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Abstract

Cancers are complex diseases that operate at multiple biological scales—from atom to

organism—and the purview of cancer systems biology is to integrate information between

scales to derive insight into their mechanisms and therapeutic vulnerabilities. From this

holistic perspective, the field has come to appreciate that the spatial context of the tumor

microenvironment in intact tissues not only enables a more granular definition of disease,

but also the design of more personalized and effective therapies. In spite of this promise,

spatial context-preserving cytometry paradigms like multiplex tissue imaging (MTI) are

beset with many challenges related to cost, computational complexity, and study design. In

this work, we introduce computational approaches to integrate, analyze, and interpret MTI

data which address some of these challenges. First, we present two deep learning methods

which (1) leverage morphological features captured in digitized pathology slides to learn

realistic and precise virtual stains which can be deployed for a fraction of the cost and in a

fraction of the time required by conventional MTI, and (2) define an optimal sample selec-

tion strategy which improves the generalizability of virtual staining models. Second, we

extend virtual staining to reconstruct the 3D microenvironment of a tumor resection and

present a deep learning approach to the integration of histology and MTI data with impli-

cations for objective region-of-interest selection in whole slide images. Finally, we present

a computationally-efficient machine learning workflow for reproducible, scalable, and ro-

bust analysis of single-cell MTI data, and the first cross-validation of breast cancer cell

phenotypes derived using two different MTI platforms. The discovery and development

of the next generation of biomarkers in cancer systems biology will require computational

tools which can cope with the increasing scale and complexity of our measurements, and

the work we share within serves as a step toward achieving that requirement.
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1

Chapter 1

Introduction

Lud! child, how stupid you are!
There’s [turtles] all the way down!

Unwritten Philosophy

1.1 Image-based characterization in cancer systems biology

1.1.1 Brief summary

Physicians depend on histopathology—the visualization and pathological interpretation

of thin sections of biopsied tissue—as an essential indicator of disease. For instance, imag-

ing thin sections of formalin-fixed, paraffin-embedded (FFPE), and hematoxylin and eosin

(H&E)-stained biopsy tissue provides low-cost, rapid, and direct insight into the cancer

tissue morphology which guides diagnosis, grading and staging, and prognosis. Addi-

tionally, determining the spatially-resolved molecular profile of a cancer is important for

disease subtyping and choosing a patient’s course of treatment [29], as is routine in breast

cancer (BC) for determining which receptor status subtype a patient’s tumor is presenting

[131] and whether or not receptor expression can be targeted as a therapeutic vulnerability

of the disease.
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Many of the fundamental techniques used in histopathology have gone long

unchanged. In particular, the H&E stain combination has been in use and largely

unchanged since its first description in 1876 [126], while immunohistochemistry (IHC),

and to a much lesser extent immunofluorescence (IF), became prominent in the last

quarter of the 20th century [91]. Pathologists’s enduring preference for light-absorptive

IHC over light-emissive IF is largely driven by the compatibility of IHC with hematoxylin

counterstaining, which provides morphological context for marker expression that is

easily assessed by light microscopy. However, due to the enzymatic basis of signal

amplification, limited dynamic range due to the physical properties of chromogens, and

propensity for saturation in IHC assays, IHC-based clinical measures of marker expression

are typically reported in binary or nominal scores that are inherently non-quantitative.

Moreover, it is common for the expression of only a few markers to be assessed due to

the colorimetric limitations of single-slide imaging [91]. This coarseness and sparseness

of assessment can belie the complexity of the disease. If we aim to understand the

organization and interaction of tumor and non-tumor cells that is now accepted to

be critical for developing effective treatments [130], then the need for continuous,

quantitative, multiplexed, and spatially-resolved measures of marker expression is clear.

To meet this demand, numerous multiplex tissue imaging (MTI) and molecular quan-

titation platforms have been developed (Table 1.1). The choice of MTI platform depends

on the scope and scale of the questions asked, as well as the tolerance or preparedness for

dealing with technical confounders. For instance, the fluorescence-based platforms like

Platform Developer Multiplexing Resolution Runtime Throughput Probe Reference
CyCIF Harvard high (>50) very high weeks high fluor-Ab [60]
MxIF GE high (>50) high weeks high fluor-Ab [35]
mIHC OHSU low (∼30) medium days medium enzyme-Ab [111]
IMC Fluidigm high (>50) low days low metal-Ab [36]
MIBI Ionpath high (>50) low days low metal-Ab [4]

CODEX Akoya high (>50) high days medium DNA-fluor/Ab [37]

TABLE 1.1: Comparisons of multiplex characterization platforms. Adapted from a slide by Jia-Ren Lin, Co-
Director of the Tissue Imaging Platform at the Labratory of Systems Pharmacology, Harvard Medical School.
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cyclic immunofluorescence (CyCIF) [60], multiplex immunofluorescence (MxIF) [35], and

co-dectection by indexing (CODEX) [37] maximize the spatial context of their measure-

ments through their ability to characterize whole tissue slides, but must contend with the

natural autofluorescence of FFPE tissues which can confound single-cell measurements of

marker expression. By contrast, the mass spectrometry-based platforms like imaging mass

cytometry (IMC) [36] and multiplex ion beam imaging (MIBI) [4] have relatively limited

resolution and field of view, but also have relatively high signal-to-background ratios by

virtue of a detection approach which circumvents the autofluorescence complication.

Among these MTI platforms, CyCIF stands out because it enables visualization of tens

or hundreds of markers in whole slides and it uses milder label stripping conditions than

multiplex immunohistochemistry (mIHC) [111], making it less prone to tissue and antigen

degradation. Together with the keen definition of tissue morphology provided by H&E,

CyCIF can provide clear pictures of where specific cell types lie within the tissue, help

functionally characterize the tumor microenvironment, and resolve questions of cancer

staging and metastatic origin.

Despite the richness of information obtained by CyCIF and other MTI platforms in 2D

tissue sections, the data are limited to the information contained within a single tissue sec-

tion from a single biopsy from a single tumor, which could bias analysis and interpretation

of the tumor bulk. Further, this essentially 2D representation of tissue is a relatively poor

representation of tissues like prostate, pancreas, breast, and colon which have highly con-

voluted 3D ductal or glandular structures. Motivated by the undersampling and misrepre-

sentation challenges of 2D pathology—where a standard 5 µm tissue section can represent

just a fraction of a percent of a whole specimen and a cross-sectional view of convoluted

3D structures—several recent studies have applied MTI or standard H&E staining to the

full set of serial sections of whole specimens to reconstruct 3D atlases of the tumor mi-

croenvironment [54, 15, 61], heralding a new era of unprecedented measurable depth and

spatial resolution in cancer biology.
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1.1.2 Challenges to MTI applications in cancer systems biology

The advance of MTI promises to increase our understanding of heterogeneity and cellular

interactions within the tumor microenvironment, both of which play increasingly impor-

tant roles in the development of effective treatments [130]. Although its clinical potential is

immense, CyCIF and other MTI platforms are time- and labor-intensive, technically com-

plicated, and high-cost, so assessment is typically limited to only a small subset of a given

biopsy, which is unlikely to be fully representative of a patient’s disease. Also, the cost

associated with MTI will undoubtedly limit its use to within highly-developed clinical set-

tings for the foreseeable future, further widening the quality-of-care gap between high-

and low-income communities. Until MTI matures into an economy of scale, these chal-

lenges will only be further amplified in 3D applications. The technological gap between

H&E and MTI technologies highlights the broader need for automated tools that leverage

information attained by a low-cost technique to infer information typically attained by a

high-cost technique.

Aside from the ex silico challenges of feasibility and accessibility in MTI, downstream

data analysis is fraught with in silico computational challenges related to the increasing

scale and complexity of MTI data and the increasing need to cross-validate findings within

and between MTI platforms. To enable the biggest discoveries, the MTI meta-analyses of

the near future will require the integration of billions of single-cell measurements com-

ing from different MTI platforms. To date, very few computational methods for single-

cell integration and analysis are capable of operating at this scale [5]. As we move into

the megascale and beyond, some of the foremost computational challenges to single-cell

analysis are (1) normalization to enable batch compilation of measurements [5]; (2) robust

definition of cell phenotypes based on their feature-level representations [64, 124, 65], e.g.

marker expression or morphology; and (3) the development of insightful spatial features

to characterize the tumor microenvironment, and so enable discrimination between tissues
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that vary over important clinical parameters [62].

1.2 Computational cancer systems biology

1.2.1 Brief summary

Parallel to the development of CyCIF and other multiplex platforms, recent advances

in machine learning (ML) have made it possible to automatically extract valuable yet

human-imperceptible information from images acquired by light and fluorescence mi-

croscopy [72]. In particular, deep learning (DL) algorithms—a class of ML algorithms

which use multi-layer artificial neural networks to learn abstract feature representations

of data—hold the potential to significantly improve the ability of humans to identify and

characterize cancer [46].

A subclass of DL algorithms called generative adversarial networks (GANs) has gained

considerable traction in medical imaging fields owing to their exceptional capacity to learn

to generate realistic data [129], e.g. generating new image instances from noise or some

other prior distribution [39], or through conditioning on an input image [48]. GAN ar-

chitectures are as varied as their applications. When applied to digitized histology slides,

GANs have been used for stain normalization [132], semantic segmentation [121], and var-

ious supervised and unsupervised image-to-image translation tasks [106, 33, 116].

Aside from computational applications which operate on images directly, parallel

strides have been made in the development of ML-based methods for single-cell analysis

using "hand-crafted" features which are derived from images [13, 64], e.g. single-cell

marker intensity and morphology. On the basis of these feature-level representations,

many ML algorithms have been developed to quantitatively define cell phenotypes in

lieu of tedious and subjective manual gating methods [124, 65, 64]. Using either prior

knowledge or internal data structure, these ML algorithms group similar cells into clusters

and facilitate all manner of downstream analyses.
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Once cell phenotypes have been defined in high-dimensional feature space, the dis-

tributions of phenotypes in tissues in real space can be quantified. Many of the same

ML-based clustering methods referenced above can also be used to define local spatial

neighborhoods of various cell phenotype combinations, some of which can be associated

with clinical parameters [37, 50]. By representing whole tissues as spatial graphs of in-

terconnected cells, graph-based DL models are able to learn both local and global tis-

sue features which improve patient stratification and outcome prediction when integrated

with image- and genomic-based DL models [20, 32]. Computational approaches like these

which enable multiscale and multimodal integration of cellular features—from molecule

to tissue morphology and architecture to clinical outcome—will undoubtedly help to fulfill

the promise of precision medicine.

1.2.2 Challenges to computational applications in MTI

Computational approaches to image analysis may be able to help bridge the technolog-

ical gap highlighted in subsection 1.1.2, but they are not without their own challenges.

For instance, DL models typically require large quantities of annotated H&E images to

satisfactorily learn tasks. Moreover, training labels defining tumor boundaries or other

pathological features must often be generated by domain-expert pathologists through a

tedious manual annotation process, which keeps them from their other responsibilities.

Even when annotations can be acquired, it remains unclear which specimens should be

chosen to best train models which generalize to unseen specimens at deployment time.

As the number of MTI platforms and 2D or 3D—or rather N-dimensional—tissue at-

lases increases, so too must the capacity of our models to ingest and derive insight from

these data. Many of the models used in MTI analysis are cross-overs from other domains.

Data integration methods inherited from the bulk sequencing domain assume identical
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cellular composition between specimens or batches, and are therefore unfit for discovery-

based single-cell studies [5]. Many cell phenotyping algorithms are inherited from single-

cell RNA sequencing or flow cytometry domains, where datasets contain measurements

either of relatively few cells or without spatial context preserved. Among these cell pheno-

typing approaches, some make strong assumptions about feature distributions that may

not be met or are biased toward known cell types, while others which leverage internal

data structure are unstable or prohibitively inefficient at scale and can misidentify rare or

unexpected phenotypes [65]. As such, these approaches are unlikely to scale well to atlas-

level MTI data and constitute a crucial bottleneck in our search for the next generation of

biomarkers in cancer systems biology.

1.3 Dissertation contributions

We attempt to address the challenges above in this dissertation. In chapter 2, we introduce

a GAN-based virtual staining paradigm which enables the prediction of biomarker distri-

bution in digitized H&E slides without manual annotation. We demonstrate that virtual

staining models can generalize both within and between patient samples, and provide a

quantitative framework for selecting specimen cohorts for CyCIF characterization using

unsupervised image features from digitized H&E slides.

In chapter 3, we extend the virtual staining paradigm into the third dimension. Using a

single, serially-sectioned tumor specimen, we demonstrate that virtual staining models are

capable of learning enough information from a single pair of sections stained with either

H&E or CyCIF to reconstruct virtual CyCIF images for the entire specimen. Further, we

introduce a quantitative region-of-interest (ROI) selection scheme that is enabled through

integration of H&E and CyCIF image representations.

In chapter 4, we introduce a graphics processing unit (GPU)-accelerated workflow for

normalization, phenotyping, and spatial analysis of single-cell MTI data. By transferring
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intensive computations from CPU to GPU, we realize an improvement in analysis effi-

ciency by several orders of magnitude, without using data subsampling strategies which

can miss rare cell phenotypes. We deploy this workflow on a BC tissue microarray (TMA)

to derive a BC cell type dictionary, which we validate against a published BC cell type

dictionary derived using a different MTI platform. Finally, we illustrate spatial features of

tissue structure which could be used to distinguish between BC subtypes. We present a

brief summary for each of these contributions in the following subsections.

1.3.1 Virtual staining and optimizing histological sample selection

Pathologists rely on the morphological contrast and molecular specificity provided by

H&E and immunostains, respectively, when examining tissue slides for indicators of can-

cer. As a proof of concept, we used a limited but heterogeneous set of human pancre-

atic cancer samples to demonstrate that a GAN framework we call speedy histological-to-

immunofluorescent translation (SHIFT) is able to learn the relationship between H&E and

IF images of the same tissue, enabling the near-real-time generation of virtual IF images

that are highly similar to the corresponding real IF images. This suggests that information

obtained by IF is encoded by features in histological images, and deep learning provides

the means to extract this information where such a relationship exists. Importantly, we

demonstrate that SHIFT can generalize both within [115] and between [116] samples ac-

quired from multiple patients, even in a data-limited setting. Moreover, our validation

of SHIFT is undertaken using complex, associated human tissues, which is in contrast to

other virtual IF staining methods which were validated using relatively homogeneous rat

or human cell lines or cultures [22, 81].

DL approaches require substantial training data to be robust and generalizable, so we

begin by exploring the possibility that the required training samples can be reduced by se-

lecting representative samples. We describe the use of a data-driven method to select sam-

ples that optimizes the morphological heterogeneity of the dataset and promotes SHIFT
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generalizability. As a proof of concept, we objectively measure the ability of SHIFT to in-

fer the spatial distribution of pan-cytokeratin (panCK), a common cancer biomarker, and

show preliminary results from SHIFT inference of α-smooth muscle actin (α-SMA), a com-

mon stromal marker. We benchmark SHIFT against Label-Free Determination (LFD) [81],

a state-of-the-art supervised DL-based virtual staining method, and demonstrate that ei-

ther SHIFT or the ensemble of SHIFT and LFD generate more realistic virtual IF images

of panCK than LFD alone. This result is consistent with the growing opinion among DL

practitioners that adversarial learning methods, like that used in SHIFT, will be required

to overcome problems associated with strictly-supervised learning methods [22].

The contents of chapter 2 are adapted from the publications listed below in chronolog-

ical order:

• Erik A. Burlingame, Mary McDonnell, Geoffrey F. Schau, Guillaume Thibault,

Christian Lanciault, Terry Morgan, Brett E. Johnson, Christopher Corless, Joe W.

Gray, and Young Hwan Chang. “SHIFT: speedy histological-to-immunofluorescent

translation of a tumor signature enabled by deep learning”. In: Scientific Reports

10.11 (2020), p. 17507. ISSN: 2045-2322. DOI: 10.1038/s41598-020-74500-3

• Young Hwan Chang, Erik A. Burlingame, Geoffrey Schau, and Joe W. Gray. Transla-

tion of images of stained biological material. 2020. URL: https://patents.google.com/

patent/WO2020142461A1/en?q=erik+burlingame&inventor=Erik+BURLINGAME

• Erik A. Burlingame, Adam A. Margolin, Joe W. Gray, and Young Hwan Chang.

“SHIFT: speedy histopathological-to-immunofluorescent translation of whole slide

images using conditional generative adversarial networks”. In: Proceedings of SPIE–

the International Society for Optical Engineering 10581 (2018). ISSN: 0277-786X. DOI:

10.1117/12.2293249. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC6166432/

https://doi.org/10.1038/s41598-020-74500-3
https://patents.google.com/patent/WO2020142461A1/en?q=erik+burlingame&inventor=Erik+BURLINGAME
https://patents.google.com/patent/WO2020142461A1/en?q=erik+burlingame&inventor=Erik+BURLINGAME
https://doi.org/10.1117/12.2293249
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6166432/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6166432/
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1.3.2 3D virtual staining and image mode integration for objectively-guided

ROI selection

Tumors are not 2D, but many of the imaging characterization platforms in both research

and clinical practice make the assumption that tissue microarrays (TMAs) containing small

core samples of essentially 2D tissue sections are a reasonable approximation of bulk tu-

mor. However, a recently published 3D tumor atlas charted using H&E- and CyCIF-

stained serial sections of colorectal cancer (CRC) specimens strongly challenges this as-

sumption [61]. In spite of the additional insight gathered by measuring the tumor microen-

vironment in 3D, it can be prohibitively expensive and time consuming to process tens or

hundreds of tissue sections with CyCIF. Even when resources or time are not limiting, the

criteria for ROI selection in tissues for downstream analysis remain largely qualitative and

subjective.

In chapter 3, we extend the virtual staining paradigm to the 3D CRC atlas [61] and

demonstrate that GANs can learn from a minimal subset of the atlas to reconstruct the

remaining sections of the CyCIF portion of the atlas and recapitulate quantitative end-

points derived using the real CyCIF data. We also implement and evaluate a novel GAN

architecture which integrates paired H&E and CyCIF data into a shared representation

and demonstrate that the model can be used as a quantitative and objective guide for ROI

selection, with the integrated H&E/CyCIF representations being more informative than

H&E representations alone.

The contents of chapter 3 are adapted from a manuscript in preparation for submission

to Cell Systems as a Report:

• Erik A. Burlingame∗, Luke Ternes∗, Jia-Ren Lin, and et al. "Histology-based mul-

tiplexed 3D reconstruction and channel embedding for optimized region-of-interest

selection," manuscript in preparation (2021), ∗equal contributors sorted alphabeti-

cally.
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1.3.3 Megascale single-cell phenotyping and spatial analysis of human breast

cancer across multiplex tissue imaging platforms

In chapter 4, we analyzed 180 tissues spanning BC subtypes using CyCIF and a marker

panel targeting tumor, immune, and stromal cell types. The key contributions of this

work are (1) an expanded application and validation of RESTORE [17], our recently pub-

lished normalization method, which enables compilation and batch processing of such

data, (2) a distributed and graphics processing unit (GPU)-accelerated implementation

of PhenoGraph, the popular, graph-based algorithm for subpopulation detection in high-

dimensional single-cell data, and (3) an integrative analysis using this toolkit which iden-

tifies spatial features which discriminate between some of the canonical BC subtypes.

For RESTORE normalization of each core, we leverage the fact that tumor, immune, and

stromal cells exhibit mutually exclusive expression of cell type-specific markers, and use

a graph-based clustering to define positive and negative cells and normalization factors.

Following normalization, shared cell types between TMAs are co-clustered, an indication

that the normalization was successful. To define cell types among the ∼1.3 million cells

in the feature table, we used the CPU-based version of the widely-used algorithm Pheno-

Graph [58], but found it to be inefficient at this data scale. To break this computational

bottleneck, we re-implemented PhenoGraph to be compatible with GPUs and observed

multiple orders of magnitude improvement in speed, without sacrificing clustering qual-

ity. Our implementation identified diverse tumor, immune, and stromal cell types across

tissues and subtypes. We validated our identified cell types through comparison with a re-

cently published survey of BC characterized by IMC, and found highly-correlated clusters

for stromal, immune, basal, and proliferating cell types, suggesting that shared cell types

could be matched across cohorts and imaging platforms, a necessary step for data inte-

gration. We next considered the tumor differentiation states of BC subtypes through their

CK expression, and find that while CK+ cells in HER2+, ER+, and HER2+/ER+ tissues are
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primarily positive for CKs 19, 7, and 8, triple negative (TN) tissues exhibit a broad hetero-

geneity of differentiation state, consistent with the genetic and histological heterogeneity

of TNBC described in other studies. Finally, we considered the spatial architectures of BC

subtypes by building cell type neighborhood graphs, which either quantify the strength

and direction of inter-cell type interactions, or the centrality of intra-cell type distributions.

When we look across tissues, we observe that ER+ tissues exhibit significantly high higher

tumor centrality than other BC subtypes, and forthcoming work will involve validation of

this finding in a cohort with more extensive clinical annotation to assess its significance.

The contents of chapter 4 are adapted from the publications listed below in chronolog-

ical order:

• Young Hwan Chang, Koei Chin, Guillaume Thibault, Jennifer Eng,

Erik A. Burlingame, and Joe W. Gray. “RESTORE: Robust intEnSiTy nOR-

malization mEthod for multiplexed imaging”. In: Communications Biology 3.11

(2020), 1–9. ISSN: 2399-3642. DOI: 10.1038/s42003-020-0828-1

• Erik A. Burlingame, Jennifer Eng, Guillaume Thibault, Koei Chin, Joe W. Gray, and

Young Hwan Chang. “Toward reproducible, scalable, and robust data analysis across

multiplex tissue imaging platforms”. In: Cell Reports Methods 0.0 (2021). ISSN: 2667-

2375. DOI: 10.1016/j.crmeth.2021.100053. URL: https://www.cell.com/cell-

reports-methods/abstract/S2667-2375(21)00101-6

1.4 Other contributions

Other contributions, manuscripts, and publications completed during my doctoral studies

have been omitted to maintain a clear focus in this dissertation. These works are listed

below in chronological order:

https://doi.org/10.1038/s42003-020-0828-1
https://doi.org/10.1016/j.crmeth.2021.100053
https://www.cell.com/cell-reports-methods/abstract/S2667-2375(21)00101-6
https://www.cell.com/cell-reports-methods/abstract/S2667-2375(21)00101-6
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• Erik A. Burlingame, Jennifer Eng, Guillaume Thibault, Geoffrey F. Schau, Koei Chin,

Joe W. Gray and Young Hwan Chang, "Balanced learning of cell state representa-

tions," poster presentation at the Learning Meaningful Representations of Life work-

shop at the Conference on Neural Information Processing Systems (2019).

• Geoffrey F. Schau, Erik A. Burlingame, Guillaume Thibault, Tauangtham Anekpu-

ritanang, Ying Wang, Joe W. Gray, Christopher Corless, and Young Hwan Chang.

“Predicting primary site of secondary liver cancer with a neural estimator of

metastatic origin”. In: Journal of Medical Imaging 7.1 (2020), p. 012706. ISSN:

2329-4302, 2329-4310. DOI: 10.1117/1.JMI.7.1.012706

• Orit Rozenblatt-Rosen, Aviv Regev, Philipp Oberdoerffer, Tal Nawy, Anna

Hupalowska, Jennifer E. Rood, Orr Ashenberg, Ethan Cerami, Robert J. Coffey,

Emek Demir, and et al. “The Human Tumor Atlas Network: Charting Tumor

Transitions across Space and Time at Single-Cell Resolution”. In: Cell 181.2 (2020),

236–249. ISSN: 0092-8674. DOI: 10.1016/j.cell.2020.03.053

• Geoffrey Schau, Erik A. Burlingame, and Young Hwan Chang. “DISSECT: DISen-

tangle SharablE ConTent for Multimodal Integration and Crosswise-mapping”. In:

2020 59th IEEE Conference on Decision and Control (CDC). 2020, 5092–5097. DOI: 10.

1109/CDC42340.2020.9304354

• Brett E. Johnson, Allison L. Creason, Jayne M. Stommel, Jamie Keck, Swapnil

Parmar, Courtney B. Betts, Aurora Blucher, Christopher Boniface, Elmar Bucher,

Erik A. Burlingame, and et al. “An Integrated Clinical, Omic, and Image Atlas of an

Evolving Metastatic Breast Cancer”. In: bioRxiv (2020), p. 2020.12.03.408500. DOI:

10.1101/2020.12.03.408500

https://doi.org/10.1117/1.JMI.7.1.012706
https://doi.org/10.1016/j.cell.2020.03.053
https://doi.org/10.1109/CDC42340.2020.9304354
https://doi.org/10.1109/CDC42340.2020.9304354
https://doi.org/10.1101/2020.12.03.408500
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• Matthew S. Dietz, Thomas L. Sutton, Brett S. Walker, Charles E. Gast, Luai Zarour,

Sidharth K. Sengupta, John R. Swain, Jennifer Eng, Michael Parappilly, Kristen Lim-

bach, and et al. “Relevance of Circulating Hybrid Cells as a Non-Invasive Biomarker

for Myriad Solid Tumors”. In: bioRxiv (2021), p. 2021.03.11.434896. DOI: 10.1101/

2021.03.11.434896

• Geoffrey F. Schau, Hassan Ghani, Erik A. Burlingame, Guillaume Thibault, Joe W.

Gray, Christopher Corless, and Young Hwan Chang. “Transfer Learning for Infer-

ence of Metastatic Origin from Whole Slide Histology”. In: bioRxiv (2021). DOI:

10.1101/2021.04.21.440864

• Denis Schapiro, Clarence Yapp, Artem Sokolov, Sandro Santagata, and others includ-

ing Erik A. Burlingame, "MITI Minimum Information guidelines for highly multi-

plexed tissue images," manuscript under review at Nature Methods (2021).

• Avathamsa Athirasala, Paula P. Menezes, Anthony Tahayeri, Erik A. Burlingame,

Anushka Naiknaware, Ashley Sercia, Christina Hipfinger, Young Hwan Chang,

and Luiz E. Bertassoni, "Screening 3D microenvironments reveals the interplay of

microgeometry and matrix mechanics in regulation of stem cell differentiation,"

manuscript in preparation for submission (2021).

• CSBC/PS-ON Image Analysis Working Group, Juan Carlos Vizcarra,

Erik A. Burlingame, Yury Goltsev, Brian S. White∗, Darren Tyson∗, Artem

Sokolov∗, "A community-based approach to image analysis of cells, tissues and

tumors," manuscript under review at Computerized Medical Imaging and Graphics

(2021), ∗equal contributors.

https://doi.org/10.1101/2021.03.11.434896
https://doi.org/10.1101/2021.03.11.434896
https://doi.org/10.1101/2021.04.21.440864
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Chapter 2

Virtual staining foundations

The minute there’s a map, there is no art.
Paint by numbers is not art.

Paint by numbers is a mechanical activity.

Seth Godin

2.1 Abstract

Spatially-resolved molecular profiling by immunostaining tissue sections is a key feature

in cancer diagnosis, subtyping, and treatment, where it complements routine histopatho-

logical evaluation by clarifying tumor phenotypes. In this work, we present a deep learn-

ing method called speedy histological-to-immunofluorescent translation (SHIFT, see Fig-

ure 2.1) which takes histologic images of hematoxylin and eosin (H&E)-stained tissue as

input, then in near-real time returns inferred virtual immunofluorescence (IF) images that

estimate the underlying distribution of the tumor cell marker pan-cytokeratin (panCK).

To build a dataset suitable for learning this task, we developed a serial staining protocol

which allows IF and H&E images from the same tissue to be spatially registered. We show

that deep learning-extracted morphological feature representations of histological images

can guide representative sample selection, which improved SHIFT generalizability in a
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small but heterogenous set of human pancreatic cancer samples. With validation in larger

cohorts, SHIFT could serve as an efficient preliminary, auxiliary, or substitute for panCK

IF by delivering virtual panCK IF images for a fraction of the cost and in a fraction of the

time required by traditional IF.

FIGURE 2.1: Schematic of SHIFT modeling for training and testing phases of a model which pre-
dicts the distribution of the tumor marker panCK conditioned on an H&E image. The generator
network G generates virtual IF tiles conditioned on H&E tiles. The discriminator network D learns
to discriminate between real and generated image pairs.

2.2 Introduction

Physicians depend on histopathology—the visualization and pathological interpretation

of tissue biopsies—to diagnose cancer. Hematoxylin and eosin (H&E)-stained histologic

sections (∼3–5 µm-thick formalin-fixed paraffin-embedded tissue biopsies) are the stan-

dard of care routinely employed by pathologists to make diagnoses. On the basis of the

visual attributes that make H&E-stained sections useful to pathologists, a broad field of
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histopathological image analysis has flourished [40]. Image features derived from H&E-

stained sections have been used for tasks ranging from the segmentation of glands in the

prostate [77], grading of breast cancer pathology [78], to automated classification of early

pancreatic cancer [57].

In spite of the rich information highlighted by the non-specific H&E stain, in chal-

lenging cases with indeterminate histology or tumor differentiation, antibody labeling of

tumor cells by a molecular imaging technique like immunofluorescence (IF) provides fur-

ther characterization. It is becoming increasingly apparent that determining the spatially-

resolved molecular profile of a cancer is important for disease subtyping and choosing

a patient’s course of treatment [29]. Despite its clinical value, IF is time- and resource-

intensive and requires expensive reagents and hardware, so assessment is typically lim-

ited to a small representative section of a tumor, which may not be fully representative of

the neoplasm, which can be the case in areas of squamous differentiation in an adenocar-

cinoma [44]. Also, the cost associated with IF may in some cases limit its use to within

highly-developed clinical laboratories, further widening the quality-of-care gap between

high- and low-income communities. The gaps between H&E and IF technologies highlight

the broader need for automated tools that leverage information attained by a low-cost tech-

nology to infer information typically attained by a high-cost technology.

Recent advances in digital pathology and deep learning (DL) have made it possible to

automatically extract valuable, human-imperceptible information from H&E-stained his-

tology images [66, 19, 92, 93, 14]. In [49], H&E images and spatially-registered SOX10

immunohistochemistry (IHC) images from the same tissue section were used to train a

DL model to infer SOX10 nuclear staining from H&E images alone. Apart from histology

and IHC images, other studies have described supervised DL-based methods for inferring

fluorescence images from transmitted light images of unlabeled human or rat cell lines or

cell cultures [22, 81], but not in complex, associated human tissues. Their methods were

also based on supervised pixel-wise learning frameworks, which are known to produce
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incoherent or discontinuous patterns in the virtual stains for some markers, though some

of the authors suggest that an adversarial learning framework could address the problem

[22].

Here were introduce a conditional generative adversarial network (cGAN)-based

method called speedy histological-to-IF translation (SHIFT) and begin by demonstrating

its ability to infer IF images from images of adjacent H&E-stained tissue from a single

patient with pancreatic ductal adenocarcinoma (PDAC) [115]. To better define the virtual

staining problem in subsequent studies, we developed a serial staining protocol which

enables co-registration of H&E and IF data in the same tissue section [116]. In this

setting, we go on to test the generalizability of virtual IF staining by SHIFT through

model evaluation on PDAC samples from four patients which were selected by an expert

pathologist on the basis of their high inter-sample morphological heterogeneity [116].

DL models require a large amount of heterogeneous training data to generalize well

across the population from which the training data was drawn. Since data limitations are

common to many biomedical data domains [14, 113, 24, 127], we begin the multi-patient

study by exploring the possibility that the choice of training samples can be optimized by

selecting the few samples that are most representative of the population of samples at our

disposal. Some DL-based applications have been proposed for histological image com-

parison and retrieval [80, 43], but to the best of our knowledge none have been proposed

for the express purpose of image feature-guided training set selection in a data-limited

biomedical imaging domain. We describe the use of a data-driven variational autoencoder

(VAE)-based method [56] to select samples that optimizes the morphological heterogeneity

of the dataset and promotes SHIFT model generalizability.

As a proof of concept for virtual staining in the multi-patient setting, we objectively

measure the ability of SHIFT models to infer the spatial distribution of a pan-cytokeratin

(panCK) antibody which labels tumor cells, and provide benchmarking comparisons with

Label-Free Determination (LFD) [81], a state-of-the-art DL-based virtual staining method.
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We also show preliminary results for inference on the stromal marker α-smooth muscle

actin (α-SMA). By leveraging a morphological signature of a molecular tumor phenotype

and proposing feature-guided sample selection for model generalizability, our approach is

a small step toward the development of a generalized platform for multiplexed virtual IF

imaging of markers in human tissues for which there exists an association between tissue

morphology and an underlying molecular phenotype.

2.3 Methods

2.3.1 Human tissue samples for multi-patient study

Four cases of moderately differentiated pancreatic ductal adenocarcinoma (PDAC) were

retrieved from the Oregon Health & Science University (OHSU) Surgical Pathology De-

partment under the Oregon Pancreas Tissue Registry (IRB00003609). Informed written

consent was obtained from all subjects. All experimental protocols were approved by the

OHSU Institutional Review Board. All methods were carried out in accordance with rele-

vant guidelines and regulations. Sample A was from a male aged 83 at diagnosis; sample

B was from a female aged 74 at diagnosis; sample C was from a female aged 57 at diag-

nosis; and sample D was from a female aged 73 at diagnosis. H&E-stained sections were

secondarily reviewed by two board-certified surgical pathologists tasked to identify and

classify areas of tumor heterogeneity in representative sections from each case. Discrep-

ancies between pathologists were ameliorated by consensus review. Samples were chosen

via pathological review as exemplifying a spectrum of both histological differentiation and

heterogeneity.
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2.3.2 Pathological evaluation of human tissue samples

Gold standard review of histologic sections by pathologists tasked with identifying hetero-

geneous differences in PDAC tumor morphology and grade revealed interobserver agree-

ment in the identification of areas of squamous differentiation in one case and various tu-

mor grades within neoplasms in the other three cases. All four cases were predominantly

grade 2 adenocarcinoma and there was no disagreement evaluating marked regions of

interest. The case with areas of squamous differentiation did not clearly meet the 30%

threshold for adenosquamous classification. The other three cases were predominantly

grade 2 with foci of grade 1 and others with grade 3.

2.3.3 Preparation of tissue for immunofluorescence staining

Formalin-fixed paraffin-embedded tissue blocks were serially sectioned by the OHSU

Histopathology Shared Resource. From each block, three sections were cut in order to

generate a standard H&E for pathological review and downstream analysis, a second

serial section of tissue for immunofluorescence staining/post-immunofluorescence H&E

staining, and a third section for secondary only control. After sectioning, the second

serial tissue section was immediately baked at 55 ◦C for 12 h and subjected to standard

deparaffinization; the slides underwent standard antigen retrieval processing, washing,

and blocking. Upon completion, primary antibodies were diluted and applied.

2.3.4 Application of antibodies

Alpha-Smooth Muscle Actin (Mouse monoclonal antibody, IgG2a, Clone: 1A4; Pierce/In-

vitrogen, cat#MA5-11547) was diluted to 1:200 with Ki-67 (D3B5), (Rabbit monoclonal an-

tibody, IgG, Alexa Fluor 647 Conjugate; Cell Signaling Technology, cat#12075S) diluted to

1:400, along with Pan Cytokeratin (AE1/AE3) (Mouse monoclonal antibody, IgG1, Alexa

Fluor 488 Conjugate; ThermoFisher, cat#53-9003-82), which was diluted to 1:200 in 10%
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Normal Goat Serum in 1% Bovine Serum Albumin in Phosphate Buffered Saline. Primary

antibodies were diluted and incubated overnight at 4 ◦C. After incubation, secondary an-

tibody (Goat anti-mouse monoclonal antibody, IgG2A, Alexa Fluor 555 Conjugate; Life

Technologies, cat#A21137), at 1:200 dilution was applied to the slides and incubated at

room temperature for one hour. After incubation slides were washed and mounted with

Slowfade Gold Antifade Mountant with DAPI (Fisher Scientific, cat#S36936) in preparation

for image acquisition.

2.3.5 Post-IF H&E staining of tissue samples

After the IF stained slides were scanned and the immunofluorescence staining verified,

the glass coverslips were removed and the slides were processed for post-IF H&E staining.

Post-IF H&E staining was performed with the Leica Autostainer XL staining system at the

OHSU Histopathology Shared Resource with the staining protocol in Table 2.1.

Solution Time
Hematoxylin 10 min
Wash in water 1 min
Acid alcohol (0.5% HCl in 70% Ethanol) 8 s
Wash in water 25 s
Bluing solution 2 min
Wash in water 20 s
80% Ethanol/water 25 s
Eosin 10 s
80% Ethanol/water 25 s
95% Ethanol/water 20 s
100% Ethanol (two times) 25 s
Xylene (five times) 25 s

TABLE 2.1: Sequential IF and H&E staining protocol for FFPE tissues

2.3.6 Image acquisition and presentation

Slides were scanned with the Zeiss Axio Scan.Z1 slide scanner of the OHSU Advanced

Multiscale Microscopy Shared Resource with the 20X objective in both brightfield and im-

munofluorescence scanning. Carl Zeiss Images (CZI) were acquired using Zeiss Zen soft-

ware. CZI images from the Zeiss Axioscan Slide Scanner were processed with the Zeiss
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Blue Zen Lite microscope software package. All brightfield and immunofluorescence im-

ages were exported as TIFF files for downstream image processing.

2.3.7 Image pre-processing

Raw H&E and IF whole slide images (WSIs) must be pre-processed to remove technical

noise, account for between-sample intensity variation, and align paired H&E and IF WSIs

in a shared coordinate system. To do so, we use the following pipeline:

1. Quality control: formalin-fixed pancreatic tissue is prone to high levels of autofluo-

rescence, which can mask specific IF signal. Regions of WSIs which exhibited low

IF signal-to-noise due to autofluorescence as determined by pathologist review were

excluded from our analysis. Divisions of samples were based on the geometries of

the image regions determined unaffected by autofluorescence. Some acceptable re-

gions were relatively small due to surrounding regions of autofluorescence.

2. Downscaling: 20X WSIs are downscaled by a factor of 2 in x and y dimensions to

generate 10X WSIs. We experimented with using either 20X or 10X images and found

that models performed best when using 10X images.

3. Registration: H&E and IF WSIs are spatially registered using an affine transformation

that is estimated using matched SURF features [16] extracted from hematoxylin and

DAPI binary masks of nuclei generated by Otsu’s thresholding method, respectively.

Concretely, registration of an H&E WSI and a corresponding IF WSI of the same

tissue was achieved using MATLAB [73] through the following steps:

(a) Conversion of H&E images from RGB colorspace to grayscale using the MAT-

LAB function rgb2gray.
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(b) Binarization and complementation of the grayscale H&E and DAPI WSIs using

the MATLAB functions imbinarize and imcomplement, creating nuclei masks

from each of the H&E and DAPI WSIs.

(c) Detection and extraction of SURF features from each of the H&E and DAPI nu-

clei masks using the MATLAB functions detectSURFFeatures, selectStrongest,

and extractFeatures. We constrained the number of features selected to

min(10, 000, number of features detected) to reduce the computational cost of

feature matching in the next step.

(d) Feature matching between the features extracted from the H&E and DAPI nuclei

masks using the MATLAB function matchFeatures.

(e) Estimation and application of the affine transformation matrix which correctly

registers H&E and DAPI nuclei masks using the MATLAB functions estimate-

GeometricTransform and imwarp. The same transformation which correctly

registers DAPI to the H&E WSI is used to register IF WSIs.

4. Technical noise reduction: IF WSIs are median filtered with a 5-pixel-radius disk

structuring element.

5. Intensity normalization: H&E WSI pixel intensities are normalized as previously de-

scribed [71]. Following [22], IF WSI pixel intensities are normalized to have a fixed

mean= 0.25 and standard deviation= 0.125, then clipped to fall within (0,1).

6. Image tiling: WSIs are tiled into non-overlapping 256× 256 pixel tiles, such that each

H&E tile has a corresponding spatially-registered IF tile. H&E tiles that contained

more than 50% background pixels were removed along with the corresponding IF

tiles. Background pixels were defined as those with 8-bit RGB intensities all greater

than 180. Each 10X WSI is comprised of hundreds or thousands of non-overlapping

256× 256 pixel tiles.
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2.3.8 SHIFT Model Architectures

Conditional Generative Adversarial Networks (cGANs)

Image-to-image translation—the mapping of pixels from one scene representation to pixels

of another representation of the same scene—is a fundamental image processing problem.

The cGAN [39, 76] is a compelling DL-based solution to the image-to-image translation

problem and has been deployed for many tasks, including detection of skin lesions [113],

retinal image synthesis [24], super-resolution fluorescence image reconstruction [82], and

virtual H&E staining [93]. To approach the problem of translating H&E images to their

IF counterparts, SHIFT adopts the cGAN-driven architecture pix2pix [48], which benefits

from its bipartite formulation of generator and discriminator. Like other methods pro-

posed for image-to-image translation, cGANs learn a functional mapping from input im-

ages x to ground truth target images y, but, unique to a cGAN architecture, it is the task

of a generator network G to generate images ŷ conditioned on x, i.e. G(x) = ŷ, that fool

an adversarial discriminator network D, which is in turn trained to tell the difference be-

tween real and generated images (Figure 2.1). What ensues from this two-network duel

is a G that generates realistic images that are difficult to distinguish from real images,

some GAN-generated images being sufficiently realistic to be considered as a proxy for

the ground truth when labeled data are scarce or prohibitively expensive. Concretely, the

cGAN objective is posed as a binary cross-entropy loss:

LcGAN(G, D) = Ex,y∼pdata(x,y) [log D(x, y)] + Ex∼pdata(x) [log(1− D(x, G(x)))] (2.1)

where G seeks to minimize the objective and thus minimize the distinguishability of gen-

erated and real images, while D seeks the opposite. In addition to the task of fooling D, G

is also encouraged to generate images that resemble real images through incorporation of
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an L1 reconstruction loss term:

LL1(G) = Ex,y∼pdata(x,y) [‖y− G(x)‖1] (2.2)

The full cGAN objective is:

G∗ = arg min
G

max
D
LcGAN(G, D) + λLL1(G) (2.3)

where the L1 tuning parameter λ = 100 is adapted according to the IF stain prevalence in

the current batch of IF tiles [115] i.e. if 50% of the pixels in the current batch of IF tiles are

positively stained above the mean intensity of the WSI, then λ = 100× 0.5 = 50. Training

data consist of spatially registered pairs of H&E image tiles x and IF image tiles y, while

the test data consist of H&E and IF image pairs withheld from the training data. Models

were trained using the Adam optimizer [55] with a learning rate of 0.002 for 500 epochs.

Training batch sizes were set to 64. The first layers of both the generator and discriminator

networks were 128 filters deep (see Figure 2.2 for additional architectural details). Models

were trained and tested using a single NVIDIA V100 graphics processing unit (GPU). Once

trained, models were capable of processing a 10X (0.44 µm/pixel) H&E image tile contain-

ing 256× 256 pixels into its corresponding virtual IF tile in 10 µs, corresponding to a virtual

staining rate of 22 mm2 tissue per second, or approximately one virtual IF WSI generated

per 20 s. Full model details are available at https://gitlab.com/eburling/shift.

2.3.9 Model Ensembles

Single Patient Model Ensembles

In the context of machine learning, aggregating several trained models can increase pre-

diction accuracy, especially when the aggregated models capture distinct features of their

shared input. Thus, we also combined the output of independently-trained models, i.e.

https://gitlab.com/eburling/shift
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FIGURE 2.2: Schematics of cGAN architecture used by SHIFT. The cGAN architecture used by SHIFT
is based on the pix2pix framework [48]. (A) Architecture of generator network G which is based on
the U-net architecture [95]. (B) Architecture of discriminator network D. The input to D is a single
image of H&E and IF concatenated along the channel axis.
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models utilizing Equation 2.3 and Equation 2.6, to form an ensemble distribution, under

the assumption that the training strategies put forward in Equation 2.3 and Equation 2.6

are complementary. By doing this, we can smoothen the final output and improve perfor-

mance by reducing substantial disagreement patterns between models.

Multi-Patient Model Ensembles

In addition to testing the ability of independent SHIFT and LFD models to generate virtual

IF images, we also tested model ensembles. Ensemble images were generated by simply

averaging the virtual IF image outputs of SHIFT and LFD models trained to generate the

same stain using the same training set.

2.3.10 Prevalence-Based Adaptive Regularization

Cancer cells typically remain clustered together (Figure 2.1) and thus it is challenging

to balance the reconstruction loss term for positive/negative instances according to the

stain prevalence for each training image. For instance, for low-prevalence (sparse) panCK-

stained regions, G is more likely to generate an “unstained” pattern rather than generate

a sparsely localized stain pattern because the reconstruction loss is relatively small com-

pared to the reconstruction loss for high-prevalence (dense) panCK-stained regions. In or-

der to achieve high sensitivity and specificity, a generative model should be encouraged to

be conservative by being maximally penalized when it makes false-positive classifications

on low-prevalence ground truth tiles during training. Thus, we propose a prevalence-

based adaptive regularization parameter λ′ that may be more suitable for the translation

of signals from H&E to IF:

λ′ = λ

(
ε +

1
n

n

∑
i=1

IΩ(pi)

)−1

(2.4)
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where ε = 0.1 is chosen to offset in cases where stain prevalence is zero, n is the total

number of pixels in the ground truth IF tile, and:

IΩ(pi) =


1, if pi in Ω

0, otherwise
(2.5)

where Ω represents the ground truth mask, and pi represents the i-th pixel. Our final

objective is:

G∗ = arg min
G

max
D
LcGAN(G, D) + λ′LL1(G) (2.6)

Utilization of the adaptive regularization parameter λ′ maximizes the penalty for gen-

erator errors on low-prevalence ground truth tiles and minimizes the penalty for errors on

high-prevalence ground truth tiles. By doing this, we can improve localization character-

istics and help minimize false classification errors at a distance from true-positive pixels.

2.3.11 Variational Autoencoders

The VAE architecture [56] is designed to elucidate salient features of data in a data-driven

and unsupervised manner. A VAE model seeks to train a pair of complementary networks:

an encoder network θ that seeks to model an input xi as a hidden latent representation

zi, and a decoder network φ that seeks to reconstitute xi from its latent representation

zi. The VAE cost function shown below penalizes model training with an additional Kull-

back–Leibler (KL) divergence term that works to conform the distribution of z with respect

to a given prior, which in our case is the standard normal distribution:

Li(xi, θ, φ) = −Ez∼qθ(z|xi)[log pφ(xi|z)] + KL(qθ(z|xi)p(z)) (2.7)

where p(z) = N (0, 1).
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By specifying a latent dimension z less than the input dimension of x, a VAE model

learns a pair of optimal encoding and decoding functions that enable reconstruction of an

input sample subject to capacity constraints of the latent feature space within the model. In

general, this formulation learns encoding functions that compress the information content

in the high-dimensional input into a low-dimensional embedding space that learns dataset

features sufficient to reconstitute the original input sample while preserving an expected

distribution over the learned features. This interpretation enables a specified selection

criteria function designed to sample whole slide images whose constituent tiles maximally

cover the entire learned feature space with a minimal number of samples.

2.3.12 Feature-Guided Histological Sample Selection

Although DL approaches like SHIFT and LFD require substantial training data to be ro-

bust and generalizable, due to resource constraints we hope that a small number of paired

H&E and IF image samples is required for model training. Typically, archival WSIs of

H&E-stained tissue sections exist on-hand for each sample, which allows for the screening

of samples to identify the minimal number of samples that maximally represent the mor-

phological spectrum of the disease being considered. Recent studies demonstrate that DL

systems are well-suited for image retrieval tasks in digital pathology [80, 43], wherein a

pathologist submits a query image or region of interest and the DL system returns similar

images based on their DL-defined feature representations. We seek to solve the inverse task

of heterogeneous training set selection in digital pathology, though our approach could be

extended to any data-limited biomedical imaging domain.

Since PDAC is a morphologically heterogeneous disease [44], building a representative

training set is crucial to the design of a model that will generalize across heterogeneous

biopsy samples after deployment. In order to minimize the required resources for acquir-

ing paired H&E and IF images but still cover a broad spectrum of heterogeneous morpho-

logical features in the selected H&E samples, we propose a clustering method to learn a
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heterogeneous representation of H&E sample images. To assess the morphological features

of each sample, we use a variational autoencoder (VAE) [56] to extract 16-dimensional fea-

ture vectors from each H&E tile to establish comparisons between samples. Since texture

and morphological features on H&E tiles in each cluster of samples will be comparatively

more similar than those of the other cluster, we only select representative H&E samples

from each cluster for our training dataset. We also tried using other feature vector sizes for

representation learning, e.g. 2, 4, 8, 32, but found that a feature vector size of 16 yielded

the lowest reconstruction losses.

For example, if there are four samples being considered for IF staining, but resources

limit the number of samples that can be stained to two, a decision must be made about

which samples should be selected. For the four samples, we aggregate their archival H&E

WSIs, extract features from H&E tiles for each sample using a VAE, and quantitatively

determine the samples needed to maximally cover the feature space over which the H&E

tile set is distributed. By screening and selecting samples in this data-driven fashion, we

exclude homogeneous or redundant samples that would not contribute to model gener-

alizability. This maximizes model performance by ensuring that our training dataset is

representative of the disease being modeled, thus minimizing cost through the selection of

the fewest samples required to do so. Perhaps more importantly, when we fail to generate

reliable virtual IF images for certain tissue samples or IF markers, this framework will be

useful to examine whether or not their morphological features are present in the training

dataset, which can guide how we select additional samples when updating our dataset.

To identify the sequence of samples that should be selected, we adapt an

information-theoretic sample selection algorithm [83] which is more capable of generating

representative subsets of data with imbalanced features than other classical algorithms

used for sample selection, like maximum coverage [45] or k-medoid clustering [52]. The

algorithm is parameterized using the following notation:



2.3. Methods 31

TABLE 2.2: Parameters for optimal sampling scheme.

Parameter Description

X Complete tile set of all examples, X = {x1, x2, . . . , xn}
xi Single tile, xi ∈ X
Xi Subset of X corresponding to the ith sample, Xi ⊂ X
F Complete VAE-learned feature set, F = { f1, f2, . . . , fm}
fi Single feature, fi ∈ F
A Random variable defined over F
T Random variable defined over X

We begin with a tiles × features table, where we set m=16 for our experiments:

TABLE 2.3: Example of unnormalized VAE feature values.

f1 f2 . . . fm

x1 −1.64266 1.36952 . . . 1.23509
x2 −0.792104 −0.481497 . . . 1.07938
. . . . . . . . . . . . . . .
xn 0.00163981 −0.0162441 . . . −0.95883

We normalize across rows of the table, such that each tile is now represented as a probabil-

ity distribution over the feature domain:

TABLE 2.4: Example of normalized VAE feature values.

f1 f2 . . . fm Sum

x1 0.00418311 0.0850498 . . . 0.0743519 1
x2 0.0148384 0.0202433 . . . 0.0964193 1
. . . . . . . . . . . . . . . . . .
xn 0.0208721 0.0205021 . . . 0.00798802 1

We define the random variables T and A over tile domain X and the feature domain

F, respectively, such that P(A = f1|T = x1) = 0.418311, P(A = f2|T = x2) = 0.0202433,

and so on. With this conditional probability table, we can define probability distributions

over each subset Xi : P(A|Xi) = 1
|Xi | ∑x∈Xi

P(A|x). To measure the representativeness
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of sample Xi to the full dataset X, we compute the Kullback–Leibler (KL) divergence be-

tween P(A|Xi) and P(A|X) : KL(P(A|Xi)||P(A|X)) = ∑ f∈F P( f |Xi) log P( f |Xi)
P( f |X)

. We then

weight this divergence by the proportion of X that Xi comprises, |Xi |
|X| , to prioritize sub-

sets that contribute many tiles to X. We define the single most representative sample as

X̂1 = minXi⊂X

(
|X|
|Xi |KL(P(A|Xi)||P(A|X))

)
, the most representative duo of samples as

X̂2 = X̂1 + minXi⊂X−X̂1

(
|X|
|Xi|KL(P(A|Xi + X̂1)||P(A|X))

)
, the most representative trio of

samples as X̂3 = X̂2 + minXi⊂X−X̂2

(
|X|
|Xi |KL(P(A|Xi + X̂2)||P(A|X))

)
, and so on. In this

way, we define the sequence of samples that should be chosen to optimally increase the

representativeness of the training set.

2.4 Results

2.4.1 Virtual staining in single PDAC patient

Developing the single patient dataset

This study utilizes a dataset [16] containing WSIs of tumorigenic pancreas tissue acquired

at 20X-magnification from two adjacent thin sections: one stained with H&E and and

the other co-stained with the fluorescent nuclear marker DAPI and fluorescent antibod-

ies against panCK and α-SMA, two markers commonly used in tumor evaluation [7, 107].

The paired 20X images were registered [16] and cropped into four sites, with each site im-

age being ∼12,000×8,000 pixels in size. 10X WSIs were created by half-scaling 20X WSIs.

Training data were created by first taking ∼10,000 random 256×256 pixel H&E and IF

tile pairs from three sites, then applying single operation manipulations—i.e. jitter, rota-

tion, flipping, Poisson noise—to each tile, yielding ∼20,000 total images in the augmented

training data. For a given stain, we trained four leave-one-site-out SHIFT models and

generated virtually-stained WSIs for each site, i.e. each of four models were trained on

random tiles from three sites and tested on non-overlapping tiles of the left-out site, which
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could then be stitched into cohesive WSIs. In this way, we were able to perform a fourfold

cross-validation of the SHIFT method for each stain in an intra-patient context. To reduce

the deleterious effects of tiling artifacts in the generated panCK WSIs, we utilized three

additional test datasets of non-overlapping tiles from each site—one of each test dataset

offset by 128 pixels in either x or y or both—and evaluated model performance using the

jointly-scaled blend of the four generated WSIs.

Model parameterization

The network architectures and implementations for D and G for all models are as described

in [48], except where explicitly specified in Figure 2.2. Training batch size was set to 4 for all

experiments and for fair comparison, we tuned the regularization setting for each model

by training over a range of λ: 50-5000 and selected the models with optimal λ∗ that yielded

the best performance. Models were trained for 20 epochs at a fixed learning rate of 0.0002,

followed by 10 epochs over which the learning rate linearly decayed to zero. Once trained,

each SHIFT model was capable of computing WSI-level translation in approximately one

minute.

Model evaluation

For evaluation of SHIFT model performance, we measured the Matthews correlation co-

efficient (MCC) [74], the Dice similarity coefficient (DSC), as well as other standard classi-

fication performance metrics for comparison of the ground truth and generated IF masks

produced using a global 10%-luminance threshold on the contrast-adjusted 8-bit ground

truth and generated IF WSIs. We also measured the peak signal-to-noise ratio (PSNR) and

structural similarity index (SSIM) [122] between raw ground truth and raw generated IF

WSIs.

Representative results for the translations from H&E-to-panCK (SHIFT2panCK) for all

four sites are shown in Figure 2.3 and translations from H&E-to-DAPI (SHIFT2DAPI),
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FIGURE 2.3: Single patient SHIFT result for panCK for all four sites.

H&E-to-panCK, and H&E-to-α-SMA (SHIFT2α-SMA) for just site 1 are shown in Figure 2.4.

All quantitation of model performance is reported in Table 2.5.

We performed SHIFT2DAPI experiments at both 10X- and 20X-magnification to assess

whether or not SHIFT model inference is sensitive to image resolution, and found minor

improvements in most metrics when models were trained on 20X tiles (Table 2.5, top), sug-

gesting that localized features of the DAPI stain may be more important for SHIFT2DAPI

inference than higher-level architectural features. Since hematoxylin and DAPI are both ro-

bust stains for cell nuclei, the task of a SHIFT2DAPI model is theoretically trivial—translate

hematoxylin intensity into DAPI intensity—and thus provides insight into the upper lim-

its of SHIFT performance. Note that there exists µm-scale structural differences between
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FIGURE 2.4: SHIFT model results for DAPI, panCK, and α− SMA for site 1 (12,656 × 10,858 pixels
at 20X magnification). Each SHIFT image represents the result for the model with optimal λ∗ which
yielded the best performance (Table 2.5). The circled dark regions in the H&E image are clusters
of invading lymphocytes which the SHIFT model with fixed λ (Equation 2.3) misclassified as being
panCK-positive (see the corresponding circled regions in the middle-right image). The SHIFT model
with adaptive λ′ (Equation 2.6) did not commit these errors.

ground truth H&E and IF WSIs due to serial tissue acquisition. Nevertheless, the results

for models utilizing Equation 2.6 are consistent with those from a comparison between the

DAPI mask and a cell nucleus segmentation mask derived from the H&E image (data not

shown), indicating that SHIFT2DAPI achieves good performance up to the fundamental

limit.

Given that panCK will stain only the subset of cells which are CK-positive, rather than

stain a ubiquitous cytological landmark as do hematoxylin and DAPI, the translation from
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Model translation Mag. Site generated G∗ λ∗ MCC DSC Accu. Spec. Prec. Sens. PSNR SSIM

SHIFT2DAPI
10X 1

Eq (2.3) 5000 0.838 0.885 0.932 0.938 0.857 0.916 30.89 0.883
Eq (2.6) 1000 0.845 0.890 0.936 0.951 0.881 0.898 31.40 0.887

20X 1
Eq (2.3) 500 0.857 0.897 0.942 0.965 0.910 0.886 31.53 0.883
Eq (2.6) 5000 0.861 0.900 0.944 0.966 0.913 0.887 31.50 0.898

SHIFT2panCK 10X

1
Eq (2.3) 1000 0.704 0.749 0.909 0.918 0.662 0.863 22.99 0.769
Eq (2.6) 1000 0.754 0.793 0.933 0.953 0.766 0.822 22.95 0.791

Ensemble – 0.729 0.769 0.917 0.922 0.679 0.887 23.19 0.782

2
Eq (2.3) 1000 0.817 0.855 0.937 0.946 0.812 0.903 28.21 0.819
Eq (2.6) 1000 0.814 0.853 0.939 0.959 0.845 0.861 27.89 0.816

Ensemble – 0.821 0.859 0.938 0.948 0.819 0.903 28.66 0.828

3
Eq (2.3) 1000 0.790 0.822 0.945 0.965 0.810 0.834 26.36 0.815
Eq (2.6) 1000 0.777 0.807 0.945 0.978 0.860 0.760 26.16 0.818

Ensemble – 0.790 0.822 0.944 0.958 0.786 0.862 26.69 0.828

4
Eq (2.3) 1000 0.812 0.849 0.940 0.967 0.865 0.833 26.05 0.807
Eq (2.6) 1000 0.792 0.826 0.936 0.981 0.908 0.758 25.87 0.810

Ensemble – 0.819 0.854 0.943 0.972 0.881 0.828 26.35 0.818

SHIFT2α-SMA 10X

1
Eq (2.3) 1000 – – – – – – 24.70 0.603
Eq (2.6) 1000 – – – – – – 24.84 0.608

Ensemble – – – – – – – 25.09 0.611

2
Eq (2.3) 1000 – – – – – – 25.69 0.634
Eq (2.6) 1000 – – – – – – 25.81 0.642

Ensemble – – – – – – – 26.02 0.643

3
Eq (2.3) 1000 – – – – – – 24.19 0.588
Eq (2.6) 1000 – – – – – – 24.41 0.598

Ensemble – – – – – – – 24.74 0.606

4
Eq (2.3) 1000 – – – – – – 25.21 0.634
Eq (2.6) 1000 – – – – – – 26.34 0.675

Ensemble – – – – – – – 26.39 0.674

TABLE 2.5: SHIFT model parameters and performances. The result for the model with the optimal λ∗ that
yielded the best performance (MCC for DAPI and panCK, SSIM for α-SMA) is shown for each combination of
magnification and G∗. Models were trained until errors stabilized.

H&E to panCK is a more interesting but challenging task. Although SHIFT2panCK models

performed less well than SHIFT2DAPI in most categories, it is difficult to visually distin-

guish the generated from the ground truth panCK IF sites, as shown in Figure 2.4. With

one exception (the sensitivity of SHIFT2panCK for site 4), either the models utilizing the

proposed method Equation 2.6 alone or the ensemble approach performed as well as or

better than models utilizing Equation 2.3 alone, i.e. pix2pix. Notably, models utilizing

the proposed method Equation 2.6 showed better localization characteristics (Figure 2.4,

circled misclassified regions for model utilizing Equation 2.3).

In contrast to DAPI and panCK stain patterns, the α-SMA stain pattern is sinuous and

high-frequency (Figure 2.4, bottom). When these attributes are compounded by spatial



2.4. Results 37

deformity and other complications from the serial acquisition of H&E and IF WSIs, pixel-

level evaluation of generated α-SMA WSIs becomes exceedingly challenging. For this rea-

son, we excluded evaluation metrics that were contingent on α-SMA mask generation in

favor of metrics which reflect the global configurations of the α-SMA IF WSIs (Table 2.5,

bottom). While the ensemble approach performed best in both categories for most sites,

all models utilizing the proposed method Equation 2.6 alone outperformed the models

utilizing Equation 2.3 alone.

2.4.2 Virtual staining in multiple PDAC patients

Building a dataset of spatially-registered H&E and IF images

SHIFT requires spatially-registered pairs of H&E and IF whole slide images (WSIs) for

model training and testing (Figure 2.1). Such data would usually be acquired by processing

two adjacent tissue sections, one stained by H&E and another stained by IF, then spatially

registering the images into the same coordinate system based on their shared features [16].

Unfortunately, this can lead to inconsistencies between H&E and IF image contents when

high-frequency cellular features differ between adjacent sections, even when the sections

are as few as 5 µm apart. To alleviate this issue, we developed a protocol that allows for

H&E and IF staining in the same section of tissue.

Clinical samples of PDAC from four patients (Samples A, B, C and D) were chosen via

pathological review of archival H&E images as exemplifying a spectrum of both histolog-

ical differentiation and heterogeneity (Figure 2.5A). Chosen samples were sectioned, pro-

cessed, and stained with DAPI nuclear stain and panCK monoclonal antibody; the staining

was confirmed and the slides were scanned. After scanning, the coverslips were removed

and the slides were stained with the designed modified H&E protocol (Table 2.1), perma-

nently cover slipped and then scanned again. Nuclear information from the hematoxylin

and DAPI stains in pairs of H&E and IF images were used to register images in a common
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FIGURE 2.5: Overview of PDAC histological samples used for multi-patient SHIFT modeling. (A)
Four heterogeneous samples of H&E-stained PDAC biopsy tissue used in the current study. Pathol-
ogist annotations indicate regions that are benign (green), grade 1 PDAC (black), grade 2/3 PDAC
(blue), and grade 2/3 adenosquamous (red). (B) Making direct comparisons between H&E whole
slide images (WSIs) is intractable because each WSI can contain billions of pixels. By decomposing
WSIs into sets of non-overlapping 256× 256 pixel tiles, we can make tractable comparisons between
the feature-wise distribution of tile sets.

coordinate system. Images were then pre-processed to minimize noise and account for

technical variability in staining and image acquisition. To exclude regions of autofluores-

cence that greatly diminished the signal-to-noise ratio of the real IF images, images from

samples B and D were subdivided into image subsets B1, B2, B3 and D1, D2, D3, D4, D5.

Feature-guided identification of representative histological samples

For a SHIFT model to generalize well across the population of PDAC samples, it must be

trained on a representative subset of the population, which motivated the development

of a means to quantitatively compare images. In particular, we wished to learn which

sample—or sequence of samples—should be selected to build a training set that is most

representative of the population of samples. As a consequence of their large dimensions,

direct comparison between gigapixel H&E images is intractable, so we decomposed each

image into sets of non-over-lapping 256 × 256 pixel tiles (Figure 2.5B). Even the small 256

× 256 pixel H&E tiles contain 196,608 (256 × 256 × 3 channels × 196,608) pixel values

each and are difficult to compare directly. To establish a more compact but still expressive
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representation of the H&E tiles, we trained a variational autoencoder (VAE) [56]—an un-

supervised DL-based method for representation learning and feature extraction—to learn

16-dimensional feature representations of each tile, which makes comparing tiles more

tractable (Figure 2.6).

FIGURE 2.6: Schematic of feature-guided H&E sample selection. First, H&E samples are decom-
posed into 256 × 256 pixel tiles. Second, all H&E tiles are used to train a variational autoencoder
(VAE) to learn feature representations for all tiles; for each 196,608-pixel H&E tile in the dataset,
the encoder E learns a compact but expressive feature representation that maximizes the ability of
the decoder D to reconstruct the original tile from its feature representation. Third, the tile feature
representations are used to determine which samples are most representative of the whole dataset.

Using the VAE which we pre-trained on all samples, we extracted features from each

H&E tile and assessed how each feature was distributed across samples, finding that sev-

eral of the features discriminated between samples (Figure 2.7A).

In particular, the bimodal distribution of some features suggested two sample clus-

ters, one formed by samples A and B, and another formed by samples C and D. These

clusters were corroborated by visualization of the sample tiles embedded in the reduced-

dimension feature space generated by t-SNE [69] (Figure 2.6 and Figure 2.7B). The t-SNE

embedding is strictly used as a visual aid and validation of the quantitative selection of the

most representative set of samples by the algorithm based on the full 16-dimensional VAE
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FIGURE 2.7: VAE features derived for feature-guided H&E sample selection. (A) Distribution of
the 16 latent features (L1-L16) extracted by VAE from sample H&E tiles. (B) t-SNE embedding of
latent feature representations of sample H&E tiles, faceted by sample identity. Each point in each
plot represents a single H&E tile. Contour lines indicate point density.

features. Since the feature distributions of the H&E tiles highlighted the redundancy be-

tween clustered samples, we reasoned that a balanced selection of samples from each clus-

ter would yield a more representative training set and ultimately improve SHIFT model

generalizability. Using the full 16-dimensional feature representations of the H&E tiles and

an information-theoretic framework for representative sample selection [83] (see subsec-

tion 2.3.12), we were able to quantitatively identify sample B and the duo of samples B

and D as the single and two most representative samples, respectively, which were then

considered for training sets in subsequent experiments. Figure 2.8 illustrates the feature

distributions of several sample combinations in comparison to that of the full dataset.

Virtual IF staining in histological samples

SHIFT models are built on an adversarial image-to-image translation framework [48], with

a regularization strategy designed to improve inference on sparse IF images (Figure 2.1 and
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FIGURE 2.8: H&E tile feature distributions of experiment sample combinations. The VAE-learned
16-dimensional feature vector representations for each H&E are embedded into 2 dimensions using
t-SNE. Each point in each plot represents a single H&E tile. Contour lines indicate point density.
Sample B is the single sample that is most representative of the whole dataset. Samples B and D are
the duo of samples that are most representative of the whole dataset. Samples A and B are a duo of
samples that poorly represent the whole dataset.

Figure 2.2) [115]. Adversarial learning frameworks compute their losses over images, in

contrast to strictly supervised learning frameworks where losses are computed over pixels,

which has been suggested as a means to improve model inference on virtual staining tasks

[22]. Having identified the most representative samples in our dataset, we next tested

whether or not a SHIFT model could learn a correspondence between H&E and IF images

that generalizes across samples.

We hypothesized that if tissue and cell morphologies observed in H&E-stained tissue

are a function of a given marker, then it should be possible to infer the spatial distribution

of that marker based on the H&E-stained tissue alone; that is, H&E-to-IF translation should

be learnable and generalizable such that a model can be extended to samples from patients
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that were not included in the training set. To test this hypothesis, we trained SHIFT mod-

els to generate virtual IF images of the cancer marker panCK conditioned on input H&E

images alone. To simultaneously assess the utility of our sample selection method, we

trained models using different combinations of sample subsets in the training set. Train-

ing sets consisted of paired H&E and IF image tiles from either sample subset B1 (from

the most representative single sample), sample subsets B1 and D5 (from the most repre-

sentative duo of samples), or sample subsets A1 and B1 (from a less representative duo of

samples as counterexample). Sample subsets B1 and D5 were selected because they con-

tained a similar number of tiles, providing a balance between the sample clusters. Once

trained, SHIFT models are capable of translating H&E WSIs into virtual IF WSIs in tens of

seconds. Model performance was quantified by measuring the structural similarity (SSIM)

[122, 93], a widely used measure of image similarity as perceived by the human visual sys-

tem, between corresponding virtual and real IF images from samples left out of the model’s

training set. The SSIM between two images is calculated over pixel neighborhoods in the

images and provides a more coherent measure of image similarity than pixel-wise mea-

sures like Pearson’s r. Considering the SSIM performance of the model trained on B1 as

the baseline, we see a significant improvement in model generalizability on held-out sam-

ple C (Friedman statistic = 428.4, p = 9.6× 10−94) and held-out subsets D1 (Friedman

statistic = 587.4, p = 2.7× 10−128), D2 (Friedman statistic = 298.0, p = 2.0× 10−65), and

D4 (Friedman statistic = 3099.1, p < 2.2× 10−308) when the more representative sample

subsets B1 and D5 are used for training than when the less representative sample subsets

A1 and B1 are used (Figure 2.9). By stitching together the virtual IF tiles from a given sam-

ple in the test set, we were able to make large-scale comparisons between real and virtual

panCK IF images (Figure 2.10). We also experimented with SHIFT inference of the stromal

marker α-SMA (Figure 2.11).

SHIFT is not the only virtual staining method to have been recently proposed. Label-

free determination (LFD) [81] is a supervised DL-based virtual staining method which
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FIGURE 2.9: SHIFT panCK model test performance for optimal (B and D) and non-optimal (A and
B) training set sample compositions. The paired H&E and IF images from samples B and D were
subdivided into smaller images B=B1,B2 and D=D1,D2,D3,D4,D5 to avoid regions of IF that ex-
hibited substantial autofluorescence. The x-axis labels indicate sample identity, where each letter
corresponds to a unique sample and each number corresponds to a subset of that sample. Each n
denotes the number of image tiles that were extracted from that sample. Plots for sample subsets are
not show if that sample subset was a component of a model’s training set. *p<.05; for three group
comparisons we used the Friedman test with Nemenyi post-hoc test; for two group comparisons we
used the Wilcoxon signed-rank test. White dots in violin plots represent distributional medians.

produces models that were shown to have learned the relationship between images of

cell cultures visualized by transmitted light or fluorescence, where sub-cellular structures

have been labeled with genetically-encoded fluorescent tags. Because the SHIFT generator

G and the LFD are both based on the popular U-Net architecture [95], we compared these

models that generate images using a similar architecture, but have differing training for-

mulae and loss functions. To make a fair comparison between the adversarial SHIFT and

supervised LFD models, we trained a LFD model using the representative sample subsets

B1 and D5, matching the number of optimization steps taken by the SHIFT model that was

trained using the same training set (Figure 2.12).

In addition to the performance of independent SHIFT and LFD models, we also consid-

ered the ensemble result, taken as the average image of the SHIFT and LFD output images

(Figure 2.13A). Across all samples in the test set, either SHIFT alone or the ensemble of

SHIFT and LFD tended to perform better than LFD alone (Figure 2.13B). In addition to
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FIGURE 2.10: Large-scale comparison of real and virtual panCK staining generated by SHIFT. SHIFT
images were generated by a model trained on sample subsets B1 and D5. Results shown are from the
test set. Tiles were excluded if they contained more than 50% background in the H&E representation
(black tiles). (A) Representative images taken from sample A. Robust staining of fibrotic vasculature
in the upper- and lower-left of the real panCK image is not recapitulated in the SHIFT image because
panCK+ fibrotic vasculature was not present in the model’s training set of samples B and D. Rather,
the desired virtual staining of tumor epithelium is generated. (B) Representative images taken from
sample B. (C) Representative images taken from sample C. (D) Representative images taken from
sample D.
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FIGURE 2.11: Large-scale comparison of real and virtual α-SMA staining generated by SHIFT. SHIFT
images were generated by a model trained on sample subsets B1 and D5. Results show are from the
test set. Tiles were excluded if they contained more than 50% background in the H&E representa-
tion (black tiles). Discrepancies between the real and virtual stains suggest that our dataset is of
insufficient size to optimally model the inter-sample heterogeneity of α-SMA expression.

comparing SHIFT and LFD models, we also tried removing the discriminator and adver-

sarial loss term from the panCK SHIFT model, leaving just the U-net generator. We find
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FIGURE 2.12: Training losses for virtual staining models. (A) L1 training loss for SHIFT models
for each training set composition. (B) GAN training loss for SHIFT models for each training set
composition. (C) Mean squared error (MSE) training loss for Label-Free Determination (LFD) model.

FIGURE 2.13: (A) Visual comparison of virtual staining methods. The ensemble results are attained
by averaging the output images of SHIFT and Label-Free Determination (LFD) models. See also
Figure 2.2. (B) Test performance comparison of virtual staining methods. The x-axis labels indicate
sample identity, where each letter corresponds to a unique sample and each number corresponds
to a subset of that sample. Each n denotes the number of image tiles that were extracted from
that sample. Plots for sample subsets B1 and D5 are not show because those sample subsets were
components of the models’ training sets. *p<.05; Friedman test with Nemenyi post-hoc test. White
dots in violin plots represent distributional medians.
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that these models trained using the pixel-wise L1 loss alone produced virtual panCK stain-

ing with good localization, but poor resolution of finer cellular structure, highlighting the

importance of the adversarial loss for producing realistic virtual stains (Figure 2.14).

2.5 Discussion

Spatially-resolved molecular profiling of cancer tissues by technologies like IF provides

more information than routine H&E histology alone. However, the rich information ob-

tained from IF comes at significant expense in time and resources, restricting IF access

and use. Here, we present and extend the validation of SHIFT, a DL-based method which

takes standard H&E-stained histology images as input and returns virtual panCK IF im-

ages of inferred marker distributions. Using a limited but heterogeneous dataset, we

demonstrated that SHIFT models are able to generalize across samples drawn from dif-

ferent PDAC patients, even for training sets that are over an order of magnitude smaller

than the test set (train n=665 and test n=11,593 for models trained on sample subset B1

only). Results from our sampling experiments are consistent with the expectation that an

automated and quantitative method for representative sample selection will be critical to

the effective development and deployment of DL models on large-scale digital pathology

datasets. Finally, we compared the adversarial SHIFT method with an alternative, super-

vised virtual staining method and found that the virtual staining task tends to be best

accomplished by the ensemble of both methods. With the incorporation of an adversarial

loss term, a SHIFT model computes loss over images, rather than strictly over pixels as do

other virtual staining methods [22, 81], which may explain its positive contribution to the

model ensemble. Based on the success of DL-based ensemble methods in other biomedi-

cal domains [127, 23], we expect ensemble methods to become increasingly relevant to the

development of virtual staining applications.
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FIGURE 2.14: Comparison of different training losses for models estimating panCK. Training ex-
amples for models trained to convergence using either L1 and GAN losses, or L1 loss alone. Stain
estimation for the model trained using L1 loss alone lacks high-frequency textural details of the
panCK stain when compared to the model using both L1 and GAN losses.
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While we have demonstrated the application of SHIFT for the estimation of an IF tumor

signature, there are emerging opportunities to test the extensibility of our approach and

relate it to the approaches of others. In particular, a comparison between SHIFT and meth-

ods which estimate single-stain IHC status conditioned on H&E images [49, 25] would be

insightful, since it remains unclear whether there is value added in learning from either

IF or chromogenic signals. Following recent advances in cyclic immunofluorescence and

multiplex immunohistochemistry (CyCIF/mIHC) technology [59, 112, 38, 90], it is now

possible to visualize tens or hundreds of distinct markers in a single tissue section. On

their own, these technologies promise a more personalized medicine through a more gran-

ular definition of disease subtypes, and will undoubtedly broaden our understanding of

cellular heterogeneity and interaction within the tumor microenvironment, both of which

play increasingly important roles in the develop-ment and selection of effective treatments

[130, 68]. With a paired H&E and CyCIF/mIHC dataset that encompasses the expression

of hundreds of markers within the same (or serially-sectioned) tissue, we could begin to

quantify the mutual information between histology and expression of any marker of inter-

est. Notwithstanding the prospect of virtual multiplexing, virtual panCK IF alone could

be of useful to spatial profiling platforms which use panCK IF to label tumor regions for

localized spatial profiling of protein and RNA abundances in formalin-fixed tissues [75].

There are obvious limitations and challenges to both the feature-guided sampling and

virtual staining methods we present here. Both methods assume an association between

H&E and IF representations of tissue. Since this is unlikely to be the case in general, deter-

mining which markers have a histological signature will be essential to the evaluation of

clinical utility for virtual staining methods. For markers without a H&E-to-IF association,

our methods may fail to maximize representativeness or make incorrect estimates of IF

signals. This should be seen as a feature rather than failure of our methods, since they pro-

vide a means of quantitatively delineating markers that have a H&E-to-IF association from
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those that do not. Notwithstanding, even when there is an association, finding a meaning-

ful way to compare real and virtual images remains a challenge, as we have experienced

in experiments modeling markers with fine, high-frequency distributions like α-SMA (Fig-

ure 2.11). Like other virtual staining methods that have been deployed on whole human

tissues [92, 93], we used SSIM as a measure of image similarity between real and virtual

IF images. This classical perceptual measure is used in many imaging domains, but we

found that it is sensitive to perturbations commonly associated with image registration

and technical or instrumentation noise (Figure 2.15). In light of this, we advocate for the

development and use of perceptual measures that are more aware of such perturbations

and better correlate with human perception of image similarity or quality [6, 85].

It must be restated that our results are supported by a dataset comprised of samples

from just four patients, so some fluctuation in performance between samples should be

expected, and indeed was observed (Figure 2.10). Our goal in choosing a relatively small

dataset was to demonstrate that, even when limited, SHIFT could learn a general rela-

tionship between H&E and IF tissue representations, and we believe that the fluctuation

in performance between samples could be addressed by increasing the sample size. With

the emergence of digital pathology datasets containing tens of thousands of whole slide

images [14], the opportunities to improve virtual staining technologies are only becoming

more numerous.

In spite of representing four patients, the samples in our study were selected by a

board-certified pathologist to be as heterogenous as possible, encompassing the spectrum

of PDAC morphology, albeit in as few samples as possible. While we used these hetero-

geneous and associated human tissues for our study, other virtual staining methods have

only been demonstrated on relatively homogeneous human or rat cell lines [22, 81] and

with far less total image area (Table 2.6). Given the precedent set by these prior works, we

feel that the work we present here is within scope as a proof-of-concept study of sample se-

lection and histology-based IF prediction in a digital pathology application. Moreover, the
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FIGURE 2.15: Model performance metric sensitivity to common technical perturbations. Structural
similarity (SSIM) and Pearson’s r are two commonly used metrics for image comparison, both hav-
ing been used to make comparisons between real and generated biological images in recent related
work [93, 22, 81]. When comparing raw real IF and raw generated IF images, a low SSIM value may
be the result of sensor/technical noise in the IF procedure, which is impossible for the SHIFT model
to predict based on the H&E image it is given as input. When considering a stereotypical panCK
IF tile, both the SSIM (red traces) and Pearson’s r (blue traces) are found to be sensitive to rotation
(A) and translation (B), perturbations common to image registration. Grey dotted lines indicate the
parameter selected to generate each transformed image. We also observe that both measures are
sensitive to simulations of technical noise (C). By applying a Gaussian filter with variance (sigma)
set to 3, we recover the SSIM between real and perturbed IF images without sacrificing global image
details (D).
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protocol that we developed to allow H&E and IF staining in the same tissue sections will

be of significant value to the community, since spatially-paired H&E and IF data is diffi-

cult to generate from adjacent sections due to tissue deformation and cellular discontinuity

between sections.

Reference Target marker Image tiles
XY tile resolution

(pixels)
Pixel resolution
(microns/pixel)

Total image area
Difference in area

from current study
[22] DAPI 2 3500× 3500 0.32 78 mm2 45-fold less
[81] Lamin 40 924× 624 0.108 25 mm2 140-fold less

Current study panCK 12258 256× 256 0.44 3.5 cm2 -

TABLE 2.6: Comparison of total image area used for training and testing of virtual staining methods.

Since SHIFT can infer virtual panCK IF images as H&E-stained tissue section are im-

aged, SHIFT could provide pathologists with near-real-time interpretations based on stan-

dard H&E-stained tissue in augmented set-tings. Therefore, SHIFT could serve as an ef-

ficient preliminary, auxiliary, or substitute technology for traditional panCK IF in both

research and clinical settings by delivering comparable virtual panCK IF images for a frac-

tion of the cost and in a fraction of the time required by traditional IF or CyCIF/mIHC

imaging. With clinical validation in larger cohorts, the advantages of a SHIFT model over

traditional IF would include (1) eliminating the need for expensive imaging hardware,

bulk reagents, and technical undertaking of IF protocols; (2) virtual IF images can be gen-

erated in near-real time; and (3) the portability of SHIFT allows it to be integrated into

existing imaging workflows with minimal effort. As such, we see further validation of

SHIFT as an opportunity to simultaneously economize and democratize advanced imag-

ing technologies in histopathology workflows, with implications for multiplexed virtual

imaging. Further, we see our methods for the optimal selection of representative histolog-

ical images, which promote morphological heterogeneity in the training dataset as well as

reduce unnecessary effort on IF staining, as a complement to data augmentation, transfer

learning, and other means of addressing the problem of limited training data. This will

contribute to saving resources and minimizing unnecessary efforts to acquire additional

staining or manual annotation for DL applications in biomedical imaging.
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Chapter 3

Extending virtual staining into 3D

Spatial patterns in TMAs are pure noise.

An esteemed systems biology professor, 2021

3.1 Abstract

Tumors are not 2-dimensional (2D), but many multiplex tissue imaging platforms (MTIs)

make the assumption that tissue microarrays containing small core samples of 2D tissue

sections are a good approximation of bulk tumor. However, emerging 3D tumor atlases

which employ MTIs like cyclic immunufluorescence (CyCIF) strongly challenge this as-

sumption. In spite of the additional insight gathered by measuring the tumor microenvi-

ronment in 3D, it can be prohibitively expensive and time consuming to process tens or

hundreds of tissue sections with CyCIF. Even when resources are not limiting, the crite-

ria for region-of-interest (ROI) selection in tissues for downstream analysis remain largely

qualitative and subjective. To address these challenges, herein we demonstrate that gener-

ative modeling enables a 3D virtual CyCIF reconstruction of a colorectal cancer specimen

given a small subset of the imaging data at training time. By co-embedding histology and

MTI features, we go on to formulate a generative basis for objective ROI selection.
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3.2 Introduction

Cancers are complex diseases that operate at multiple biological scales—from atom to

organism—and the purview of cancer systems biology is to integrate information between

scales to derive insight into their mechanisms and therapeutic vulnerabilities. From this

holistic perspective, the field has come to appreciate that the spatial context of the tumor

microenvironment in intact tissues not only enables a more granular definition of disease,

but also the design of more personalized and effective therapies. This has motivated the

National Cancer Institute’s Human Tumor Atlas Network (HTAN) to begin charting 3D

tissue atlases which capture the multiscale organizations and interactions of immune, tu-

mor, and stromal cells in their anatomically native states [96].

The HTAN-SARDANA [61] is one such atlas which aimed to deeply characterize the

architecture of one whole colorectal cancer (CRC) specimen via histology and a spatial

context-preserving multiplex tissue imaging (MTI) platform called cyclic immunofluores-

cence (CyCIF) [60] (Figure 3.1). Histology is an essential component of the clinical man-

agement of cancer. For around 150 years, pathologists have interrogated thin sections of

tissue stained with hematoxylin and eosin (H&E) to determine the morphological corre-

lates of cancer grade, stage, and prognosis. However, this essentially 2D representation of

tissue is a relatively poor representation of tissues like prostate, pancreas, breast, and colon

which have highly convoluted 3D ductal structures [62, 54, 15, 61]. Moreover, histology

alone lacks the molecular specificity to unequivocally determine the identity and function

of cells in tissue. In contrast, the more recently developed CyCIF enables the co-labelling

of tens of markers in tissue and can broadly characterize the tumor, immune, and stro-

mal compartments. By coupling histology and CyCIF in the same specimen, the HTAN-

SARDANA atlas integrates both top-down (pathology-driven) and bottom-up (single-cell

phenotype-driven) perspectives of CRC and provides a framework for the charting of 3D

atlases for other cancers [61].
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FIGURE 3.1: HTAN-SARDANA dataset and SHIFT modeling overview. Extending SHIFT to 3D
using adjacent spatially-registered H&E/CyCIF WSIs from a single CRC sample. We make the as-
sumption that the central pair of H&E/CyCIF sections is a good representation of the collection of
sections, i.e. that it is most likely to capture features from either end of the section stack. Using this
central section pair, we train individual SHIFT models to predict individual CyCIF images condi-
tioned on H&E images. At test time, we apply the trained SHIFT models to the remaining held-out
H&E sections. Using the stack of SHIFT-generated virtual CyCIF WSIs, we can reconstruct a 3D
virtual stain volume.

In spite of these advances, 3D atlases require a tremendous amount of resources and

effort to build. For the HTAN-SARDANA atlas, a single CRC specimen was serially sec-

tioned and processed yielding 22 H&E slides interleaved with 25 CyCIF slides, with the

CyCIF slides taking days to process due to the cycles of antibody incubation. For the breast

cancer atlas described in [15], a single breast cancer specimen was serially sectioned and

processed into 156 slides which were characterized using imaging mass cytometry, which

enables simultaneous labeling of 40 antigens with a single incubation step, but has rela-

tively limited spatial scope compared to CyCIF. For the pancreas cancer atlas described in

[54], specimens were serially sectioned and processed into over 1000 H&E slides, some of

which had histological regions of interest labeled through a tedious and subjective man-

ual annotation process. These annotations were used as training data for a deep learning
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FIGURE 3.2: H&E stain normalization overview. (A) Tissue sections are subject to technical vari-
ability in stain intensity, even between adjacent sections that are separated by only ∼5 µm. (B)
Representative results of H&E stain normalization. The stain intensity distribution of the test sec-
tion 001 is transformed to match that of the reference section 054 which was used for SHIFT model
training. We experimented with the application of three different H&E stain normalization meth-
ods [71, 89, 117] and found that the Reinhard method best matched the test stain distribution to the
training stain distribution by qualitative comparison. This result was consistent with a quantitative
comparison that found the Reinhard method conferred better generalizability to DL models in an
analogous digital pathology application [110].

segmentation model which was used to fully reconstruct the semantically-labeled 3D spec-

imen with high accuracy.

We have previously demonstrated methods for learning virtual IF stains [116], wherein

we use spatially-registered H&E and IF data and generative deep learning to model the

correspondences between these imaging modes. In doing so we learn to compute near-

real time virtual IF stains conditioned on H&E-stained tissue alone. From a biological

perspective, these data and approach allow us to ask which markers in an IF panel have a

quantifiable histological signature, what that signature might be, and a means to estimate

the distribution of markers in histological images for which such a signature exists. From
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an applications perspective, the approach could be useful for automated compartment

labeling and ROI suggestion in histologically-labeled tissues.

FIGURE 3.3: WSI virtual staining test results for panCK, aSMA, and CD45. Models trained to predict
single-channel CyCIF images conditioned on the H&E/CyCIF training sections were applied to
H&E test section 096 to generate virtual stain WSIs for the markers panCK, aSMA, and CD45. The
input H&E test section is shown at left, and the real and virtual CyCIF WSIs are shown in the rows
above and below, respectively, for ease in comparison.

In the present study, we extend the virtual staining paradigm into the third dimension

by deploying it on the coupled H&E and CyCIF image data from the HTAN-SARDANA

atlas of CRC. We demonstrate that what generative models learn from less than 5% of

coupled H&E and CyCIF images is sufficient to generate a virtual 3D CyCIF reconstruction

of the whole CRC specimen and that quantitative endpoints derived from real and virtual

CyCIF images are highly correlated.
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3.3 Results

3.3.1 3D virtual CyCIF reconstruction and evaluation

The conceptual overview of the HTAN-SARDANA dataset and our virtual staining exper-

iments is presented in (Figure 3.1). Spatially registered H&E and IF images are a require-

ment for SHIFT model training and evaluation. To register the H&E and CyCIF data for

this task, we begin with sequential registration of the H&E stack beginning from the mid-

dle sections and propagate to outer sections. We then co-register ROIs of adjacent H&E

and CyCIF images using their respective nuclear masks for a finer local registration of the

adjacent sections.

FIGURE 3.4: Virtual staining outcomes with different loss functions.

Before SHIFT model training could begin, we had to account for the section-to-section

variability in H&E stain intensity, which helps to ensure a model trained on one H&E sec-

tion generalizes well to the other sections. Using the training H&E section as reference, we

tried several stain normalization methods, and found that the Reinhard method worked
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best at normalizing stain intensities to the reference (Figure 3.2). With registered data in

hand, we set out to generate a virtual 3D CyCIF reconstruction in an effort to measure how

faithfully we can characterize the full SARDANA dataset with virtual IF staining by learn-

ing from only one adjacent pair of H&E and real CyCIF sections. We go about this by first

selecting the middle pair of H&E and CyCIF sections for training SHIFT models, under the

assumption that they are a good representation of the tissue on either side of the sample

block. We then decompose the WSIs into thousands of pairs of matching H&E and IF im-

age tiles, and use those to train a conditional generative adversarial network (cGAN) [48,

116] to synthesize virtual IF tiles conditioned on H&E tiles. Briefly, the generator network

of the model is responsible for synthesizing virtual IF images conditioned on H&E images,

and the discriminator network is responsible for quality assurance of the virtual IF images

synthesized by the generator. Once trained on the middle sections, the model can then be

tested by feeding it tiles from the held-out H&E sections to generate virtual IF images for

comparison with the real CyCIF images. Importantly, a virtual IF image is conditioned on

an H&E section, and there is natural variation between it and its adjacent real IF section

5 µm away, which complicates pixelwise evaluation of model accuracy.

We trained individual SHIFT models to predict single CyCIF channels conditioned on

H&E inputs from the central H&E/CyCIF training sections 053/054 (Figure 3.1). Rep-

resentative test results from the application of trained SHIFT models on H&E/CyCIF test

sections 096/097 are shown in Figure 3.3. These qualitative results indicated that the SHIFT

models were fitting well to the training sections, and the representations learned were use-

ful for extension to held-out test sections, motivating a quantitative evaluation of model

performance.

We also assessed the value added by the discriminator network of the GAN by train-

ing models without it, leaving the generator network to learn the virtual panCK stain alone

(Figure 3.4). We found that while the generator-only virtual panCK stain has good local-

ization, it lacks the naturalistic texture of the real and GAN-generated virtual stains, which
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highlights the compromise of a more efficient and portable generator-only model.

FIGURE 3.5: Difference in image content between adjacent sections estimated using nucleus overlap.
Estimating upper bound on SHIFT performance by measuring concordance between nuclei in ad-
jacent sections for locally- registered ROIs from H&E/CyCIF test sections 096/097. For H&E ROIs,
we deconvolve the hematoxylin stain to extract nuclear content intensity [99], then segment the in-
tensity to derive binary nuclear masks using Cellpose [109]. For CyCIF ROIs, we use Cellpose to
segment DAPI intensity to derive binary nuclear masks. The white regions indicate overlap between
nuclear masks from adjacent sections, and magenta and cyan regions indicate non-overlapping nu-
clear masks from the H&E and CyCIF sections, respectively. The blue region indicates the convex
hull of the merged nuclear masks, which was used to measure and compare the spatial extent of nu-
clear staining over adjacent sections. The Dice coefficients describing the overlap of nuclear masks
from ROIs of adjacent sections were used as compensation factors for evaluating virtual stains.

The virtual CyCIF images generated by SHIFT models are conditioned on H&E sections

which are 5 µm adjacent to the real CyCIF sections, so the cellular contents are slightly

different between sections and images, a difference which can be compounded by slight

errors in image registration. Recognizing that these differences would hamper pixelwise

comparisons between the real and virtual images [115, 116], we estimated an upper bound

on SHIFT performance by measuring the concordance between nuclear content from the

adjacent sections of the H&E/CyCIF test sections 096/097 (Figure 3.5).

The test sections were first subdivided into 135 non-overlapping ROIs and each ROI

was locally registered to improve the alignment of H&E and CyCIF image content, then we

measured the Dice coefficient of nuclear masks derived from the H&E and DAPI images

from each ROI (Figure 3.6A). We used the Dice coefficient for each ROI as a compensation



3.3. Results 61

FIGURE 3.6: Nuclear overlap compensation for virtual staining evaluation. (A) Boxplot describing
the distribution of Dice coefficients of the 135 locally-registered ROIs from H&E/CyCIF test sec-
tions 096/097. (B) Boxplots describing the distributions of structural similarity (SSIM) of real vs.
virtual CyCIF ROIs over the 135 locally-registered ROIs from H&E/CyCIF test sections 096/097.
The Dice-compensated SSIM values are calculated by taking the SSIM of the virtual CyCIF ROI
with respect to the real CyCIF ROI and dividing it by the Dice coefficient of nuclear overlap be-
tween the hematoxylin and DAPI nuclear masks from sections 096/097 for that ROI. The red dotted
line indicates the unity line where SSIM==Dice compensation factor for the boxplots describing
Dice-compensated SSIM.

factor when evaluating the quality of the virtual stains for each ROI by dividing raw qual-

ity scores by the Dice coefficients corresponding to each ROI. Virtual CyCIF image quality

was evaluated using structural similarity (SSIM), which is established as a metric for as-

sessing virtual stain quality [92, 93, 116]. The median compensated SSIM for virtual stains

ranged from 0.36 for CD20 up to 0.89 for aSMA. This result suggested that there was signif-

icant room for improvement for some SHIFT models, but we hypothesized that the virtual

images might still be useful in the hands of a CyCIF domain expert, since SSIM is sensi-

tive to slight differences in image contrast which may not significantly affect downstream

processing [116].

Using a selection of pathologist-annotated regions within H&E test section 096 (Fig-

ure 3.7), we quantified the positive cell ratio for multiple markers in each region using

either real or virtual CyCIF images to assess how such an endpoint might be impacted

when using virtual images which may or may not be of high quality with respect to SSIM

(Figure 3.8).
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FIGURE 3.7: Pathologist annotation of H&E test section 096 into 6 different ROIs. Adapted from a
slide by Jia-Ren Lin, Co-Director of the Tissue Imaging Platform at the Labratory of Systems Phar-
macology, Harvard Medical School.

In spite of the adjacency complication explained above, there was substantial corre-

lation between positive cell ratios using real and virtual CyCIF images, suggesting that

virtual images could be used in place of real without significantly affecting some down-

stream endpoints. Having established the utility of the virtual images, we performed a full

virtual 3D reconstruction of the CyCIF images be passing all held-out H&E test sections to

the SHIFT models trained on H&E/CyCIF training sections 096/097 (Figure 3.9).

3.3.2 Co-embedding H&E and CyCIF image representations

Virtual staining is enabled through the rich latent representations that generative models

are capable of learning from paired H&E and CyCIF image data. We hypothesized that

these latent representations could be useful for the related and unsolved problem of objec-

tive ROI selection. To that end, we built an architecture which learns to co-embed H&E and

CyCIF representations of the same tissue into the same latent representation (Figure 3.10).

This architecture builds upon previous works in cross-domain data translation [63, 102].

As a proof of concept of the proposed architecture in a minimal working example, we
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FIGURE 3.8: ROI cell composition correlation between real and virtual CyCIF. For each of the ROIs
shown in Figure 3.7, the positive ratio of cells for each of panCK, CD45, CD20, and CD3 are cal-
culated using the same workflow and displayed for either real or virtual CyCIF WSIs. Pearson’s
correlations and and p-values describing the association between positive ratios derived from real
and virtual CyCIF WSIs for each marker are indicated above each bar plot. Adapted from a slide by
Jia-Ren Lin, Co-Director of the Tissue Imaging Platform at the Labratory of Systems Pharmacology,
Harvard Medical School.

performed a simple ablation experiment with the CyCIF encoder of the model removed

(Figure 3.11A). For this experiment, the model was tasked with H&E reconstruction and

H&E-to-(DAPI and panCK) translation. To assess goodness of fit, the model was trained to

convergence and evaluated on a training batch (Figure 3.11B). Visual inspection of model

outputs indicated that the model was functioning as intended (Figure 3.11B).

In our original design, the XAE included skip connections that connected across the
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FIGURE 3.9: 3D virtual stain volumes conditioned on held-out H&E test sections.

U-Net generator blocks, but we discovered that the models did not learn useful latent rep-

resentations of images (Figure 3.12), a direct effect of the absence of loss function gradient

flow through the interior layers of the models enable by skip connections (Figure 3.12B).

We removed the skip connections in subsequent experiments and found that these mod-

els exhibit good convergence properties (Figure 3.13A) and have appreciable loss function

gradient flow through the model interior (Figure 3.13B).

Having confirmed that the trained XAE had fit its training distribution (Figure 3.14),

we next wanted to assess the representativeness and interpretability of the latent feature

space that it learned with respect to pathologically interesting regions of the sample. To do

this, we used the H&E encoder of the trained XAE to encode tiles from H&E test section 096

into 512-dimension feature representations and assessed how the features were distributed

over tiles drawn from each of several pathologist-defined ROIs in the test section. We

found that many of the learned image features were associated with pathologically-distinct

regions of the sample (Figure 3.15).

To quantify the utility of these representations in terms of their ability to discrimi-

nate between pathological features, we used the representations to train a random for-

est classification model to predict which ROI tiles were drawn from based on the XAE

representations (Figure 3.16A). The median Matthews correlation coefficient (MCC) and
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FIGURE 3.10: Overview of XAE architecture for H&E and CyCIF channel co-embedding. The model
has two input heads, one for H&E encoder inputs (xi) and another for CyCIF encoder inputs (yi),
both of which encode into a shared latent space (z). The model also has two output heads, one for
H&E decoder outputs (x̃x→x if zi = EH&E(xi) or x̃y→x if zi = ECyCIF(yi)) and another for CyCIF
decoder outputs (ỹy→y if zi = ECyCIF(yi) or ỹx→y if zi = EH&E(xi)). The weights of the last (first)
layer of the encoders E (decoders D) are shared. In this weight-sharing design, we assume for any
given pair of spatially-registered pair xi and yi, there exists a shared latent code zi in the shared
latent space z such that we can recover either that we can recover either xi or yi from zi, and we
can compute zi from either xi or yi [63]. Discriminators Dx and Dy are trained to tell the difference
between real and virtual H&E and CyCIF images, respectively. Discriminators are also provided
the real image of the opposite domain via a channel-wise concatenation with in in-domain image
(e.g. Dx always sees yi), a form of discriminator conditioning which improves the visual quality of
virtual outputs [48]. Optionally, skip connections can be added to confer a U-Net-like design to the
XAE [95], but we found that this produced models which were incapable of learning an adequately
structured latent space. Full XAE model architecture is described in Table 3.2

weighted area under the receiver operating characteristic curve (AUC) following a 5-fold

cross-validation were 0.72 and 0.96, respectively, indicating the utility of XAE features for

downstream tasks.
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FIGURE 3.11: Model ablation validation to demonstrate a minimal working example and proof of
concept for the XAE. (A) XAE architecture with CyCIF encoder removed. The only tasks learned
are H&E reconstruction and H&E-to-CyCIF translation. (B) Ground truth tiles representing a single
training batch. (C) Trained XAE model results for the tasks of H&E-to-H&E reconstruction (recon)
and H&E-to-CyCIF translation (trans) using the ground truth training batch from (B).
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FIGURE 3.12: XAE with skip connections (XAE-SC) fails to learn representative latent space. (A)
Assessing the quality of intermediate and latent representations in a XAE-SC model. An XAE-SC
model was trained to convergence, then each test H&E tile was passed to the trained model. Feature
maps at intermediate and latent layers of the downward pass for each tile were max-pooled along
the channel dimension, then these representations were clustered using PhenoGraph [58] for each
layer independently. Each tile of the test WSI is colored based on its cluster label from the respective
layer in the three inset images. Deeper layers have diminished semantic meaning, with latent space
z encoding nothing more than random noise. (B) Interrogation of the average loss function gradient
flow over XAE-SC layers showed that layers in the interior of the model were not learning during
training.

3.3.3 XAE captures unseen biologically relevant information from H&E images

In order to evaluate how well deep learning can capture and represent unseen complex in-

formation using H&E images alone, VAE and XAE features were compared to cell types de-

fined by CyCIF expressions and pathologist tissue annotations. Clustering tiles within the

whole slide image based on cell type composition resulted in 7 clusters, and the pathologist

annotated 5 key tissue types to be used as ground truth (Figure 3.17A). Ground truth tile

labels were compared against one another to create a baseline for evaluation (Figure 3.17B).

When annotations were used to predict cell type, there was a baseline performance of 57.1

cluster purity and 0.44 NMI. Conversely when cell type was used to predict annotations,

there was a baseline performance of 66.8 cluster purity and 0.44 NMI. In all metrics, XAE

outperformed VAE predictions, achieving a 56.1 cluster purity and 0.35 NMI against cell
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FIGURE 3.13: XAE training dynamics improve without skip connections. The XAE model was
parameterized to have a latent space z channel dimension of 512. (A) Training (left) and validation
(right) loss dynamics move toward convergence and suggest a trade-off between virtual image qual-
ity (pred_HE2IF and pred_IF2HE are the L1 losses for the respective image translation tasks) and the
normal prior constraint on the latent space (KL for Kullback-Leibler divergence). (B) Interrogation
of the average loss function gradient flow over layers for the H&E encoder and decoder paths (left)
and CyCIF encoder and decoder paths (right) of the XAE model indicate that gradient flow through
interior layers can be recovered by removing skip connections.

type, and 70.2 cluster purity and 0.38 NMI against pathologist annotation. It is also no-

table that on the metric of cluster purity against annotations, the XAE outperformed the

baseline metric; this indicates that the XAE is better at predicting tissue type than even cell

type compositions.

Analysis of complex information, deeper than large scale clustering, was conducted

using canonical correlations between the model embedding space and the tile-wise CyCIF

expressions. Visually both VAE and XAE show a good overlap between cell type embed-

dings from CyCIF and model embeddings produced from HE images (Figure 3.17C); the

XAE, however, achieves higher canonical correlations (0.93 and 0.92 compared to 0.91 and

0.88 for VAE). Using these embedding spaces we can plot the density of ground truth clus-

ters and their respective correlates for each architecture. In both modalities, we can see that

all clusters are adequately covered by the predictions with no populations only captured
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FIGURE 3.14: XAE tile-level training results. An XAE model was trained to convergence (same
model as in Figure 3.13) using the indicated CyCIF image channels then evaluated on a training tile
batch. Ground truth tiles are shown at top, cross-domain translation tiles are shown in middle, and
in-domain reconstruction tiles are shown at bottom.
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FIGURE 3.15: XAE latent feature clustering. Using the trained XAE described in Figure 3.13 and
Figure 3.14, the 6742 non-overlapping tiles from H&E test section 096 which had at least one pixel
of pathologist annotation were each encoded into 512-dimension latent feature maps, which were
then each max-pooled along the channel dimension such that tiles were encoded by feature vectors
of length 512. Features were z-scored, then tiles were mean-aggregated based on their ROI and
features were hierarchically clustered. The ROI label keys are 1: tumor adenocarcinoma (n = 2501
tiles); 2: normal mucosa (n = 362 tiles); 3: proper muscle (n = 1576 tiles); 4: submucosa (n = 473
tiles); 5: subserosa, loose connective tissue (n = 782 tiles); and 6: fibrosis, inflammation, lymphoid
aggregate (n = 1048 tiles). The color scale corresponds to the mean of z-scored feature values for
each ROI. The inset image indicates the binary mask corresponding to each ROI with respect to the
layout of the H&E test section 096.

by ground truth.

To confirm that we were extracting relevant and rare cell types with the representa-

tion models, we computed the Spearman correlation between every predicted cluster and

ground truth cluster (Figure 3.17D). From this we can see that XAE has consistently higher

magnitudes of correlation compared to VAE clusters, and that a reasonable correlate exists
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FIGURE 3.16: Random forest classification of histopathological ROIs based on XAE image features.
(A) Confusion matrix resulting from a 5-fold cross validation of random forest ROI classification
over all tiles from H&E test section 096. Value in cell i, j represents the number of tiles from ROI
i which were predicted as being drawn from ROI j. True positive predictions are along the diag-
onal. (B) Boxplot displaying the distribution of Matthew’s correlation coefficients (MCC) and the
weighted area under the curve receiver operating characteristic curve (AUC) over the 5 folds of
cross validation.

for every ground truth cluster except for cell type clusters 4 and 5 which are underrepre-

sented populations. By comparison VAE on has strong correlates to a few abundant cell

types. Furthermore, the cell types that the XAE is able to capture are largely explained

by changes in Na-K ATPase, E-Cadherin, and PCNA, which were shown to be important

indicators for cell phenotypes in prior research on this tissue [61].

It is shown by numerous metrics that the XAE model outperforms the VAE in capturing

detailed information from H&E images alone, which are able to adequately recapitulate

unseen information from CyCIF expression data and pathologist annotations. Because the

XAE encodings are able to adequately recapitulate the information in CyCIF from H&E,

we can use them for proxy analyses such as selecting representative regions of the WSI for

further analysis.
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FIGURE 3.17: Deep learning architectures recapitulate unseen complex information using HE. (A)
Annotations of ROIs as defined by CyCIF cell type clustering, pathologist annotation, H&E-only
VAE feature clustering, and H&E/CyCIF-combined XAE feature clustering. (B) Evaluation metrics
of clustering quality for the VAE and XAE clusters against pathologist annotations or cell type clus-
tering. (C) Canonical correlation analysis results for comparison between the model embedding
space and the tile-wise CyCIF expressions for both the H&E-only VAE model and the H&E/CyCIF-
combined XAE model. (D) Spearman correlations between ground truth clusters and model-derived
clusters.
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3.3.4 Co-embedding H&E and IF representations improves ROI selection

Currently ROI selection within WSI images is done either randomly, which is inaccurate

and is likely to select an area that doesn’t represent the WSI, or with manual selection of

ROI, which is biased, un-quantitative, and has been shown to miss whole tissue patterns

[61]. Using the XAE representations, which capture the complex cell type and annotation

information using H&E, we can construct a quantitative methodology to select ROIs that

are more representative than random sampling while being repeatable and biologically

driven. To measure this, we use three metrics: mean squared error (MSE) between the cell

type composition of selected ROIs and the WSI for a discrete interpretation of composition

difference; Jensen-Shannon Divergence (JSD) between the cell type composition vectors

of selected ROIs and the WSI for a probabilistic interpretation of composition difference;

and mean entropy of the selected ROIs’ cell type compositions to assess the cellular het-

erogeneity of a given ROI selection. Four methods for ROI selection were tested: random

sampling, linear optimization to match cell composition only versus entropy, convex opti-

mization minimizing MSE and maximizing entropy, and a genetic optimization algorithm.

When regions are randomly sampled, we see that the cell type compositions struggle

to converge to the whole slide cell type composition, taking upwards of 20-30 ROIs before

reaching a reasonable representation (Figure 3.18). Adding a simple linear optimization to

select ROIs drastically decreases the number of ROIs necessary to around 7. This number

of ROIs is equivalent to the number of cell type clusters for which we were optimizing,

which is indicative that the algorithm was selecting primarily homogeneous regions that

reconstruct the whole slide composition. This is validated looking at the mean entropy of

ROIs for the base linear optimization method, which shows very low mean ROI entropy in

the 1000 pixel size ROIs and middling mean ROI entropy in the 2500 pixel size ROIs. When

entropy is considered in the convex optimization, we see convergence much earlier at 3-4

representative ROIs. Unlike the simple linear optimization, however, the ROIs selected are
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not homogenous and include much more biologically interesting regions with diverse cell

populations.

Although cell type composition and entropy were used as metrics of biological rele-

vance in this setting, it is likely that other experiments would have different priorities.

Some examples of this might include: weighting cell type clusters by level of interest;

weighting entropy negatively if homogeneous regions are desired; weighting some other

extracted scores such as co-localization of two cell types of interest. The method of op-

timization is versatile and amenable to many different functions. The key takeaway is

that this pipeline allows for intelligent representation from H&E images, which enables a

plethora of subsequent analyses on this representation space.

3.4 Discussion

The advance of MTI platforms like CyCIF promises to increase our understanding of het-

erogeneity and cellular interactions within the tumor microenvironment, both of which

play increasingly important roles in the development of effective treatments [130]. Al-

though its clinical potential is immense, CyCIF is time- and labor-intensive, technically

complicated, and high-cost, so assessment is typically limited to only a small subset of a

given biopsy, which is unlikely to be fully representative of a patient’s disease. Also, the

cost associated with MTI will undoubtedly limit its use to within highly-developed clinical

settings for the foreseeable future, further widening the quality-of-care gap between high-

and low-income communities. Until MTI matures into an economy of scale, these chal-

lenges will only be further amplified in 3D applications. The technological gap between

standard histology and MTI technologies highlights the broader need for automated tools

that leverage information attained by a low-cost technique to infer information typically

attained by a high-cost technique.
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FIGURE 3.18: Optimization of ROI selection. ROI selections are optimized based on either the MSE
between the cell type compositions of the ROIs and the WSI (top row), or both the JSD between the
cell type compositions of the ROIs and the WSI and the feature-level entropy of the ROI selection
(middle row). Two different pixel sizes are used for the ROIs, to highlight the trade-offs for scaling
up or down.of different pixel sizes for ROIs. The bottom row shows an example of CVX selected
ROIs for the the two ROI sizes.



76 Chapter 3. Extending virtual staining into 3D

To help address some of these challenges, in the present study we extend a virtual

staining paradigm to a 3D CRC atlas [61] and demonstrate that generative models can

learn from a minimal subset of the atlas to reconstruct the remaining sections of the CyCIF

portion of the atlas and recapitulate quantitative endpoints derived using the real CyCIF

data. We also implement and evaluate a novel deep learning architecture which integrates

paired H&E and CyCIF data into a shared representation and demonstrate that the model

can be used as a quantitative and objective guide for ROI selection, with the integrated

H&E/CyCIF representations being more informative than H&E representations alone.

One of the takeaways from qualitative comparison of real and virtual CyCIF stains

was identification of a discrepancy between the real and virtual CD45 stains of an immune

aggregate in section 001. In particular, the virtual CD45 model underestimated the real

intensity of the aggregated cells. We attribute this to the fact that virtual stains are stan-

dardized to their training sets, and because the same immune aggregate in the training

section 054 did not match the outlying high intensity CD45 distribution of 001, the model

had not learned to match it. This sort of discrepancy can either be a feature of the virtual

stain, in that in standardized the section-to-section technical variability of the IF stain, or

a bug in our training procedure, in that our training set did not capture an important bio-

logical feature present in the held-out test set. However, by looking at the real CD45 image

from next nearest section to section 001, about 30 µm away, we see that the immune aggre-

gate does not exhibit outlying high intensity, which suggests that the assumption made by

the model may have been a good one. If this were not the case, such a bug could be cor-

rected through trial and error on a larger or more representative training set with guidance

from a pathologist, in a process similar to the design and validation of a real stain.

Quantitative comparisons of real and virtual CyCIF stains exposed the challenge of

using adjacent sections to train models, where image contents are subtly but appreciably

different between sections at single-cell resolution. This challenge could be overcome in

future studies by staining each tissue section first with CyCIF then terminally with H&E
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FIGURE 3.19: Inconsistency in ground truth CD45 stain intensity between proximal sections is at-
tenuated by virtual staining.

[116], which would ensure that the image contents are exactly the same between H&E and

CyCIF images and minimize the difficulty of image co-registration. This study takes for

granted that histology is an inherently destructive procedure. Studies which require serial

sectioning and processing of tissue can preclude tissue from being used in other assays.

Alternatively, a non-destructive 3D microscopy approach using tissue clearing and light-

sheet microscopy could be deployed, which would also preserve tissues for other assays

[62]. However, the slow diffusion rate of antibodies in whole tissues limits limit the deep

multiplexing potential of the CyCIF platform in this non-destructive approach, but the

use of small molecule dyes and affinity agents could help to overcome this challenge and
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constitutes one of the most promising avenues forward for 3D virtual staining applications

[128].

3.5 Methods

3.5.1 H&E stain normalization

To minimize the influence of technical variability on stain color between H&E sections,

we experimented with the application of several stain normalization methods to the H&E

WSIs [89, 71, 117] using the Python package staintools (https://github.com/Peter554/

StainTools). To identify and mask out background regions of each WSI (white regions of

slide without tissue), WSIs were each cropped into non-overlapping 256× 256-pixel tiles

and tiles containing greater than 70% area of pixels with 8-bit intensity greater than (210,

210, 210) were excluded from subsequent normalization steps. To help identify and mask

out background pixels in the remaining tiles before model fitting and normalization, the

foreground tiles from each H&E WSI were independently standardized such that 5% of

all pixels were luminosity saturated. For all normalization methods, we used the H&E

WSI from section 054 as the stain reference to which the stain intensity distributions of all

other H&E WSIs would be fit. After normalizing the foreground tiles of each non-reference

WSI to fit the reference stain distribution, tiles were restitched to form cohesive WSIs. On

the basis of visual inspection (Figure 3.2), we opted to use the Reinhard normalization

method, which has also been shown to maximize deep learning model performance on

digital pathology applications [110].

3.5.2 CyCIF image preprocessing for SHIFT and XAE modeling

To control for variations in raw contrast between CyCIF WSIs, we rescaled the intensities

of CyCIF WSIs to have a min-max range fit to the 70th-99.99th intensity percentiles of the

https://github.com/Peter554/StainTools
https://github.com/Peter554/StainTools


3.5. Methods 79

input WSIs. Intensity percentiles were empirically chosen based on their exclusion of low-

and high-intensity artifacts.

3.5.3 SHIFT models

SHIFT models were built using PyTorch as previously described [116]. Model architec-

tures are described in Table 3.1. Models were trained to predict single channel images

corresponding to one of the CyCIF stains from input H&E tiles from section 054, e.g. H&E

→ CD45 or H&E → CD31. Paired H&E and CyCIF image tiles from section 054 were

split into 80% training (8134 tiles) and 20% validation (2034 tiles) sets and each model was

trained with a batch size of 4 and learning rate of 0.0002 for 100 epochs. Best models were

selected based on the lowest validation loss at each epoch end and were then used for

downstream application to held-out H&E WSIs.

3.5.4 XAE models

XAE models were built using PyTorch. Model architectures are described in Table 3.2.

The XAE architecture used here is an adaptation of the UNIT architecture [63] and the

imaging-to-omics XAE architecture [102]. XAE models have two input encoders (FIGURE

XXX), one accepting H&E image tiles (batch size ×3× 256× 256), and the other accepting

the corresponding paired CyCIF images (batch size × N CyCIF channels × 256 × 256).

Both encoders compress their inputs into a shared latent space z. From z, image represen-

tations can be upscaled by either H&E or CyCIF decoders. Hence, there are four forward

paths through the model: (1) H&E reconstruction: H&E→ z → H&E; (2) H&E-to-CyCIF

translation: H&E→ z → CyCIF; (3) CyCIF reconstruction: CyCIF→ z → CyCIF; and (4)

CyCIF-to-H&E translation: CyCIF → z → H&E. Models were trained with a batch size

of 16 and a learning rate of 0.0001 for 100 epochs. Best models were selected based on
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the lowest validation loss at each epoch end and were then used for downstream appli-

cation to held-out H&E WSIs. We also experimented with a U-Net-like architecture with

skip connections between encoder and decoders [95], but found that loss gradients did not

propagate to the most internal layers of these models such that meaningful latent repre-

sentations were not learned.

3.5.5 Comparing VAE vs XAE tile-based representations

Tile cluster identity

Ultimately, we want to evaluate whether deep learning architectures can recapitulate the

biological information of both cell type and pathologist, but since VAEs and XAEs operate

on a tile by tiles basis, it is necessary to cluster tiles based on their cell type composition.

For every tile in the WSI, a vector was created that represented the composition of cell

types. The ground truth cell type information was made by KMeans clustering these com-

position vectors (Figure 3.17A). Using the elbow method, we determined that 7 clusters

was the optimum for evaluation. A smaller number of clusters within the elbow was cho-

sen to better match the number of pathologist annotations for consistency in evaluation.

Pathologist information was created manually by an expert pathologist, resulting in 5 dis-

tinct tissue types (Figure 3.17A). Tiles were assigned a ground truth tissue type based on

the maximum pixel-wise tissue type within the region. 7 clusters were computed for both

the standard VAE and the XAE encoding vectors to evaluate against the cell type ground

truth clusters.

Several metrics were used to evaluate different aspects of the ground truth recapitula-

tion. Cluster purity was used to evaluate how well the two methodologies were able to

reconstruct the same clusters as ground truth:

Purity =
1
N

k

∑
i=1

max(ci ∩ tj) (3.1)
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where N is the number of datapoints, k is the number of clusters, c is the set of predicted

clusters and t is the set of ground truth clusters. The sklearn [86] implementation of Nor-

malized Mutual Information (NMI) was used as another metric to evaluate the same ques-

tion:

NMI(U, V) =
MI(U, V)

mean(H(U), H(V))
(3.2)

where U and V are the predicted and ground truth cluster labels. The predicted tile-type

clusters were paired to ground truth cell-type clusters and annotations using the Spearman

correlation.

To evaluate whether the deep learning models capture the same level of feature in-

formation as CyCIF staining, we used the pyrcca [9] implementation of canonical correla-

tion on the encoded latent feature space and the paired CyCIF tilewise expressions. The

outputs from this process produced two components shared between the two modalities.

Quantitatively the correspondence of the two modalities can be measured by the canonical

correlation of each component, and qualitatively the correspondence can be observed by

the overlap in the scatter plot of the new components.

3.5.6 ROI sampling

Random sampling

Random sampling was conducted by randomly drawing a new non-overlapping ROI re-

peatedly. For bulk analysis and comparison, 2000 random combinations of k ROIs were

selected where k is the number of ROIs found to be optimal for the other sampling meth-

ods.

Linear optimization on composition and entropy

If b represents counts of cells across clustered group and ai represents the cell number

belong to the i-th ROI, by solving min
x
||x||1 s.t. b = Ax we could identify the minimum
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number of ROIs to match WSI cellular population. The main issue of this approach is

that it often selects ROIs with homogeneous cell populations. Since we do not have cell

composition beforehand, we will use cluster results based on latent representation of tiles

within ROIs via embedding both H&E and CyCIF. Underlying assumption here is that

H&E/CyCIF embedding reflects tile-based cell composition.

For optimization on cluster composition, b = Ax where b ∈ RN , b represents the com-

position vector of clustered groups within the WSI, each column of A ∈ RN×M represents

a possible ROI and each row contains the percentage of tiles in that ROI for each cluster;

N, M represent the number of clusters and the number of possible ROIs in the WSI respec-

tively. Then, we solve the optimization problem: min
x
||x||1 s.t. b = Ax and s.t. 0 ≤ x ≤ 1.

Implementation of this function was conducted using the intlinprog function in MATLAB.

Linear optimization on composition

To optimize both composition and ROI heterogeneity, we take the entropy of the compo-

sition vector into account using the convex optimization function: min(norm(Ax − b) −

λEx) s.t. b = Ax, where E ∈ RM represents the vector of entropies and λ is a hyperparam-

eter governing the weight of entropy. We solve the optimization such that 0 ≤ x ≤ 1 and

∑ x = 1. Implementation of this function was conducted using CVX in MATLAB.

Evaluation

The quality of the selected representative ROIs was evaluated based on three metrics:

Mean squared error (MSE) compared to WSI composition; Jensen-Shannon Divergence

(JSD) of the ROI and WSI compositions; and mean ROI entropy. Mean squared error was

calculated using:

MSE =
1
n

n

∑
i=1

(Ri −Wi)
2 (3.3)
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where n is the number of predicted clusters, R is the percent composition of each cluster

within all selected ROIs combined, and W is the percent composition of each cluster within

the WSI. JSD was calculated using:

JSD =
1
2

n

∑
i=1

Rilog2

(
Ri

1
2 (Ri + Wi)

)
+

1
2

n

∑
i=1

Wilog2

(
Wi

1
2 (Ri + Wi)

)
(3.4)

where n is the number of predicted clusters, R is the percent composition of each cluster

within all selected ROIs combined, and W is the percent composition of each cluster within

the WSI. The mean entropy was calculated using:

mean entropy =
1
m

m

∑
i=1

∑ rilog(ri) (3.5)

where m is the number of selected ROIs and r is the percent composition within each

individual ROI.
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Layer Generator

D1
Conv2d(3, 64, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

LeakyReLU(negative_slope=0.2, inplace=True)

D2
Conv2d(64, 128, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
LeakyReLU(negative_slope=0.2, inplace=True)

D3
Conv2d(128, 256, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
LeakyReLU(negative_slope=0.2, inplace=True)

D4
Conv2d(256, 512, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
LeakyReLU(negative_slope=0.2, inplace=True)

D5
Conv2d(512, 512, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
LeakyReLU(negative_slope=0.2, inplace=True)

D6
Conv2d(512, 512, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
LeakyReLU(negative_slope=0.2, inplace=True)

D7
Conv2d(512, 512, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
LeakyReLU(negative_slope=0.2, inplace=True)

D8
Conv2d(512, 512, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

ReLU(inplace=True)

U1
ConvTranspose2d(512, 512, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
ReLU(inplace=True)

U2
ConvTranspose2d(1024, 512, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
ReLU(inplace=True)

U3
ConvTranspose2d(1024, 512, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
ReLU(inplace=True)

U4
ConvTranspose2d(1024, 512, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
ReLU(inplace=True)

U5
ConvTranspose2d(1024, 256, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
ReLU(inplace=True)

U6
ConvTranspose2d(512, 128, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
ReLU(inplace=True)

U7
ConvTranspose2d(256, 64, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True)
ReLU(inplace=True)

U8
ConvTranspose2d(128, 1, kernel_size=(4,4), stride=(2,2), padding=(1,1))

Tanh()

Layer Discriminator

1
Conv2d(4, 64, kernel_size=(4,4), stride=(2,2), padding=(1,1))

LeakyReLU(negative_slope=0.2, inplace=True)

2
Conv2d(64, 128, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
LeakyReLU(negative_slope=0.2, inplace=True)

3
Conv2d(128, 256, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
LeakyReLU(negative_slope=0.2, inplace=True)

4
Conv2d(256, 512, kernel_size=(4,4), stride=(1,1), padding=(1,1), bias=False)

BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
LeakyReLU(negative_slope=0.2, inplace=True)

5 Conv2d(512, 1, kernel_size=(4,4), stride=(1,1), padding=(1,1))

TABLE 3.1: SHIFT model architecture. Layers are represented in PyTorch pseudocode. For the layer column,
D and U represent down- and up-sampling layers of the U-Net architecture [95], respectively.
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Layer Encoders Shared?

1

ReflectionPad2d((3, 3, 3, 3))
Conv2d(3, 64, kernel_size=(7,7), stride=(1,1))

InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False)
LeakyReLU(negative_slope=0.2, inplace=True)

No

2
Conv2d(64, 128, kernel_size=(4,4), stride=(2,2), padding=(1,1))
InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)
No

3
Conv2d(128, 256, kernel_size=(4,4), stride=(2,2), padding=(1,1))
InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)
No

4 ResBlock(N=256 ,K=3, S=1) No
5 ResBlock(N=256, K=3, S=1) No
6 ResBlock(N=256, K=3, S=1) No

z
ResBlock(N=256, K=3, S=1)

Reparameterization()
Yes

Layer Decoders Shared?
1 ResBlock(N=256, K=3, S=1) Yes
2 ResBlock(N=256, K=3, S=1) No
3 ResBlock(N=256, K=3, S=1) No
4 ResBlock(N=256, K=3, S=1) No

5
ConvTranspose2d(256, 128, kernel_size=(4,4), stride=(2,2), padding=(1,1))

InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False)
LeakyReLU(negative_slope=0.2, inplace=True)

No

6

ConvTranspose2d(128, 64, kernel_size=(4,4), stride=(2,2), padding=(1,1))
InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False)

LeakyReLU(negative_slope=0.2, inplace=True)
ReflectionPad2d((3, 3, 3, 3))

No

7
Conv2d(64, 3, kernel_size=(7,7), stride=(1,1))

Tanh()
No

Layer Discriminators Shared?

1
Conv2d(11, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))

LeakyReLU(negative_slope=0.2, inplace=True)
No

2
Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False)

LeakyReLU(negative_slope=0.2, inplace=True)
No

3
Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False)

LeakyReLU(negative_slope=0.2, inplace=True)
No

4
Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
InstanceNorm2d(512, eps=1e-05, momentum=0.1, affine=False)

LeakyReLU(negative_slope=0.2, inplace=True)
No

5 Conv2d(512, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) No

ResBlock
ReflectionPad2d((1, 1, 1, 1))

Conv2d(N, N, kernel_size=(K, K), stride=(S, S))
InstanceNorm2d(N, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)
ReflectionPad2d((1, 1, 1, 1))

Conv2d(N, N, kernel_size=(K, K), stride=(S, S))
InstanceNorm2d(N, eps=1e-05, momentum=0.1, affine=False)

TABLE 3.2: XAE model architecture. Layers are represented in PyTorch pseudocode.
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Chapter 4

Toward single-cell data analysis

across multiplex tissue imaging

platforms

— What if the answers are wrong?
— Just stir the pile until they start looking right.

xkcd

4.1 Abstract

The emergence of megascale single-cell multiplex tissue imaging (MTI) datasets necessi-

tates reproducible, scalable, and robust tools for cell phenotyping and spatial analysis. We

developed open-source, graphics processing unit (GPU)-accelerated tools for intensity nor-

malization, phenotyping, and microenvironment characterization. We deploy the toolkit

on a human breast cancer (BC) tissue microarray stained by cyclic immunofluorescence

and benchmark our cell phenotypes against a published MTI dataset. Finally, we demon-

strate an integrative analysis revealing BC subtype-specific features.
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FIGURE 4.1: Overview of CyCIF analysis workflow. Once TMA cores are stained by CyCIF, cells
are segmented and cell mean intensities are extracted, normalized, then used to define cell pheno-
types for analyses of tissue composition and architecture. Box (1) shows an example of RESTORE
normalization of single-cell Ecad intensities using mutually-exclusive expression of CD68 to derive
a normalization factor for Ecad. Box (2) shows benchmarking results for CPU and GPU implemen-
tations of PhenoGraph for phenotyping of simulated single-cell datasets. Compared to the legacy
CPU implementation, our GPU implementation of PhenoGraph is orders of magnitude faster at
scale. Error bars show standard deviation of three replicate executions. Box (3) shows the spatial
layout of high-dimensional cell phenotypes in a representative tissue core.

4.2 Introduction

Multiplex tissue imaging (MTI) methods like cyclic immunofluorescence (CyCIF) [60, 30],

CODEX [37], multiplex immunohistochemistry (mIHC) [111], imaging mass cytometry

(IMC) [36], and multiplex ion beam imaging [4] enable measurements of the expression

and spatial distribution of tens of markers in tissues, and have facilitated our under-

standing of the interactions and relationships among distinct cell types in diverse tis-

sue microenvironments. Nevertheless, for MTI to reach its full potential as a research
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paradigm, numerous computational challenges must be overcome, including (1) repro-

ducible normalization of single-cell intensity measurements to enable intra- and inter-

sample comparisons; (2) robust cell phenotyping at megascale to enable comparison–and

soon compilation–of MTI datasets from different platforms; and (3) the development of

insightful spatial features to characterize the microenvironment of the tissue or disease of

interest, and so enable discrimination between tissues that vary over important clinical

parameters.

To address these challenges, we present (see Figure 4.1): (1) a broadened application

of our data-intrinsic normalization method [17], which leverages the mutually exclusive

expression pattern of marker pairs in MTI stain panels to estimate normalization factors

without subjective and time-consuming manual gating; (2) a distributed and graphics pro-

cessing unit (GPU)-accelerated implementation of PhenoGraph [58], the popular graph-

based algorithm for subpopulation detection in high-dimensional single-cell data; and (3)

an integrative analysis using this toolkit on ∼1.3 million cells from a 180-sample, pan-

subtype human breast cancer (BC) tissue microarray (TMA) dataset (Figure 4.2) stained by

CyCIF using a marker panel that characterizes tumor, immune, and stromal compartments

(Table 4.1). Through consideration of both tissue composition and architecture, we identify

features independent from hormone receptor (HR) and human epidermal growth factor

receptor 2 (HER2) expression which discriminate between the canonical BC subtypes.

4.3 Results

For RESTORE normalization [17] of each TMA core, we leverage the fact that tumor, im-

mune, and stromal cells exhibit mutually exclusive expression of cell type-specific markers,

and use a graph-based clustering to define positive and negative cells and normalization

factors (Figure 4.3A). Putative reference and mutually-exclusive (ME) marker pairs used
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FIGURE 4.2: Overview of TMA composition. (A) Core diameters split by TMA source and BC
subtype. (B) Core count split by TMA source and BC subtype. (C) Cell count split by TMA source
and BC subtype.

for normalization can be found in Table 4.2. Also see section 4.5.3 for implementation

details.

When the raw expression vectors of all cells across TMAs are embedded by

t-stochastic neighbor embedding (t-SNE) [70], cells are segregated based on TMA source

(Figure 4.3B, left), mainly due to batch effect and in part due to subtype bias within

TMAs (Figure 4.2B-C). Following normalization, shared cell types between TMAs are

co-embedded (Figure 4.3B, right) and cell expression of immune, tumor, and stromal

markers is segregated (Figure 4.4C), a validation of the normalization process.

To define cell types among the ∼1.3 million cells in the normalized feature table, we

first attempted to use the central processing unit (CPU)-based version of the widely-used

algorithm PhenoGraph [58], but found it to be inefficient at this scale. To overcome this

computational bottleneck, we re-implemented PhenoGraph to be executable on GPUs.
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FIGURE 4.3: Cell mean intensity normalization across TMAs. (A) Example of RESTORE normaliza-
tion [17] of CD4 and CD68 cell mean intensities for a single TMA core. Cell mean intensities of these
immune markers are plotted against the cell mean intensity of epithelial CK19, a mutually exclusive
marker. Cells are partitioned into positive (blue) and negative (red) populations. Black lines repre-
sent the computed normalization factors. Cells to the right of each line are above the background
intensity level for that immune marker. (B) t-SNE embeddings of all cells using either raw (left) or
normalized (right) cell mean intensities for all markers. Cells are colored according to the TMA from
which they originate. A strong batch effect is observed before normalization, leading to partition-
ing according to TMA of origin. Following normalization, cell phenotypes shared between TMAs
are co-localized. However, some TMA-specific partitioning remains due to subtype-specific marker
bias within TMAs. The coordinates used in the t-SNE plots at right are the same as those used in
Figure 4.5A, where cells are colored by metacluster. In the plot in Figure 4.5A, it is clear that the
HR+ and HER2+ tumor cells aggregated in the lower left correspond to the HR+ and HER2+ TMA
cores from the BR1506, Her2B, and T-ATAC cohorts from Figure 4.3.

Using the Python libraries RAPIDS [88] and CuPy [79] to parallelize and accelerate sev-

eral of PhenoGraph’s computations (see subsection 4.5.4), we observed multiple orders of

magnitude improvement in the algorithm’s speed without sacrificing clustering quality

(Figure 4.1, box (2)). Our PhenoGraph implementation identified diverse tumor, immune,

and stromal cell types across tissues and BC subtypes (Figure 4.5). To define phenotypes

shared across tissues, metaclusters of similar phenotypes were aggregated based on the hi-

erarchical clustering of phenotypes based on their mean marker expression. While tissues

from all BC subtypes contained similar populations of immune, stromal, and endothelial

cells, differences between BC subtypes were largely driven by variable tumor cells expres-

sion of luminal and basal cytokeratins, HER2, and the hormone receptors ER and PgR, as
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FIGURE 4.4: Marker intensity distribution over normalized cells. t-SNE normalized embedding
from Figure 4.3, faceted by marker, showing only cells that have a mean intensity above the normal-
ization factor for that marker. Color scale is log-transformed normalized intensity.

previously reported [50]. We further assessed the robustness of our identified cell pheno-

types by either subsampling tissue cores (Figure 4.6A-C), or by applying ±20% noise to

normalization factors for each marker for each core (Figure 4.6D) and found that pheno-

types are identified as they are sampled and are robust to minor variation in normalization

factors.

With the growth of MTI in the cancer research and translational communities, there is

an acute need for robust and integrative analyses of MTI data across platforms and co-

horts [97]. In a step toward addressing that need, we validated our identified cell types

through comparison with a recently published survey of BC by IMC [50]. While the total

number of cells from each BC subtype varied between the Basel (IMC) and OHSU (CyCIF)

cohorts (Figure 4.7A), there was substantial overlap between the marker panels used for
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FIGURE 4.5: Defining single-cell phenotypes across breast cancer clinical subtypes. (A) t-SNE em-
bedding of full single-cell CyCIF dataset colored by cell phenotype metacluster. (B) Hierarchi-
cal clustering of PhenoGraph clusters and CyCIF markers. The colorscale represents the z-scored
marker expression. The scatter plot displays how each BC subtype is composed, where point size
represents the percentage of that BC subtype that is composed of that cluster. The bar plot represents
that absolute number of cells belonging to each cluster and BC subtype.

each MTI platform (Figure 4.7B). By aligning the cell phenotypes independently detected

by PhenoGraph in each cohort (Figure 4.8C), we found highly-correlated clusters for stro-

mal, immune, basal, and proliferating cell types, among others (Figure 4.8D), suggesting

that shared cell types could be matched across cohorts and MTI platforms, a necessary step

for data integration. We note that differences between cohort cell types may reflect the

differences between cohort composition with respect to BC subtype. Consistent between

cohorts and platforms, tumor cells differed more between samples than did immune, stro-

mal, and endothelial cells (Figure 4.9).
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FIGURE 4.6: Validation of BC cell phenotype robustness. (A) Maximum Pearson’s correlations be-
tween full reference cell phenotypes and those derived using PhenoGraph on cells from a random
fractional sample of TMA cores, iterated five times at each fraction level. (B) Phenotype matching
between the full reference phenotypes and those derived from a 90%-subsampled fraction of TMA
cores. Phenotypes are ordered by increasing matching correlation. Matching phenotypes are linked
by a line, and lines are colored to discriminate between adjacent or overlapping links. 40_neighbor
represents the PhenoGraph cluster labels since we set k = 40 when defining the k-nearest neigh-
bor graph in the PhenoGraph routine. The colorbar indicates z-scored marker expression. (C) The
proportion of cells from each reference phenotype that correspond to the 10% of TMA cores held
out from the 90%-subsampled fraction from (B). Unmatched phenotypes in the full reference cor-
respond in part to cells from held-out cores. The dotted line marks the 10% threshold. (D) Maxi-
mum Pearson’s correlation between full reference phenotypes and those derived using PhenoGraph
on normalized mean intensities from all TMA cores, but with ±20% random noise added to each
marker in each core.
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FIGURE 4.7: Comparison of IMC and CyCIF BCTMA datasets. (A) Cellular ratio highlighting com-
positional differences between Basel [50] and OHSU (this work) cohorts with respect to BC subtype.
(B) The intersection of the IMC and CyCIF marker panels used to stain tissues from the Basel and
OHSU cohorts, respectively.

Although BC is appreciated as a genetically and morphologically heterogeneous dis-

ease, its clinical subtyping is based on the expression of relatively few markers—in par-

ticular, tumor cell expression of the hormone receptors for estrogen and progesterone

(ER and PgR, respectively, or HR, collectively), and human epidermal growth factor 2

(HER2)—which is insufficient to explain differences in treatment response within each

subtype [87]. Recent studies using MTI to interrogate intact BC tissues have found that

the spatial contexture of the BC microenvironment can improve our ability to predict clini-

cal outcome [50, 53]. However, because these studies have either focused on disease risk or

a single BC clinical subtype, here we focused on compositional and spatial features which

differentiate between subtypes.

At the composition level, we first considered the tumor cell differentiation states of BC

subtypes through their expression of luminal and basal cytokeratins (CKs). While CK+

cells in HR-/HER2+, HR+/HER2-, and HR+/HER2+ tissues primarily expressed luminal

CKs 19, 8, and 7, CK+ cells in TN tissues exhibited significantly greater differentiation state

heterogeneity (Figure 4.10A), as they expressed many different combinations of luminal

and basal cytokeratins (Figure 4.10B). This differentiation state heterogeneity is consistent

with the genetic and histological heterogeneity of triple negative BC (TNBC) described
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FIGURE 4.8: Cross-platform benchmarking of BC cell phenotypes. (A) PhenoGraph cluster match-
ing between Basel and OHSU cohorts. Using only the intersecting markers, cells from each cohort
were independently clustered using PhenoGraph with the same parameterization, then cohort clus-
ters were pairwise correlated and hierarchically clustered based on the resulting correlation struc-
ture. We identified highly-correlated clusters between cohorts, including those corresponding to
epithelial, immune, stromal, endothelial, and proliferating cell populations. (B) Maximum Pear-
son’s correlation corresponding to inter-cohort cluster matches.
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FIGURE 4.9: For both OHSU and Basel cohorts, tumor cells differ more between samples than im-
mune, stromal, or endothelial cells. (A) The same t-SNE embedding of the OHSU dataset from
Figure 4.5A, but with cells colored based on the unique tissue core from which they are derived. (B)
The same t-SNE embedding of the OHSU dataset from Figure 4.5A, but with annotations indicat-
ing immune, stromal, endothelial, and tumor phenotypic regions. (C) A t-SNE embedding of the
Basel dataset [50] derived using the same parameters as were used for the OHSU t-SNE embedding,
with cells colored based on the unique tissue core from which they are derived. (D) The same t-
SNE embedding as in (C), but with annotations indicating immune, stromal, endothelial, and tumor
phenotypic regions.
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FIGURE 4.10: Epithelial differentiation heterogeneity across BC subtypes. (A) Box plot displaying
cytokeratin (CK) expression heterogeneity across BC subtypes, where each box represents the dis-
tribution of tissue cores from a BC subtype, and each core is summarized based on the entropy of
the distribution of CK+ cell types contained within it. Groupwise comparisons were made using
one-way ANOVA with pairwise Tukey post-hoc test (TN, n = 47; HR+HER2-, n = 52; HR-HER2+,
n = 53; HR+HER2+, n = 28). *P < 0.001 for all TN comparisons with other BC subtypes. (B) UpSet
plot summarizing the distribution of CK+ cell types across BC subtypes, considering each CK alone
(left margin) or in combination (upper margin).

in other studies [42, 8]. We next determined the composition of each tissue core with

respect to the cell metaclusters we defined above. Hierarchical clustering of cores based

on their cell metacluster densities highlighted the broad variability of cellular composition

within and between BC subtypes (Figure 4.11A-B). When the cell metaclusters were further

aggregated into immune, stromal, and tumor cell types (see section 4.5.8), we found the

HR+HER2- tissues to have lower overall immune cell density than the other BC subtypes,

and no differences in stromal or tumor cell density between subtypes (Figure 4.11C).

Recognizing that cell density measurements fail to capture the organization of cells in

each tissue, we next characterized the spatial architectures of BC subtypes by building cell

neighborhood graphs for each tissue. Given the recent evidence that the quantity and di-

versity of BC tumor cell interactions with other cell types can inform disease outcome [50,
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FIGURE 4.11: (A) Cell phenotype density across tissue cores. Bar plot where each bar represents a
TMA core, the full bar height represents its total cell density, and each colored segment represents
the density of a particular cell metacluster. Bars are hierarchically clustered based on cell metacluster
densities. Each bar is labeled with its corresponding subtype, stage, and grade, if a label is available.
The inset brackets indicate (1) cores with abundant H3K27me3+ tumor cells, which could indicate
a mechanism of HR repression in some TN and HR-/HER2+ tissues [21]; (2) cores with abundant
infiltrating B cells (TIL-B), consistent with association found between TIL-B and high-grade, HR- BC
[34]; and (3) cores with relatively low immune density, consistent with the finding that HR+/HER-
tissues are immunologically cold compared to TN and HER2+ tissues [3, 125]. (B) A selection of
representative tissue cores. (C) The immune, stromal, and tumor densities of tissue cores from each
BC subtype. Groupwise comparisons were made using one-way Welch ANOVA and Games-Howell
post-hoc test. *P = 0.034, **P = 0.035, ***P = 0.079 (TN, n = 47; HR+HER2-, n = 52; HR-HER2+,
n = 53; HR+HER2+, n = 28).
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FIGURE 4.12: Breast cancer cellular composition belies tumor-stromal interaction.(A) Stacked bar
plots displaying the proportion of tumor cell 10-nearest neighbors for each BC subtype. Each colored
bar segment represents the proportion of tumor cell neighbors that are comprised of the correspond-
ing cell metacluster. (B) Bar plot representation of tissue core stromal mixing, where only cores with
greater than 0.25 stromal fraction are shown. Cores are ordered based on increasing stromal mixing.
Inset shows box plot comparing stromal mixing over BC subtype. Groupwise comparisons were
made using one-way Welch ANOVA and Games-Howell post-hoc test. *P <0.001 for all HR+HER2-
comparisons (TN, n = 47; HR+HER2-, n = 52; HR-HER2+, n = 53; HR+HER2+, n = 28). (C) Scat-
ter plot displaying stromal density versus stromal mixing and images of representative cores with
similar stromal density but different stromal mixing.

53], we first identified the neighboring cells to each tumor cell and compared the compo-

sition of tumor cell neighborhoods across BC subtypes (Figure 4.12A). Though most tu-

mor cell interactions (∼70-80%) are with other tumor cells typical to their BC subtype, we

observed increased tumor-stromal interaction in the HR+HER2- subtype. When consid-

ering tissues that contain an appreciable population of stromal cells (tissues comprised of

at least 25% stromal cells), we confirmed that there was significantly more stromal mixing

with tumor cells in HR+HER2- tissues (Figure 4.12B). Importantly, stromal mixing can vary
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widely between tissues in spite of their similar stromal density (Figure 4.12C), highlight-

ing the importance of the spatial context that is preserved in intact tissues. Since malignant

epithelial cells can suppress fibroblast maturation and thus promote fibroblast aromatase

activity [12], ER+HER2- tumors likely favor more from proximal fibroblasts as a source of

growth-inducing estrogen than other BC subtypes, and may even act to maintain tumor

microenvironments with high stromal mixing [11].

FIGURE 4.13: Graph-based characterization of tumor architecture discriminates HR+/HER2- tu-
mors. (A) Overview of tumor architecture characterization. A spatial graph is defined over tumor
cells, where each tumor cell is connected to others within a 65 µm radius from its centroid, and the
closeness centrality is then measured over this graph. Each core is then summarized as a histogram
of centrality values. (B) Hierarchical clustering of cores based on their tumor closeness centrality
histograms. The upper and lower outset tumor graphs correspond to the right and left tissue core
images in Figure 4.12C, respectively. Scale bar in tumor graphs is 150 µm.

We reasoned that differences in tumor-stromal interaction might translate into

detectable differences between BC subtypes based on their tumor architectures alone.
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To characterize the tumor architecture of each tissue, we constructed tumor architecture

graphs over which we computed the closeness centrality for each tumor cell, which

quantifies the relative closeness of that tumor cell to all other tumor cells in the tissue

(Figure 4.13A). Consistent with the stromal mixing trend observed above, HR+HER2-

tissues had a mean tumor closeness centrality significantly greater than tissues from

the other BC subtypes (Figure 4.13B and Figure 4.14), which is in part a reflection of

HR+HER2- tumor cell nests tending to be separated by narrower streams of stromal

cells than tumor nests in tissues from other BC subtypes (Figure 4.12C). In summary, by

analyzing BC tissues with spatially resolved MTI, we have identified inter-cell phenotype

(stromal mixing) and intra-cell phenotype (tumor closeness centrality) interactions which

can be leveraged to help discriminate between canonical BC subtypes on a basis other

than receptor expression.

FIGURE 4.14: Tumor closeness centrality increased in HR+/HER2- tumors. Comparison of tumor
closeness centrality between BC subtypes. Groupwise comparisons of mean tumor closeness cen-
trality were made using one-way Welch ANOVA and Games-Howell post-hoc test. *P = 0.016,
**P = 0.0099, ***P = 0.0010 (TN, n = 47; HR+HER2-, n = 52; HR-HER2+, n = 53; HR+HER2+,
n = 28).
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FIGURE 4.15: Using a BC cell type dictionary to put clinical samples in context. Here we demon-
strate in a report mock-up how our analysis framework could be used in a clinical setting like the
ongoing SMMART trial [51]. (A) In the SMARRT trial, patients have tissue samples taken through-
out their treatment. By integrating the CyCIF data of these clinical samples with the BCTMA CyCIF
data, we can put them in a pan-subtype context and are able to assess how cell type composition
differs after treatment, as shown in the bar plot at left. Blue and red bars correspond to biopsy 1
and biopsy 2, respectively, i.e. pre- and post-treatment. (B) A UMAP projection of all SMARRT and
BCTMA tisues based on cell type composition can indicate disease subtype, transition, or switching.
(C) Tissues can be hierarchically clustered based on cell type composition to reveal population-level
features and trends. Stacked bar plot colors correspond to the cell types defined in (A). The hierarchi-
cal clustering of subtype labels provides an alternative representation of tissue similarity compared
to the UMAP projection.

4.4 Discussion

This work is motivated by an understanding that the spatial context of the tumor microen-

vironment in intact cancer tissues enables a more granular definition of disease, and—we

hope—the design of more personalized and effective treatments. With spatially-resolved

MTI, our analysis makes clear that the cellular composition of BC tissue can belie impor-

tant aspects of its spatial architecture. Ongoing work involves validating these findings
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in a cohort with more extensive clinical annotation to assess their significance to disease

outcome between and within BC subtypes. One potential application of our BC cell phe-

notypes is as a reference "dictionary" for putting clinical samples in context (Figure 4.15).

While the BC cell phenotypes and architectural features we have derived will be assets to

future BC studies, our generic toolkit can be used stand-alone or integrated with existing

toolkits [100] to improve the efficiency and reproducibility of analytics for any single-cell

measurement platform.

4.5 Methods

4.5.1 Acquisition of breast cancer tissue microarrays (TMAs)

The tissues used in this study are a compilation of multiple TMAs: BR1201a-SG48 (US

Biomax Inc., https://www.biomax.us/BR1201at), BR1506-A019 (US Biomax Inc., https://

www.biomax.us/tissue-arrays/Breast/BR1506), Her2B-K154 (US Biomax Inc., https://

www.biomax.us/tissue-arrays/Breast/Her2B), and the TransATAC TMAs T-ATAC-4A-

Left and T-ATAC-4A-Right [28]. All tissues that were successfully stained and imaged

were included in the study, representing 180 tissue cores from 128 patients.

4.5.2 Cyclic immunofluorescence (CyCIF) staining of tissues

Tissue preparation

Formalin-fixed paraffin-embedded (FFPE) human tissues were received mounted on ad-

hesive slides. The slides were baked overnight in an oven at 55 ◦C (Robbin Scientific,

Model 1000) and an additional 30 minutes at 65 ◦C (Clinical Scientific Equipment, NO.

100). Tissues were deparaffinized with xylene and rehydrated with graded ethanol baths.

Two step antigen retrieval was performed in the Decloaking Chamber (Biocare Medical)

https://www.biomax.us/BR1201at
https://www.biomax.us/tissue-arrays/Breast/BR1506
https://www.biomax.us/tissue-arrays/Breast/BR1506
https://www.biomax.us/tissue-arrays/Breast/Her2B
https://www.biomax.us/tissue-arrays/Breast/Her2B
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using the following settings: set point 1 (SP1), 125 ◦C, 30 seconds; SP2: 90 ◦C, 30 sec-

onds; SP limit: 10 ◦C. Slides were further incubated in hot Target Retrieval Solution, pH

9 (Agilent, S236784-2) for 15 minutes. Slides were then washed in two brief changes of

diH2O (∼2 seconds) and once for 5 minutes in 1x phosphate buffered saline (PBS), pH 7.4

(Fisher, BP39920). Sections were blocked in 10% normal goat serum (NGS, Vector S-1000),

1% bovine serum albumin (BSA, Sigma A7906) in PBS for 30 minutes at 20 ◦C in a humid

chamber, followed by PBS washes. Primary antibodies were diluted in 5% NGS, 1% BSA in

1x PBS and applied overnight at 4 ◦C in a humid chamber, covered with plastic coverslips

(Bio-Rad, SLF0601). Following overnight incubation, tissues were washed 3 x 10 min in

1x PBS. Coverslips (Corning; 2980-243 or 2980-245) were mounted in Slowfade Gold plus

DAPI mounting media (Life Technologies, S36938).

Fluorescence microscopy

Fluorescently stained slides were scanned on the Zeiss AxioScan.Z1 (Zeiss, Germany) with

a Colibri 7 light source (Zeiss). The filter cubes used for image collection were DAPI (Zeiss

96 HE), Alexa Fluor 488 (AF488, Zeiss 38 HE), AF555 (Zeiss 43 HE), AF647 (Zeiss 50) and

AF750 (Chroma 49007 ET Cy7). The exposure time was determined individually for each

slide and stain to ensure good dynamic range but not saturation. Full tissue scans were

taken with the 20x objective (Plan-Apochromat 0.8NA WD=0.55, Zeiss) and stitching was

performed in Zen Blue image acquisition software (Zeiss).

Quenching fluorescence signal

After successful scanning, slides were soaked in 1x PBS for 10–30 minutes in a glass Coplin

jar, waiting until glass coverslip slid off without agitation. Quenching solution contain-

ing 20 mM sodium hydroxide (NaOH) and 3% hydrogen peroxide (H2O2) in 1x PBS was

freshly prepared from stock solutions of 5 M NaOH and 30% H2O2, and each slide placed
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in 10 ml quenching solution. Slides were quenched under incandescent light, for 30 min-

utes for FFPE tissue slides. Slides were then removed from chamber with forceps and

washed 3 x 2 min in 1x PBS. The next round of primary antibodies was applied, diluted in

blocking buffer as previously described, and imaging and quenching were repeated over

ten rounds for FFPE tissue slides.

4.5.3 Data pre-processing

Cell segmentation and mean intensity extraction

Cell segmentation and mean intensity extraction were performed as previously described

[30]. The nuclei and cells segmentation are performed using mathematical morphology.

The process starts by segmenting the nuclei:

1. The DAPI image contrast is equalized using contrast-limited adaptive histogram

equalization to remove illumination and staining irregularities.

2. The equalized DAPI image is cleaned by removing noise and artifacts as well as

flattening the texture using an alternative sequential filter (alternation of opening

and closing with structuring elements of increasing size).

3. A white top-hat filter is applied to separate the nuclei from the remaining back-

ground.

4. Area openings and closings (opening/closing based on the surface instead of a struc-

turing element) are performed to flatten nuclei texture.

5. An ultimate opening is employed to find nuclei centers.

6. Nuclei centers are used as seeds in a watershed algorithm applied on the Sobel gra-

dient of the original image, which provides the final nuclei segmentation.
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7. For cell segmentation, nuclear segmentation masks are used as seeds in another wa-

tershed algorithm applied on a gradients combination of the markers CD44, CD45,

CK7, CK19, and E-cadherin.

Mean intensities for each cell were extracted from the biologically-relevant compartment

for each marker, i.e. mean intensities for markers with known nuclear (cytoplasmic) local-

ization were extracted from nuclear (cytoplasmic) segmentation masks (Table 4.2). Cyto-

plasmic segmentation masks were computed by subtracting nuclear segmentation masks

from full cell body segmentation masks.

Single-cell intensity normalization

Normalization factors for single-cell mean intensities were computed as previously de-

scribed [17] using the putative mutually-exclusive marker pairs in Table 4.2. Normaliza-

tion factors are computed for each pair of reference and mutually-exclusive markers, and

the median of these factors is used to normalize each raw single-cell mean intensity vector

for each CyCIF marker and each TMA core. Raw intensities were normalized using the

equation:

x̂i,j =
xi,j −min(xi,j)

φi,j −min(xi,j)
, (4.1)

where x̂i,j and xi,j are the normalized and raw single-cell mean intensity vectors for CyCIF

marker i for all cells in tissue core j, respectively, and φi,j is the corresponding normaliza-

tion factor determined as described above. Therefore, cells with a normalized intensity

greater than 1 are considered to be above the background intensity level.

4.5.4 Single-cell phenotyping

Algorithm selection

The number of single-cell phenotyping algorithms has rapidly proliferated alongside the

development of single-cell cytometry platforms [124, 65]. With so many options from
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which to choose, the appropriate choice of algorithm depends on the questions one hopes

to ask of the data being considered. For instance, prior biological knowledge can be lever-

aged by supervised or semi-supervised algorithms to bias identification toward known

cell types of interest. In contrast, unsupervised algorithms identify cell types by leveraging

only the internal data structure, making them the algorithms of choice in discovery-based

studies where relatively little is known about the underlying biology. Among the unsuper-

vised algorithms, PhenoGraph [58] and FlowSOM [119] stand out for their abilities to pre-

cisely identify known cell types with high cluster coherence—i.e. high (low) inter-(intra)-

cluster variance—and without the incorporation of prior biological knowledge [65]. One

notable tradeoff between these two CPU-executed algorithms is runtime, with FlowSOM

having a considerably faster runtime compared to PhenoGraph [124]. However, because

PhenoGraph was used to define breast cancer cell types in a related study [50], we opted to

use PhenoGraph in the current study to enable a fair comparison of the cell types defined

between studies. Furthermore, the relatively slow runtime of CPU-executed PhenoGraph

motivated our GPU-accelerated implementation.

GPU acceleration of PhenoGraph

Given a cell-by-feature dataframe, the PhenoGraph algorithm [58] consists of two primary

steps: (1) defining a k-nearest neighbor graph over all cells that is then refined by com-

puting the Jaccard similarity measure over graph edges, and (2) partitioning the graph

into discrete cell phenotypes through optimization of partition modularity, such that cells

in the same partition are more connected to each other than to cells of another partition.

In the official version of PhenoGraph (https://github.com/dpeerlab/PhenoGraph), these

steps are implemented using a combination of Python and C++ libraries that execute on

CPU. In Figure 4.1 box (2), we show that PhenoGraph execution time increases exponen-

tially with increasing dataset size, taking approximately 3 hours to process a synthetic 1

https://github.com/dpeerlab/PhenoGraph
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million cell-by-10 feature dataset. Most MTI datasets measure tens of features, but CPU-

based PhenoGraph was unable to fully process the 1 million cell-by-30- and 50-feature

synthetic datasets in the 8 hours allotted for the experiment. We see such computational

bottlenecks–which would be even further constricted when compiling multiple MTI or

cytometry datasets–as a major obstacle to current studies and future meta-studies of high-

dimensional MTI datasets, where rapid iteration will be essential to the validation of cross-

platform data integration techniques.

Owing to recent advances in GPU computing and its ever-broadening adoption in ma-

chine learning research, there now exist accelerated GPU-based analogs of many Python

scientific computing libraries [88, 79], including those with which the CPU-based Pheno-

Graph is implemented. Some of these libraries even allow computation to be distributed

across multiple GPUs [88, 26]. We employed two of such libraries, CuPy [79] and RAPIDS

[88], to accelerate each step of the PhenoGraph algorithm and enable distributed comput-

ing over multiple GPUs. For example, for a synthetic dataset containing 50,000 samples

and 50 features, the GPU implementation realizes a 354-fold speed up in the graph build-

ing and refinement step (97.3 seconds for CPU vs. 0.275 seconds for GPU) and a 141-fold

speed up in the Louvain partitioning step (11.2 seconds for CPU vs. 0.0795 seconds for

GPU).

With our GPU-based implementation, it is now possible to phenotype cells in megas-

cale cytometry datasets in seconds-to-minutes rather than hours-to-days, and without sub-

sampling. Moreover, our GPU implementation of PhenoGraph is competitive with Flow-

SOM in terms of execution time (Figure 4.16), which until now was one of the primary

motivations for choosing FlowSOM over PhenoGraph [124, 65].

We have packaged our GPU implementation into a Python library called grapheno and

have adopted the API from the official CPU implementation of PhenoGraph found at

https://github.com/dpeerlab/phenograph. To run a simple clustering of synthetic data:

https://github.com/dpeerlab/phenograph
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FIGURE 4.16: Comparison of execution time between FlowSOM and our GPU implementation of
PhenoGraph.

import cudf

import cuml

import grapheno

X , _ = cuml . make_blobs ( )

X = cudf . DataFrame . from_records (X)

communities , G, Q = grapheno . c l u s t e r (X)

In practice, X can be any single-cell dataframe with cells as rows and features as

columns. For a dataframe with N cells, communities will be a vector of length N specifying

the cluster label for each cell. G is a RAPIDS graph object representing the relationships

between cells that were used for clustering. Q is the modularity score for the clustering

result defined by communities. Installation instructions and additional details about our

implementation can be found at https://gitlab.com/eburling/grapheno.

https://gitlab.com/eburling/grapheno
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Benchmarking CPU and GPU implementations of PhenoGraph

To ensure that our GPU implementation of PhenoGraph produced results consistent with

the CPU implementation, we benchmarked each using synthetic datasets which varied in

terms of number of samples and number of features (Figure 4.17).

FIGURE 4.17: Benchmarking CPU and GPU implementations of PhenoGraph. (A) Scatter plots
showing t-SNE embeddings of synthetic data, colored based on cluster label defined by either im-
plementation. The modularity Q for each clustering result is shown above the plot. (B) Boxplot
showing the distribution of GPU vs.CPU cluster purity for synthetic data. (C) Boxplots showing the
distribution of clustering modularities for either implementation for the same synthetic data gener-
ated using the indicated number of samples and number of features. No significant difference was
observed in modularity between implementations (ANOVA, P = 0.999).

Synthetic data were generated using the make_classification function from the RAPIDS

library, using the settings n_classes=16, class_sep=4, and weights=dirichlet(ones(16)*5) to

randomly scale the proportion of samples in each class. Examples of clustering results for
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each implementation are shown in Figure 4.17A. To check for differences in clustering re-

sults, we compared the purity and modularity of clusters derived using either CPU or GPU

implementations and the same parameterization (k = 40). Purity measures the percentage

of correctly clustered objects—in this case the percentage of agreement between clustering

results from each implementation—and is calculated as:

Purity =
1
N

m

∑
i=1

maxj|ci ∩ tj| (4.2)

where N is the total number of objects, m is the number of clusters from the CPU imple-

mentation, ci is the i-th cluster from the CPU implementation, and tj is the cluster from the

GPU implementation which has the maximum number of objects from the cluster ci. The

CPU and GPU implementations yielded almost identical clustering results, i.e. >= 0.9999

inter-implementation cluster purity for all combinations of n_sample and n_features (Fig-

ure 4.17B). Modularity (Q) is the quantity optimized by the Louvain algorithm used by

PhenoGraph to partition k-nearest neighbor graphs of cells into clusters of similar cells.

As anticipated based on the tight agreement between cluster results between implementa-

tions, we detected no significant difference between CPU and GPU clustering modularity

(Figure 4.17C). Very slight differences between clustering results correspond to a maxi-

mum of 0.003% of cells being mis-matched between implementations and can be attributed

to the degeneracy of Louvain partitioning.

Phenotyping and metacluster annotation

Apart from the benchmarking experiment described in Figure 4.1 box (2), we use only

our GPU-based implementation of PhenoGraph throughout this work. Single-cell phe-

notypes were defined based on single-cell mean intensity for the 35-marker CyCIF panel

(Table 4.1). Prior to application of PhenoGraph, data were 99.9th-percentile normalized

and arcsin transformed (cofactor = 5). Following [50], PhenoGraph was parameterized
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(k=40) to over-cluster the data and detect rare cell types. PhenoGraph clustering was fol-

lowed by aggregation of phenotypes into metaclusters based on hierarchical clustering of

phenotype mean marker intensities and to preserve known biological variation.

Robustness of derived cell phenotypes

To assess PhenoGraph clustering robustness to sampling shift, PhenoGraph clusters were

derived using random subsets of tissues of varying cardinality, from 10% to 90% of all

tissues, and compared the z-scored mean marker intensities of the PhenoGraph-derived

clusters from the full reference dataset and each subset using pairwise Pearson’s correla-

tion. Even with heavy subsampling, the median of the maximum correlations between

matching clusters from reference-to-sample comparisons held at∼0.75 (Figure 4.6A), indi-

cating that we are defining a robust core set of cell phenotypes. Indeed, the major variation

between reference and subsample clusters appeared to be sample-specific tumor cell phe-

notypes from the tissues held out from each subsample (Figure 4.6B-C), suggesting that

PhenoGraph defines robust cell phenotypes that are shared across tissues and is capable

of detecting new phenotypes as they are added to the dataset. To assess the robustness of

our derived phenotypes to variability in normalization, we also simulated±20% measure-

ment noise by multiplying the normalized cell intensity vectors for each tissue and marker

by a scaling factor drawn uniformly at random from the range [0.8,1.2] and compared the

z-scored mean marker intensities of the PhenoGraph-derived clusters from the clean refer-

ence and noisy datasets using pairwise Pearson’s correlation. Even with these significant

perturbations to the intensity profiles of cells, the median of the maximum correlations

between matching clean and noisy clusters held above 0.8 (Figure 4.6D), indicating cluster

robustness to differentials in preanalytical variables like tissue fixation or autofluorescence

which can affect measured IF intensity across a TMA.
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4.5.5 t-stochastic neighbor embedding (t-SNE)

To enable visualization, the full 35-feature single-cell dataset was reduced to 2 dimensions

using the RAPIDS implementation of t-SNE [70] with default parameters except perplexity

= 60. Prior to t-SNE processing, data were 99.9th-percentile normalized and arcsin trans-

formed (cofactor = 5). Plots containing t-SNE embeddings of the full ∼1.3 million-cell

dataset were created using Datashader (https://github.com/holoviz/datashader).

4.5.6 Cross-platform breast cancer cell phenotype validation

The imaging mass cytometry (IMC) dataset [50] used for our cell phenotype validation

experiment was retrieved from https://zenodo.org/record/3518284. To make a fair

comparison between the OHSU (CyCIF) and Basel (IMC) datasets, we independently ran

PhenoGraph on each using the same parameters (k=40, Louvain partitioning) and only the

overlapping features between IMC and CyCIF stain panels (Figure 4.7B). The phenotypes

derived from each platform were then cross-correlated to identify inter-platform pheno-

type matches. Using the clustermap function from seaborn [123], the cross-correlation

matrix was then hierarchically clustered with Ward linkage and used to sort the matching

clusters between the two cohort heatmaps.

4.5.7 Statistical analyses

For the groupwise comparisons in Figure 4.10A, Figure 4.11C, Figure 4.12B, we first

tested the assumption of homogeneity of variances using the bartlett function from

the Python package SciPy [120]. When the assumption was (not) met, we made

groupwise comparisons using one-way ANOVA with Tukey-HSD post-hoc test using the

pairwise_tukey (one-way Welch ANOVA with Games-Howell post-hoc test using the

pairwise_gameshowell) function from the Python package pingouin [118].

https://github.com/holoviz/datashader
https://zenodo.org/record/3518284
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4.5.8 Tissue composition analyses

Epithelial differentiation heterogeneity

Cells from each core were labeled as positive for each cytokeratin if their mean intensity

was greater than the normalization factor computed for that cytokeratin for that core. The

plot from Figure 4.10B was generated using UpSetPlot (https://github.com/jnothman/

UpSetPlot). The CK heterogeneity of each core was computed by measuring the Shannon

entropy of its distribution of CK-expressing cells. The homogeneity of variances assump-

tion was met, so comparison of the CK heterogeneity over BC subtypes was made using

the pairwise_tukey function from pingouin [118].

Aggregation of immune, stromal, and tumor cell phenotypes

To enable high-level comparison of cell phenotype distribution over BC subtypes (Fig-

ure 4.11C and Figure 4.12B), cell metaclusters were aggregated into immune, stromal, and

tumor groups with the following metacluster membership:

• immune = [B cell/T cell, B cell, T cell/macrophage, T cell, macrophage]

• stromal = [CD44+ endothelial, PDPN+/aSMA+ stromal, ColI+ stromal,

Lamin+/Vimentin+ stromal, ColI+/PDPN+ stromal, Vimentin+ stromal, Vimentin+

endothelial]

• tumor = [Ecad+/CK low, CK5+, CK5+/CK14+, myoepithelial, CK+/H3K27me3+,

epithelial low, CK14+, Ecad+/CK+, proliferating, apoptotic, H3K4me3+,

HER2+/CK8+, ER+, HER2 low, HER2+/CK+, ER+/PgR+]

Cell phenotype density

The density of each of the 27 cell metaclusters in each tissue core was measured by count-

ing the number of cells of each metacluster in the core, then dividing the count by the area

https://github.com/jnothman/UpSetPlot
https://github.com/jnothman/UpSetPlot
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of the convex hull defined by the cell centroids of the core. Tissue cores were then hierar-

chically clustered based on their z-scored cell metacluster densities using the clustermap

function with Ward linkage from seaborn [123]. The homogeneity of variances assump-

tion was not met, so comparisons of immune, stromal, and tumor cell densities over BC

subtypes were made using the pairwise_gameshowell function from pingouin [118].

4.5.9 Tissue architecture analyses

Tumor cell neighborhood interactions

To characterize the microenvironments of tumor cells across BC subtypes, we identified the

cell metaclusters of the 10 nearest cells within 65 µm (double the median of the minimum

tumor-stromal distances across all tissue cores) of each tumor cell. Tumor cells were then

split based on the BC subtype of the tissue from which they were derived, and counts for

each metacluster were summed over all tumor cells such that each metacluster could be

represented as a proportion of the total tumor neighborhood for each BC subtype.

To measure the extent of tumor-stromal cell interactions in each tissue core, we com-

puted their stromal mixing scores, an adaptation of a previously described cell-cell mixing

score [53]. To focus on cores that had substantial stromal composition, we first selected

cores which are comprised of at least 25% stromal cells and for each we defined a 10-nearest

neighbor spatial graph over all cells in that core. Second, we removed edges between cells

with an interaction distance greater than 65 µm. Finally, we computed the stromal mixing

score for tissue core j as:

(stromal mixing)j =
(# tumor-stromal interactions)j

(# stromal-stromal interactions)j
. (4.3)
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Tumor graph centrality

To characterize tumor architecture in each tissue core, we considered the spatial inter-

actions between tumor cells only. To account for variation in tissue core diameter (Fig-

ure 4.2A) which would affect the scale of spatial graph characteristics, we subsampled

large diameter cores to be equal in size to the smallest diameter cores by only consider-

ing cells within the 300 µm-radius circle drawn about the centroid of each core. With the

spatially-subsampled cores, we first construct a 4-nearest neighbor spatial graph over all

tumor cells in each core. Here we use k = 4 rather than k = 10 to construct a sparser graph

since we are focusing on tumor cells only. Over this graph we compute the Wasserman-

Faust closeness centrality of each cell using the closeness_centrality function from the

Python package networkx [41]. The Wasserman-Faust closeness centrality of cell u is com-

puted as:

CWF(u) =
n− 1
N − 1

n− 1

∑n−1
v=1 d(v, u)

, (4.4)

where d(v, u) is the shortest-path distance between cells v and u, n is the number of cells

that can reach u, and N is the number of cells in the graph. For heatmap visualization,

the distribution of tumor cell centrality for each core was max-normalized, converted into

a 50-bin histogram over range = (0,1), then hierarchically clustered using the clustermap

function from seaborn [123] with Jensen-Shannon distance and average linkage.

4.5.10 Plotting and visualization

Unless otherwise noted, all plots were generated using Holoviews [98] with either the

Bokeh [10] or matplotlib [47] backends. Images of CyCIF-stained tissue cores were gener-

ated using napari [108].
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4.5.11 Computing hardware

The GPU-accelerated PhenoGraph implementation was developed and deployed on the

NVIDIA V100 GPU with 32 GB memory, but the grapheno Python library can be compiled

to work with any NVIDIA GPU.

4.5.12 Data availability

Data and code with be made available through zenodo.com and gitlab.com upon publi-

cation.

zenodo.com
gitlab.com
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Marker Description Vendor Vendor # Dye Clone

CD20 B cell Abcam ab198941 AF488 EP459Y

CD4 T cell Abcam ab196147 AF647 EPR6855

CD44 cell adhesion Abcam ab216647 AF750 EPR1013Y

CD45 lymphocyte Abcam ab214437 AF750 EP322Y

CD68 macrophage Biolegend 916104 AF555 KP1

FOXP3 regulatory T cell Biolegend 320102 AF750 206D

GRNZB proteolysis Abcam ab219803 AF750 EPR20129-217

CK5 basal cytokeratin Abcam ab193894 AF488 EP1601Y

CK14 basal cytokeratin Abcam ab212547 AF555 LL002

CK17 basal cytokeratin Abcam ab185032 AF488 EP1623

CK7 luminal cytokeratin Abcam ab185048 AF488 EPR1619Y

CK8 luminal cytokeratin Abcam ab192467 AF488 EP1628Y

CK19 luminal cytokeratin Biolegend 628502 AF750 A53-B/A2

Ecad cell adhesion Abcam ab201499 AF750 EP700Y

AR hormone receptor Sigma 06-680-AF555 AF555 polyclonal

ER hormone receptor Abcam ab205851 AF647 EPR4097

PgR hormone receptor Abcam ab199455 AF750 YR85

HER2 receptor tyrosine kinase Santa Cruz sc-33684 AF555 3B5

aSMA myoepithelia Santa Cruz sc-32251 AF488 1A4

CD31 endothelia Abcam ab218582 AF647 EPR3094

Vimentin (Vim) mesenchyme CST 9854 AF488 D21H3

ColI extracellular matrix Abcam ab215969 AF750 EPR7785

ColIV extracellular matrix ThermoFisher/eBioscience 51-9871-82 AF647 1042

LamA/C nuclear structure Sigma SAB4200236 AF750 4C11

LamB1 nuclear structure Abcam ab194106 AF488 EPR8985(B)

LamB2 nuclear structure Abcam ab200427 AF647 EPR9701(B)

H3K4me3 epigenetic activation CST 11960 AF555 C42D8

H3K27me3 epigenetic repression CST 5499 AF488 C36B11

PDPN migration signalling Biolegend 916606 AF555 polyclonal

cPARP apoptosis CST 6894 AF555 D64E10

gH2AX replication stress Abcam ab195189 AF647 EP854(2)Y

Ki67 proliferation CST 12075 AF647 D3B5

PCNA proliferation CST 8580 AF488 PC10

pHH3 mitosis CST 3465 AF488 D2C8

p-S6 translational activation CST 3985 AF555 D57.2.2E

TABLE 4.1: Antibody panel used for CyCIF staining of tissues.
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Reference ME markers

AR_Nuclei CK5_Ring FOXP3_Nuclei ColIV_Ring

aSMA_Ring CK14_Ring CD45_Ring CK7_Ring CK5_Ring CK19_Ring

CD20_Ring CK14_Ring CK7_Ring CK5_Ring CK19_Ring

CD31_Ring CK5_Ring CK19_Ring CK14_Ring CK7_Ring Ecad_Ring

CD4_Ring CK19_Ring CK7_Ring CK14_Ring CK5_Ring Ecad_Ring

CD44_Ring CK14_Ring CK7_Ring CK5_Ring CK19_Ring CD31_Ring

CD45_Ring CK19_Ring CK7_Ring CK14_Ring CK5_Ring CK8_Ring CD31_Ring

CD68_Ring CK19_Ring CK7_Ring CD31_Ring CK14_Ring

CK14_Ring CD31_Ring CD68_Ring Vim_Ring aSMA_Ring CD20_Ring CD45_Ring

CK17_Ring CD31_Ring CD68_Ring Vim_Ring ColI_Ring CD45_Ring

CK5_Ring CD31_Ring CD68_Ring Vim_Ring CD4_Ring CD45_Ring

CK19_Ring CD68_Ring CD4_Ring CD31_Ring CD45_Ring

CK7_Ring CD68_Ring CD4_Ring CD31_Ring CD45_Ring FOXP3_Nuclei

CK8_Ring CD68_Ring CD4_Ring CD31_Ring CD45_Ring

ColI_Ring CD45_Ring CK19_Ring CK7_Ring CK14_Ring CK5_Ring

ColIV_Ring CK19_Ring CK7_Ring CK14_Ring CK5_Ring CD68_Ring FOXP3_Nuclei

cPARP_Nuclei Ki67_Nuclei CK5_Ring CD31_Ring CD68_Ring CK14_Ring

Ecad_Ring CD68_Ring CD4_Ring CD31_Ring

ER_Nuclei CD68_Ring CD4_Ring CD31_Ring FOXP3_Nuclei

FOXP3_Nuclei CK19_Ring CK7_Ring CK5_Ring CK14_Ring CD31_Ring CK8_Ring

gH2AX_Nuclei CK8_Ring CK14_Ring CK5_Ring CK7_Ring

GRNZB_Ring CK19_Ring CK7_Ring CK5_Ring CD31_Ring CK14_Ring aSMA_Ring

H3K27me3_Nuclei CD31_Ring CD68_Ring CD44_Ring

H3K4me3_Nuclei CD31_Ring CD68_Ring CD44_Ring CK19_Ring

HER2_Ring CD68_Ring CD44_Ring CD31_Ring Vim_Ring CD4_Ring

Ki67_Nuclei cPARP_Nuclei

LamAC_Nuclei CD68_Ring CD44_Ring CK19_Ring CD45_Ring

LamB1_Nuclei CD68_Ring CD44_Ring CK19_Ring CD45_Ring CK14_Ring CK7_Ring CD31_Ring

LamB2_Nuclei CD68_Ring CD44_Ring CK19_Ring CD31_Ring CK7_Ring CK14_Ring

PCNA_Nuclei CK7_Ring CD45_Ring CD31_Ring CD68_Ring CK14_Ring LamB2_Nuclei

PDPN_Ring CK19_Ring CK7_Ring CK14_Ring CK5_Ring CD31_Ring CD68_Ring

PgR_Nuclei CD68_Ring CD4_Ring CD31_Ring CD20_Ring aSMA_Ring Vim_Ring

pHH3_Nuclei CD31_Ring CK5_Ring CK19_Ring CK14_Ring GRNZB_Ring

p-S6_Ring CK19_Ring CK5_Ring CK7_Ring CK14_Ring

Vim_Ring CK19_Ring CK7_Ring CD68_Ring CD45_Ring Ecad_Ring

TABLE 4.2: Putative reference and mutually-exclusive (ME) marker pairs used for RESTORE nor-
malization of cell mean intensities. Each marker name indicates from which compartment its mean
intensity was extracted. "Ring" indicates that a marker’s intensity was extracted from the ring-
shaped cytoplasmic segmentation masks derived by subtracting the "Nuclei" segmentation masks
from "Cell" segmentation masks.
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Chapter 5

Conclusion

5.1 Thesis summary

Without question, MTI is playing and will continue to play an essential role in the advance-

ment of cancer systems biology and precision medicine, and the work we present herein

supports that advancement. The key contributions of this dissertation are:

1. The development of a virtual staining paradigm which enables fast and accurate

prediction of protein distribution in digitized histology slides, and a framework for

quantitative cohort selection based on histological features.

2. The extension of the virtual staining paradigm into the third dimension through ap-

plication on a 3D tumor atlas, and a framework for quantitative ROI selection based

on the integration of histological and molecular features.

3. The development of a GPU-accelerated single-cell analysis framework which enables

reproducible, scalable, and robust analysis of data across MTI platforms, both in

terms of cell composition and spatial arrangement in associated tissues.

Toward the original goal of offsetting some of the challenges of MTI, the work pre-

sented in this dissertation is preliminary and will require validation in larger cohorts be-

fore consideration of use in research or clinical settings.
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5.2 Significance and commercial potential

5.2.1 Significance of virtual staining with SHIFT

The virtual staining paradigm we present through SHIFT could make an impact in both

research and clinical settings, where the quality of patient care is limited by the efficiency

and accessibility of imaging assessments. According to the Centers for Medicare and Med-

icaid Services—the federal agencies which regulate all clinical laboratory testing on human

specimens through the Clinical Laboratory Improvement Amendments (CLIA)—there are

260,000 laboratory entities in compliance with CLIA in operation today in the U.S. [1],

many of which rely on IHC/IF to better understand the pathology of their specimens. The

Immunostains Laboratory at Mayo Clinic alone is responsible for performing ∼198,000

IHC tests each year [2], each of which can cost hundreds of dollars and take up to a day

to process before being interpreted by a pathologist. Considering projections that the U.S.

will be 5,700 pathologists short of the projected need of 20,000 by 2030 [94], SHIFT could

help to overcome this cost and bottleneck by allowing fewer pathologists to handle more

cases.

The speed with which SHIFT is able to deliver accurate virtual IF information make it

an appealing preliminary, auxiliary, or alternative technique to traditional IF or CyCIF in

clinical trials which strive for near-real-time monitoring of patient disease and response

to therapy. For example, the metastatic BC-focused Serial Measurements of Molecular

and Architectural Responses to Therapy (SMMART) trials currently being conducted at

Oregon Health & Science University (OHSU) are integrating measurements from a battery

of genomic, proteomic, and imaging assays, including CyCIF, to guide treatment on as

fine a timescale as possible [51]. Currently, it takes four weeks from time of biopsy to

analyze, interpret, and report on a patient’s disease status, with CyCIF being one of the

most time-intensive assays in the battery with a lead time of at least three weeks. Once

we determine which stains can be accurately inferred, the virtual IF staining provided by
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SHIFT could substitute for the real stains. If SHIFT were integrated into the SMMART via

a computational pipeline like MCMICRO [101], the lead time for CyCIF could be reduced

by at least one day—the time required for one cycle of CyCIF—for every three virtual IF

stains that SHIFT is able to deliver. This would be a major step toward the SMMART trial

goal of shortening the total analytics lead time to ten days from time of biopsy.

Similarly, SHIFT could enable underserved medical communities currently lacking ex-

pensive IHC/IF imaging technologies to engage with IF data to improve diagnostic work-

flows, providing savings in both time and money while improving patient care. We be-

lieve our approach will be particularly useful in the developing world, where access to

IHC/IF imaging and expertise is sparse. For example, the Moi Teaching and Referral Hos-

pital (MTRH) is one of Kenya’s two tertiary care facilities and serves approximately half

of Kenya’s population, or 20 million people. Alarmingly, a 2016 assessment of the MTRH

found that its Department of Pathology was staffed by four general pathologists and six

laboratory technicians and that only one member of the Department of Immunology had

extensive prior experience with IHC [84]. Since H&E staining is part of the diagnostic

routine at MTRH, an automated tool like SHIFT could help with triaging the dispropor-

tionately large population which its clinical departments serve.

Concretely, any laboratory capable of producing digital images of H&E-stained tissue

sections could benefit from the virtual staining paradigm of SHIFT. As such, we see SHIFT

as an opportunity to simultaneously democratize and economize advanced imaging tech-

nologies in histopathology workflows.

5.2.2 Commercial potential of virtual staining with SHIFT

We envision that SHIFT could be delivered to users via a web-service targeted towards

clinical pathologists, histologists, oncologists, clinical lab directors as well as personnel

involved in antibody validation. The digital nature of the SHIFT framework makes it

highly amenable as a web-based service. For a recurring subscription fee, users would
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have access to a web interface that connects them to SHIFT models. From their personal

workstation, a user will be able to upload a digital H&E image and select one or more

desired markers of interest for generative inference. The digital H&E image would then

be uploaded to a graphical processing unit (GPU)-equipped server that will automatically

execute necessary pre-processing of the uploaded image (e.g. rescaling, background re-

moval, and normalization) and apply the requested SHIFT models to infer the markers of

interest. The generated images will then be returned back to the user through download

via their internet connection. High-resolution scans of H&E images are variable in mem-

ory footprint, but average around 1 gigabyte per image, which necessitates a reasonably

efficient internet connection to transfer through the web. An alternative commercialization

strategy would allow download of the SHIFT models to the user’s local computer through

a desktop or mobile application. This approach would eliminate the need for uploading

H&E images through the web, but would increase the inference time of the model if the

user’s workstation is not equipped with one or more GPUs. The rise of low-cost high-

quality smartphone cameras and edge devices that are capable of DL model inference for

pathology applications [67, 31] make this delivery approach attractive since it would allow

SHIFT to be used in areas with limited resources or unreliable internet access. SHIFT mod-

els could also be embedded into the software of automated slide stainers and scanners to

augment a pathologist’s decision about which real stains to apply to a sample (Figure 5.1).

Our approach to generating spatial estimations of markers is highly cost-effective rela-

tive to established imaging technologies. For this reason, we will be able to provide SHIFT

to users at a very competitive price. The cost of receiving a single H&E image over the

internet, running inference on a pre-trained SHIFT model and transmitting the virtual IF

results is small relative to the cost of traditional IF imaging technologies, staining anti-

bodies, and requisite technical training. We anticipate that the savings afforded by SHIFT

will occupy a highly competitive position in the marketplace by reducing the cost of gener-

ating IF images by several orders of magnitude. A modest 0.1% market penetration would
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FIGURE 5.1: Theoretical application for SHIFT in stain prioritization and automation.

enable entry into approximately 260 CLIA labs in the USA which are expected to process

on average 10 samples a week, or approximately (10× 52× 260 =) 135,200 runs per year.

As typical multiplex IHC staining costs approximately $500 per run, and IF imaging costs

approximately $3000 per run (depending on antibody stains, etc.) we project current tech-

nologies to serve this market to cost somewhere between $67 million and $270 million per

year. At OHSU, individual samples can cost up to $25,000/tissue sample using a state-of-

the-art MultiOmyx platform provided by GE.

Because the SHIFT framework is entirely computational, the costs required to gener-

ate SHIFT images are only those necessary to transmit the images and run them through

a trained learning model. The cost of generating SHIFT images is therefore limited to

the computational costs of running a server and GPU with an internet connection, which

would cost approximately $300/month operating at full capacity. We could therefore af-

ford to offer SHIFT for a fraction of the cost of typical tissue staining. To undercut the cost

of typical imaging by a factor of 10, we would require between $50 and $300 dollars per

inference run, depending on the needs of the user. This revenue, with an additional an-

nual subscription fee, will provide necessary funding to generate additional H&E/CyCIF
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data with which to train additional models, react to the needs of the user, and reinforce the

utility of computational inference across diverse medical imaging market segments.

5.3 Ultimate vision of this dissertation

The sooner a pathologist understands a cancer, the sooner they can treat it. Rapid determi-

nation of disease subtype and phenotypic response to therapy are required to deliver an

appropriate treatment and inform therapeutic strategy in the context of disease evolution

and drug resistance. Virtual staining and other GPU-accelerated analytics could revolu-

tionize these pathological determinations by virtue of being faster, cheaper, and in some

cases more reliable than traditional methods, but they will each require thorough valida-

tion. We hope that the work presented in this dissertation will serve as a framework for the

early development and validation of the next generation of biomarkers in cancer systems

biology.
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