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Abstract: 

 Despite decades of conventional chemotherapy, the prognosis for patients with acute 

myeloid leukemia (AML) remains dismal, with 75% of patients succumbing to their disease 

within 5 years of diagnosis. Recent advances in cancer therapy have turned to the immune 

system for specific targeting and clearance of tumors. However, to date, there is not a 

comprehensive understanding of the neoepitope landscape in AML that could be used in the next 

generation of immunotherapies. In this study, genomic data from 562 patients (cohort: Beat 

AML program, Oregon Health & Science University) were analyzed computationally to identify 

tumor variants, altered mRNA sequences of variants, and HLA-type. Using a computational 

pipeline and algorithm (neoepiscope), we were able to predict 8-11 amino acid peptide sequences 

(aka: epitopes) from DNA-seq of complementary tumor and normal patient samples which 

consider germline context and the potential for co-occurrence of two or more somatic variants on 

the same mRNA transcript. Without consideration of these phenomena, existing approaches are 

likely to produce both false positive and false negative results, resulting in an inaccurate and 

incomplete picture of the cancer neoepitope landscape. In this study we show that in silico 

neoepitope prediction will accurately predict viable novel peptides that can be tested for target 

immunotherapy in AML. Our future plan is to synthesize predictions and use them to stimulate 

banked patient samples and identify bioactive peptides that can be used as the basis of targeted 

immunotherapy. 

 

Introduction: 

     Acute myeloid leukemia (AML) is the most common type of leukemia in adults, as incidence 
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increases with age. AML represents 1.2% of all cancer cases 1;  however, the US anticipates that 

the number of new AML cases will rise significantly as the post-World War II “baby boomers” 

will increase the population of citizens 65 years of age or older. AML disease increases the 

number of immature myeloid derived white blood cells (blasts) that fill the bone marrow (BM) 

and circulate in the blood. These immature myeloid blast cells have mutations that manifest in 

excessive cellular proliferation and cell survival, which in turn, causes an overrepresentation of 

blast cells and an underrepresentation of healthy white blood cells, red blood cells, and platelets  

(in bone marrow and blood). As a result, AML can lead to infection, anemia, fatigue, bruising, 

and excessive bleeding.2  

     Common chemotherapy targets highly replicating cells, a hallmark of tumor cells. Due to the 

side effects of chemotherapy patients can experience loss of hair, changes in skin pigmentation, 

energy weakness, and sometimes lethargy. 3 AML blast cells deviate from the normal cellular 

lifespan to a state of prolonged proliferation and survival. AML can originate and transform from 

another blood malignancy or there could be a de novo AML disease. Despite these differences, 

treatment against AML has stayed relatively the same for decades, standard induction 

chemotherapy consisting of a cytarabine and idarubicin regimen and hypomethylating drugs. 4 

These therapies cull over proliferation of WBCs both peripherally and in the bone marrow. 

Despite treatment with chemotherapy and BM transplantation, prognosis to clear the AML 

remains poor; patients are able to reach remission but not a cure status. It has become evident 

that the immune system plays a direct role in helping the tumor seed into a tissue by increasing 

oncogenic growth factors as well as creating an inflammatory environment that dampens the 

immune system's own defense mechanisms against neoplasms. However, immunotherapy has 

promise as in targeting the activation of the adaptive immune response and suppressing 
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inhibitory immune factors. 5–7 Focus on new immune therapies is thought to help with long-term 

treatment leading to a potential cure. 8 The optimism of immunotherapy is the specificity of T 

cells and antibodies from B cells to target foreign proteins or peptides. The specificity of these 

immune factors as well as the long-term durability of immune responses is a key mechanism of 

successful vaccinations. In particular, cytotoxic T cells have the ability to kill foreign or diseased 

cells. Cytotoxic T cells particularly bind to short peptides bound by an MHC-complex on a target 

cell. Recognition of both the peptide and the MHC complex defines whether the target cell is 

killed or accepted by the cytotoxic T cell. Any mismatch of the MHC complex defines the target 

cell as foreign (i.e., mismatch graft tissue) and allows the target cell to be eliminated. If cognate 

MHC binds with a foreign peptide (i.e., infected cell producing pathogenic peptides), the 

cytotoxic T cell immune response is to eliminate the target cell. Therefore, a major obstacle of 

new immunotherapies is tuning the immune system to be solely specific for a target cell, 

overcoming immune tolerance, and licensing adaptive immune cells to attack tumors – allowing 

controlled autoimmunity to occur. 9  

     Breakthroughs in whole-genome and exome sequencing have provided valuable information 

on the tumors from AML patients. Common mutations associated with the disease have 

classified subtypes of AML disease that provide insight to target cancer therapy. Furthermore, 

genetic sequencing has provided insight to the low mutational burden of AML, which on average 

has 13 somatic mutations per patient.10,11 This mutational burden of AML is in contrast to tumors 

that contain a higher number of mutations, such as, melanoma with greater than 400 mutations 

per patient. 12 The low mutational burden of AML emphasizes the difficulty to find new 

biomarkers that can define or mark AML tumors in vivo.  

     Neoepitope prediction is a process that can help with adding specificity to the next generation 
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of immunotherapies.13 The mutational burden in tumors has the potential to produce new 

proteins, or neoantigens, that are recognized as foreign to the immune system. With the use of 

DNA and RNA sequencing (-seq) data from patient tumors, it is possible to computationally  

identify the tumor variants of a patient, the altered mRNA sequences of the variants, and predict 

the 8-11 amino acid peptide sequence (aka: epitopes) of the larger protein that can possibly be 

presented by the tumor and recognized by the adaptive immune system (B cell antibodies or 

cytotoxic T cells). Standard methods of identifying neoepitopes is a laborious experimental task 

of isolating target cells, cleaving off MHC complexes from the cell surface, extracting the 

peptide attached from the MHC complex, purifying individual peptides, and performing mass-

spec to elucidate the amino-acid peptide sequence. 14 Mining for neoepitopes computationally 

allows for analyzing all mutations and predicting new antigenic epitopes that can be tested in 

vitro for immunogenicity. Current tools for neoepitope prediction from genomic sequencing of 

complementary tumor and normal patient samples generally do not consider germline context or 

the potential for co-occurrence of two or more somatic variants on the same mRNA transcript 

(e.g., Epi-Seq) or the cleavage peptide sites from the proteasome. 15,16 These approaches produce 

both false positive and false negative results, decreasing the likelihood of identifying antigenic 

neoepitopes.   

     To predict neoepitopes in various subsets of AML, we applied Neoepiscope to the Beat AML 

dataset of ~900 AML patient samples (consisting of blood and BM aspirates). The Beat AML 

cohort data set was generated over the last 5 years at our institute as part of a national 

collaborative network aimed at defining the mutational landscape of this disease.10 More 

significantly, it is the largest comprehensive biorepository of AML samples for the 

computational screening of genomic data, the in vitro screening of small molecule therapeutics 
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on blood and bone marrow samples, and immunological phenotyping and functional analysis. 

Discovery of neoepitopes in the Beat AML cohort will have significant importance in the route 

to provide precision immunotherapy to future AML patients. In this project, we predict a series 

of immunogenic neoepitopes associated with HLA-A, HLA-B, and HLA-C with a binding 

affinity less than 500 nm and specific to a patient's subtype of AML.  

 

Results: 

HLA haplotype prediction was performed on 864 samples using WES derived from the 

BeatAML database10. Data fasta.gz format files using read 1 and read 2 were utilized in the HLA 

prediction through the use of Optitype software. The data shows HLA prediction of each allele 

based on the highest prediction probability. Forty eight distinct HLA-A alleles were detected, the 

greatest count within the population of patients were A*02:01, A*02:02, and A*03:01 (Figure 

2A). Within the HLA-B subtype there were 89 distinct alleles predicted. HLA-B*07:02, 

B*08:01, and B*44:02 were the three alleles with the highest frequency in the cohort (figure 2B). 

Within the HLA-C subtype there were 36 distinct alleles with C*07:01, C*07:02, and C*04:01 

(figure 1C). This data shows HLA-B with the greatest distribution of alleles within this cohort 

and is consistent with the reports that HLA-B has the greatest breadth of alleles within the MHC-

class I subtypes. 

 

 

Neoepitope prediction was a culmination of using both normal and tumor DNA-seq from the 

BeatAML cohort. Bam files were used for variant calling and consensus sequences were made 

from the output from mutect and varsan callers. Variant phasing was done using HapCUT2 and 
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with the input HLA prediction and MHC binding affinity, we used Neoepiscope software to 

predict 4.6*107 neoepitopes across 864 patients (figure 1A-B). The distribution of predicted 

neoepitopes for each patient is shown in the boxplot in figure 2A. There is a wide distribution of 

predicted epitopes in the cohort with the median number of patients having approximately 2000 

predicted epitopes but in the upper quartile, the 75th percentile is approximately 70,000 

predicted epitopes. The max number of predicted epitopes in a patient is approximately 345,000. 

With the large distribution of predicted epitopes we further categorized the numbers of 

neoepitopes to the specific diseases within the BeatAML cohort as it could help designate the  

enrichment of predicted epitopes to subtypes of AML or coordinating disease. The barplot in 

figure 2B shows the number of predicted epitopes to specific diagnosis. The barplot in figure 2B 

shows the number of predicted epitopes associated with specific disease from the BeatAML 

cohort.  The number of epitopes associated with the subtype of  AML is greatest in number 

within the group of AML mutated NPM1, AML with myelodysplasia-related changes, and 

AML/NOS. These numbers are closely related to the number of patients with the respective 

diagnosis. AML mutated NPM1, AML with myelodysplasia-related changes, and AML/NOS are 

also the top three diagnoses. 

 

Discussion: 

Immune based therapies against solid and blood tumors are an actively growing field, especially 

as monoclonal antibodies have shown success against melanoma and many other cancer types. 

However, monoclonal antibody immune-checkpoint (i.e., aPD-1, aCTLA-4) therapy has 

specificity for T cells and helps to release the T cell suppression from the inflammatory tumor 

microenvironment. In this study, we elucidated neoepitopes from AML patients using whole 
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genome sequencing data. These neoepitopes are specific tumor proteins that can be used to prime 

naive T cells to become memory T cells specific for the patient’s type of AML disease.  Once 

activated, CD8 T cells clonally expand to form an army and efficiently kill unwanted cells by the 

release of toxic proteins onto target cells. However, CD8 T cell immunity is dependent on 

identifying what is foreign and what is self and, in this study, we have identified specific tumor 

epitopes that can be used to condition cytotoxic T cells to eradicate AML tumor cells.  

     We used DNA sequencing (DNA-seq) data from the largest AML cohort assembled to date 

(Beat AML, OHSU) to computationally identify the variants, the altered mRNA sequences of the 

variants, HLA-type, and used the computational algorithm Neoepiscope to predict the peptide 

sequences that have strong binding affinity to each patient’s specific HLA class-I haplotype. The 

mechanisms of targeted-immunotherapy are still at the beginning stages for blood tumors. 

However, our results add important HLA patient information to the BeatAML dataset. 

Identification of specific risk or preventative HLA alleles associated with particular subtypes of 

AML is added information in the efforts for early AML detection. 

     Existing tools for neoepitope prediction from DNA-seq of complementary tumor and normal 

patient samples do not always consider germline context or the potential for co-occurrence of 

two or more somatic variants on the same mRNA transcript. Without this consideration, existing 

approaches are likely to produce both false positive and false negative results, resulting in an 

inaccurate and incomplete picture of the cancer neoepitope landscape. We believe that using 

Neoepitope has produced a thorough estimation of neoepitopes within the Beat AML cohort of 

patient samples that could be directly used for screening immunogenicity against AML samples 

and utilized for the development of patient-specific immunotherapy. Our results show that it is 

possible to generate predictive epitopes in AML despite it being classified as a type of cancer 
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with low antigenic burden in regards to the number of somatic mutations that have been 

measured. While our data is not at the stage of being tested, we have further interests in 

continuing to prune the neoepitope prediction by adding a proteasome cleavage filter10, 

especially in regards to MHC class I restricted HLA where presented peptides go through a 

proteome for trimming off of the C-terminal and N-terminals before the peptide coordinates with 

the TAP protein for the binding to the MHC class I. Neoepitope clustering is another area where 

we are investigating, finding like neoepitopes that have similar sequences (i.e. 1 hamming 

distance) to form in clusters (i.e. 3-5 peptides sequences). This would provide more confidence 

in a viable prediction if particular neoepitopes were predicted in groups versus isolated predicted 

peptide sequences. Furthermore it is in our interest to test neoepitopes from this project in vitro 

by synthesizing peptides, making peptide pools, and adding the peptides to AML blood samples 

for an in vitro functional T cell assay for cytokine production or cellular proliferation. The 

strength and range of the responses would support the prediction methods presented in this 

project. 

 

Methods: 

SOFTWARE 

Neoepitope prediction started from unaligned DNA-seq reads of tumor samples and matched 

normal samples. FASTQ files are used for prediction of HLA genotype for each sample using 

OptiType software.17 In our study, BAM files of sequence alignment were performed by the Beat 

AML project. 10 Germline and somatic variant calling was performed using VarScan and Mutect 

software producing VCF files. 18,19  Variant phasing was performed using HapCUT2 software 

and binding affinity of peptide to HLA using prediction tools including MHCflurry, 
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MHCnuggets, and NetMHCpan software.20–22 We used Neoepiscope software 

(https://github.com/pdxgx/neoepiscope)  to consider germline context and the potential for co-

occurrence of two or more somatic variants on the same mRNA transcript. Neoepiscope is an 

open-source software licensed under the MIT license and is available at https://github.com/ohsu-

comp-bio/neoepiscope.  

     Data processing was performed using the Advanced Computing Center (Oregon Health and 

Science University) and Exacloud Cluster (https://www.ohsu.edu/advanced-computing-center).  

 

PATIENT SAMPLES 

     Patient samples were generated in a collaboration with Evan Lind, PhD, a collaborator in the 

Beat AML cohort at Oregon Health & Science University. All participating patients submitted 

informed consent to participate in the Beat AML consortium and volunteer their samples for 

research study.  The Beat AML consortium consisted of ten research institutions: Oregon Health 

& Science University, University of Utah, University of Texas Medical Center (UT 

Southwestern), Stanford University, University of Miami, University of Colorado, University of 

Florida, National Institutes of Health (NIH), Fox Chase Cancer Center and University of Kansas 

(KUMC). 10   

 

DATA 

Publicly available genomic data from the Beat AML consortium can be found at 
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http://vizome.org. Code and analysis can be found at 

https://github.com/looc27/AML_neoepitope_prediction. 

Figures: 

1A) 

 

 

 

1B) 
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1C) 

 

Distribution of HLA types of the frequency of HLA types in AML patients. 

The population frequency of HLA-A, -B, -C from AML patients. Alleles are ordered ascending 
and the specific count of alleles are represented on top of each bar. (HLA-A, blue; HLA-B, red; 
HLA-C, yellow). 
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2A)  
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2C) 

 

 

Counts and distribution of Neoepitopes to AML.  

The number of predicted epitopes per patient is measured in figure 2A. Neoepitopes in specific 
diseases are plotted in figure 2B while the number of patients with specific diagnosis is shown in 
2C. 
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