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Abstract

In order to improve treatment for a variety of forms of cancer, improved basic understanding of tumor
microenvironments is needed. Multiplexed tissue imaging (MTI) is a family of novel diagnostic
technologies that are capable of revealing critical molecular and architectural features of the tumor
microenvironment, enabling the study of cancer cell processes in unprecedented detail. However, the
data analysis process for MTI continues to present challenges for the research community. In this thesis,
I review the state of the art MTI analysis methods (Chapter 1) and present two projects that address
specific MTI analysis challenges. In the first project (Chapter 2), I present an algorithm specifically
designed for automated quantification of a property of ductal carcinoma in situ measurable by MTI.
The output of the algorithm is demonstrated to correlate with the state of the art results produced by
an expert pathologist’s manual estimation, and provides the benefits of reduced labor cost and no
possibility of inter-user bias. In the second project (Chapter 3), I propose a novel metric of spatial
proximity among immune and epithelial cell types, analyze a pancreatic ductal adenocarcinoma MTI
data set, and test the hypothesis that the metric will improve the prognostic value of the MTI data using
a machine learning model. In the context of the model, the proposed metric produces cross-validated
predictions with prognostic value comparable to previously reported metrics, but the small sample
size means that future validation experiments are required to confirm the findings. These two projects
produced and tested new tools for MTI data analysis and may enhance the value and efficiency of MTI
data analysis in future applications.
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Chapter 1

Background of multiplexed tissue imaging

(MTI) data analysis

1.1 Mapping the architecture of tumors is needed to improve ba-

sic knowledge that links tumor biology to patient outcomes

Cancer is the second leading cause of death in the United States and claimed nearly 600,000 lives
in 20191. In clinical management of cancer, tissue samples are routinely collected and submitted
for pathological analysis, informing disease prognosis and treatment. Immunohistochemistry (IHC),
which is an imaging technique based on the use of antibodies to specifically mark antigens within
(frozen or formaldehyde-fixed) thin tissue sections, is a mainstay of diagnostic pathology, allowing the
pathologist to identify antigens that are tumor specific or that have been upregulated by tumor-specific
processes [23]. For example, the detection via IHC of upregulation of the receptor tyrosine kinase
Her2 (erbb2) in estrogen receptor-negative breast cancer cells was demonstrated to predict improved
benefit (meaning increased progression-free survival and overall survival times) from doxorubicin
therapy [70]. While the analysis of IHC images by pathologists typically consists of visual assessment
of the intensity (relative darkness or brightness, depending on whether the image contrast is generated
by optical absorption or fluorescence by the imaging reagent) of stained cells, or counting of stained
cells whose intensity surpasses a predefined threshold (commonly referred to as “positively stained”)
[76], IHC images also contain a wealth of information about the spatial arrangements of cells and the
morphology of tissue structures, with the potential produce novel biomarkers and aid clinical cancer
treatment.

Tumors are complex ecosystems with multiple interacting cell populations that collectively are
referred to as the tumor microenvironment. Measurement of the spatial context of cells within the
tumor microenvironment is useful for assessing patient prognosis in numerous ways. Assessment

1source at www.cdc.gov
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of tumor grade, which is defined in part by the progressive loss of tissue structure such as regularly-
shaped epithelial glands, is a cornerstone prognostic tool for solid tumors, e.g. pancreatic ductal
adenocarcinoma (PDAC), where higher grade tumors are associated with reduced patient survival
[91]. The invasion of tumor cells along nerves or blood vessels, which may be visible to the trained
pathologist in histological images, is another important indicator of patient prognosis in PDAC [64], as
is the presence of solitary pancreatic tumor cells that have lost the positive expression of the cellular
adhesion molecule E-cadherin, a phenomenon that naturally requires IHC to observe [42]. Leukocyte
spatial arrangements within tumor and adjacent tumor stroma, revealed by IHC, are particularly notable
for prognostic value: in estrogen-receptor-positive breast cancer, for example, an increase in the degree
of spatial clustering of lymphocytes was associated with improved prognosis, with a significance
rivaling that of standard-of-care assays [39]. When IHC was used to invent the “Immunoscore”, which
delineates specific leukocyte populations such as CD3+ T cells in their spatial context within colorectal
tumors, prognostic value surpassing the gold-standard tumor stage and grade system was achieved in
a large cohort of patients [69]. These examples reflect the biological and clinical significance of the
spatial architecture of solid tumors, which we are still only beginning to understand [28].

Several advantages of tumor imaging, particularly IHC, combined with enhanced knowledge of
tumor biology, have led to a proliferation of new and more sophisticated forms of IHC. While “omics”
technologies, such as DNA microarrays [72] and single-cell RNA sequencing [89] to name only a
few, have greatly expanded basic knowledge of tumor biology, including the discovery of extensive
cellular heterogeneity within the neoplastic and stromal cells of individual tumors [89], these assays
usually2 require digestion and dissociation of the tumor tissue to form a cell suspension and so do not
preserve the spatial context that those cells were taken from. Furthermore, IHC is considerably less
expensive than genomic assays that utilize DNA or RNA sequencing, with a recent review placing
costs for single-cell RNA sequencing experiments in the $0.30 to $10. per cell [50], and unlike certain
advanced genomic technologies which can only be applied to fresh or frozen tissue samples, IHC
can be applied to formalin-fixed parrafin-embedded tissue (FFPE) samples. While the sourcing and
analysis of FFPE tissue samples comes with its own challenges due to preanalytical factors such as
the conditions of formalin fixation, FFPE samples constitute a vast and valuable resource with great
potential for retrospective studies [31]. These factors collectively made IHC an attractive technology
for further development, including by increasing the number of antigens which could be simultaneously
detected within single cells in what is now called Multiplexed Tissue Imaging (MTI).

MTI technologies use various methods of iterative staining and imaging to label dozens of protein
biomarkers on single tissue sections [55, 90, 33, 47]. As an example, the method employed to generate
the data analyzed in this thesis, multiplex immunohistochemistry (mIHC), starts with a standard IHC
staining approach, but chromogen removal and antibody stripping steps are added, allowing re-staining
and imaging of additional markers [90]. Using this approach, 12 to 29 markers can currently be imaged

2There exist new approaches to achieve spatially-resolved genomic measurements, such as Spatial Transcriptomics
[61], which offer exciting new prospects for mapping tumor architecture.
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in a single tissue section, allowing for comprehensive profiling of immune cell populations. MTI
methods that currently exist have various advantages and disadvantages, including possessing different
spatial resolution, field of view, image acquisition time, cost of implementation, dynamic range in the
detection of antigen concentration, and number of antigens which can be simultaneously detected in a
single sample. However, each MTI technology is similar in that they produce images with single-cell
resolution, and possess a base of computational image processing tools that have been developed to
quantify the spatial locations and extent of single cells, as well as to measure the magnitude (a.k.a.
intensity) of multiple antigen concentrations within those same cells simultaneously. These MTI
technologies hold the promise to greatly expand upon the diagnostic and prognostic potential of
conventional IHC, but the technological development of the assays themselves and the computational
tools required to effectively utilize the data they produce are still works in progress.

1.2 Analysis of rich 2D multiplexed tissue imaging data sets re-

mains a challenge

While visual assessment of IHC images is still routinely performed by pathologists, the development
of computational analysis tools to automate such tasks as the counting of positive cells or other
quantitative evaluations, which require the valuable time of trained pathologists who do not always
precisely agree on image quantification, will improve the utility of IHC and eventually MTI assays
[76]. Focusing now on the general concept of 2D MTI data, assuming that images have sufficiently
high resolution to detect single cells, the most common form of computational analysis consists of a
set of canonical steps called a “pipeline”. The steps in the typical pipeline are channel registration (or
alignment), single-cell segmentation, cell-type classification, and pattern or tissue-structure analysis.
The linking together of individual steps in a pipeline in a manner that is easily implemented by diverse
users and is computationally scalable is also an obstacle, which has recently been addressed for
example by the application MCMICRO [80], which allows users to run multiple algorithms for each
step in the pipeline in parallel and visualize the results in a user friendly way. Finally, analysis of
MTI image data using pipelines is critically supported by sophisticated open source image browsing
and annotation tools such as Napari [62] and Minerva [43], which enable quality control and sanity
checking of images and analysis results, respectively.

The individual steps of MTI analysis pipelines pose different degrees of challenge. For example,
many good tools are available in ImageJ [81] for registration of channels, capable of aligning images
as well as correcting rotational misalignment or deformation, with the caveat that the performance
of individual algorithms generally depends on the qualities of the image data. That is, the images
to be registered must either have adequate fiducial markers, or must possess a sufficient degree of
similarity to each other in order to identify common landmarks. Registration of images that lack
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adequate fiducial markers, contain little similarity, or possess strong distortion remains a challenge,
however, improvements in the image acquisition process may ameliorate these challenges in the future.

Segmentation, whereby an algorithm assigns individual pixels belonging to either single cells (or
their nuclei), or individual tissue structures, remains a difficult problem despite the availability of an
abundance of tools for this purpose. In MTI images, segmentation of cell nuclei is usually achieved by
a marker of DNA, such as DAPI or Hematoxylin, while segmentation of cell cytoplasm boundaries
may be accomplished accurately only if molecular markers of cell membranes are available, which
may not be the case for all cells in a tissue sample. While simple segmentation techniques based on the
watershed algorithm [66] have seen success after they were popularized in CellProfiler [15], simple
algorithms have historically suffered from difficulties of over-segmentation (that is, dividing one object
into multiple parts), and from the challenge of identifying the boundary between touching objects.
Also, compared to segmentation of in vitro cell populations, the segmentation of cells or objects in
tissues is more challenging due to the greater diversity of cell types, shapes, and sizes (particularly
in the case of cancer cells), as well as the presence of various kinds of noise and artifacts that are
particularly common in FFPE tissues, arising from variable conditions of formalin fixation and tissue
handling [80]. Recently developed segmentation algorithms based on deep learning such as Cellpose
[88] and Deepcell [7] offer greatly improved performance in single-cell segmentation of MTI images,
although care must be taken to assess the quality of each segmentation result as these models are
trained using a limited variety of tissue types and imaging modalities.

Meanwhile, the segmentation of tissue structures is a niche subject, given the diversity of different
normal and pathological tissue structures that exist in MTI images, and the relative scarcity of research
studies aiming to quantify the morphological attributes of these structures. An example of a structure
for which some segmentation algorithms exist is the epithelial glands of the prostate; Gleason grading,
which expert pathologists assess by eye, is currently a gold-standard prognostic indicator for prostate
cancer patients, and is based principally on the morphological appearance (i.e., shape) of prostate
epithelium. Li et. al. developed a deep learning segmentation algorithm for segmentation of areas in
prostate tissue exhibiting specific Gleason patterns, and demonstrated an automated Gleason grading
system based on the segmentation results that correlated with the grading of expert pathologists [52].
Chapter 2 in this thesis includes (and motivates) an algorithm for the segmentation of ductal carcinoma
in situ (DCIS) lesions and their surrounding myoepithelium, for which there had previously been no
algorithm [35]. Computational segmentation and subsequent data mining of tissue structures in MTI
images may pose many challenges and potentially yield great rewards in the future.

Given single-cell segmentation results paired with MTI image data, a critical next-step in analysis
pipelines is to identify distinct cell types, either by examining intensity profiles of lineage markers (i.e.,
markers that are known to be expressed at high levels only by cells which have undergone a known
differentiation process, such as the CD3 protein that is an important signal transduction molecule
in the T-cell receptor complex and is specifically expressed by T cells 3), or by using unsupervised

3source: http://www.proteinatlas.org/ENSG00000167286-CD3D
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clustering to identify novel cell types [51, 78]. Unwanted variation in MTI image intensity caused by
preanalytical variables such as formalin-fixation-time makes direct comparison of images of different
tissue samples problematic, and as a result, a common approach to identification of cell types is for
expert biologists to visually assess image intensity patterns and assign a threshold for each tissue and
each marker, creating a binary positive/negative classification status for marker intensity in single cells,
followed by definition of cell types using combinations of positive and negative for lineage markers;
this process is commonly used in flow cytometry and is known as gating [4, 90]. When biological
molecules do not have a well-defined lineage-specific expression pattern and the analyst wishes to
use unsupervised clustering algorithms to identify cell types present in a collection of tissue samples,
the intensity values for each image must be normalized to enable direct comparison of cells from
different tissues; recent attempts to develop intensity normalization algorithms include RESTORE [19],
which detects and takes advantage of the mutually-exclusive pattern of expression of some markers,
for example immune lineage markers and markers expressed by epithelium, to identify and normalize
the intensity of the background (negative cell population). Similar to image registration, the difficulty
of the intensity normalization problem stems from data quality, in this case the unwanted variation
in image intensity between tissues. In the future, tissue sample collections that are processed with
standardized or automated tissue handling and imaging protocols may exhibit a reduced degree of
unwanted variation due to preanalytical variables, possibly reducing the challenge of image intensity
normalization; meanwhile, developing effective normalization is a crucial challenge.

Once cell types are determined, the final step in an MTI analysis pipeline is to assess the biological
and clinical relevance of the frequency, density, and spatial distribution of those cell types. Evidence
is emerging that measurement of the spatial distribution of cells within the tumor microenvironment,
uniquely possible through the use of MTI or related imaging technologies among biological assays,
contains prognostic relevance. For example, in breast cancer, immune hotspots [63, 39], tumor-
immune mixing [46] and cytotoxic T cell localization [36], are all spatial features associated with
survival. Similarly, proximity of cytotoxic T cells and tumor cells confers a better prognosis in PDAC
[24, 16, 58]. These studies suggest that additional characterization of spatial features in tissue is needed
to understand the biological processes underlying these associations. Indeed, in melanoma, tertiary
lymphoid structures are prognostic and associated with response to immune checkpoint blockade,
demonstrating the utility of spatial analysis for both prognosis and patient stratification [14].

There are several computational challenges associated with the development of a prognostic or
therapy-response-predictive signature based on the spatial distribution of cells within tumor tissue.
Taking, for example, the hypothesis that increased contact-dependent interaction between two cell types
(for example, the lysis of tumor cells by cytotoxic T cells) would be a beneficial prognostic indicator,
and making the assumption that increased spatial proximity between those two cell types in static
images of fixed tumor tissue would be correlated with that contact-dependent interaction, the researcher
must choose a priori from a collection of different spatial metrics [6], for example, the nearest-neighbor
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G-function4, and the reduced second moment function, or K-function5, which quantify subtly different
forms of spatial proximity; the G-function examines nearest-neighbor distances, while the K-function
examines counts of nearby-neighbors within a given distance. Those metrics also require the a priori
selection of a characteristic distance scale; indeed, the need to choose a spatial scale for analysis of
proximity is common among proximity metrics, for instance the sliding-windows technique [87], which
uses unsupervised clustering to identify small image regions, or “windows”, that share a common
cellular composition. The need to choose a distance scale is problematic because, while there exist
in vitro studies [11] and a few in vivo studies of intact lymph nodes [9] that could be used to suggest
a characteristic distance of the diffusion of chemokines or cytokines that might indicate enhanced
probability of intercellular contact, it is not known whether these characteristic distance scales are
the same in the more complex environment of an intact tumor or for arbitrary combinations of cell
types. Furthermore, an exploratory analysis that attempts to analyze proximity between cell types at
many different distance scales could suffer from the pitfalls of multiple hypothesis testing, resulting
in a false-positive prognostic signature discovery. Several approaches aim to circumvent the choice
of a distance scale by taking advantage of the Delaunay triangulation to identify “neighboring” cells
[33, 61]. In the Delaunay triangulation [53], cells may have neighbors that are relatively far away, if the
local cell density is very low, while cells in a region of high local density will tend to have neighbors
that are close together; importantly, the Delaunay triangulation is unique, meaning that there is only
one Delaunay triangulation for collection of cells from an MTI image. Because of the uniqueness
and the lack of a specific distance parameter, the notion of “neighor” in a Delaunay triangulation is
distance-agnostic. This, however, introduces the complication of changing the meaning of proximity
to reflect the topology of the triangulation, rather than the absolute distances between cells. In sum, the
choice of metrics or distance scales for proximity analysis may not be self-evident and requires careful
justification, hindering the development of a general MTI pipeline.

Another complicating factor in the analysis of spatial proximity among cell types in MTI images
is the identification of statistically significant proximity, which requires carefully justified a priori
choice of a null spatial distribution of cells, often in the absence of real MTI data representing a true
negative control tissue in which the only difference is the absence of the spatial proximity that is
being tested for. Statistical significance can be assessed using an exact formula for some proximity
metrics given a certain null hypothesis, or assumption of the meaning of “no proximity”; for example,
the K-function [22] may be tested for significance using an exact formula for the p-value if the null
hypothesis is that of complete spatial randomness, i.e., that within any arbitrarily shaped sub-region
of tissue of area A, the expected number of cells N is equal to lA, where l is the density of cells in
the tissue. For alternative proximity metrics, a permutation test approach can be used. For example,
Keren et. al. [46] identified cells within 39 µm as neighbors, and then performed a randomization
procedure to identify cell-type-pairs that were significantly-spatially-proximal by choosing four tissue

4https://www.rdocumentation.org/packages/spatstat/versions/1.64-1/topics/Gcross
5https://www.rdocumentation.org/packages/spatstat/versions/1.64-1/topics/Kcross
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compartments (Immune, Epithelial, Mesenchymal, and Endothelial), and then permuting the labels
of cells which shared a tissue compartment 500 times to produce 500 null samples in which cell
locations were randomized within their tissue compartment. This approach uses expert knowledge
about the expected distribution of cell types in a no-significant-proximity scenario to test for statistical
significance, but highlights the challenge inherent to the design of a simulated null distribution in the
absence of data from a true null population.

1.3 Chapter Summary

MTI technologies hold great promise for expanding the capabilities of the modern pathologist and
improving the clinical management of cancer. However, numerous technical challenges remain to be
overcome, including the computational analysis of the data these assays can produce. In particular, the
segmentation of single cells as well as tissue structures, the ability to overcome unwanted variation in
staining intensity due to preanalytical variables and produce robust cell type classifications, and the
rigorous development of prognostic spatial signatures with meaningful significance tests continue to
challenge researchers in the field.

In this thesis, I present the results of two projects aimed at addressing several MTI analysis
challenges. In Chapter 2, I describe a novel segmentation algorithm for the identification of DCIS
lesions in MTI images. Building upon the results of this segmentation algorithm, I describe an
algorithm to quantify a specific property called the “continuity” of a particular molecular marker (a.k.a.
stain), which produced results that correlated with values estimated by a trained pathologist. These
algorithms provide the means of estimating stain continuity in DCIS lesions without the expensive
assistance of a pathologist, facilitating the discovery of new potential signatures of biological and
clinical importance.

In Chapter 3, I perform a bioinformatics analysis of a PDAC MTI data set, with the goal of
assessing the prognostic value of metrics quantifying the spatial proximity between immune and tumor
cell populations. Because such metrics have to be chosen a priori, I analyze several proximity metrics
and compare their prognostic value quantitatively. I also discuss the interpretations of each metric, and
demonstrate the different correlations that various metrics of spatial proximity share with the simple
cell density metric, which further elucidates the interpretation of these metrics. While this study does
not provide a concrete answer about which proximity metric is the “best”, it does provide additional
evidence for the prognostic value of such metrics that supports the field of PDAC research, and its
discussion of the comparison of those metrics could aid computational biologists seeking a proximity
metric with a specific interpretation.

In the final chapter, I briefly conclude with a discussion of the impact of this work and my thoughts
about future directions and lessons learned.



Chapter 2

Algorithm for automated quantification of

continuity of calponin-positive

myoepithelium in multiplexed

immunohistochemistry images of ductal

carcinoma in situ

Abstract

Ductal carcinoma in situ (DCIS) is tumor confined within mammary ducts, surrounded by an intact
myoepithelial cell layer that prevents local invasion. A DCIS diagnosis confers an increased lifetime
risk of developing invasive breast cancer (IBC) and results in surgical excision with radiation, and
possibly chemotherapy. DCIS is known to be over treated, with associated co-morbidities. Biomarkers
are needed that delineate patients at low risk of DCIS progression from patients requiring aggressive
treatments. Research efforts to investigate the barrier function of the myoepithelium are anticipated to
provide much needed insight into DCIS progression. Here, we develop a high throughput technique to
assess the loss of myoepithelial differentiation markers. This work is published in the 2018 Proceedings
of the International Symposium for Biomedical Imaging [35], and was presented as a poster at the
conference held in April 2018 in Washington, DC. This method facilitates automated analysis of a
clinically relevant histopathologic feature, as demonstrated by a high correlation with pathologist
annotation (r = 0.959), and contributes analytical foundations to a multiplexed immunohistochemistry
approach.
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2.1 Introduction

Incidence of ductal carcinoma in situ (DCIS) increased from 3% in the early 1970’s to 20% of all
breast cancers due to widespread use of Screening Mammography [45]. In the U.S this year, ⇠ 64,000
women will be diagnosed with DCIS. DCIS carries an increased lifetime risk of invasive breast cancer
(IBC) with long term studies of untreated DCIS showing 30% progression to IBC [20]. Unfortunately,
the clinical accuracy to predict which DCIS will remain indolent and which will progress to IBC
remains low, leaving an urgent need to discover biomarkers of progression.

The myoepithelial cell is a ‘gate keeper’, exerting tumor suppressive effects by secreting tumor
suppressive proteins and by forming a physical barrier that prevents intra-ductal tumor cell escape
[3, 71, 73, 37]. Variable expression of myoepithelial differentiation markers such as Calponin and
a-smooth muscle actin (aSMA) are reported in DCIS, and their loss is used clinically to define IBC
[77]. Furthermore, a rodent model of DCIS revealed a progressive loss in myoepithelial differentiation
markers Calponin and aSMA prior to transition to invasive carcinoma [77]. To date, none of the
known myoepithelial cell proteins have been evaluated for their ability to distinguish between indolent
and aggressive DCIS. In order to assess if loss of myoepithelial differentiation markers can serve as a
biomarker for identifying gain of invasive tumor cell attributes, we need an unbiased, high throughput
approach to quantify myoepithelial protein expression surrounding DCIS lesions.

2.2 Related Work

Histopathologic image analysis is a mainstay for quantitative evaluation of tissue structure and in situ
protein expression [94]. The fields of histopathology and basic cancer research are increasingly turning
to computational image processing techniques to aid in quantification of complex or subtle biological
image features [60]. Quantified image features can then be used to predict relevant clinical attributes,
such as disease diagnosis. The need for computational assistance is particularly true in the case of
mIHC, where novel staining methods enable 12 or more antibodies to be imaged in one tissue section,
substantially increasing pathologist burden [86, 90].

To this end, analysis methods such as Convolutional Neural Networks (CNN), which learn spatial
features at multiple scales across an entire image, have been applied to discriminate DCIS from benign
lesions in H&E images [74]. CNNs were also used to segment tumor-associated stroma and then to
predict DCIS grade or cancer diagnosis [8]. Approaches which compute the morphologic features of
cell nuclei, either focusing on epithelial cells, or encompassing all cells in a region of interest, have
also found success in predicting DCIS grade or distinguishing between DCIS, benign neoplasia, and
normal tissue [74, 93]. Yet, there remains a need for a method that can be applied to current mIHC
data to quantify continuity of expression of myoepithelial cell proteins, as focal loss of myoepithelial
differentiation may predict increased risk for progression.
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Here, we demonstrate automated quantification of the continuity of protein positivity in the
myoepithelial layer in DCIS, using a novel image processing pipeline and algorithm. Our automated
method achieved high correlation with the manual ground truth, indicating its promise. Furthermore,
the methods developed herein, including segmentation of tumor lesions and quantification of protein
expression within different tissue regions, could readily be extended to other analysis tasks, particularly
those involving analysis of the myoepithelium in DCIS.

2.3 Materials and Microscopy Methods

Formalin fixed paraffin embedded (FFPE) tissue of DCIS from women diagnosed with DCIS only (no
evidence of IBC) were obtained through the OHSU Knight Biolibrary in full accordance of the OHSU
IRB guidelines (OHSUIRB 4918). Tissue sections were stained with a mIHC method, using antibodies
to calponin, alpha-smooth muscle actin (aSMA), and cytokeratin 18 (CK18) [90]. Hematoxylin
staining was used to allow single cell image registration and color images were deconvolved with
ImageJ as described previously [90].

In cross section of a normal mammary duct, the myoepithelium forms a closed, continuous
boundary surrounding a single layer of luminal epithelium, whereas in DCIS, the myoepithelium
encloses multiple layers of neoplastic cells. Here we detected tumor cells by CK18, delineated the
myoepithelium with aSMA, and evaluated myoepithelial cell differentiation using calponin (Fig.
2.1a). DCIS-associated myoepithelium (n=6 DCIS cases, 27 DCIS lesions) were assessed for percent
calponin expression (i.e. continuity), using visual assessment of the IHC signal by three independent
investigators including a trained pathologist (S.J.). The annotated values were averaged and then
compared to those produced by the computational method described here.

While assessing myoepithelial-layer integrity is routine clinical practice for pathologists to delineate
DCIS from IBC, markers to distinguish indolent from progressing DCIS are lacking. We hypothesize
that myoepithelial cell differentiation markers may predict risk of DCIS progression, and thus developed
a method to assess continuity of the myoepithelial differentiation protein calponin as a test case. We
utilized cases of DCIS where the myoepithelial layer was deemed intact. An image key was created by
a pathologist (S.J.) to visually assess the percentage of the myoepithelium perimeter where calponin
is expressed. For example, if 50% of DCIS myoepithelial cells are lacking calponin, then the lesion
would be annotated with a continuity of 50%.

2.4 Results

To reduce reliance on visual pathologic review, we developed several ways to estimate calponin
continuity using segmentation and image processing operations. Our segmentation procedure begins
with thresholding by Otsu’s method [68]. The result is three binary images comprised from aSMA,
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c. d.

Lesion	1

Lesion	2

a.

b.

SMA CK18 Calponin

Fig. 2.1 Human DCIS lesion multiplex IHC stained to delineate myoepithelial cell layer (aSMA+) from
tumor cells (CK18+), as well as assess myoepithelial cell differentiation (calponin). Otsu’s method
[68] is applied to color-deconvoluted, multiplexed IHC images (a) producing simple binary masks
(b). The union of the masks is found (c) and processed with mathematical morphology to produce a
segmentation of each DCIS lesion, including the aSMA- and calponin-positive myoepithelium (d).

CK18, and calponin IHC images (Fig. 2.1b). We refer to these individual IHC-derived images as
“masks”. These masks are then used to construct two “composite masks” described below, and which
are used for geometric quantification.

The first composite mask, called the “DCIS mask” (Fig. 2.1c), is formed using the union of all three
previously computed masks. DCIS lesions stained with our three markers tend to be significantly larger
than other connected objects in such a binary image, such as noise, myofibroblasts, and blood vessels,
so we used morphological operations defined in the MATLAB function “bwmorph ©”, including
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dilation and erosion, to refine the DCIS mask by smoothing edges and removing small objects. Each
connected object (connected is defined here to mean pixelwise 8-connectivity) in the DCIS mask
was assigned a unique ID, which was used to match the pathologist’s annotation to our geometric
calculations. Since the segmentation step was intermediate and prerequisite to the continuity estimation
step, we evaluated the segmentation quality visually and only used the continuity estimation as the
ground truth for our pipeline.

The second composite mask, called the “calponin mask” (Fig. 2.2a) was found by taking the
intersection of the Otsu-thresholded calponin image with the DCIS mask. We refined it by setting pixels
equal to zero that were further than 60 pixels (30 µm) inside the DCIS mask boundary - for method
development, we chose 30 µm because it is slightly larger than the diameter of a typical myoepithelial
cell in our experience. We set this constraint to omit calponin staining that can be found within the
lesion center both specifically in papillary type DCIS and non-specifically in necrotic regions, which
we found to complicate downstream analysis of the relevant specific staining of myoepithelial cells.
Thus, each DCIS mask is associated with a corresponding calponin mask, which contains the region of
positive calponin staining for a single myoepithelium.

Fig. 2.2 Several intermediate steps of our image analysis method. (a) The grayscale image of calponin
staining is shown outlined in blue by the result of “calponin mask” segmentation. The outer orange
curve shows the boundary of the “DCIS mask” for this lesion. The inner orange boundary shows the
morphological erosion of the DCIS mask. The naïve continuity is the area outlined in blue divided
by the area between the orange curves. (b) calponin mask is shown in brown with SLIC superpixel
partition. Voronoi cells computed for the superpixel centroids are drawn in light blue, and the DCIS
mask is drawn in dark blue and outlined in pink. Connections made across calponin mask gaps are in
yellow. (c) The grayscale image of calponin is shown again, with estimated outer (PO, purple) and
inner (PI , teal) connected calponin mask perimeters shown. Scalebar 50 µm.

To enable continuity evaluation of calponin expression within the myoepithelial cell layer, we
constructed line segments along the shortest path between disconnected objects in the calponin mask.
In our data, DCIS lesions are frequently non-convex in shape (e.g. Fig. 2.1). Calponin masks also tend
to have a high variability in the size, shape, and number of objects, which precludes the approach of
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fully connecting all objects, or the use of convex hull or Matlab’s Alpha Shape to connect only objects
along the outside boundary. We also found that a calponin mask can have a single discontinuity, yet
consist of a single fully connected object with one hole, that we could not distinguish mathematically
from a perfectly continuous mask. We solved these problems in part by using the Simple Linear
Iterative Clustering (SLIC) superpixel method to partition the calponin mask [2].

SLIC, as implemented in MATLAB-compatible C and available on the website of the authors of the
SLIC paper 1), has one parameter called compactness that governs the size and shape of each superpixel.
The SLIC algorithm involves clustering of individual pixels using a distance metric that is the weighted
sum of the distance between pixels in color space and the distance in image space (i.e., physical
distance), and the compactness parameter governs the tradeoff between color and physical distance
in computing this metric. Larger values of the compactness parameter produce smaller superpixels;
we used a compactness of 100 based on empirical observation that the resulting superpixels were
approximately the size of an epithelial cell, or about 10µm wide. By partitioning the calponin mask
this way, we hoped to detect a single discontinuity in an otherwise topologically connected object, and
also to provide a basis for constraining a search for discontinuities to neighboring regions of the mask.

To define local, or neighboring image regions, we first found the Voronoi tessellation of the set
of centroids of all superpixels (Fig. 2.2b) [53]. This returns a one-to-one mapping of superpixels to
Voronoi cells. We designated all superpixels whose Voronoi cells were touching as neighbors and
as candidates for constructing a connecting line segment between them. It can also be stated that
superpixels were called neighbors if they were connected by an edge in the Delaunay triangulation,
which is the dual of the Voronoi tesselation [53].

Finally, we constructed the set of all “discontinuity” line segments by connecting a subset of
neighboring superpixels along the shortest path between their respective perimeters. We connected
two neighboring superpixels if they were not touching, and if their Voronoi cells were bridged by the
DCIS mask boundary (pink line in Fig. 2.2b). We define the set L of superpixel pairs satisfying these
properties as follows. Let B(t) be an ordering of the pixels in the DCIS mask boundary, such that B(t)
is touching B(t+1) for all t = 1, . . . , p�1 where p is the number of pixels in the DCIS mask boundary,
and B(1) is touching B(p). This is the precise output of the Matlab function “bwboundaries ©” on the
DCIS mask. We denote the ID of the Voronoi region containing the pixel B(t) as Vt , and write the list
L of superpixel pairs as:

L = {(Vt ,Vmodp(t+1)})|Vt 6=Vmodp(t+1),1  t  p} (2.1)

We use the modulo function modp(t +1) to denote the fact that pixels B(1) and B(p) are touching
(8-connected). We performed a final refinement by discarding all of the line segments that do not

1https://www.epfl.ch/labs/ivrl/research/slic-superpixels/
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intersect the outer perimeter of the resulting connected calponin mask (purple curve in Fig. 2.2c), and
we denoted the refined set of “discontinuity” line segments {di}.

Since our continuity estimation is somewhat complex, we compared its performance to a simple
method. This simple method, which we call the naïve continuity, is found simply by taking the ratio of
calponin-positively-stained myoepithelium mask area to the total myoepithelium mask area, using a
myoepithelial width of 30 µm. We defined

continuity (naive) = 100⇤
Areacal ponin

Areamyoepithelium
(2.2)

where the numerator is the area of the calponin mask for the singular lesion in question, and
the denominator is the area of the region between the DCIS mask boundary for the same lesion and
the erosion of that boundary by 60 pixels (30 µm) (Fig. 2.2a). We found that the naïve estimate of
continuity had a good correlation with the pathologist’s annotations (Fig. 2.3 left), but that it tended to
underestimate the continuity, especially for lesions with low continuity.

To demonstrate our improved method using the discontinuities using our superpixels and Voronoi
tesselation method, we compared the total length of the discontinuities to an estimate of the perimeter
of the myoepithelium. The line segments {di}, when added (i.e. set union) to the calponin mask, create
an (8-)connected object with a hole for which inner and outer perimeters PO and PI are measurable
(Fig. 2.2c). In the case of an object with more than one hole, we compute PI as the inner perimeter
of the largest hole. We took the average of these inner and outer perimeters to approximate the total
perimeter of the myoepithelium: P ⇠=

�
PI +PO�/2 , and finally computed

continuity = 100⇤
✓

1� 2Ân
i=1 di

PI +PO

◆
. (2.3)

We found that the naïve method (Eq. 2.2) achieves a high correlation (R = 0.791) with the mean
visually annotated continuity of Calponin. Abdallah, et. al. recently reported computational measure-
ments of the sensitivity of Calponin, P63, CD10, and aSMA in demonstrating the myoepithelium of
DCIS lesions, with results comparable to our “naïve method” [1].

The proposed method (Eq. 2.3) achieved a Pearson’s-correlation of R = 0.959 with professional
annotation. We also observed some discordance between pathologist and our method’s assessments.
One outlier (Fig. 2.3 right) was annotated at 10% continuity by pathologist assessment, but found to be
50% continuous by our computational method. This sample had faint staining and low signal-to-noise
ratio, so it is likely that the discrepancy resulted from the choice of threshold by Otsu’s method, which
might be corrected using sample intensity normalization and flat threshold choice [48], or a more
advanced segmentation method.
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Fig. 2.3 Correlation between analytical calponin continuity estimation and pathologist’s annotation for
Naïve estimate and the proposed method.

2.5 Discussion

One drawback of our method is the reliance on segmentation of the DCIS mask boundary. Central
necrosis or tissue-loss during the staining process were found to be the primary confounders of
segmentation, although we note that cases like this would be difficult to analyze traditionally as well.
Segmentation results must be either checked visually (as we did here), or filtered for artifacts. Future
work to ensure the robustness of segmentation, for example by filtering out images with severe tissue
loss during imaging, should be done to take full advantage of our method.

This study describes a computational method to assess continuity of calponin in mammary my-
oepithelium in cases of DCIS. This method, closely matches what can be detected by the trained
human eye but in significantly reduced time and in the absence of observer bias. This spatial-structural
analysis of continuity of myoepithelial differentiation proteins combined with multiplex IHC technique
promises the capacity for integration of myoepithelial, immune cell and tumor intrinsic factors, which
may help predict risk of DCIS progression to invasive disease.
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Chapter 3

A novel spatial proximity metric for

multiplexed tissue imaging and its value for

predicting survival or presence of tertiary

lymphoid structures in pancreatic ductal

adenocarcinoma

Abstract

Pancreatic cancer is a deadly disease for which new treatments are needed. The tumor microenviron-
ment is known to contain tumor-specific T cells that could be harnessed for therapeutic benefit, but
those T cells are spatially excluded and functionally repressed by other elements of the stroma. Tertiary
lymphoid structures are functional aggregates of leukocytes that have been linked to immunotherapy
response in melanoma and survival in pancreatic cancer, but whether they influence the spatial ex-
clusion or functional activation of T cells in pancreatic cancer is unknown. Furthermore, while the
spatial proximity of CD8+ T cells to neoplastic epithelium has been linked to patient survival, it is
unknown whether proximity among other leukocyte types is associated with survival, or dependent on
the presence of tertiary lymphoid structures. In order to answer these questions, we studied a cohort of
human pancreatic tumor resection specimens that were subjected to multiplexed immunohistochemistry
for the purposes of auditing immune contexture in situ. We illustrate how existing metrics for spatial
proximity are correlated with absolute cell densities, and present a new metric of relative proximity
that does not have the same correlation, thus making it uniquely interpretable. Using a machine
learning approach, we found that relative proximity and functional immune features worked together
to predict the presence of tertiary lymphoid structures, and patient survival. Our approach improves
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basic knowledge of the pancreatic tumor microenvironment and our new relative proximity metric can
be used in future multiplexed imaging studies.

3.1 Introduction

Building on the foundation of successful image-based cancer biomarkers such as the “Immunoscore”
[69], multiplexed tissue imaging (MTI) technologies are gaining traction as tools for cancer biomarker
discovery [54, 90, 33, 47, 25]. Researchers can now take advantage of single-cell segmentation to
quantify the spatial organization of multiple cell populations in a tissue, which has the potential to
provide information about tissue organization that can independently predict patient survival [79, 33,
47, 13]. However, because MTI can resolve an unprecedented level of spatial and molecular detail,
the complexity of data analysis poses new challenges. In particular, quantification and interpretation
of spatial proximity (we use the word proximity generally to refer to a family of metrics) between
multiple cell populations, which is thought to represent enhanced probability of contact-dependent
interaction [27], is challenging. This challenge is one of interpretation, because of the diversity of
epithelial, endothelial, stromal, and immunological structures that may exist simultaneously within
a tumor, and the intrinsic dependence of distances between cells of different types on the cellular
composition of the tissue.

The need to overcome this data analysis challenge pertains to the study of pancreatic ductal
adenocarcinoma (PDAC). PDAC, while relatively rare compared to e.g. colon or breast cancer, is
predicted to soon become the leading cause of cancer mortality in the US due to its tendency to be
diagnosed at an advanced stage and the lack of effective treatments for advanced disease [49, 10]. MTI
is a valuable tool to study PDAC because it enables profiling of the tumor in its microenvironmental
context, which is histologically complex and is known to influence the efficacy of both FDA-approved
as well as experimental therapies through the activities of stromal fibroblasts and infiltrating immune
cells, which remain incompletely understood [64].

Spatial proximity, at the scale of 20-100µm, between tumor-infiltrating CD8+ T cells and PDAC
neoplastic epithelial cells, has been previously linked to patient prognosis using computational analysis
[24, 16, 58]. Additionally, dense aggregates of CD20+ B cells, versus diffuse intratumoral B cell
infiltrates, were linked with improved PDAC patient survival [17]. We hypothesized that a metric
of spatial proximity among different leukocyte types and PDAC neoplastic epithelial cells that was
decoupled from cell densities would distinguish patients with long term survival while deepening our
understanding of the prognostic value of these spatial arrangements by way of improved interpretability.

Members of the Coussens lab previously developed multiplexed immunohistochemistry (mIHC)
[90], a novel form of MTI, and recently used it to generate a tissue atlas of the tumor immune
microenvironment of PDAC [56]. Here, we leverage this PDAC data resource to demonstrate the
correlation between density of certain leukocyte or neoplastic epithelial cell types in PDAC and several
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standard metrics of spatial proximity among pairs of them. We then introduce a new metric of relative
spatial proximity, and show that it is decorrelated from cell density. We investigate this new metric,
along with cell density measures and measures of the functional activity of T cells and B cells, in a
machine learning analysis that links the single-cell spatial organization of PDAC tumors to long-term
survival of patients. Further, we also apply our machine learning model to the classification of the
same tumors according to the presence of tertiary lymphoid structures (TLS), which are immunological
structures that are thought to represent enhanced antitumor immunity and formation of immunological
memory [29]. Our study elucidates the prognostic value of T cells and B cells in the PDAC tumor
microenvironment, and contributes a new metric that can be applied in future tissue imaging studies.

3.2 Related work in spatial proximity analysis

In order to address our biological hypotheses, we needed a clearly interpretable metric for spatial
proximity between cell types. However, as we will illustrate in Fig. 3.1, the interpretability of some
metrics of proximity between two cell types is complicated by an association with the number of cells
per unit area, i.e. their density. In Fig. 3.1, we simulate two different cell types (reference and target),
whose locations are drawn independently uniformly at random within a box, so there is by definition
no spatial dependence between them. In Fig. 3.1B and 3.1C, there are two examples that differ in
the density of target cells, but not of reference cells. Because of the varying density of target cells,
reference cells in Fig. 3.1C tend to be closer to target cells than those in Fig. 3.1B (quantified in Fig.
3.1D). This simple example illustrates our motivation to use a more interpretable metric of spatial
proximity, in the sense that it should not be clearly dependent on cell density.

A B
Target	
Cells

Reference	
Cells

Measure	Distances

DC

Fig. 3.1 Example of the association between cell density (number per unit area) and proximity (e.g.
nearest-neighbor distances). A) Measuring proximity between two cell types (reference and target)
fundamentally depends on the computation of distances, in this case from reference cells to their nearest
target neighbors. B) Simulated reference and target cells, sampled completely at random spatially,
with lines connecting reference cells to their nearest target neighbors. C) A similar sample, but with
three times as many target cells as (B). D) The nearest neighbor distances in (C), from reference to
target, are shorter than those in (B) due to the increased density of target cells in (C).
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A number of spatial proximity metrics exist that have been used or developed for analyzing cells
in tissue images, however, we found unique challenges associated with each of them that motivated
us to develop a new metric. In general, the relevant methods had a common feature: they compare
observed nearest-neighbor distances or near-neighbor counts in the observed data to those generated in
randomly simulated data. They differ in the way they define the random data, illustrating the central
importance of this concept.

Schapiro et. al. developed HistoCAT [79], in which the observed proximity among cell types is
compared to a series of simulated random control tissues by permuting the labels (i.e., identities) of
cells, and a proximity metric is defined as the z-score of neighboring cell counts at a certain spatial
distance. The authors used this approach to distinguish breast tumors according to their grade in
an unsupervised clustering analysis, showing that the metric could effectively represent the spatial
disorganization of poorly differentiated epithelial tumors. However, we argue that interpreting this
metric is challenging because the simulated random control tissues do not necessarily resemble actual
tissue. The fact that the cell labels are shuffled at random to create the “negative control” data
means that important architectural properties of the tissue could be lost, for example, the amount of
intercellular adhesion of epithelial cells in PDAC (possibly represented by the formation of ducts or
glands), which can be lost by some tumor cells (marked by solitary cells that do not express E-cadherin),
is negatively associated with patient survival [59].

Helmuth et. al. [40, 84] developed a statistical framework that simulates structured random data by
“smoothing” the observed spatial locations of cells with a Gaussian convolution operation, which returns
a non-uniform probability distribution based on the data. This distribution represents an estimate for
the local cell “density”, parameterized by the smoothness parameter used in the convolution. Random
samples of spatial locations for the cells can then be drawn from this distribution, and the observed
data can be statistically compared to these samples using a proximity metric to determine whether it
has significantly more or less proximity than the random samples. While similar in nature to the cell
label permutation used in HistoCAT, this procedure requires the user to control the level of spatial
smoothness in distribution of the random control tissues by the choice of a characteristic distance for
the Gaussian kernel width. While this approach can be used to maintain the realism of the simulated
point pattern, it is not clear how best to choose the important kernel parameter.

Keren et. al. [46] use a permutation test approach named “context-dependent spatial enrichment”,
which permutes target cell type labels only among other cell types that belong to a similar tissue
compartment, defined as epithelial, mesenchymal, endothelial, and immune. Despite the limitation
of needing to choose the tissue compartments, this approach effectively uses prior knowledge to
overcome the direct dependence on target cell density while preserving overall tissue architecture in
the simulated random control data. However, this approach does not directly take into account the
effect that extremely low cell densities could have on the interpretation of the metric. For example, in
the (extreme) hypothetical case that a user-defined tissue compartment consists of cells of only one
type, the random permutation will have no effect and the control tissues will all be extremely similar
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to the real tissue. Practically speaking, this approach could be improved by taking into account the
absolute cell counts when performing spatial analysis, to elucidate the interpretation of z-scores.

Here, we define a new metric by directly comparing proximity values, between different reference
cell types to a common target cell type. Using a statistical power analysis, we explicitly account for
samples containing cell densities too low for quantification of significant spatial proximity, providing a
guarantee that an absence of cells is not interpreted as an absence of relative spatial proximity. We
demonstrate that this metric is not correlated with target cell density in PDAC mIHC data, unlike other
proximity metrics. Finally, we use machine learning models to test our hypotheses (illustrated in Fig.
3.2) about how the formation of tertiary lymphoid structures in PDAC, and the improved prognosis of
patients, are related to spatial and functional features of intratumoral leukocytes. The Python code
we use to compute those features from processed single-cell data, as well as the functions used for
machine learning, are available online at https://github.com/elliotmgray/Gray2021_code.
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Fig. 3.2 A) Image of tumor core from a PDAC specimen stained with mIHC, displaying an agglom-
eration of lymphocytes in the tumor stroma, surrounded by infiltrating CD68+ myeloid cells (scale
bar 200µm). B) Analysis workflow. We utilized an mIHC data set to study the relative importance of
spatial proximity features and density or functional state features with respect to patient survival and
the presence of tertiary lymphoid structures in their tumor.

3.3 Materials and Methods

3.3.1 Patient cohort and multiplexed immunohistochemistry (mIHC)

PDAC surgical resection samples (N=46) were collected at OHSU from patients with no prior history
of chemotherapy. Tumor samples were acquired with informed consent and OHSU Institutional Review
Board (IRB) approval under IRB protocol #3609. Formalin-fixed, parrafin-embedded (FFPE) tissue
sections were subject to mIHC staining, and areas containing invasive carcinoma and immune aggre-
gates were digitally annotated by a pathologist, as described in [56]. mIHC images were processed
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and cell type identification was performed by image cytometry in FCS Express 6 Image Cytometry
RUO software using manual gating as described in [56]. Lymphoid aggregates were identified with
pathologist assistance and verified quantitatively for MECA79 staining for classification as TLS. The
image shown in Fig. 3.2A is for illustrative purposes and was manually rescaled and contrast adjusted
independently of image quantification.

3.3.2 Calculation of frequency of positivity of leukocyte functional markers

The frequency of leukocyte and epithelial cell types, including states defined as positive or negative for
markers of cellular function (e.g., Ki67) were defined according to Table 3.1. When computing the
frequency of a cell type, the number of cells were divided by a chosen “base cell type”, indicated in
the right column of the table. The denominator for each cell type was chosen based on the cell type
definition hierarchy: e.g., the frequency of Ki67+ CD8+ T cells was expressed as a fraction of the
count of CD8+ T cells. Notably, putative helper T cells that are throughout this paper referred to as
“CD4+ T cells”, were defined with the use of a PanCK� CD45+ CD3+ CD8� marker combination, and
not with our CD4 antibody, due to the quality of the CD4 antibody staining that was assessed. Finally,
note that cells that resided in TLS were not counted when quantifying tumor-infiltrating leukocytes.

Cell Type Protein Marker Base Cell Type

Neoplastic Epithelium PanCK+ n/a
Leukocyte PanCK� CD45+ n/a

CD4+ T cell CD3+CD8� Leukocytes
CD8+ T cell CD3+CD8+ Leukocytes

B cell CD3�CD20+ Leukocytes
Monocyte or Macrophage CD68+ Leukocytes

Function Protein Marker Base Cell Type

Proliferation Ki67+ CD4+ or CD8+ T cells
Cytotoxicity Granzyme B (Gzmb)+ CD4+ or CD8+ T cells

Antigen Inexperienced CD27� IgD+ CD20+ B cells
Innate-like Memory CD27+ IgD+ CD20+ B cells

Class-Switched Memory CD27+ IgD� CD20+ B cells
CD8+ T cell activation Eomes+ CD8+ T cells
Early or Late Effector PD1+ Eomes+ or Eomes� CD8+ T
Presumptive helper T CD4+T, PD1+ CD4+ T cells

Immunoregulatory ICOS+ PD1+CD4+ T cells

Table 3.1 Classification & quantification scheme for each cell type.
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3.3.3 Statistical power for spatial proximity analysis

Prior to analysis, patients and cell types were selected based on a statistical power analysis for the
Mann-Whitney U test. A threshold was selected for the total cell count in order to ensure that suffi-
cient cells were present to identify statistically significant spatial proximity under the assumption of
existence of an underlying process driving that proximity with a known effect magnitude [75]. The
power analysis was conducted in G* Power [26], assuming equal numbers of reference cells of each
type (note that for this test, statistical power is an increasing function of the number of reference cells
of each type, so assuming equal numbers gives us the worst-case scenario), a medium effect size (that
is, Cohen’s d) of 0.5, a power of 85%, and a = 0.15. This resulted in a threshold of approximately 50
cells of each type. In 39 of the 46 patients, CD4+ and CD8+ T cells, B cells, and PanCK+ epithelial
cells were present in sufficient numbers (Fig. 3.3); all other cell types identified in our data set were
too rare for statistically significant comparisons, and the 7 patients with insufficient cell of the selected
types were not included in machine learning studies.

3.3.4 Calculation of spatial proximity metrics

In this section, cell types are named as either “reference-type” or “target-type” (illustrated in Fig.
3.1A), meaning that proximity was computed from reference cells to nearby target cells. Distances
from single cells of a reference type to their k nearest neighbors of a target type (later referred to as
“nearest neighbor distances” or just “neighbor distances”) were computed. For each reference cell, the
k neighbor distances were averaged. The counts of target cells within a radius r of each reference cell
were computed (later referred to as “neighbor counts”). Neighbor counts at a distance r were chosen
to represent interactions at a known distance scale, while (k) neighbor distances were chosen as an
unbiased quantification of cell type proximity. Neighbor distances and counts were summarized for
each patient, using the median for neighbor distances to reduce the potential impact of outliers, and
using the mean for neighbor counts due to the discrete nature of counts.

The number k of nearest neighbors and the neighbor radius r were set to five and 40µm, respectively.
A 40µm radius was chosen to represent an enhanced probability for cell-cell contact [24, 16, 47, 34].
A value of k = 5 was chosen empirically, instead of e.g. k = 1, to reduce the impact that solitary target
cells would have on k-nearest-neighbor distances; in practice, choices of k between 1 and 5 produced
similar proximity measurements for the cell types selected for spatial analysis. In our downstream
analysis, there were no patients who had fewer than 5 cells of a type used in distance calculations.

A score of spatial mixing between pairs of cell types at predefined distance scales, called the
“likelihood ratio” (LR) of counts of pairs of neighboring cells [33, 34], was defined as follows: for each
image, and for a given radius r, a graph was constructed in which each pair of cells was connected
by an edge if their spatial locations were closer than r in distance. Then, defining NA as the number
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Fig. 3.3 Heatmap shows the absolute number of cells of each type that are present in each patient’s
tumor sample. Absolute cell counts were used in the statistical power analysis prior to selecting
patients and cell types to analyze; note that the counts reflect the actual tissue size so comparison of
patients this way not biologically meaningful.
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of edges incident to nodes of type A, and NAB as the number of edges connecting nodes of type A to
nodes of type B, the likelihood ratio is given by:

LRAB(r) =
(NA(r)+NB(r)) ·NAB(r)

2 ·NA(r) ·NB(r)
(3.1)

In previous works this metric was log-transformed [33, 34]; here, the log-transform was not used.
In the downstream analysis that is presented, a log-transform would be beneficial to machine learning
performance if the variables had a highly right-skewed distribution, since the model that was chosen
(Extremely Randomized Trees) samples thresholds uniformly at random within the min/max range of
the feature [32]. However, while we did not observe highly skewed distributions of LR (an example
can be seen in Fig. 3.4B), the log transform did tend to produce outliers and so we omitted that step in
the context of our machine learning analysis.

Defining also the number of nodes of types A and B, respectively, are nA and nB, and the area of
the image or study region is area, we give Ripley’s K function (neglecting edge-effect correction) [22]
for purposes of illustration; Ripley’s K is not used in our study but is very similar in interpretation to
LR and has been used previously to study PDAC tumors stained with MTI [16].

KAB(r) =
area ·NAB(r)

nA ·nB
(3.2)

“Fold change” is a metric used to quantify the relative difference in a measurement between two
random samples. In order to de-correlate spatial proximity measurements from the underlying cell
densities, we proposed a new relative proximity metric based on fold changes. Our new metric, the
fold change of median neighbor distance (Eq. 3.3), or mean neighbor count (Eq. 3.4) between two
reference cell types, was defined:

FoldChangedistance(Re f 1,Re f 2,Targ,k) =
MedianDist.k(Re f 1 99K Targ)
MedianDist.k(Re f 2 99K Targ)

(3.3)

FoldChangecount(Re f 1,Re f 2,Targ,r) =
MeanCountr(Re f 1 99K Targ)
MeanCountr(Re f 2 99K Targ)

(3.4)

where Re f 1, Re f 2, and Targ indicate reference or target cell types, k indicates the number of nearest
neighbors whose distances were averaged, and r indicates the distance below which two cells were
counted as neighbors. When one reference cell type was a subset of the other, reference cells were not
double-counted (e.g., for CD8+ T cells and CD45+ leukocytes, only CD45+CD8� leukocytes were
compared to CD8+ T cells). As an example of our metric, given that PanCK+ cells are the target,
CD8+ T cells are the first reference, and all other CD45+ cells are the second reference, it would be
correct to say that a fold change value greater than one would indicate that CD8+ T cells are closer to
PanCK+ cells relative to all other CD45+ leukocytes.
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3.3.5 Machine learning approach

For machine learning classification of patients, five categories of features were used, outlined in Table
3.1 and supplementary tables 3.2, 3.3, and 3.4, quantifying cell frequencies, densities, proximity
likelihood ratios, and fold changes (neighbor distance and neighbor count are separate categories),
respectively. For rationale behind choices of reference and target cell types, see section 3.3.6.

Cell Type

Bcell
CD4+T
CD8+T
CD68+
PanCK+

Table 3.2 Cell types quantified using density (number of cells per mm2).

Reference Target

CD68+ CD4+T
CD8+T CD4+T
CD4+T Bcell
CD8+T Bcell
CD68+ Bcell
Bcell Bcell
CD4+T PanCK+

CD8+T PanCK+

Bcell PanCK+

Table 3.3 Cell type pairs for which proximity was quantified using the likelihood ratio (Eq. 3.1), with
r = 40µm.

For classification of patient tumors according to long or short survival, patients were dichotomized
according to median overall survival time, which was 20.4 months among those selected for survival
analysis. For classification by presence of TLS, patients with at least one identified immune aggregate
were considered as belonging to the positive group. The model for patient classification was chosen to
be Extremely Randomized Trees (implemented in scikit-learn), based on its demonstrated superior
accuracy and reduced tendency to overfit small data sets compared to similar machine learning
algorithms, including Random Forests [32, 12]. Model performance was evaluated with leave-one-out
cross-validation due to the limited data set size, and model hyperparameter tuning was performed
using nested cross-validation and automated parameter search with the python package bayesian-
optimization [67]. Classification performance was evaluated by the harmonic mean of the area under
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Ref. 1 Ref. 2 Target

CD8+T CD45+ CD4+T
CD68+ CD45+ CD4+T
CD4+T CD45+ Bcell
CD8+T CD45+ Bcell
CD68+ CD45+ Bcell
Bcell CD45+ Bcell
CD4+T CD45+ PanCK+

CD8+T CD45+ PanCK+

Bcell CD45+ PanCK+

Table 3.4 Cell type triplets for which relative proximity between reference types with a common target
type was quantified using either neighbor distance or neighbor count fold changes.

the receiver-operating-characteristic curve (ROC AUC) and the average precision (AP), again using
functions defined in the sklearn python library. Recursive feature elimination with cross-validation
(RFECV) was used to rank individual features and identify subsets of features with improved predictive
value.

3.3.6 Selection of reference and target cell types based on prior knowledge

Given the results of our power analysis, we chose combinations of either Reference and Target (for
likelihood ratios), or Reference 1, Reference 2, and Target (for fold changes), from among CD20+

B cells, CD8+ T, CD4+ T, CD68+ myeloid, and PanCK+. In order to normalize proximity among
leukocytes and epithelial cells to the overall distribution of the immune infiltrate, we used CD45+

leukocytes as Reference 2 in all fold change metrics. We selected the combinations of cell types
in Tables 3.3 and 3.4 based our previous knowledge and hypotheses about the known or potential
interactions these cell types might have, in line with our previous work [34]. We used the same
combinations of cell types in both long-term survival prediction and TLS presence prediction.

B cells have context dependent function and could be potentially either positive or negative regula-
tors of tumor cell killing. They may act as professional antigen presenting cells, so their increased
proximity to T cells could be associated with improved patient prognosis. Diffuse intraepithelial
localization of B cells has been linked to poor outcomes in PDAC [17], so proximity between PanCK+

cells and B cells is of hypothetical interest. Meanwhile, B regulatory cells may act as potent immuno-
suppressive regulators, and can support tumor growth and improved prognosis in PDAC tumors via
interaction with tumor associated macrophages [38]. Therefore, we hypothesize that proximity among
B cells and CD68+ myeloid cells should be associated with poor prognosis.

Both CD4+ and CD8+ T cells are capable of tumor cell killing, and their density within tumors
and direct proximity to PanCK+ neoplastic epithelial cells have previously been linked to PDAC
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patient prognosis [58, 16]. CD4+ helper T cells provide signals to CD8+ T cells that support the
formation of memory phenotype [82], and so we might expect that proximity among these cell types
would be a positive prognostic factor and possibly associated with the presence of TLS or with effector
function of CD8+ T cells. However, T-regulatory cells (FOXP3+ CD4+ T cells), which are prevalent in
advanced PDAC lesions, can suppress antitumor activity of CD8+ T cells through a contact-dependent
mechanism and are associated with worse prognosis [42], so spatial proximity between CD8+ and
CD4+ T cells within PDAC tumor areas could be either positively or negatively associated with patient
survival.

Lastly, because previous studies have shown Th2-polarized CD4+ T cells interact with macrophages
to promote tumor survival and metastasis in a breast cancer mouse model [21, 83], we hypothesized
that proximity between CD68+ myeloid cells (including macrophages) and CD4+ T cells would also
be linked with patient overall survival.

3.4 Results

3.4.1 Distance fold change is an unbiased metric of relative proximity

In human PDAC tumors, several metrics of spatial proximity are correlated with the density of the
cell types in question. Fig. 3.4 illustrates this for proximity between CD8+ T cells and PanCK+ cells:
both the median nearest-neighbor distance (3.4A), and the likelihood ratio (3.4B), are correlated with
PanCK+ cell density. As we investigated the impact of spatial proximity between these and other
cell types on patient prognosis, independent of the densities of those cells, we sought an alternative
definition of proximity that would have a reduced correlation.

We hypothesized that the correlation between PanCK+ cell density and the proximity (e.g., likeli-
hood ratio of proximity to CD8+ T cells) could be removed, on average across our patient cohort, by
normalizing by the proximity of PanCK+ cell to all other CD45+ leukocytes. To test our hypothesis,
we computed the median distance from both CD8+ T cells and all other CD45+ leukocytes to their
nearest five PanCK+ neighbors, and found that the ratio (fold change) of these values was uncorrelated
with PanCK+ cell density (Fig. 3.4C). Indeed, we found that increasing density of target cells is
associated with higher neighbor counts (Fig. 3.5A), shorter neighbor distances (Fig. 3.6A), and also
some higher likelihood ratios (Fig. 3.5B), for a variety of combinations of reference and target cell
types. Meanwhile, correlation between cell density and fold changes of either neighbor counts (Fig.
3.5C) or neighbor distances (Fig. 3.6B) is in most cases insignificant. This suggests that fold change is
a robust metric of proximity between cell types in the sense that it is not correlated with cell density.

Some of the correlations between cell densities and fold changes were significant; there was
significant correlation between the densities of T cells (and to a lesser extent, also CD20+ B cells and
CD68+ cells) and the fold change in proximity between CD8+ and CD4+ T cells. The data in Fig.
3.5C show that increasing density of T cells is associated with a greater magnitude of relative proximity
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A B C Ref:	CD8T
Targ:	PanCK+

Fig. 3.4 A) The density of PanCK+ cells is inversely correlated with the median distance from CD8+
T cells to their nearest PanCK+ neighbors, as expected. B) Somewhat surprisingly, the density of
PanCK+ cells is also positively correlated with the likelihood ratio (Eq. 3.1) of proximity between
CD8+ T cells and PanCK+ cells at 40µm distance, despite this metric taking into account the number
of cells of both types. C) Meanwhile, the log fold change in median distance to PanCK+ cells, with
CD8+ T cell as reference 1 and CD45+ leukocytes (not including CD8+T cells) as reference 2, has
no such correlation with PanCK+ cell density. R is Spearman’s rank correlation, and p-values for
significant correlation are rounded to the thousandth decimal.

A B C

Fig. 3.5 Correlation among proximity and density features, with significant correlations highlighted
in green (after Benjamini Hochberg-correction, a = 0.05). A) The mean counts of neighboring cell
types (rows) are correlated with the densities of those cell types (columns). CD4+ T and CD8+ T
cell densities are interchangeable in this respect, indicating their tendency to be found together in
clusters. B) Cell densities are positively correlated with proximity likelihood ratios, particularly among
leukocytes. C) Fold change of mean neighbor counts is not significantly correlated with cell density of
any type, except in the case of CD4+ T and CD8+ T cells. Reference1, reference 2, and target cell
types are indicated in each row as (Ref1/Ref2!Targ).

among them, which is consistent with the formation of clusters or possibly lymphoid aggregates. This
clustering behavior appears to explain the association of likelihood ratios with PanCK+ cell density,
and highlights the ability of the fold change metric to elucidate the spatial organization of tumor tissue.
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A B

Fig. 3.6 Here we show an alternative way of computing the fold change metric - using k-nearest-neighbr
distances instead of near-neighbor counts - and show that the same patterns of correlation with cell
density exist that were seen with neighbor-count-based metrics. (A) Correlation between neighbor
distances and cell densities. (B) correlation between neighbor count fold changes and cell densities.

3.4.2 Prognostic value of likelihood ratio and fold change proximity metrics

Next we evaluated how the likelihood ratio and fold change metrics compared in terms of prognostic
value. We defined a survival classification task by grouping patients according to whether their overall
survival was greater or less than the sample median. Before building models that combined the best
elements of the different feature sets, we illustrate in Fig. 3.7A the impact that using fold change
versus likelihood ratio versus density metrics has on prognostic performance. We previously studied
the prognostic value of likelihood ratio features (using 40µm radius) [34], and found that CD8+ T to
PanCK+ and CD4+ T to CD20+ B cell proximity contributed to the best model, however in that study
we had focused only on patients with the most extreme survival times and did not filter out patients
with insufficient leukocyte counts.

Here, the comparison of likelihood ratio and fold change feature sets gave best-subset scores of
0.7 and 0.69, respectively, meaning that fold changes and likelihood ratios were equally successful
at predicting long-term survival. Meanwhile, density features produced a best-subset score of 0.41
that is below the 0.5 level for better-than-chance performance. This contrasted with our expectations
given previous studies showing prognostic value of CD8+ and CD4+ T cells, but could be explained
by patient cohort size (smaller than ref. [58]) or the use of relatively large image regions-of-interest
instead of a TMA (as used in ref. [16]). These data are consistent with the conclusion that fold changes,
which represent spatial proximity not explained by cell density, are effective prognostic indicators.
Interestingly, the top features for fold change and likelihood ratio categories differed despite their
similar predictive value (Fig. 3.7B), but both included the proximity between CD68+ and CD20+ B
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BA Predicting	Survival

Likelihood	Ratios
CD68 + →	B	cell
B	cell →	B	cell

Score:	0.69

Fold	Changes
CD8+	T	→	B	cell
CD68 + →	CD4+ T	
CD68 + →	B	cell

Score:	0.70

Cell	Densities*
B	cell
PanCK+
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*Not	shown	in	plot	in	A

Fig. 3.7 Comparison of prognostic value of three categories of features. A) Recursive feature elimina-
tion with cross-validation shows that proximity fold change features have superior prognostic value to
both density and likelihood ratio feature categories. The curves also indicate that the best scores in
each group are produced with only 2 or 3 features. For fold changes, the reference 2 cell-type is not
shown; it is always CD45+. B) The best scoring feature subsets identified from each category. Models
were trained with at least 2 features, and scores below 0.5 are not better than chance.

cells; this finding supports the preclinical work done that established the role of macrophage and B cell
interactions via Bruton’s tyrosine kinase as potent suppressor of CD8+ T cells [38].

To test our hypothesis about the joint importance of density, proximity, and leukocyte functional
features, we performed another machine learning classification experiment using a combination of
these categories. In this experiment, we reduced the dimensionality of the combined data set by
eliminating variables with high correlation (the variables we started with are listed in Tables 3.2-3.4).
Using a correlation threshold set by the Spearman correlation test p-value and the Benjamini-Hochberg
multiple testing correction, we identified features that were significantly correlated with multiple other
features as those to remove. Although the prognostic feature ranking of likelihood ratios and fold
changes was slightly different, given that they both included proximity between CD20+ B cells and
CD68+ myeloid cells, and given that the proximity of B cells to other B cells was so strongly correlated
with B cell density, we opted to exclude likelihood ratios from the feature set. We also excluded
neighbor distance fold changes due to their similarity to neighbor count fold changes. We identified
the following other correlated pairs: fold change proximity between CD8+ and CD4+ T cells and
density of both CD4+ and CD8+ T cells (dropped fold change), CD4+ and CD8+ T cell densities
(dropped CD4+ densities out of preference for CD8+ T cells given their prognostic value [24, 16, 58]);
and finally we dropped the ratio of CD8+ T to CD68+ myeloid, the frequency of CD4+ T, and the
frequency of B cells, all due to strong correlations with densities. Since we re-used this feature set in
another experiment, we called this feature set the “pruned feature set”.

Following dimensionality reduction to create the pruned feature set, we compared our variables for
their prognostic value by first ranking and scoring them within their categories using RFECV. Then, in
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order to control for the size of the variable categories and create a final feature set that enabled direct
comparison between variables, we selected the best feature subset from each category and pooled the
features, followed by a final iteration of RFECV. For survival analysis, because the score produced by
density features was below 0.5, we additionally removed density features from the pruned feature set.

Table 3.5 presents the ranking and cross-validation scores of models produced by this procedure.
First we note that the frequency of Granzyme B positivity among CD8+ T cells, and the frequency
of PD-1 positivity among EOMES+ CD8+ T cells, were both included in the variables selected
for ranking and were ranked as the top two features. Granzyme B secretion by CD8+ T cells and
subsequent uptake by target cells is a major mechanism of contact dependent cytotoxic lymphocyte-
mediated cell lysis [57]. Meanwhile, concomitant upregulation of PD-1 and EOMES among CD8+

T cells is associated with later stages of T cell exhaustion, and may indicate diminished cytotoxic
potential among those cells [92], possibly enabling tumor survival. While the score (HM) for these
features alone was only 0.63, when paired with the third ranked feature (fold change proximity from
CD68+ myeloid cells to CD20+ B cells), they produced the best subset with a score of 0.71. Given
the previously mentioned mechanism of CD8+ T cell suppression by the interaction of B cells and
macrophages through Bruton’s tyrosine kinase [38], it is possible that the prognostic value of the
fold-change proximity between CD20+ B cells and CD68+ myeloid cells reflects this mechanism
of immunosuppression in human patients. Collectively, these data support the use of a multivariate
prognostic model for PDAC that combines both spatial and non-spatial metrics and considers both
immunosuppression and T cell exhaustion and cytotoxicity.

Rank Variable ROC AUC AP HM

1 Freq. CD8T Gzmb+ - - -
2 Freq. CD8T PD-1+ EOMES+ 0.64 0.62 0.63
3 log2FC CD68+ !Bcell 0.74 0.68 0.71
4 log2FC CD68+ !CD4T 0.69 0.69 0.69
5 log2FC CD8T !Bcell 0.69 0.64 0.67
6 Freq. CD4T Gzmb+ 0.70 0.68 0.69

Table 3.5 Performance of survival prediction models in RFECV, showing the marginal value of
additional features, starting with the most important at the top. Scores of model with rank n correspond
to use of features ranked 1 through n. ROC AUC: receiver operating characteristic area under curve.
AP: average precision. HM: harmonic mean of ROC AUC and AP. Since we investigated multivariate
models of survival, we did not train models with only one feature, and so the scores for feature rank 1
are marked “-”.
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3.4.3 Inferring tumor microenvironment features associated with tertiary lym-

phoid structures

Tertiary lymphoid structures (TLS) are ectopic cellular aggregates, primarily composed of T cells,
B cells, and dendritic cells, recruited to the tumor through high endothelial venules that express the
specific marker Meca79 [29]. TLS are thought to be local platforms for antigen presentation and
costimulation necessary for the adaptive immune response to a tumor [29]. Evidence that TLS are
independently associated with patient prognosis in PDAC has so far been mixed [41, 56], but TLS have
been linked to PD-1 checkpoint inhibition response in melanoma [14], so studying their properties in
PDAC could inform immunotherapy research. Currently, whether TLS are associated with changes
in the spatial proximity between of other tumor infiltrating leukocytes in PDAC is not known, and
this information could provide a link between spatial arrangements of infiltrating leukocytes, patient
prognosis, and the presence of TLS in or near the periphery of PDAC tumors.

We had two hypotheses about how the presence of TLS within or adjacent to PDAC tumor could
affect the biology of the leukocytes (not themselves in TLS) within the tumor boundary. Given the
aforementioned findings relating the spatial patterns of T cell and B cell infiltration in PDAC tumors
to the prognosis of patients, we hypothesized that the presence of TLS could stimulate leukocytes
to produce distinct spatial patterns of infiltration in tumors. That is, that the presence of TLS would
change the localization pattern of leukocytes outside of defined TLS boundaries. Alternatively, we
hypothesized that the presence of TLS would alter the function, e.g. rate of proliferation, frequency of
positivity for the marker of cytotoxicity Granzyme B, or differentiation state of T cells or B cells. To
test these hypotheses, we extended our machine learning approach to the task of distinguishing patient
tumors with TLS from those without, using only the tumor regions not including TLS. Specifically, we
used the same procedure of comparing feature categories by RFECV (Tables 3.2-3.4) and of performing
RFECV on the final pruned feature set described in section 3.4.2. By training a machine learning model
to predict the presence of TLS using features quantified in tumor regions outside of TLS boundaries,
we aimed to deduce the influence that TLS had on other parts of the tumor microenvironment.

In this context (Fig. 3.8), likelihood ratio, fold change, and density features produced best-subset
scores of 0.83, 0.78, and 0.80 respectively, a substantial increase in performance over the models we
trained to predict slong term survival. In TLS prediction, likelihood ratio features actually performed
slightly better than fold change features, although both feature groups produced models with high
scores compared to those in the survival prediction task. Fig. 3.8A shows how, for all three feature
categories, scores near 0.8 were achieved with only the top two features. For cell density, performance
dropped off steeply as more features were added. Meanwhile, for fold changes and likelihood ratios,
the score curves were roughly level as more features were added. The steepness of each curve indicates
the marginal value of additional features to the model; by comparing the curves, we see that, especially
in the case of likelihood ratios, additional features beyond the first two were more beneficial (or less
detrimental, as the case may be) to predictive performance than the corresponding cell density features.
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Fig. 3.8 Comparison of value in prediction of TLS presence. A) Proximity fold changes and likelihood
ratios have similar performance curves, although the top score for likelihood ratios is better. Densities
produce the best score overall, with only two features needed. B) The best scoring feature subsets
identified from each category.

Fold change proximity between CD4+ T cells and CD20+ B cells was an important contributor
to prediction of TLS presence; however, given the reported prevalence of T cells and B cells in TLS
themselves, we speculate that clusters of these cell types in tumor regions could simply be parts of
other TLS that were barely within the plane of the 5µm tissue section, and escaped quantification by
the pathologist. Meanwhile, the fact that CD68+ myeloid to CD20+ B cell fold change proximity can
predict TLS presence (Fig. 3.8B) and, to a lesser extent, overall survival (Fig. 3.7B), suggests potential
influences of TLS presence on critical immunosuppressive and tumor promoting interactions between
macrophages and B cells. As previously mentioned, Gunderson et. al. [38] showed that macrophages
suppress CD8+ T cells in a B cell dependent manner in a murine model of PDAC. Our findings here
link this mechanistic understanding of the PDAC tumor microenvironment in that model system to the
spatial proximity of CD20+ B cells and CD68+ myeloid cells in human tumors.

Finally, in order to directly compare the degree of association between of each of our feature
categories (including those quantifying functional marker expression on T and B cells) and TLS
presence, we applied the same nested RFECV procedure to the pruned feature set described in section
3.4.2. The results of this refined TLS classification in Table 3.6 show that, in addition to the proximity
among CD68+ myeloid, CD4+ T, and CD20+ B cells, the frequency of ICOS+ cells among PD-1+

CD4+ T cells contributed to the best model, increasing the score from 0.80 to 0.87 upon inclusion.
ICOS is a member of the CD28 family of receptors expressed on T cells and modulates the function
of activated effector and regulatory CD4+ T cells through promotion of survival, proliferation, and
memory [85]. Although the downstream effect of ICOS signaling is dependent on the T cell subset in
question [85], ICOS may play an important role in the stimulation of a robust antitumor response in
PDAC. The contribution of the frequency of ICOS positivity among PD-1+ CD4+ T cells in our data
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to the prediction of TLS supports a link between ICOS/ICOS-L pathway activation and the formation
of TLS, which could be a potential therapeutic target.

Rank Variable ROC AUC AP HM

1 log2FC CD68+ !Bcell - - -
2 Freq. CD4T PD-1+ ICOS+ 0.75 0.85 0.80
3 log2FC CD4T !Bcell 0.86 0.88 0.87
4 PanCK+ density (mm�2) 0.88 0.89 0.88
5 Freq. Bcell CD27- IgD+ 0.81 0.88 0.83
6 Freq. CD4T PD-1+ 0.83 0.88 0.85
7 Bcell density (mm�2) 0.80 0.87 0.83
8 Freq. CD8T EOMES+ 0.80 0.86 0.83

Table 3.6 Performance of TLS prediction models in RFECV. Format is the same as in table 3.5.

3.5 Discussion

With increasingly deep spatial molecular profiling of tumor tissues, image analysts are faced with
untangling the complex network biological processes that make up a tissue. We demonstrated how
the interpretation of spatial proximity between cells of a tissue can be complicated by the existence
of multiple spatial processes: for instance, how apparent increases in (the likelihood ratio metric) of
tumor infiltration by CD8+ T cells could in fact be driven by a decrease in another spatial quantity,
in this case agglomeration of T cells in the stroma. We contributed a new metric to separate distinct
spatial processes using a reference cell population, and demonstrated its promise by linking it to patient
survival and tertiary lymphoid structures in PDAC.

When we observed that spatial clustering of T cells was apparently intrinsically associated with
their increasing numbers (Fig. 3.5), we wondered if our observation could be explained by increased
molecular heterogeneity in the most dense leukocyte infiltrates. When we tested for correlation between
the frequencies of positivity for leukocyte functional molecules (defined in Table 3.1) and the densities
of the parent cell types, we found significant correlations (see Fig. 3.9, highlighted in green) between
positivity among both CD4+T and CD8+T cells for PD-1 and ICOS and the density of both T cells
and CD68+ myeloid cells. The expression of PD-1 is generally associated with T cell exposure to
antigen, so these associations may shed some light on the mechanism of T cell clustering in vivo,
although expression of PD-1 on T cells has context dependent meaning [92]. We suggest that the
characterization of such associations can inform future studies that aim to tell the difference between
“random” spatial patterns of cells, and patterns that aren’t explained by known biology.

In the task of survival analysis, we noted that the densities of CD8+ T cells, CD20+ B cells,
PanCK+ neoplastic epithelial cells, and CD68+ myeloid cells did not produce a model that scored
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Fig. 3.9 Correlation between the frequencies of positivity of leukocyte functional markers and the
density of the cell types expressing them, which could explain the relation between leukocyte density
and spatial proximity. Significant correlations (after Benjamini-Hochberg correction with a = 0.05)
are marked with green boxes.

better than chance. This does run contrary to previously published studies linking the density of CD8+

T cells to patient prognosis [16, 58]. There were important experimental differences between our
studies and those cited above, including the use of mIHC instead of alternative antibody-based imaging
methods, the amount of tissue profiled in each study, and the method for segmenting and classifying
cells, which together may explain the discrepancy in our results. We also note that the papers cited in
refs. [16, 58] also reported some discordance in prognostic findings. These differences highlight the
importance of ongoing and future work to standardize data collection and quantification methods, and
meta-analyses to clarify prognostic associations. The availability of our data and code will facilitate
addressing the latter of these two challenges.

The advantages of the data set used for the study were the use of a cutting-edge imaging technology
(and antibodies) that profiled leukocytes in significant detail, the relatively large tissue areas that were
profiled (on average 20 mm2 per patient), and the help of trained pathologists.

The study is limited by the small number of patients (N=46), further reduced to 37 by excluding
the single stage 3 tumor and those with missing data or without at least 50 cells of each analyzed cell
type, meaning that the associations we found will need validation in an independent cohort.

Lastly, a major challenge faced by our study and other antibody-based multiplexed imaging
studies is the limited availability of effective antibodies for staining. It is well known now that
the leukocytes profiled in this study are actually heterogeneous populations [29, 64], in particular
monocytes, macrophages, B cells, and T cells. Also, functional processes we aimed to study such as T
cell exhaustion have are under active research and more specific markers of cellular function are now
available [5]. However, the multiplexing capacity of mIHC in particular is improving [90] along with
expanding access to quality antibodies, and future studies will expand antibody panels to profile these
cells in greater detail and link more up to date cell type definitions with the spatial tissue context.
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Chapter 4

Conclusion

In Chapter 1 of this thesis, I introduced Multiplexed Tissue Imaging and laid out some of the challenges
that data analysts face in producing meaningful clinical or biological insights from these novel
technologies. Although there are numerous challenges in the development and implementation of
MTI analysis pipelines, I focused my research on two in particular. For the problem of detecting
myoepithelial changes associated with DCIS progression, I created an automated pipeline to segment
tumor lesions and quantify continuity of expression of differentiation markers within the myoepithelial
border. Finally, to contribute new methods for spatial analysis of tissue, I evaluated proximity measures
and proposed a novel metric that was not correlated to density and provided prognostic value in PDAC.

These projects represent first steps in tackling important problems in the field of biological image
analysis. The DCIS project, for instance, contains an example of one tissue structure of biological and
clinical relevance. Within breast cancer, other tissue structures such as vascular networks, extracellular
matrix density and orientation, or necrotic regions are of clinical interest, and efforts are ongoing to
build tissue databases using MTI technology [44]. The methods and code I developed to quantify the
DCIS tissues, including segmenting of individual objects and calculation of continuity, could be readily
adapted to other tissue structures. Ultimately, a toolbox of image processing routines and methods
that could be applied to multiple tissue types and imaging modalities would be highly useful. I have
provided my code in order to begin to build such a tool kit.

In Chapter 3, I focused deeply on improving spatial pattern analysis in tissues. Since existing
metrics may be correlated by cell density or difficult to interpret due to randomization procedures, I
developed a new metric for quantifying cell-cell proximity. I showed this metric to predict survival in
PDAC, as well as to identify tertiary lymphoid structures. However, while this analysis and discussion
could provide some insight into the structure of the PDAC tumor microenvironment and its relation to
patient survival, the business of applying spatial proximity analysis to infer potential contact-dependent
interactions in what was once a living tissue is still beset by difficulties. One essential problem is that
observed proximity between cell types in a static image of fixed tissue is not necessarly the result
of paracrine signaling between those cell types. Without some molecular marker of that signaling
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(which of course might obviate the need for spatial proximity analysis), spatial proximity analysis can
only suggest the possibility of such intercellular interaction. If researchers are to perform this kind of
inference, whereby proximity is taken as a sign of ongoing intercellular communication, basic research
that establishes the time and distance scales over which those processes take place in living tumor
tissues must be conducted.

While mIHC and other MTI technologies are still in early stages of technological development, it
is important to mention the limitation that a paucity of patient tissue samples imposes on statistical
analyses such as those presented in this thesis. As discussed in Chapter 1 of this thesis, preanalytical
variables (such as the amount of time a tissue is fixed in formalin) contribute to meaningful unwanted
variation in MTI image intensity between patient tissues, and this variation can potentially cause
systematic errors in analysis, warranting sophisticated normalization algorithms [19]. Given that the
patient cohorts used in both of the projects presented here originated and were processed at a single
institution, it is reasonable to expect that the results could be wildly different when algorithms were
run on a new patient sample from another institution. Validation with a large, multi-institution cohorts
of patients will be crucial for these and other algorithms developed for MTI data analysis.

When considering generalizability of automated methods to new data, such as those methods in
this thesis, the complexity of the underlying model is another important factor. In Chapter 2, we
demonstrated that a complex algorithm based on superpixels and Voronoi tesselation could outperform
a naive algorithm; however, it is possible that we simply worked too hard to tailor our algorithm to the
data we had, and that new data would show the simpler algorithm to be superior. A future study might
take a closer look at the naive algorithm we presented; by varying its parameters slightly, I suspect that
this simple algorithm might actually surpass the more complex one in terms of general performance in
a larger cohort of patient tissue samples.

This consideration can be applied to the work in Chapter 3 as well, though in that case, it is
just to reiterate the well-known phenomenon of high false-discovery rates with multiple hypothesis
testing. The more variables that are given to a machine learning model, the greater the possibility
(as long as the model has the capability) that the model will find a perfect fit in the training data
that does not generalize to an unseen test data set [30]. This effect can even be observed when a
model is cross-validated, if the cross-validation is performed many times and the best score is chosen
(we did not precisely do this - RFECV produces a series of statistically dependent hypothesis tests,
and their number is limited by the number of variables). In this case, the warning is simply that
when patient tissue samples are limited, increasing the number of multiplexed channels or spatial
proximity metrics that are simultaneously quantified and integrated into a prognostic signature has no
guarantee of improving the generalizability of the resulting model; in fact, that could even be harmful
[65]. Given the tissues we have now, the best course of action to remedy this issue is to rationally
identify the patterns that most strongly reflect known biological processes; to prune the search space of
variables to the ones that we know to be meaningful. Researchers studying genomics have already
begun to identify molecular “pathways” representing cellular processes that comprise the activity of
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many molecules [18], and so perhaps image analysts can begin to build a new kind of computational
database to represent the relations between structure, i.e. of a tissue, and the molecular functions that it
undergoes.

In sum, my work to advance image analysis methods towards a more automated, quantitative
and reproducible approach has resulted in several tools that are available to the community. I have
demonstrated the utility of these tools in mIHC datasets from breast and pancreatic cancer, automating
previously manual tasks and creating a novel method for spatial analysis. Future endeavors will expand
the use of these tools to quantify additional biology in diverse tissues and data types, and address the
challenges of characterizing the interactions in human tissue from static 2D (and eventually 3D) MTI
images.
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