table, a notice regarding a known MicroSoft Excel issue
reading the .csv files, and a list of data field and file name definitions for the ADNI files.
As the README.txt file was the list of files names and the DATADIC. (adni_datadic_2009-
09-01.csv) was the data dictionary for this project and would be referenced repeatedly,
these were the first files | copied into my server directory.

The datadic file contained 2,700 “ID” entries. Each ID was for a field name and file
name (found in the README file). Referencing column headings within the files would
be by ID number, not by text. Where applicable, each listing contained information

about the data: its type (Numeric, Text, Date, or TimeStamp), the units used and a
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description of the units (e.g., the range and definition of the values used, or 1 =yes, 0 =
no). Referencing the logistic regression equation for the required data, | found the
appropriate field names as well as the ADNI subject files where those field names/IDs
could be found by inspecting candidate files found on the README and datadic lists.

| employed three data files from the adcs_clinical directory: “adni_apoeres_2009-09-
01.csv”, “adni_pdxconv_2009-09-01.csv”, and “adni_ptdemog_2009-09-01.csv” to
supply the data necessitated by the biological question.

The first adcs_clinical file, “adni_apoeres_2009-09-01.csv”, contained the APOE
haplotyping information for the ADNI study cohort. Each row represented information
from a single study subject, sorted by an ID number. Each row also had the study subject
RID, which would be used as a key to link information within the file data fields to the
proper individuals. This file had each of the two APOE genotypes for each patient in two
fields, titled “APOEGEN1” and “APOEGEN2”. The values stored in those fields were the
numeric values 2, 3, or 4, representing the genotyped APOE isoforms: APOE-€2, -€3, or —
€4. Other data fields contained within this file were not considered relevant for this
project.

The second acds_clinical file, “adni_pdxconv_2009-09-01.csv”, contained the
summary indexes for various clinical diagnoses for each of the ADNI study cohort. This
file was arranged by row with each row representing a different visit/diagnosis date.
Each visit was given an ID, and each visit was associated to an individual by RID. Each
patient could therefore have more than a single row entry in this file, as diagnoses or

severity of diagnoses could change for over time for any individual study patient. This
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file had 40 data fields per row, 36 of them being diagnosis information. The majority of
the valid recorded information was entered as numeric data (ranging from 0 through 4),
some was timestamp, and some was text string. This was the first file | encountered
which had a preponderance of “-4” field entries, which denoted “N/A” or missing data.
Of the 36 diagnostic data fields, three were of particular interest related to my project.
These 3 were titled “DXAD” (Alzheimer’s diagnosis: numeric data where 1 = ‘yes’, -4 =
‘N/A’ or none), a field for the cause of the patient’s mild cognitive impairment (MCl)
titled “DXMDUE” (also a numeric data field: MCl diagnosis due to Alzheimer’s = 1, due to
other etiology = 2), and a field titled “DXADES” which rated the severity of a patient’s
Alzheimer’s disease (numeric data: 1 = mild, 2 = moderate, 3 = severe). These fields are
of interest because they relate directly to any diagnosis of Alzheimer’s, it’s severity (and
change over time), and the severity and cause of MCl over time. A patient was
considered to be AD-positive (AD+) at any occurrence of a “1” in the “DXAD” fields for
that given patient. This “DXAD” field was directly used in my study project. MCl was of
interest for future studies and so the other two fields, “DXADES” and “DXMDUE”, would
be included and utilized in my Python scripts and the resulting data from these fields
and some of my output included or used data from those fields.

The third and last adcs_clinical file | employed, “adni_ptdemog_2009-09-01.csv”,
contained demographics information on the ADNI study cohort. This file consisted of 23
columns, with column headings, each row pertaining to a specific study individual. Each
row was identified by a unique ID in the first column. The patient RID was provided in

the second column. Unlike the “adni_pdxconv_2009-09-01.csv” file, which had multiple
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entries for each RID depending on the number of visits, the “adni_ptdemog_2009-09-
01.csv” file had only a single row of data field entries for each patient RID. The data
types included numeric, text string, and date (some in “month/day/year” format (1 or 2
digits each), some as “/year” format (4-digit)). As on the “adni_ptdemog_2009-09-
01.csv” file, the numeric value “-4” was used to denote “missing” or not applicable”
data. Referring to the datadic in order to interpret the column headings, the columns
needed were “RID” (numeric data: individual patient identifier number used throughout
the ADNI study), “PTGENDER” (numeric data: patient gender where 1 = male, 2 =
female), “PTDOB” (date in “/year” format: patient year of birth), and “PTETHCAT”
(numeric data: patient’s ethnic category where 1 = Hispanic or Latino, 2= not Hispanic or
Latino, 3 = unknown) plus “PTRACCAT” (numeric data: patient’s race). In order to avoid
racial confounders it was determined that my project should focus only on non-Hispanic
whites. Using “PTETHCAT” and “PTRACCAT” in concert | could determine any non-
Hispanic (“PTETHCAT = 2) white (“PTRACCAT =5).

In order to determine age at death, “PTDOB” would have to be converted to
numeric data and subtracted from 2009, the year of the ADNI study. One other field of
interest was labeled “PTADBEG” (numeric data: the year the patient’s AD was
determined to have begun). This would not be used directly in my project but may have

been of interest for further study.
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VI. Exploratory Data Analysis
A. Scripts for the ADNI Dataset — Demographics

My first task was to create a demographics matrix for the entire ADNI cohort. The
scripting language | selected to create this file was Python.' | called this script
“ForADNIDemoMatrix.py”. This script would create a master demographics matrix of
ADNI phenotypes and would include each participant’s RID, exam date, gender, DOB,
ethnicity and race, and APOE allelic types from combining APGEN1 + APGEN2 as
described above.

This script included a files counter so that | could ensure that all files were “read”
and processed by the script. It then opened the “adni_ptdemog_2009-09-01.csv” file, to
which | gave the variable name, “DEMO.” It then opened the “adni_apoeres_2009-09-
01.csv” file, to which | ascribed the variable name, “APOE.” | then opened the
“adni_pdxconv_2009-09-01.csv” file, giving it the variable name “AD_MClstatus.”

Python differs from R in how the programs open and read files, such that in Python
the opened file must explicitly be “read” and that read file must be given a variable
name. | read these opened files, and gave them the variable names “ReadDEMO”,
“ReadAPOE”, and “ReadAD_MClstatus” rescpectively. In order to remove the extra new
line character Python inserts at the terminus of every read file, each “Read...” variable
was split (sliced) on the new line character (“\n’) beginning at index 0 and ending on the
last item in that list. This split each line of text in the files into a single entity, divided by
a new line character. This split version of each file was given the variable name “Split...”.
Python uses zero indexing, meaning the 1°" item in a list is indexed as zero. In R, the 1*

item is indexed as one. By slicing on every field except the last one, the final new line
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character is not included in the “Split...” version of each file. The final line of information
is maintained but it is not terminated with a new line character, so that an empty line is
not created after the final line of information.

In order to have the ADNI field headers for my reference, | next sliced just the first
(zero index) line from the SplitAPOE and SplitDEMO files and named these variables
APOEheader and DEMOheader. As these files were saved by ADNI as comma separated
value (,csv) files, | split each line of the headers by the comma character. For my project
files I did not need every field, only a few. So | examined the original ADNI .csv files to
determine precisely which headers | needed — which columns of data my project
required — and wrote those down. | called each split header an “item”. From the APOE
file header | needed only the 4™ and 5" “items” and so | created a variable
“APOE_HEADER” which included only items 4 and 5 (remembering Python’s zero
indexing, these would be coded as item[3] and item[4]). Those represented the APOE
allelic pairs for each patient (APGEN1 and APGEN2). | required more header fields from
the demographics file including RID, ExamDate, Gender, DOB, Ethnicity, and Race. These
equated to (using zero indexing) items [1], [3], [5], [6], [21] and [22]. My FINAL_HEADER
was the combination (concatenating or joining) of the DEMO_HEADER plus the
APOE_HEADER. | wanted to add my own header fields (MCI Status (DXADES), and the
reason for MCl (DXMDUE) fields), so by concatenating using the comma character |

added the strings, ‘AD Status’ and ‘MCI(AD/other/none)’ to the end of the

FINAL_HEADER. The new header for my demographics matrix now included column
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headings in this order: RID, ExamDate, Gender, DOB, Ethnicity, Race, APOE-1, APOE-2,
AD status, and MCI(AD/other/none).

Saving the new demographics header as a variable unto itself allowed me to delete
the header lines from the Splitxxx files while retaining the header | wanted in my final
file which I would add after processing and creating the file. This made processing these
files (especially looping over them) easier because my script code would not have to
account for any non-data lines. As each ADNI file had a header as its first row (index 0), |
merely had to delete each Split...[0] to accomplish this. | could now process each Split...
file without having to account for its header.

My concept of creating my master demographics and APOE files for this project was
by utilizing data dictionaries. | created a file handle “fh” to open and write to my file,
“ADNIDemoMatrix”. The key for each data dictionary would be each patient’s RID. The
values stored would be PTGENDER (patient gender), PTDOB (patient date of birth),
PTADBEG (patient AD beginning date) from the “adni_ptdemog...” file as well as APGEN1
and APGEN2 from the “adni_apores...” file. | looped over each line in the SplitDEMO
variable and created an “item” by splitting on each comma character. Each line of
SplitDEMO was now a separate item and could be sliced using indexing. | then rebuilt
each line the way | wanted it, to match the data dictionary format | described, by
populating the DEMOdict by items [1], [3], [5], [6], [21], and [22], each item separated
by commas. | repeated this procedure for the APOEdict, using SplitAPOE and populating
items [1], [3], and [4]. Item [1] was the patient RID for both of these files — my data

dictionaries key.
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| next wanted to add the AD status to the end of the existing DEMOdict. This data
would come from the SplitAD_MICstatus variable | had created, using items [18]
(DXMDUE) and [21] (AD ‘T/F’). | created an “AD_MCldict” data dictionary to contain this
data. Because this data came from (potentially) different diagnoses from multiple
patient visits, | had to come up with a looping structure in my script to update status
conditions if and when they changed. | determined that once any patient had a
diagnosis of MCl due to AD from any of their diagnostic visits their MCI cause status
would not revert to non-AD, even in the unlikely event that their diagnosis had changed
from AD to non-AD from their visit history. My reasoning was, 1) AD is officially
diagnosed post-mortem from brain tissue pathology ®° and so a pre-mortem diagnosis
was not as informative as a post-mortem diagnosis, and 2) as this project was a “fishing
expedition” for associating SNPS with AD | needed to capture as many potential AD
patients as possible for the project and so | cast a “wide net” as regarded pre-mortem
diagnoses and so | included any patient whose MCI was ever diagnosed as being caused
by AD.

| created a variable “ADstatus” and set it’s starting condition to 0. Next | created a
variable “MClstatus” and set its starting condition to 0. This MClstatus variable could
have 3 possible values: ‘0’ (data missing), ‘1’ (MCI was diagnosed as being caused by
AD), and ‘2’ (MCI due to something other than AD). As | described previously, if this
MClstatus ever got set to ‘1’ it would not revert to ‘2’ or ‘0’ on subsequent loops. | then
created a variable “previousRID”, which | set to 0 as its starting condition, so that | could

track (by RID) when a series of visits concluded for any one RID and the next series of
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visits began for the next RID. This “previousRID” became the triggering condition for
entering, re-entering, and exiting the MClstatus update loop.

In order to loop over the lines in SplitAD_M(Clstatus, | first created an “item” by
splitting each line on a comma character. | set a “currentRID” variable to item[1] and
checked (using ‘if’) to see whether the currentRID was exactly equivalent to the
previousRID. Nested within this ‘if’ loop were the status update loops. The first checked
‘if" item [21] (the ADstatus field, whether the patient was diagnosed AD+ or not) was
equivalent to ‘1’, and populated an ADstatus variable with a ‘1’ if ADNI reported the
patient as AD+. The possible values for this field were ‘1’ (AD positive) and -4’ (AD
negative, or missing data). | next checked ‘if’ item [18] (DXMDUE) value was equivalent
to ‘1’. The possible values for this field were ‘1’ (MCI due to AD), 2’ (MCI due to other
than AD), and ‘0’. Missing data was recorded by ADNI as ‘-4’ but | had forced it to have a
value of ‘0’ as the starting condition for this series of loops. The value was recorded in a
MClstatus variable. As described above, once this MClstatus variable contained a value
of ‘1’ it would not revert to any other value. | then included another ‘if’ condition so that
MClstatus would not revert or downgrade from ‘2’ (MCI due to non-AD) to ‘0.

If an item had bypassed the first loop (meaning, all processes had been completed
on all instances of the current RID) and the current RID was not equal to the previous
RID, a nested ‘else’ loop updated the AD_MCldict dtata dictionary with the RID obtained
as the next item([1], an ‘if’ checked to if the value of the MClstatus in item [18] was ‘-4’
and, if it was, set that value to ‘0’ and, (in the next ‘if’ check) if it was not ‘-4’ it set the

value to whatever value was entered by ADNI in the MClstatus field (item [18]). This
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series of checks was then repeated for the ADstatus fields for item [21]: if entered by
ADNI as ‘-4’, change the value to ‘0’ or, if not entered as ‘-4’, to whatever value ADNI
entered into the ADstatus field. This completed the creation of the AD_MCldict data
dictionary. This dictionary was then “written” to the computer screen using a standard
error write command from the Python “system” (sys) library package in order to see
what was being stored, what the data dictionary looked like, to ensure functionality of
the script.

The DEMO, APOE, and AD_MClstatus file handles were closed (good scripting
practice as it removes unnecessary files from active memory) and the FINAL_HEADER
(plus a new line character, so that more lines could be written) was written to a file
handle variable | named simply, “fh”. A ‘for’ loop with nested ‘if’ and ‘else’ conditional
loops was created, using each key in the sorted list of the set of keys from the
demographics data dictionary (DEMQdict.keys). Each key had to also be a key in the set
of sorted set of APOE data dictionary keys (APOEdict.keys) as well as the sorted set of
AD_MCI data dictionary keys (AD_MCldict.keys). This was done as a check to ensure
that only RIDs found in all three files would be recorded into the demographics master
matrix, in case there existed an instance of an RID which only appeared in one or two of
the ADNI files but not all that this project required. This was done so that | did not have
to keep track of which, if any, RIDs were found only in certain files and not others, and
so avoid data mismatches in my final demographics matrix. Every RID entry would have
the same number of demographics, AD status and AD_MCI status fields, even if they

were blank. | first wrote the current key (RID) to the screen to see that the script was
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updating through the RIDs in sequence. | created a variable called DEMO _info which
stored the demographics data stored as values associated with the current key (RID)
from the demographics data dictionary (DEMOdict). The first ‘if’ checked that
DEMO_info was an empty set (meaning, no demographics data for that RID) and, if it
was, to write three empty comma-separated fields. If DEMO_info was not an empty set,
it wrote the DEMO_info (demographics data) and then retrieved the APOE_info (APOE
value associated with the same RID key). If that was an empty set, two empty comma-
separated fields were written. But if APO_info had values associated with that RID, they
were then written (appended) as the next values in the demographics matrix and the
AD_MCI_info values associated with the AD_MCldict data dictionary were retrieved and
compared to an empty set. If there were no values in the AD_MCI data dictionary for
that particular RID, a single empty comma-separated field was written to the
demographics matrix for the AD_MCI portion. But if values existed in the AD_MCI data
dictionary, those values were appended to that RID’s matrix entry, along with a new line
character. In this way, the file handle “fh” was populated, row by row as ordered RID by
RID, with first the demographics data values appended, then the MCI status values
appended, then AD status values appended to each RID row before entering a new line
character and starting on the next ordinal RID. In this way | had created my master
demographics matrix, “ADNIDemoMatrix”, which was a comma-separated value (.csv)
file. This file would be queried for this project. At this point, this file contained

demographics information for all ADNI participants and these entries could be missing
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data necessary to the investigative project or have data not required by the project. A

snapshot of the final output ADNIDemoMatrix file at this point is shown here:

RID EXAMDATE PTGENDER PTDOB PTETHCAT PTRACCAT APGEN1 APGEN2 ADBtatus ~ MCI(AD/other/none)

1 8/18/05 2 /1944 -4 -4
10  10/26/05 2 /1931 2 5 3 4 1 0

100  12/12/05 2 /1930 2 5 3 4

1000  10/11/06 1 /1924 2 5 3 3

1001 11/6/06 1 /1937 2 4 3 4 1 0

1002  10/13/06 2 /1930 2 5 3 3 0 0

1003  10/13/06 1 /1935 2 5 3 4

1004  11/10/06 -4 -4 -4 -4 3 4 1 1

1005  10/18/06 1 /1947 2 5 3 4

Note that this sample has many missing fields as well as examples of ethnic and
racial categories, which would be excluded from the final study.

It is noteworthy that, while creating this project write-up, a simple “eyeballing” of
the expected output from my master matrix revealed an error in the script. Everything
appeared to be operating as planned except the AD_MClstatus field was not being
updated from ‘0’. This bug was soon and easily fixed. But it demonstrates that simple
“does this make sense” investigations of the output of a script is a necessary part of

creating functional and usable output.

B. Scripts for the ADNI Dataset — Genomics
My next task was to create a master matrix for the genome information of all the

ADNI participants’ genomic files. This was done using Python as the scripting language,
and | called the script “ForADNIMstrMatrix4.py” as it was the 4™ iteration of the script
that finally worked properly. As mentioned earlier, the ADNI genome files were stored
in one of two formats: as .zip files (very few and easily overlooked in such a large list) or
as .gzip files. This was an important observation, as these files must be handled
differently for Python to be able to open and process the information contained in the
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different formats. | downloaded and then imported into Python the existing libraries for
such tasks, “gzip”, “zipfile, and “zlib” along with “sys”, “glob” for error reporting and
general file handling functionality, plus “os” for path splitting.

| first defined a function, “get_compressed_filename” which would allow me to
input the directory and path to the compressed file(s), would recognize that their output
type should be .csv when they were uncompressed, and would return the path plus file
name, split the . in it’s file extension, and give it the .csv file extension plus the
extension of whatever compression type it originally was
(/home/shared/ADNI/141_S_1004.gz became /home/shared/ADNI/141_S 1004.csv.gz,
as an example). | created a variable “list_of _files” which was simply a holding place for
the file names without the directory path (for the example given, 141_S 1004.gz.csv). |
checked the total number of files in the list_of_files by querying its length — this
“totalGeneFiles” should have equaled 818, the number of genomic files in the ADNI
study. As part of my error reporting as well as progress log, | used the sys.stderr.write
command on the totalGeneFiles variable (as a string data type, so that | could use string
concatenation) to report the total number of gene files.

| noticed that all of the ADNI genomic files followed the same naming convention: a
series of three numerals followed by an underscore followed by a capital letter followed
by another underscore followed by four numerals prior to the period and compression
type extension. The series of four numerals was the RID. In order to extract the RID from
each file name | created an “unorderedRIDs” variable which used string slicing to split

the file name at positions [6] through [10]. Remembering Python’s zero indexing, this
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would be the 7*" through 11" characters when read left to right. Python slicing
nomenclature means to begin and include the first index shown, and to stop prior to the
last index shown. This means that positions [6] through [10] would actually be recorded
— the four digits of the RID. | included an in-line “for” loop to do this for each file (by
file_name) in the list_of_files. | used this to populate a data dictionary called
“RIDtoFilenameDict” which used the unorderedRIDs as its key and list_of_files as its
values. | then put the RIDs in numerical order, which | called “orderedRIDs”, by using
Python’s ‘sorted’ command on the unorderedRIDs variable. | now had a way to track
RIDs in numerical order.

It was not enough to use RIDs from the file names. | had to check those against
ADNI’s patient roster of RIDs. | had to also handle each file differently depending on
what type of compression was used to store it (file extension “.gxz’ or ‘.zip’). | also
needed to ensure that the genome matrix | was creating allowed for files to be missing
calls on SNPs (in other words, files of differing lengths).

| started by creating a “files_counter” with a starting condition of ‘0’. | then opened
and read each ADNI roster file to ensure that each genotype file name RID also appears
as an RID on the ADNI study roster. To do this | opened and read the adni_roster_2009-
09-01.csv file and saved its contents to a variable | named “roster”. | then read the lines
of the roster as roster_lines, and then split roster_lines by new line characters. | then
further split each line of roster_lines by the comma character. | then created a variable
“rosterNumber” which stored the length (number of entries) of the roster_lines

variable, and a “rosterNames” variable which sliced and stored the RIDs (index [1]) from

38



each line in roster_lines. | closed the roster document, now having a list of the ADNI
roster RIDs.

Next, | had to open and read each file and handle them differently depending on
their compression method. To do this, | first created a variable called “first_file” which
sliced the RIDs from the ordered RIDtoFilenameDict data dictionary — the first entries,
the keys in that data dictionary. | then created two different ‘if’ loops. These checked
the file extension by using the ‘endswith’ command, one checked for ‘endswith’ .gz, and
the other checked for ‘endswith’ .zip. Both loops next used the sys.stderr.write
functionality to write to the computer screen “opening” plus the name of the file it was
opening so that | could see what progress my script was making in handling the files. For
the .gz files, a variable called “FI” used gzip to open and read the first_file. For .zip files,
a variable called “FF” used zipfile.ZipFile read functionality, then opened the first file in
the list of files opened and called that file “FI”. This was done because, unlike .gz (which
opens as only the stored decompressed file), .zip files open into the stored compressed
file plus additional files. The only file needed was the first file in the list of files opened,
the actual decompressed data. A variable named “Read” actually read the Fl data.
Outside of the loops, a variable | called “Splitter” split the Read data on the new line
character so that | now had a list of decompressed genomics files with each RID having
its own line of genomic data. Next, | removed the header from each Read file by slicing
and then deleting the zero-eth index item (the first row of each Read file, which would

be the header row).
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Next, | created an empty list | called “SNPCheckList” in which to store the names of
all the SNPs used for the genomics assay. | created a ‘for’ loop that worked on each line
in “Splitter”, with an ‘item’ being each line split on the comma character (these were
.csv files). | then populated the SNPCheckList by appending to its end the sliced item [4],
which was the SNP name. When this was complete | created a “number_of SNPs”
variable to store the length (quantity) of the SNPCheckList, and | closed the Fl variable
so that the genomics files were no longer maintained in my computer’s memory. The
number_of SNPs value, when completed, was 620,901.

| next started an “RID_ctr” counter, initially set to zero, and started nested ‘if’ loops
within a ‘for’ loop to operate on each “file_name” in the RIDtoFilenameDict data
dictionary by the now ordered RIDs (key). As each RID was read, the RID-ctr counter
increased by one. | created the variable “fileRosterCheck” which split the file_name at
the final (.csv) extension so that only the file name with its original .gz or .zip extension
remained. The file_name then entered one of two ‘if’ loops, conditional on the file
extension. For this | used the “endswith” function. If the file_name ended with a ‘.gz’ file
extension, | used the variable “FI” for the gzip.open function on the file_name to read
the file, then “Read” as the read Fl variable. If the file ended with ‘.zip’ | created an “FF”
variable to read the zipfile using zipfile.ZipFile(file_name) to read the file, converted FF
to Fl by opening and reading FF as the first file in the opened .zip list of files, and “Read”
again as the read Fl variable. “Read” was now my read genomic files, no matter their

original extension. In each case, | used the sys.stderr.write functionality to print to the
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computer screen the RID of the file being opened and read as a way of tracking
progress.

| next slit each Read file on new line characters (calling that variable “Splitter”),
removed the header by slicing Splitter index [0], and deleted the Splitter index [0]
header information from the Read file.

Next, | began a “lines_ctr” counter initialized to zero, and started a ‘for’ loop for
each "line", splitting each line into an “item” at the comma character, and then checked
the length of the file to ensure that there were twenty-four lines (each genomic file had
been formatted as comma-separated lines, twenty-four lines to a complete file). This
was to ensure that no partial or incomplete files were employed in the study. | used the
sys.stderr.write error reporting functionality to notify me of such an event (which did
not occur). | then checked each “item” at index [4] (the SNP name) against the
SNPCheckList to make sure the SNPs on each Read file were in the same order (agin,
with error reporting if such an event occurred — which it did not). | then combined the
‘Allele 1 forward’ and ‘Allele 2 forward’ fields from each Read genomic file into a single
field (so that ‘A, A’ became ‘AA’) in my newly-created “totalGenomeMatrixFile”. | then
increased my “files_counter” by one, flushed the existing Read file out of memory, and
closed FI (the Read file).

| then created and opened an output file path, “totalGenome MatrixFile”, gave it a
header by writing “SNPname” followed by each ordered RID. In this way, the first field
on each row of the matrix had a SNP identifier name, followed by the value for that SNP

for each of the ordered RIDs, left to right. A new line character was added in-line at the
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terminus of the “orderedRIDs” to accomplish this. | then looped over the SNPs, looping
over the RIDs by a ‘for’ loop over SNPindex in the range of number_of_SNPs, then by
writing SNPCheckList keys in the totalGenomeMatrixFile. | closed the
totalGenomeMatrixFile output file and could now query this matrix for every SNP value
for every genomic file ADNI provided, ordered (rows) by alpha-numeric ordered SNP
names (620,901) and by columns left-to-right by numerically ordered RIDs (818).

Refer to the addenda section of this write-up for the scripts described.

VIL. Data Cleaning

Now that | had a master demographics matrix of all the ADNI participants plus a
matrix of all the genomic files (ordered by SNP name as well as by RID), my next task
was to work creating methods for excluding RIDs and creating a matrix for those
excluded (for which | created an exclusion log) as well as a matrix for those not excluded
from the ADNI study (an included genome matrix). This comprised the data cleaning
portion of my project. | called this script “ForExcludedMatrix.py”. Reasons for exclusion
from my project were any failure to meet the requirements of the biological question
posed by the investigative study: missing age (date of birth), missing gender, failure to
meet AD+ or “control” population criteria (such as being co-morbid AD and HD), or
having no genomic information file. It was also determined that only non-Hispanic white
patient data would be used for the study so as to lessen racial confounding. The
scripting language used for this task was Python.

For this script, | used my existing “totalGenomeMatrixFile” script as a template. | had

faith it worked, it took only 6 seconds per file to read and write so it didn’t take very
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long to run over the entire ADNI set of ADNI genomic files, and it only needed extra
conditional checks and processes to filter out the files that didn’t meet the inclusion
criteria.

First | created “exclusionLog”, which opened and created a path to a
FileExclusionLog.txt file. | then opened and read my demoMatrix, reading the lines
(“demoMatrix_lines”), splitting them on new line characters, and then further splitting
these on the comma characters.

| then checked that each demoMatrix line had items indexed [1], [3], [4], and [5] —
the information required by this study. | started an “exclusionCount” varaiable initialized
to zero, and established an empty “exclusionDict” dictionary to store excluded file RIDs.
“For” each line in the demoMatrix_lines | had a long list of in-line “if” and “and”
conditionals. These checked that each of the required item indexes were populated
(were not empty strings), and were not populated with ‘-4’ (the missing data format
used by ADNI). If the line (which represented demographics information for a single RID)
passed the series of tests, its RID was printed out to the screen using the sys.stderr.write
function along with the text, “File Demographics Data Complete” with a new line
character so that | could visually see what progress was being made in checking these
files.

If the line did not pass the checks, they entered an ‘else’ loop. In this loop, | first
created an empty list called “exclusionList”. To keep track of the reasons any file could
be excluded (each could have multiple, different reasons) | decided to establish an

“exclusionBitField” which | initialized to zero. The idea is that each exclusion criteria
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could be mapped as a value to the bit field (1, 2, 4, 8, 16, and 32) — a binary “tick” for
each reason a file failed the inclusion criteria - and that bit “signature” could be read out
to define the reason(s) that particular RID was excluded from the study. When a file
failed at any of the item checks the exclusionList was appended with the RID and the

reason and the exclusionDict was also appended. I've included that code here:

else:
exclusionList = []
exclusionBitField = 0
if 1ine[l] == "" or Tine[l] == '"-4':
sys.stderr.write(line[0] + " is missing exam date."
+'\n") # 1's position
exclusionList.append("missing exam date')
exclusionBitField = exclusionBitField + 1
if 1ine[2] == "" or 1ine[2] == '-4':
sys.stderr.write(line[0] + " is missing gender."
+'\n') # 2's position
exclusionList.append("missing gender")
exclusionBitField = exclusionBitField + 2
if 1ine[3] == "" or 1line[3] == '-4':
sys.stderr.write(line[0] + " is missing DOB." +'\n'")
# 4's position
exclusionList.append("missing DOB")
exclusionBitField = exclusionBitField + 4
if Tine[4] == "" or 1line[4] == '-4':
sys.stderr.write(line[0] + " 1is missing ethnicity."
+'\n") # 8's position
exclusionList.append("missing ethnicity")
exclusionBitField = exclusionBitField + 8
if 1line[4] !'= "2" or 1line[5] != "5":
sys.stderr.write(line[0] + " is non-caucasian."
+'\n") # 16's position
exclusionList.append("non-caucasian")
exclusionBitField = exclusionBitField + 16
if 1line[6] == "" or 1line[6] == '-4' or 1line[7] == "" or
Tine[7] == '"-4':
sys.stderr.write(line[0] + "
+'\n') # 32's position
exclusionList.append("missing APOE data")
exclusionBitField = exclusionBitField + 32

is missing APOE values."

exclusionDict[1ine[0].zfi11(4)] = [exclusionList,
exclusionBitField]
continue
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| next opened and read each ADNI Roster file to check that each genomic file RID
appeared on the official ADNI roster. This was done exactly as scripted in the
“4ADNIDemoMatrix” script and established my rosterNumber and rosterNames (4-digit
RIDs). | then opened the genomic files by ordered RIDs and matched the RID to
file_names in my “list_of_files”, as was done in the “4ADNIDemoMatrix” script. Again,
there were 818 total RIDs.

| looped over the orderedRIDs, using the RID as the operand, and checked ‘if’ the RID
appeared in the exclusionDict exclused files data dictionary as a key (RID). If it was in
that excluded list of RIDs, | wrote to the console that the file was being skipped because
it did not meet the demographics or APOE inclusion criteria, and wrote that RID into the
exclusionLog. ‘If’ the RID was not in rosterNames (in other words, an RID had somehow
made it into a file name but did not appear in the official ADNI roster), | wrote to the
console that the file (RID) did not appear in the roster, and wrote to the exclusionLog
that the file was being excluded because its RID did not appear on the roster. In both
cases, files_counter incremented by one to show that another file had been checked.
When all the files had been checked | wrote to the console the exclusionCount (number
of files excluded out of the total number of files) as well as the total number of files
examined (by the length of demoMatrix_lines). | also appended the end of the
exclusionLog with the total number in the ADNI roster (rosterNumber), the number of
files examined (orderedRIDs), and the total number of files excluded (exclusionCount).

Then | set about creating a variable (“includedRIDs”) to store the RIDs, which met

the inclusion criteria and would be used for the study. This was the difference of the set
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of the sorted orderedRIDs minus the set of the exclusionDict keys (RIDs in the exclusion
dictionary). | then appended the exclusionLog with the number of files remaining to be
studied (the length of the includedRIDs), and closed the exclusionLog.

| then set about creating an “Included Matrix” which was the same as the “Master
Matrix” but which only contained non-excluded RIDs. This followed the same file
extension filtering and processing as the “ForADNIMstrMatrix” script, checking each file
extension (‘.gz’ or ‘.zip’), removing the header, splitting the lines into individual items,
combining allelic information into a single field, etc. The only difference in this part of
the script was the name of the output file being written to “includedGenomeMatrix”)
and the fact that it operated only on RIDs found in the “includedRIDs”.

The last part of the project | performed was a script for manipulating and creating
some basic statistics on the total genome matrix (not just the included, but the
population) such as minor allele frequencies and call rates for the SNPs. This constituted
EDA for the project. This was done using R as the scripting language. | called this script
“GenomeMatrixManipulation.r”. To do this | first read the “TotalGenomeMatrixFile” as a
.csv file and called it “genomeDF”. In-line with reading the matrix file, | globally replaced
“-” empty, or “-4” strings (missing data) to ‘NA’. This was because the R software
recognizes ‘NA’ as a missing value, but does not recognize ‘-4’ so | wanted to get that
handled right away. | next sliced off the top row (headings) and saved them in a variable
called “rownames”, saving the data (only) as “genomeMatrix”. | then examined the SNP
statistics: used the numberOfFiles (the length of a row, the number of RIDs), summed

the number of ‘NA’ in a row as “missedCalls”, found the “callRate” which | defined as
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([numberOfFiles — missedCalls] / [numberOfFiles]), and then found the total number of
each base (A, T, G, or C) by making a table of the factors of each row, split by individual
characters where the levels of the factors were “A”, “T”, “G”, and “C”. The values for
each SNP were simply which bases were returned for the two loci (either Allele 1
forward or Allele 2 forward). | simply had to add up the bases for each row (each row
represented a single SNP). | found the “minorAllele” by making a sorted list of the bases
by frequency (or count) returned for each row (each SNP) and slicing off the 2" position
(the 2"-most frequent base), with the understanding that purine-pyrimidine mis-
matches would be very rare in any population. The minor allele frequency,
“minorAlleleFreq”, was defined as the number of times the minor allele base appeared
in the row, divided by the sum of all the bases in the row.

| created column names for the SNPstats variable (“callRate”, “minorAllel”, and
“minorAlleleFrequency”) using a vector (numerals) such that 1 = “A”, 2 = “T”, 3 =“G”,
and 4 = “C”. | then used the cbind function to add the SNPstats and minor allele columns
to the end of my master matrix, calling this new output file
“AnotatedTotalGenomeMatrix.csv”. | saved the data from these SNPstats manipulations
of the genome matrix as “TotalSNPstats.RData” and wrote the file, “TotalSNPstats.csv”.

| then did much the same thing to the IncludedGenomeMatrix.csv file, globally
replacing empty fields and -4’ entries with ‘NA’, and stripping off headers so | was
working with only data and not header strings. My “IncludedSNPstats” listed the
numberOfFiles as the length (by row) of the genomeMatrix file (the number of RIDs —

each RID is a single row), the number of “missedCalls” (the sum of the ‘NA’ entries for
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each row), the “callRate” ([numerOfFiles — missedCalls] / numberOfFiles), “baseTotals”
(which split each row into individual characters and summed the bases as levels in a
factored table), found the “minorAllele” and “minorAlleleFrequency”as described above
including vectorizing the numerical output for the bases such that, again, 1 = “A”, 2 =
“T”,3="G",and 4 = “C". | bound these columns to the end of the existing master
matrix, and wrote an output file, “AnotatedincludedGenomeMatrix.csv” for further
study. | also saved the data as “IncludedSNPstats.RData” and wrote an output file of the
results, “IncludedSNPstats.csv”, for further study.

| took this opportunity to globally change all empty string fields and ‘-4’ fields in my
“ADNIDemoMatrix.csv” output file to ‘NA’ (again, for software requirements), saved the
demoDF demographics data to “Demographics.RData”, and wrote the
“ADNIDemoMatrix.csv” file.

Refer to the addenda section of this write-up for the scripts described.

VIIl. File Management

Per my agreement, | kept all ADNI genomic files on OHSU’s secure server. These
were never moved. | did copy the roster, data dictionary, demographics, and diagnostic
files as described onto my computer for ease and speed of reference (I didn’t have to be
logged in to the OHSU server to check the proper fields and their indexing for my script,
for example). As put forth in section V., above, my script files were stored under “Code”,
output data under “Data”, my graphs under “Graphs”, and text (for any text files which
did not result from a manipulation of data, such as my own notes as well as the final

version of this write-up) were to be stored under “Text”. | named my script files for what
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they ultimately did — describing their purpose. | updated versions of working scripts and
kept older versions. Sometimes this was done as a numeric increment, sometimes as the
date | worked on the script. | found later that including the date as a revision within the
script file name was the most helpful.

When naming variables used in my script, | again tried to describe them using
combinations of camel-casing (“exampleOfCamelCasing”) and underscoring
(example_of_underscoring). This greatly aided finding variables, functions, within a
script file and when trouble-shooting. This practice was also very helpful when time had
passed since | had last looked at the script!

| strived to keep the server directories clean, and store only the “latest and greatest”
versions on that server. The server became my “library” — the last best working script
file version would be kept there, then down-loaded (copied) to my computer for
revision and trial, saved (with revision), and then up-loaded to the server over-writing
the old master file. During this project write-up, however, it became much easier simply
do work on (and save) graphics on my local computer using copies of the files | had
created and stored in my server “Data” sub-directory, and then move the completed
graphics onto the server.

One of the things | benefited from is keeping in-line notes within my script files. | use
lots of comment lines. | state what | am doing with the script code section that follows,
and what each line is supposed to accomplish. This made trouble-shooting much easier.
| thought of it this way: comments aren’t so much for me at the time, they are for

myself in the future, or for others, to understand what | am attempting to accomplish
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with my script. | kept track not only of what | was attempting, but the methods used and
even definitions of indexes used, etc. For examples of this, refer to any of my scripts in
the addenda section of this write-up.
IX. Results
A. Deliverables: Scripts

At the termination of my project, | had created scripts and completed EDA for the
HBTRC dataset (leading to its rejection for further study related to this project) plus four
ADNI-related scripts to convert their data into query-able matrices for: 1) the
demographics information; 2) genomics information; 3) data cleaning both the excluded
files’ data as well as the included files’ data along with a log detailing excluded and
included files, and; 4) EDA descriptive statistics of the genomic files. These can be found

in the Addenda.

B. Deliverables: Data Files

| had also, through my scripts, created matrices of the ADNI data files: 1) the
ADNIDemoMatrix020513, a .csv file which contained all the demographics information
for the ADNI study cohort; 2) Demographics.RData, the R version of demographics
information; 3) TotalSNPstats.RData, the R version of the statistics related to SNPs for
the cohort; and 4) IncludedSNPstats.Rdata, the R version of the statistics related to SNPs
for the included study group. These files can be loaded into R and the data contained
within them examined statistically using R.

| also created numerous .csv data files (stored under the CSVfiles subdirectory of

DATA), some rather large. These included: ADNIDemoMatrix.csv,
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AnotatedIncludedGenomeMatrix.csv, AnotatedTotalGenomeMatrix.cv,
IncludedGenomeMatrix.csv, IncludedSNPstats.csv, MasterADNIMatrix.csv, SNPstats.csv,
TotalGenomeMatrixFile.csv, and TotalSNPstats.csv.

A very small sample of my “MasterADNIMatrix” is shown here, as an Excel file. RIDs
were stored as 4-digit numbers, but have been shown here truncated. This shows the
SNPname (each SNP is a row) with RIDs ordered by columns, each RID then has the
allelic information (1 forward and 2 forward) as separate fields, then a field for the
combined complimentary nucleotides together as a pair in a single field. This field was

used for SNP call rates and minor allele frequency equations.

SNPname @RID Allelel-forw RAllele2-forw MNucleotidel RID Allelel-forw RAllele2-forw Nucleotidel
200003 5A A T 50 G G cc
200006 5C C GG 50T C AG

A very small sample of the “ADNIDemoMatrix.csv” file is shown here, showing all
empty and ‘-4’ fields converted to ‘NA’. Note that this is for the cohort, not just those

included in the study.

RID EXAMDATE PTGENDER PTDOB PTETHCAT  PTRACCAT APGEN1 APGEN2 AD.status  MCI.AD.other.none.
1 1 8/18/05 2 /1944 NA NA NA NA NA NA
2 10 10/26/05 2 /1931 2 5 3 4 1NA
3 100  12/12/05 2 /1930 2 5 3 4 NA NA
4 1000  10/11/06 1/1924 2 5 3 3 NA NA
5 1001 11/6/06 1 /1937 2 4 3 4 1 NA
6 1002 10/13/06 2 /1930 2 5 3 3 NA NA
7 1003  10/13/06 1 /1935 2 5 3 4 NA NA
8 1004  11/10/06 NA NA NA NA 3 4 1NA

Here is an example of the “SNPstats.csv” file, showing the SNP name (rsXXXX), the
call rate, minor allele and its frequency. The project was interested in SNPs, minor

alleles, only so major alleles were not recorded.
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callRate minorAllele minorAlleleFrequency

rs7060463 1 4 0.42787286
rs941009 1 4 0.26405868
rs4446471 0.99877751 2 0.27050184
rs9821655 0.99755501 1 0.01286765
rs7330809 0.93887531 3 0.078125
rs1898321 1 3 0.07334963
rs1898320 0.99633252 3 0.13803681

The alleles are: 1 = “A”,2="“T",3="“G",and 4 = “C".

Lastly, in running the exclusion conditions on the demographics and genomics data
matrices, | came up with two text files. One, “FileExclusionLog.txt” was for the RIDs
excluded from the study and the reason(s). The other, “FileFailureLog.txt” merely
tracked exclusions by RID such that a single file with more than one exclusion criteria
would be counted for each “failure” — it was merely a tracking device but was kept
because it would be easier to parse by “reason” than the “FileExclusionLog.txt” file.

The terminus of the “FileExclusionLog.txt” is shown here. Note that it gives the bit
count for the failure codes, the RID, what is missing (as a text string), the total number
of files excluded up to that point and how many files total are being examined. It then
gives the total number in the ADNI roster (a significantly greater number on the roster
than actually had demographics and genomics files), how many files were examined,
how many were excluded, and how many were to be included in the investigative study

project. | have shown the output as code for clarity, but it is a text file.

Exclusion 30: 1387 is missing gender, missing DOB, missing ethnicity,
non-caucasian. 119 files excluded out of 818 total files input. 26
files remaining.

Exclusion 16: 1407 is non-caucasian. 120 files excluded out of 818
total files input. 16 files remaining.

Exclusion 30: 1417 1is missing gender, missing DOB, missing ethnicity,
hon-caucasian. 121 files excluded out of 818 total files input. 10
files remaining.

1431 total Roster number.

818 total Gene Files examined.

121 Gene Files excluded.
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| 697 files INCLUDED to be studied.

C. Deliverables: EDA (statistics and graphics)
These were constructed using R. The script code as well as output is shown below.

The number of unique RIDs (patients studied) in the ADNI cohort was:

> length(unique(demoDF$RID))
[1] 1388

The gender distribution of the ADNI cohort was:

> table(demoDF$PTGENDER, useNA = "ifany") # count by gender
(male/female/na), ADNI dataset

male female <NA>
774 569 45

So, of the 1,388 studied patients, 45 did not have their gender recorded. Those 45

would not have met the inclusion criteria for further study.

The Alzheimer’s disease (AD) status of the cohort was:

> table(demoDF$AD.status, useNA = 'ifany') # count by AD status, ADNI
dataset

AD- AD+ <NA>
478 341 569

The AD status by gender of the cohort was:

> tapply(demoDF$PTGENDER, demoDF$AD.status, summary) # summary of
disease status by gender, ADNI cohort

$ AD-"
male female NA's
272 187 19

$ AD+"
male female NA's
182 135 24

Those without an AD status recorded would not have been included in this study.
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Graphically, the AD status by gender was much less skewed Female for the AD-
group than was the HBTRC cohort:

Alzheimer's Status by Gender, ADNI Cohort

male female
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150 B

100 -

Number of Individuals by AD status

male female

gender

The prevalence and cause of MCl in these patients was:

> table(demoDF$MCI.AD.other.none., useNA = 'ifany') # prevalence and
cause of MCI, ADNI cohort

No MCI MCI due to AD MCI due to non-AD <NA>
411 400 8 569

This can be further broken down by AD status:

> table(demoDF$AD.status, demoDF$MCI.AD.other.none., useNA = 'ifany') #
prevalence and cause of MCI by AD status, ADNI cohort

No MCI MCI due to AD MCI due to non-AD <NA>

AD- 220 251 7 0
AD+ 191 149 1 0
<NA> 0 0 0 569

Examples of the Date of Birth (DOB) by gender for the ADNI cohort (this is not the

entire cohort, merely an example):
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> table(demoDF$PTDOB, demoDF$PTGENDER, useNA="ifany") # date of birth
by gender, ADNI cohort

male female <NA>

0 0 2
/1915 0 1 0
/1916 2 2 0
/1917 6 2 0
/1918 7 5 0
/1919 16 4 0
/1920 18 13 0
/1921 21 18 0

Those without a date of birth would have been excluded from the study.
The APOE genotypes for both alleles are given below, as is the number of the cohort

that has (TRUE) and does not have (FALSE) the APOE genotypes listed:

> table(demoDF$APGEN1, useNA="1ifany")

2 3 4 <NA>

101 945 111 231
> table(demoDF$APGEN1, useNA="1ifany") # APOE type (-2/-3/-4), first

allele, ADNI cohort

2 3 4 <NA>

101 945 111 231
> table(demoDF$APGEN2, useNA="1ifany") # APOE type (-2/-3/-4), second

allele, ADNI cohort

2 3 4 <NA>

3 607 547 231
> table(is.na(demoDF$APGEN1), 1is.na(demoDF$APGEN2), useNA="ifany") #
missing APOE type info, ADNI cohort

FALSE TRUE
FALSE 1157 0
TRUE 0 231

This indicates that the 231 individuals missing APOE genotype information were
missing all (both) alleles, and those that had APOE genotype information had both allelic

types recorded. Those missing APOE types would have been excluded from the study.

X. Discussion and Summary
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More EDA can be done on the ADNI dataset, relative to future specific hypotheses.
Also, R and/or Python packages or libraries might be able to handle tasks | scripted
myself such as finding allele frequencies or denoting allelic heterogeniety as “0” (no
minor alleles), “1” (1 minor allele), or “2” (both alleles are the minor base variant). This
would have reduced the amount of time but, being new at programming as well as
genomic dataset manipulation, the experience of developing my own tools was
invaluable. | have produced the proper outcomes for my project: a dataset converted
into appropriate data matrices, cleaned, and EDA performed (or data prepared for EDA)
to suit the needs of an exploratory investigative study. EDA showed that the HBTRC
dataset was not suitable for use in testing this particular project’s hypothesis, but the
ADNI GWAS dataset was. This cleaned ADNI dataset can be used for this and future

studies.
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ADDENDA
Scripts referenced in this write-up:

1. ForADNIDemoMatrix020513.py

#!/usr/local/bin/python

# Rex M. Williamson

# Master Demograhics Matrix of ADNI phenotypes (RIDs, exam date,
gender, DOB, ethnicity (2=non-hispanic), race (5=white/caucasian); APOE
Types (APGEN1, APGEN2))

# all original files are .csv

import sys

# Constants...
DIRPATH="/Users/rexwilliamson/Desktop/ADNI/"

fh = open(DIRPATH + "ADNIDemoMatrix020513.csv", 'w')

files_counter = 0

# open files, read them, split on new lines --> patient demographics
and APOE-typing

DEMO = open(DIRPATH+"adni_ptdemog_2009-09-01.csv", 'r')

APOE = open(DIRPATH+"adni_apoeres_2009-09-01.csv", 'r")

AD_MCIstatus = open(DIRPATH+"adni_pdxconv_2009-09-01.csv", 'r')
ReadDEMO = DEMO.read()

ReadAPOE = APOE.read()

ReadAD_MCIstatus = AD_MCIstatus.read()

Sp1itAPOE = ReadAPOE.split('\n')[0:-1] # [0:-1] gets rid of the final
extra '/n' newline

SpTitDEMO = ReadDEMO.split('\n')[0:-1]

SpTitAD_MCIstatus = ReadAD_MCIstatus.split('\n')[0:-1]

# get headers from both files and make them into the appropriate
"final" header

APOEheader = Sp1itAPOE[O0]

DEMOheader = Spl1itDEMO[O]

item = DEMOheader.split(',"')

DEMO_HEADER = item[1]+',"' + item[3]+',"' + item[5]+',' + item[6]+',' +
item[21]+',"' + item[22]+',"

# [1]=RID, , [3]=ExamDate, [5]=Gender(1m/2f), [6]=DOB,
[21]=ethnicity(2=non-hispanic), [22]=race(5=white/caucasion), AD
status, MCI(AD/other)

item = APOEheader.split(',")

APOE_HEADER = item[3]+',' + item[4]

FINAL_HEADER = DEMO_HEADER + APOE_HEADER + ',' + 'AD status' + ',' +
'"MCI(AD/other/none)’

# remove header from files to make Tooping easier and not have to
remove multiple header Tines...

del SpT1itAPOE[O]

del Spl1itDEMO[0]
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del Sp1itAD_MCIstatus[0]

# start 2 data dictionaries (1 APOE, 1 DEMO): KEY = RID, VALUES =
(PTGENDER, PTDOB, PTADBEG){adni_ptdemog}+(APGEN1, APGEN2){adni_apoeres}
DEMOdict = {}

APOEdict = {}

AD_MCIdict = {}

# split each 1line on ',' and add ',' back how I want it, assigning data
dict Keys to Values
for 1line in SplitDEMO:
item = line.split(',"')
DEMOdict[item[1]+','] = item[3]+',"' + item[5]+'," + item[6]+',"' +
item[21]+',"' + item[22]+',"
for 1line in SplitAPOE:
item = line.split(',")
APOEdict[item[1]+',"'] = item[3]+',"' + item[4]+','

# add the AD status info into the existing DEMO dictionary (at the
end): item[18] = MCI(1=AD, 2=not AD, 0 = none), item[21] = AD (1=T,
0=F)
ADstatus = 'O’
MCIstatus = '0' # 0 = missing, 1 = due to AD, 2 = due to non-AD (if
ever goes to "1", it stays 1, can be "2" if was 0, if nothing it stays
0
previousRID = '0'
for Tine in SplitAD_MCIstatus:
item = line.split(',"')
currentRID = item[1]
if currentRID == previousRID:
# accumulate AD status
# ADstatus = item[21] # input values can be 1 (AD+) and -4
(AD-)
# MCIstatus = item[18] # input values can be 1 (AD), 2
(non-AD), -4 (none/missing value)
if item[21] == '"1': # my currrent AD status - once it gets
to "1", it stays there (= AD+)
ADstatus = '1l' # my output

if item[18] == '1': # my current MCI status
MCIstatus = '1l' # my output
if item[18] == '2' and MCIstatus == "0": # to verify MCI

status doesn't get down-graded
MCIstatus = '2'

else:
if previousRID != '0':
AD_MCIdict[previousRID +','] = ADstatus +',' +
MCIstatus
previousRID = item[1]
if item[18] == '-4':
MCIstatus = 'O’
else:
MCIstatus = item[18]
if item[21] == '-4':
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ADstatus '0’
else:

ADstatus item[21]

AD_MCIdict[previousRID +','] = ADstatus +',' + MCIstatus # write the
last block of RID values so loop doesn't "drop off" and hang up/not
print.

sys.stderr.write(str(AD_MCIdict))

# close the input files
DEMO.close()
APOE.close()
AD_MCIstatus.close()

# write my master header to my output file...
fh.write(FINAL_HEADER +'\n")

#sys.stderr.write(str(list(set(DEMOdict.keys()) | set(APOEdict.keys())
| set(AD_MCIdict.keys()))))
#sys.stderr.write(str(sorted(list(set(DEMOdict.keys()) |

set (APOEdict.keys()) | set(AD_MCIdict.keys())))))

# now, combine dictionaries into 1 "master" with RID as KEY, sorted by
RID
for key in sorted(list(set(DEMOdict.keys()) | set(APOEdict.keys()) |
set (AD_MCIdict.keys()))):
fh.write(key)
DEMO_info = DEMOdict.get(key, [])
if DEMO_info == []:
fh.write(',,,")
else:
fh.write(DEMO_info)
APOE_info = APOEdict.get(key, [1)
if APOE_info ==[]:
fh.write(',,")
else:
fh.write(APOE_info)
AD_MCI_info = AD_MCIdict.get(key, [])
if AD_MCI_info ==[]:
fh.write(',")
else:
fh.write(AD_MCI_info)
fh.write('\n")

# close the write file
fh.close()

2. ForADNIMstrMatrix4.py

#!/usr/local/bin/python

# Rex M. Williamson

# Master Matrix (4) of ALL ADNI genotypes (no files excluded) for
thesis
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import sys
import glob
import gzip
import zipfile
import zlib
import os

# Constants...
DIRPATH="/home/shared/ADNI/"

def get_compressed_filename(path_to_compressed_file,
uncompressed_type='csv'): # so can read 'gz' or 'zip'

return os.path.split(path_to_compressed_file)[-1].split('.") +
uncompressed_type

Tist_of_files = glob.glob(os.path.join(DIRPATH, "*.csv.*"))[0:]
#list_of_files = [DIRPATH+"141_S_1004.csv.gz",
DIRPATH+"057_S_1007.csv.gz"]

#list_of_files = []

totalGeneFiles = len(list_of_files) # should yield 818
sys.stderr.write(str(totalGeneFiles) + " Total Gene Files " + '\n')

unorderedRIDs = [os.path.split(file_name)[1][6:10] for file_name in
Tist_of_files]

RIDtoFilenameDict = dict(zip(unorderedRIDs, Tist_of_files))

orderedRIDs = sorted(unorderedRIDs)

files_counter = 0

### open and read ADNI Roster file to check that each genotype file
read also appears on Roster

roster = open("/home/shared/ADNI/adcs_clinical/adni_roster_2009-09-
0l.csv", 'r")
roster_1lines
roster_1lines

roster.read()
roster_lines.split('\n')[1:-1]
roster_1lines [Tine.split(',') for Tine in roster_lines]
rosterNumber Ten(roster_1lines)

rosterNames = [lines[1] for lines in roster_Tlines]
roster.close()

first_file = RIDtoFilenameDict[orderedRIDs[0]] # gives the whole file
name for the first file

# actually opening and reading each genome data file
if first_file.endswith('.gz'):
sys.stderr.write("opening " + first_file +'\n'")
FI = gzip.open(first_file, 'r')
Read = FI.read()

if first_file.endswith('.zip'):
sys.stderr.write("opening " + first_file + '\n'")
FF = zipfile.ZipFile(first_file, 'r')
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FI = FF.open(FF.namelist()[0], 'r")
Read = FI.read()

# Split on new Tine characters...
Splitter = Read.split('\n')[0:-1]

# Remove header...
header = Splitter[0]
del Splitter[0]

# SNP check 1list, to ensure all SNPs are present on each file

SNPCheckList = [] # ordered Tist of SNPs - should be the same order in
all files (already checked)

for 1line in Splitter:
item = line.split(',")
SNPCheckList.append(item[4]) # [4]

snp name
number_of_SNPs = Ten(SNPCheckList)

FI.close()

# Let's pre-allocate a matrix for my SNPnames/RIDs and allelel+2 data
for ALL gene files

totalGenomeMatrix = [['"**'] * totalGeneFiles for i in

range (number_of_SNPs)]

##### NOW iterate over RIDs by opening and reading the genome files, in
order

RID_ctr = 0
for RID in orderedRIDs:
file_name = RIDtoFilenameDict[RID]

RID_ctr = RID_ctr + 1

fileRosterCheck = file_name.split("/")[-1].split('."') #new Tline -
only file name w/o extension should remain

# actually opening and reading each genome data file
if file_name.endswith('.gz'):
sys.stderr.write("opening " + file_name +'\n')
FI = gzip.open(file_name, 'r')
Read = FI.read()

if file_name.endswith('.zip'):
sys.stderr.write("opening + file_name + '\n')
FF zipfile.ZipFile(file_name, 'r')
FI = FF.open(FF.namelist()[0], 'r")
Read = FI.read()
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# Split on new line characters...
Splitter = Read.split('\n")[0:-1]

# Remove header...
header = Splitter[0]
del Splitter[0]

lines_ctr = 0
for 1line in Splitter: # non-header info
lines_ctr = lines_ctr + 1
item = line.split(',"')
#sys.stderr.write(str(item))
if len(item) != 24: # there are 24 csv items in each row of
each file - if not 24, bad file
sys.stderr.write("NOT 24 ITEMS: Tine
{CTR}\n".format (CTR=1ines_ctr))
sys.stderr.write(str(line))
sys.stderr.write("\n")
sys.stderr.write(str(item))
sys.stderr.write("\n")
continue

if item[4] !'= SNPCheckList[lines_ctr - 1]: # makes sure
SNPs are in order
sys.stderr.write("SNP being read does not match
standard ordered SNP Tist, 1line " + str(lines_ctr) + "." + '"\n")
continue

# combine the 'Allelel Forward' ('A')[7] and 'Allele2
Forward' ('A')[8] into a single field ('AA'")

totalGenomeMatrix[lines_ctr - 1][RID_ctr - 1] = item[7] +
item[8]

files_counter = files_counter +1

sys.stderr.write("{FILEN}: {FN}\n".format(FILEN=files_counter,
FN=f1ile_name))

sys.stderr.write('\n")

sys.stderr.flush()

FI.close() # closing any generic genome file, be it .gz or .zip

# open our OUTPUT FILE
totalGenomeMatrixFile =
open("/home/willirex/TotalGenomeMatrixFile.csv", 'w')

# output file header
totalGenomeMatrixFile.write("SNPname," + ",".join(orderedRIDs) + '\n')

# Loop over SNPs, Toop over RIDs
for SNPindex in range(number_of_SNPs): # the key is the snp name
# print SNPname, then info for each RID - kept in order
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totalGenomeMatrixFile.write(SNPCheckList[SNPindex] + "," +
", ".join(totalGenomeMatrix[SNPindex]) + '\n') # gives the initial SNP
hame

totalGenomeMatrixFile.close()

3. ForExcludedMatrix.py

#!/usr/local/bin/python

# Rex M. Williamson

# Master Matrix (4) of EXLUDED genome files (RIDs)

# uses ADNIDemoMatrix demographics (demo) file, roster, and raw genome
data files

# outputs an Exclusion Log, Included master matrix (only those RIDs
that aren't excluded)

import glob
import gzip
import zipfile
import zlib
import sys
import os

# Constants...
DIRPATH="/home/shared/ADNI/"

### adding an EXCLUSION "failure" file

exclusionLog = open("/home/willirex/FileExclusionLog.txt", 'w')

### open and read my ADNIDemoMatrix to check that all records have
valid, non-empy/non"-4" value for gender, dob, & both APOE fields.
demoMatrix = open("/home/willirex/ADNIDemoMatrix.csv", 'r') # checking
items [1], [3], [4], & [5].

demoMatrix_1lines demoMatrix.read()

demoMatrix_Tines demoMatrix_Tines.split('\n')[1:-1]

demoMatrix_Tines [Tine.split(',"') for Tine in demoMatrix_Tlines]

### HERE IS WHERE I NEED TO CHECK THAT EACH RID IN DEMOMATRIX HAS
VALUES FOR items [1], [3]1, [4], & [5]

exclusionCount = 0
exclusionDict = {}
for Tine in demoMatrix_lines: # let's try bit fields!

if 1ine[1] !'= "" and Tline[1] != '-4' and line[2] != "" and
line[2] != '-4' and Tine[3] != " and Tine[3] != '-4" and line[4] 1= "
and 1ine[4] != '-4' and Tine[4] == "2" and 1ine[5] == "5" and Tline[6]
I= "" and 1ine[6] != '-4' and 1ine[7] != '' and 1ine[7] != '-4':

sys.stderr.write(line[0] +" File Demographics Data
Complete" +'\n')

else:
exclusionList = []
exclusionBitField = 0
if 1ine[l] == "" or Tline[l] == '-4':
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sys.stderr.write(line[0] +
+'\n") # 1's position
exclusionList.append("missing exam date')
exclusionBitField = exclusionBitField + 1
if 1ine[2] == "" or line[2] == "'-4':
sys.stderr.write(line[0] + " is missing gender."
+'\n') # 2's position
exclusionList.append("missing gender™")
exclusionBitField = exclusionBitField + 2
if Tine[3] == "" or 1ine[3] == '-4':
sys.stderr.write(line[0] + " 1is missing DOB." +'\n'")

is missing exam date.

# 4's position
exclusionList.append("missing DOB")
exclusionBitField = exclusionBitField + 4
if 1ine[4] == "" or Tine[4] == '"-4':
sys.stderr.write(line[0] + " is missing ethnicity."
+'\n") # 8's position
exclusionList.append("missing ethnicity")
exclusionBitField = exclusionBitField + 8
if 1ine[4] != "2" or line[5] != "5":
sys.stderr.write(line[0] + " is non-caucasian."
+'\n") # 16's position
exclusionList.append("non-caucasian")
exclusionBitField = exclusionBitField + 16
if 1ine[6] == "" or 1ine[6] == '-4' or 1line[7] == "" or
Tine[7] == '-4':

" 1

sys.stderr.write(line[0] +
+'\n') # 32's position

exclusionList.append("missing APOE data")

exclusionBitField = exclusionBitField + 32

is missing APOE values.'

exclusionDict[1ine[0].zfi11(4)] = [exclusionList,
exclusionBitField]
continue

### open and read ADNI Roster file to check that each genotype file
read also appears on Roster

roster = open("/home/shared/ADNI/adcs_clinical/adni_roster_2009-09-
Ol.csv", 'r")
roster_1lines
roster_1lines

roster.read()
roster_lines.split('\n')[1:-1]
roster_1lines [Tine.split(',') for Tine in roster_lines]
rosterNumber Ten(roster_1lines)

rosterNames = [lines[1][6:10] for lines 1in roster_lines]
roster.close()

### open genome files and put the RIDs in order, matching RID to file
name

Tist_of_files = glob.glob(os.path.join(DIRPATH, "*.csv.*"))[0:]
totalGeneFiles = len(list_of_files) # should yield 818
sys.stderr.write(str(totalGeneFiles) + " Total Gene Files " + '\n')
unorderedRIDs = [os.path.split(file_name)[1][6:10] for file_name in
Tist_of_files]

RIDtoFilenameDict = dict(zip(unorderedRIDs, Tlist_of_files))
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orderedRIDs = sorted(unorderedRIDs)

files_counter = 0
# now loop over ordered RIDs
for RID in orderedRIDs:
if RID in exclusionDict.keys(Q):
exclusionCount = exclusionCount + 1
sys.stderr.write(str(RID) + " did not meet demographic/APOE
inclusion criteria; skipping." + "\n")
exclusionLog.write("Exclusion " +
str(exclusionDict[RID][1]) + ": " + str(RID) + " is " + ",
".join(exclusionDict[RID][0]) + ". " + str(exclusionCount) + " files
excluded out of " + str(totalGeneFiles) + " total files input. " +
str(totalGeneFiles - exclusionCount - files_counter) + " files
remaining." +'\n')
continue
if RID not in rosterNames: #new line - roster [1] is file name
w/0 extension
exclusionCount = exclusionCount +1
sys.stderr.write(file_name + " did not appear in ADNI
Roster." +'\n')
exclusionLog.write(file_name + " did not appear in ADNI
Roster. + str(exclusionCount) + " files excluded out of " +
str(totalGeneFiles) + " total files input. " + str(totalGeneFiles -
exclusionCount - files_counter) + " files remaining." +'\n')
continue
files_counter = files_counter + 1

sys.stderr.write(str(exclusionCount) + " files excluded out of " +
str(totalGeneFiles) + " total files." +'\n")
sys.stderr.write(str(len(demoMatrix_lines)) + " files reviewed."+'\n')

exclusionLog.write(str(rosterNumber) + " total Roster number." + '\n')
exclusionLog.write(str(len(orderedRIDs)) + " total Gene Files
examined." + '\n")

exclusionLog.write(str(exclusionCount) + " Gene Files excluded." +

l\nl)

includedRIDs = sorted(set(orderedRIDs) - set(exclusionDict.keys()))

exclusionLog.write(str(len(includedRIDs)) + " files INCLUDED to be
studied.”" +'\n")

exclusionLog.close()

HH#H# AR HHH AR AR #AHA##4 CREATE "INCLUDED" MATRIX - same as "Master Matrix"
but only for RID's not excluded above ######

first_file = RIDtoFilenameDict[includedRIDs[0]] # gives the whole file
name for the first file

# actually opening and reading each genome data file, depending on its
type (.gz vs .zip)
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if first_file.endswith('.gz'):
sys.stderr.write("opening " + first_file +'\n')
FI = gzip.open(first_file, 'r")
Read = FI.read()

if first_file.endswith('.zip'):
sys.stderr.write("opening " + first_file + '\n'")
FF = zipfile.ZipFile(first_file, 'r')
FI = FF.open(FF.namelist()[0], 'r")

Read = FI.read()

# Split on new Tine characters...
Splitter = Read.split('\n")[0:-1]

# Remove header...
header = Splitter[0]
del Splitter[O0]

# SNP check 1list, to ensure all SNPs are present on each file
SNPCheckList = [] # ordered Tist of SNPs - should be the same order in
all files (already checked)

for 1line in Splitter:
item = line.split(',")
SNPCheckList.append(item[4]) # [4] = snhp name

number_of_SNPs = Ten(SNPCheckList) # should be 620,901

FI.close()

# Let's pre-allocate a matrix for my SNPnames/RIDs and allelel+2 data
for ALL gene files

# and over-write it with the RID and Allelel-F+Allele2-F for each SNP
(any blanks are '**'")

includedGenomeMatrix = [['**'] * len(includedRIDs) for i 1in

range (number_of_SNPs)]

##### NOW iterate over RIDs by opening and reading the genome files, 1in
order
files_counter = 0 # this counter SHOULD equal the RID counter (RID_ctr)
but it's a sanity check
RID_ctr = O
for RID in includedRIDs:

file_name = RIDtoFilenameDict[RID]

RID_ctr = RID_ctr + 1

fileRosterCheck = file_name.split("/")[-1].split('."') #new line -
only file name w/o extension should remain

# actually opening and reading each genome data file
if file_name.endswith('.gz'):
sys.stderr.write("opening

+ file_name +'\n'")
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FI = gzip.open(file_name, 'r")
Read = FI.read()

if file_name.endswith('.zip'):
sys.stderr.write("opening
FF zipfile.ZipFile(file_name, 'r')
FI FF.open(FF.namelist()[0], 'r')
Read = FI.read()

+ file_name + '\n'")

# Split on new line characters...
Splitter = Read.split('\n')[0:-1]

# Remove header...
header = Splitter[0]
del Splitter[0]

lines_ctr = 0
for Tine in Splitter: # non-header info
lines_ctr = lines_ctr + 1
item = line.split(',")
#sys.stderr.write(str(item))
if len(item) != 24: # there are 24 csv items in each row of
each file - if not 24, bad file
sys.stderr.write("NOT 24 ITEMS: Tine
{CTR}\n".format(CTR=1ines_ctr))
sys.stderr.write(str(line))
sys.stderr.write('"\n")
sys.stderr.write(str(item))
sys.stderr.write('"\n")
continue

if item[4] != SNPCheckList[Tines_ctr - 1]: # makes sure
SNPs are 1in order
sys.stderr.write("SNP being read does not match
standard ordered SNP Tist, line " + str(lines_ctr) + "." + "\n')
continue

# combine the 'Allelel Forward' ('A')[7] and 'Allele2
Forward' ('A')[8] into a single field ('AA'")

includedGenomeMatrix[1ines_ctr - 1][RID_ctr - 1] = item[7]
+ item[8]

files_counter = files_counter +1

sys.stderr.write("{FILEN}: {FN}\n".format(FILEN=files_counter,
FN=f1ile_name))

sys.stderr.write('\n')

sys.stderr.flush(Q)

FI.close() # closing any generic genome file, be it .gz or .zip
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# open our OUTPUT FILE
includedGenomeMatrixFile =
open("/home/willirex/IncludedGenomeMatrixFile.csv", 'w')

# output file header
includedGenomeMatrixFile.write("SNPname," + ",".join(includedRIDs) +

l\nl)

# Loop over SNPs, Toop over RIDs
for SNPindex in range(number_of_SNPs): # the key is the snp name
# print SNPname, then info for each RID - kept in order
includedGenomeMatrixFile.write(SNPCheckList[SNPindex] + "," +
", ".join(includedGenomeMatrix[SNPindex]) + '\n') # gives the initial
SNP name

includedGenomeMatrixFile.close()

4. GenomeMatrixManipulation.r

# Rex M. Williamson

# Manipulations (counts, percentages, etc.) of the
TotalGenomeMatrix.csv file

# to find the minor allele frequencies, call percentages, etc. for each
SNP name for the UNEXCLUDED (total) genome files 1list

# and adds these columns to any genome matrix (MastrADNIMatrix.csv,
IncludedGenomeMatrix.csv) instead of as a stand-alone file.

# Also, changes '-4' and '--' to NA in those files as well as my
demographics master matrix (ForADNIDemoMatrix.py) .

### make changes to TotalGenomeMatrix.csv first ###

genomeDF <- read.csv("TotalGenomeMatrixFile.csv", stringsAsFactors =
FALSE, na.strings = "--") # this is now 1 big data frame and

# any '--' it finds is converted to NA. For demographics, '-4' is
converted to NA.

cat("I've read a file!\n")

# change '-4' and '--' to NA, globally
#genomeDF[genomeDF == '-4'] <- NA # for demographics

genomeMatrix <- as.matrix(genomeDF[,-1]) # excluding snp names [row,
col]

rownames (genomeMatrix) <- genomeDF[,1] # everything except the 1lst row
names = snp IDs

# byRow <- genomeMatrix[5,,drop = FALSE] # pulls 1 row out (5) for
trouble-shooting

cat("Sub-matrix created!\n")

SNPstats <- t(apply(genomeMatrix, 1, function(CbyRow) {

numberOfFiles <- length(byRow)

missedCalls <- sum(is.na(byRow)) # gives the number of NAs
(missed calls)

callRate <- ((numberOfFiles - missedCalls) / numberOfFiles)

baseTotals <- table(factor(unlist(strsplit(byRow, split = "")),
levels = c("A", "T", "G", "C")))
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minorAllele <- rev(sort(baseTotals))[2] # get the 2nd-most
frequent base (gives name (A/T/G/C) and number)

minorAlleleFrequency <- minorAllele / sum(baseTotals)

c(callRate = callRate, minorAllele = which(names(minorAllele) ==
c(C"A","T", "G", "C")), minorAlleleFreq = minorAlleleFrequency)
)
colnames (SNPstats) <- c("callRate", "minorAllele",
"minorAlleleFrequency')
# returns a vector where 1 = 'A', 2 = 'T', 3 ="'G', and 4 = 'C'".
cat ("SNP Stats column names created!\n")

genomeDF <- cbind(genomeDF, SNPstats) # binds new columns w/stats to
the MstrADNIMatrix = adds the columns to the end of the matrix
genomeDF$minorAllele <- factor(genomeDF$minorAllele, levels = c(1, 2,
3’ 4)’ 'Iabe'ls = C(llAll’ IITII’ IIGII’ IICII))

write.csv(genomeDF, file = "AnotatedTotalGenomeMatrix.csv")

save(SNPstats, file = "TotalSNPstats.RData") # For making graphs,
histograms of call rates, in R
write.csv(SNPstats, file = "TotalSNPstats.csv')

###### Now, do the same for the IncudedGenomeMatrix.csv file...

### make changes to IncludedGenomeMatrix.csv first ###
genomeDF <- read.csv("IncludedGenomeMatrixFile.csv", stringsAsFactors =
FALSE, na.strings = "--") # this is now 1 big data frame and

# any '--' it finds is converted to NA. For demographics, '-4' is
converted to NA.

# change '-4' and '--' to NA, globally
#genomeDF[genomeDF == '-4'] <- NA # for demographics

genomeMatrix <- as.matrix(genomeDF[,-1]) # excluding snp names [row,
col]

rownames (genomeMatrix) <- genomeDF[,1] # everything except the 1st row
names = snp IDs

# byRow <- genomeMatrix[5,,drop = FALSE] # pulls 1 row out (5) for
trouble-shooting

IncludedSNPstats <- t(apply(genomeMatrix, 1, function(byRow) {
numberOfFiles <- length(byRow)

missedCalls <- sum(is.na(byRow)) # gives the number of NAs (missed
calls)

callRate <- ((numberOfFiles - missedCalls) / numberOfFiles)
baseTotals <- table(factor(unlist(strsplit(byRow, split = "")), levels
= c("A", "T", "G", "C")))

minorAllele <- rev(sort(baseTotals))[2] # get the 2nd-most frequent
base (gives name (A/T/G/C) and number)

minorAlleleFrequency <- minorAllele / sum(baseTotals)

c(callRate = callRate, minorAllele = which(names(minorAllele) ==
c(C"A","T", "G", "C")), minorAlleleFreq = minorAlleleFrequency)

)

colnames (IncludedSNPstats) <- c("callRate", "minorAllele",
"minorAlleleFrequency')
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# returns a vector where 1 = 'A', 2 = 'T', 3 ='G"', and 4 = 'C".

genomeDF <- cbind(genomeDF, IncludedSNPstats) # binds new columns
w/stats to the MstrADNIMatrix = adds the columns to the end of the
matrix

genomeDF$minorAllele <- factor(genomeDF$minorAllele, levels = c(1, 2,
3, 4)’ -Iabe-ls — C("A", IITII’ IIGII, IICII))

write.csv(genomeDF, file = "AnotatedIncludedGenomeMatrix.csv'™)

save(IncludedSNPstats, file = "IncludedSNPstats.RData") # For making
graphs, histograms of call rates, in R
write.csv(IncludedSNPstats, file = "IncludedSNPstats.csv'")

##### make changes to ADNIDemoMatrix.csv #####
demoDF <- read.csv("ADNIDemoMatrix.csv", stringsAsFactors = FALSE,
ha.strings = "-4") # this is now 1 big data frame and

# any '--' it finds is converted to NA. For demographics, '-4' is
converted to NA.

save(demoDF, file = "Demographics.RData") # For making graphs,
histograms of call rates, in R
write.csv(demoDF, file = "ADNIDemoMatrix.csv'")
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