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Abstract

The auditory system underlies the ability to perceive and respond to sound in the environment.

However, perception and behavioral responses to sound are not static, but change over time depending

on one’s sensory context and internal state. The neural mechanisms underlying this flexibility are not

yet well-understood. For example, how is it that by focusing our attention on a single speaker in

a crowded, noisy room we are able to improve our ability to perceive their words? Prior work has

investigated this by characterizing how the sound driven activity of single neurons in the auditory

system depend on behavioral state. Yet, sensory perception and behavior are not mediated by single

neurons in isolation. In this dissertation, we build on this work by studying how two aspects of behav-

ioral state, arousal and task engagement, co-modulate the activity of many neurons simultaneously in

auditory cortex.

We recorded extracellular spiking activity from neurons in primary auditory cortex (A1) of ferrets

using multi-electrode laminar probes. These probes allowed us to measure the activity of tens of

neurons simultaneously while animals passively listened to sound stimuli, or engaged in a behavioral

task. Pupil size has been shown to track changes in cognitive state, such as alertness, in addition

to changes in neural activity. Therefore, we also measured animal’s pupil size as an index of global

arousal over time.

To analyze the high-dimensional neural population recordings, we first developed a novel dimen-

sionality reduction method which allowed us to reliably measure how accurately populations of neurons

in A1 represented sound stimuli. Using this approach, we studied how representation of natural sound

stimuli changed between high and low states of arousal. We found that, unlike in previous studies

of single neurons, arousal could either improve or reduce the accuracy of sound representations in

A1. We showed that this diversity is explained only by considering population level covariability in

sensory-evoked responses between cells. Finally, we applied this same method to data collected from

animals performing an auditory task. While task engagement improved representations of sound stim-

uli, the improvement did not correlate with animal’s perceptual performance. However, the strength

of population level covariability did. These results provide new insight into how the information in

A1 may be used to guide behavioral choices. Taken together, our results argue that population co-

variability plays an important role in determining how accurately sound information is represented in

A1 and, ultimately, is used to guide behavior.
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1 Introduction

The human auditory system is responsible for mediating the perception of sound. Sound pressure

waves generated by speech, music, and other environmental sources enter the system via the ear where

they are transduced into electrical signals by the cochlea and routed to the brain via the auditory

nerve. At this early stage of processing, sound information is represented with remarkable fidelity

by the activity of neurons in the auditory system. At later stages of processing, the signals from

the auditory nerve are integrated with information from other sensory modalities as well as aspects

of internal state, such as attention and arousal. This results in complex patterns of neural activity

that depend not only on sound, but also on the overall context in which the sound was experienced.

These context-dependent patterns of activity are thought to help guide appropriate action selection in

response to sound by integrating sound information with an animal’s overall sensory and behavioral

context.

Work over the previous two decades has investigated how different aspects of context influence the

activity of single neurons in the auditory system. However, the brain consists of billions of intercon-

nected neurons that act in concert to drive perception and behavior. While informative, studies of

single auditory neurons have yet to yield a cohesive theory describing how neural activity translates

to sound-dependent behavior. In this dissertation, we take a step towards this larger understanding

by developing new computational analysis techniques to determine how the simultaneous activity of

many neurons is modulated by two aspects of behavioral state – arousal and task engagement – and

investigate how this relates to behavior and perception.

1.1 Overview of the auditory system

General anatomy and physiology of the auditory system

Neural processing of acoustic information begins in the inner ear where sound is decomposed into

its constituent frequency components and transduced into an electrical signal by the cochlea. This

signal is relayed to the brain via auditory nerve (AN) fibers, each of which contains information about

a different sound frequency channel. This organized frequency segregation is referred to as tonotopy

and it is a hallmark of the auditory system that is preserved throughout the processing hierarchy.

Once in the brain, sound information is routed through multiple brainstem structures before it crosses

the midline and ultimately reaches the auditory cortex (AC) (Figure 1.1).
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Figure 1.1: Schematic of auditory pathway. Simplified schematic of ascending auditory system
through auditory cortex. Reproduced from.1

Sound information is represented with high precision in early processing stages and underlies, for

example, detection of interaural timing and sound level differences2 that help us to quickly localize

sound sources in our environment. Once relayed to the auditory cortex, the peripheral representa-

tion of spectrotemporal information is integrated with contextual information about internal state,3,4

other sensory modalities,5 and even motor activity.6 In this dissertation, we will focus exclusively on

these later stages of processing and their importance for guiding sound-dependent behavior.

Ferret as a model system

In the work described in this dissertation, we used the ferret as an animal model. The ferret

is particularly well-suited for studying higher-order auditory representations, such as those that de-

pend on multimodal sensory and behavioral context. The ferret has a relatively advanced behavioral

repertoire3,7–9 and a well-defined auditory hierarchy within cortex10,11 that is largely absent from

other species, such as mice.12,13 This hierarchy within auditory cortex is thought to be important for

mediating more complex sound-dependent behaviors.14
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1.2 Behavior state-dependent modulation of coding in auditory cortex

Auditory coding

In what follows, we will discuss how the neural code is modulated by behavioral state. In order to

do this, we first provide a brief framework for conceptualizing auditory coding.

Sound pressure waves cause neurons throughout the auditory pathway to fire action potentials. The

number and timing of action potentials, or spikes, elicited at any moment contain information about

the external world that can then be decoded by downstream brain regions to select the appropriate

behavioral response. The collection of physical features that elicit spikes in a given neuron comprise

its receptive field. For example, an auditory neuron’s receptive field is typically composed of some

combination of sound frequency, level, and temporal modulation. These features are summarized

using a spectrotemporal receptive field (STRF, Figure 1.2B). A neuron is said to be “tuned” to the

particular combination of features that cause it to fire the most action potentials. For example, the

example neuron shown in Figure 1.2B is tuned to sounds at roughly 800 Hz, with a response latency

of approximately 10 ms. Thus, the neuron’s pattern of spiking activity forms a neural code for the

presence (or absence) of this particular sound feature’s presence in the world over time.
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Figure 1.2: Receptive fields in auditory cortex. A. Top: Example sound pressure waveform.
Bottom: Response of a single auditory neuron. Vertical bars represent single action potentials. B.
Illustration of receptive field estimation for a single neuron. Top: Stimulus spectrogram for a ferret
vocalization. Relative sound level across time and frequency is represented by color. Middle: Spiking
response of a single neuron across repeated repetitions (rows) of the stimulus spectrogram. Tick
marks represent action potentials. Bottom: Spiking response is summarized by binning spikes and
computing the mean in each bin across repetitions (blue). An STRF receptive field model (right),
captures most of the sound evoked spiking activity over time (red). In practice, STRFs are estimated
using normalized reverse correlation between a neuron’s PSTH and the stimulus spectrogram.15 This
can be thought of, roughly, as a spike-triggered average of the stimulus spectrogram. Figure is adapted
from.16

Plasticity of the neural code in Auditory Cortex

The receptive field coding framework outlined in the previous section has classically been used

to describe the physiology of neurons in sensory brain areas. However, sensation, perception, and

action selection are not static, fixed processes with respect to physical stimuli. For example, carefully

focusing attention on a particular sound source – like a friend’s voice in a crowded bar – substantially

improves the ability to perceive what they are saying. Furthermore, even if you are able to perceive

their voice accurately, you may or may not choose to respond to them depending on internal factors

– like your motivation or your understanding of the topic – that are independent of the words they

spoke. How do sensory representations dynamically adapt to meet these changing requirements?

Early experiments investigated this by training ferrets to discriminate broad band noise associated
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with a water reward from pure tone frequencies which were followed by a mild shock if the animal did

not correctly withhold from licking.3 These studies found that the receptive fields of single auditory

neurons were enhanced at the pure tone target frequency relative to receptive fields measured in

the same neurons during passive conditions, when the sounds were no longer paired with reward or

punishment (Figure 1.3). Thus, the study demonstrated that by shifting their encoding to enhance the

representation of negative valence stimuli, AC neurons may help to adaptively guide the appropriate

motor response. Similar findings have subsequently been reported for different task designs,7 animal

species,17 and brain areas.18

A B

Figure 1.3: Receptive field plasticity in auditory cortex during behavior. A. STRF for single
example unit recorded during active tone-detection (behavior STRF) and during passive listening to
task stimuli (Passive STRF). Target frequency indicated by arrow in middle panel. B. Summary
of receptive field plasticity across single units in AC. STRFs are centered at target frequency before
pooling across units. Figure adapted from.3

While behavior state-dependent modulation of neural coding is well-documented, the neural sub-

strate underlying these phenomenon remains elusive in most cases. During passive conditions, electric

shock or reward pairing with specific sound frequencies leads to shifts in frequency tuning near the

paired tones.19,20 Coupled with findings that punishment and reward are associated with neuromodu-

lator release in cortex,21–23 these studies suggest that behavior-dependent plasticity may be mediated

by neuromodulatory systems. Recent work in anesthetized preps corroborates this hypothesis. Pair-

ing sound presentation with the release of acetycholine, leads to expansion at sound frequency24 and

similar results have been demonstrated for the neuromodulator noradrenaline.25 Therefore, while the

exact mechanisms appear to be complicated have not yet been fully described, neuromodulation seems

likely to contribute to the plasticity observed in AC during behavior.

Defining and measuring behavior state
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Certain aspects of an animal’s behavior state, like goal directed task engagement3,7 or selective

attention,26 are manipulated by the experimenter and can be inferred with reasonably high levels

of accuracy. However, at the same time as an experimenter manipulates experimental conditions,

animals also undergo fluctuations in other unobserved and uncontrolled aspects of behavior state,

such as arousal and wakefulness. These types of nonspecific changes in alertness occur independent

of experimenter defined task conditions e.g. animals cycle through high and low periods of arousal

every day, such as sleep vs. wakefulness. Importantly, changes in arousal state correlate with striking

changes in neural spiking activity and neuromodulator release.4,27–32 In practice, increased arousal

often coincides with an animal’s engagement in behavioral tasks. Thus, it is possible that some of the

behavior related plasticity observed in AC is not due to the task itself, but to nonspecific changes in

global brain state induced by heightened arousal or other uncontrolled state variables.

To address this possibility, recent work coupled measurements of pupil size, a non-invasive readout

of arousal state (see below: Pupil as an index of arousal state), with neural recordings in ferrets while

they performed a standard tone-detection task.7 Using a novel application of linear regression, this

work showed that the effects of arousal and task engagement could be dissociated in the firing rates

of single neurons in both the midbrain and the auditory cortex.33 The study further demonstrated

that ignoring arousal state could lead to incorrect conclusions about the effects of task engagement

on neural activity, highlighting both the complexity of studying behavior state and the importance of

controlling for latent, unobserved state variables in behavioral experiments.

Pupil size as an index of arousal state and neuromodulation

In this dissertation, like in the previously described study,33 we use pupil size as index of global

arousal. Pupil size has been shown to correlate with a number of behavioral readouts that are gener-

ally thought to reflect arousal state.34 For example, pupil size is correlated with listening effort,35,36

wakefulness,37 and locomotion.27,29,38 Although recent studies have shown that more general readouts

of arousal, such as movement, seem to explain more variability in neural activity,29,38 pupil size has

the advantage of being tightly coupled to known neuromodulatory activity in the locus coeruleus and

basal forebrain which project directly to auditory cortical regions.4,31,32 Thus, pupil size provides an

index for both arousal and neurmodulation that can be measured non-invasively in awake, behaving

animals, making it a powerful tool for studying behavioral state. For a more comprehensive review of

pupil size as index of arousal state, see.34,39
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1.3 Neural population coding

Recording the activity of large neural populations

When a neuron fires an action potential, ion channels along the cell membrane open and allow

positively charged ions to rush into the negatively charged cell body. This inward flux generates an

electrical potential difference (voltage) across the cell membrane that can be measured by placing a

high impedance electrode near the soma. The electrodes designed for this purpose are typically made

of material like tungsten or glass and are sharp and small in diameter, allowing them to be inserted into

the brain while causing minimal damage to neural tissue. Generally speaking, a single electrode allows

researchers to measure the activity of one, or maybe up to two or three, neurons at a time. By inserting

multiple electrodes, researchers are able to record a handle of neurons simultaneously, however, this

quickly becomes technically challenging as the number of electrodes that must me inserted into the

brain increases. Until recently, this technique was considered the gold standard in measuring neural

activity in vivo.

Over the past two decades, many of these challenges have been mitigated by the development of

high-density silicon microelectrode arrays e.g.40 (Figure 1.4). These probes are designed to be small,

like a tungsten electrode, but each contains many, independent high-impedance recording sites. This

allows researchers to measure the spiking activity of tens to hundreds of neurons simultaneously with

just a single probe inserted into the brain. While still falling far short of the billions of neurons

contained in the brain, this technology offers a dramatic improvement over single electrodes and

theoretical work suggests that many key brain computations can be inferred accurately from neural

populations of this size.41
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A B

C

Figure 1.4: Silicon microelectrode arrays. A. Cartoon rendering of a 64-channel linear silicon
microelectrode array B. Scanning electron microscrope image of probe. C Example data collected si-
multaneously across 12 electrodes. Figures adapted from42 and https://masmanidislab.neurobio.
ucla.edu/technology.html.

Although the data presented in this dissertation were collected using high-density microelectrode

arrays, it is worth also highlighting that imaging techniques and genetically encoded calcium indicators

have, likewise, revolutionized neural population recording. In some cases, these imaging techniques

now allow researchers to record from thousands to tens of thousands of neurons simultaneously,43

at least an order of magnitude increase over high-density electrode recordings. Importantly, though,

calcium signals are not equivalent to action potentials and there remain key advantages to using elec-

trical recordings.44 Nevertheless, these studies have yielded important insights about the structure of

neural population activity, some of which we describe below.

Spiking activity is correlated across neurons

With the advent of neural population recording, one of the earliest and most ubiquitous find-

ings was that the activity of simultaneously recorded neurons was not independent, but correlated.

That is, when one neuron fires more spikes than average, the neurons nearby are likely to fire more

than average. These firing rate correlations are stimulus-independent; they are not the result of co-
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activation by co-tuned neurons. Therefore, since they cannot be explained by stimulus condition, they

have generally been referred to as noise correlations (Figure 1.5). Unless otherwise specified, in this

dissertation “correlations” or “correlated neural activity” will refer to noise correlations.

Noise correlationA B

Figure 1.5: Noise correlations. A. Tuning curves for two simultaneously recorded direction
selective units. Open circles indicate mean response across all trials for each direction. Closed circles
indicate single trial responses for a particular stimulus direction. B. Single trial responses (same as
closed dots in A) are correlated. This stimulus-independent correlation is called a noise correlation.
Figure adapted from.45

Origin of noise correlations

Noise correlations tend to be strongest amongst neurons that are close together, suggesting that

correlated activity may be due to recurrent connections between neurons within local networks. An-

other possibility is that noise correlations reflect noise in the afferent sensory pathway. For example,

two neurons in AC that share input from a single upstream auditory never fiber might co-vary ac-

cording to changes in the shared AN fiber’s rate. This hypothesis is supported by findings that noise

correlations are strongest in neurons with similar tuning.46–49 A third hypothesis that has gained

support recently is that noise correlations are primarily the result of latent inputs to local circuits

that might not not be directly observes e.g. top-down co-activation of neurons by a neuromodulator.

This explanation is corroborated by recent work showing that noise correlations can be accurately

modeled using low-dimensional, latent processes that coherently modulate firing rates50–53 and that

correlate with state variables, such as arousal,54 which are known to reflect neuromodulatory activ-

ity.31,32 Strikingly, when the firing rates of neurons are “corrected” by regressing out these latent

factors, noise correlations are no longer present in their activity.51

Neural population (de)coding

A common analysis technique for determining what information is represented in neural activity

is neural decoding. Neural decoding uses the (spiking) activity of a single neuron, or population of
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neurons, to predict which external stimuli were presented to the system. This approach has provided

important insights into how and where information is represented in the brain. For example, classic

work demonstrated that the ability to decode visual stimuli give activity of single neurons in area MT

closely corresponded to animal’s perceptual performance.55 Thus, decoding can be used to identify

a possible neural substrate for perceptual discrimination.55 However, it has long been acknowledged

that behavior likely does not depend solely on single neurons, but on the coordinated activity of many

neurons within local neural circuits and communication across different brain areas.

Even before neural population recordings, a large body of theoretical work had explored the ques-

tion of how information represented by single neurons could be combined into a neural population

code.46,56–61 Early work demonstrated that pooling the information gleaned from serially recorded,

independent single neurons leads to drastic overestimates of decoding accuracy; large neural popu-

lations can discriminate between different stimuli much more reliably than animals can perform the

same behavioral task.46 However, simulations demonstrated that if the stimulus-independent activity

of single neurons is correlated, information scales sub-linearly with the number of neurons (Figure 1.6)

and may more closely resemble animal’s behavior,46 highlighting the importance of neural population

recordings for understanding information coding in the brain.

Figure 1.6: Noise correlations cause stimulus information to scale sub-linearly in neural
populations Signal to noise ratio is plotted as a function of population size when pooling over neurons
with different levels of noise correlation (r = 0 to r = 0.5). Figure adapted from.46

Structure of noise correlations and their impact on population coding

While early work demonstrated that noise correlations can limit the accuracy of population coding,

subsequent work showed that this only occurred when noise was structured in a very specific way

relative to the stimuli being decoded.62 To illustrate this concept, consider the two-neuron illustration

in Figure 1.7. When correlated noise is oriented along the optimal discrimination axis, it fundamentally
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limits decoding accuracy. This special type of correlation is referred to as information limiting .62

However, when noise is oriented in any other direction with respect to the sensory discrimination axis,

optimal linear decoding is no longer affected, or can even be improved relative to the independent

noise case. In large neural populations where the dimensionality of the space is high (N neurons =

N dimensions), this latter case becomes more likely. In support of this, a number of experimental

studies have since suggested that noise correlations largely have no effect on, or can even improve,

neural decoding.63–67 At the same time, recent data has found that the special case of information

limiting correlations do exist,68–70 however, they are difficult to detect without massive amounts of

data and measuring them accurately requires the development of new analytical tools, which we

discuss more in chapter 2 of this dissertation.68
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Independent noiseCorrelated noise

Correlations = harmful

Correlations = helpful

Correlations =no e�ect 

Figure 1.7: Noise correlations can help or hurt decoding. Simulated stimulus responses for two
neurons for two stimuli (green vs. gold). Ellipses represent the distribution of spike count responses
for each stimulus across many repetitions. Left column illustrates the case where response variability
is correlated and the right column shows the case where variability is independent between neurons. In
the first example (top), correlations are oriented perpendicular to the optimal discrimination boundary
(black line) and therefore make decoding difficult relative to the independent noise scenario. Middle
panel: correlations are beneficial to decoding. Bottom panel: correlations do not impact decoding.
Thus, the interaction between the noise correlation and the optimal decision boundary determine the
impact of noise correlation on stimulus decoding. Figure adapted from.60

Further complicating the role of correlations in decoding is the challenging, but critical question:

How does the brain actually decode information? For example, does the brain perform linear decoding

as illustrated in Figure 1.7? If so, is it optimal, or sub-optimal? Further, how do we as experimenters

know that the population of neurons we are recording from is actually used by the brain to decode

the stimuli that we present? The answers to each of these related questions can lead to dramatically

different impacts of correlations on decoding and we discuss the implications of this more in the

following section.

Finally, noise correlations are, by definition, stimulus-independent in the sense that they are not

directly caused by sensory stimulus activation. However, their orientation and magnitude can still
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change depending on the stimulus.47,63,66 As an example to help understand this phenomenon,

imagine that noise correlations are multiplicative. In this case, correlations between two neurons will

be strongest when one or both neurons have a high firing rate i.e. during presentation of their preferred

stimulus. Furthermore, imagine that the two neurons do not have the same tuning preference. This

means that their peak firing rates will occur for different stimuli causing the orientation of correlations

to rotate in a stimulus dependent manner (Figure 1.8). In diversely tuned population of neurons

in the retina, noise correlations seem to follow this structure and contribute to improved decoding

accuracy.63,66 Additionally, even if noise correlations are due to additive noise and are not stimulus-

dependent (dashed lines Figure 1.8), correlations can still have stimulus-dependent impacts on coding

(correlations interfere with decoding stimulus 1 vs. stimulus 2, but not stimulus 2 vs. stimulus 3 –

Figure 1.8). These findings and illustrations highlight the importance of sampling a diverse stimulus

space to understand the impact of noise correlation on coding. Chapter 3 of this dissertation addresses

this topic.

Joint tuning curve

Stim. 1 Stim. 2 Stim. 3

Sound Frequency (Octaves)

A B
(0.75)

(0.75)

(0.75)

Figure 1.8: Stimulus-dependence of noise correlations. Two frequency tuned auditory neurons
were simulated with shared, multiplicative (or additive) noise. A. Tuning curves for two simulated
auditory neurons. Dashed lines indicate three specific stimuli. B. Joint tuning curve for cells 1 and
2 is shown in black. Colored ellipses indicate the responses distribution across many simulated trials
for each of the three stimuli indicated in A. Solid lines – distribution for multiplicative noise, dashed
lines – distribution for additive noise. Noise correlation coefficient for each stimulus is indicated in
the figure legend. Number in parentheses is correlation coefficient for additive noise.

1.4 Behavior-dependent modulation of neural population codes

In the final section of this introduction, we introduce the concept of behavior state modulating

noise correlations, and the impact this has on stimulus decoding, perception, and behavior. Although

the focus of this dissertation is on auditory coding, arousal, and task engagement, most prior work
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on the topic of state-dependent population codes, especially as they relate to stimulus coding and

perception, has been done using visual selective attention tasks and recording from visual cortex.

Therefore, in what follows we focus primarily on this body work.

Behavior state and noise correlations

Given that noise correlations can determine neural population coding accuracy, it is important

to understand their relationship to behavior and perception. Early on it was demonstrated that

noise correlations, like single cell receptive fields, are not a static property of neural populations.

Across cortical brain regions, noise correlation strength is sensitive to a range of state-dependent

changes, including fluctuations in pupil-indexed arousal,27,28,71 locomotion,27 anesthesia state,51,72

task engagement,73 selective attention,26,74 and learning.52 Although state-dependent changes in

noise correlations are commonly reported, their impact on population coding and behavior remain a

topic of debate.

In one of the first studies to investigate this, Cohen et al. trained macaque monkeys to perform a

cued change detection task (Figure 1.9).26 The authors demonstrated that monkey’s ability to detect

a change in the visual stimulus was improved when they were cued to attend to the location where the

change was about to occur (Figure 1.9). While animals performed this task, Cohen et al. recorded

neural activity from the visual area V4. They found that the behavioral improvement associated

with attention coincided with a selective reduction in noise correlations amongst those neurons whose

receptive fields overlapped with the visual stimulus. Furthermore, this change in correlation led to a

direct improvement in neural decoding of the visual stimulus which correlated tightly with the animal’s

performance on single trials (Figure 1.9). Thus, this study offered one of the first examples where the

neural population was found to be the key unit of computation and their results argued that noise

correlations play an important role in perception and behavior.
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A B

C D

Figure 1.9: Attention improves perception and stimulus decoding. A. Schematic of cued-
change detection task. B. Example psychometric curve showing behavioral performance. Behavioral
shift represents the improvement in perception attributed to selective spatial attention to the cued
location. C. Cartoon schematic of procedure for measuring decoding accuracy (d′) D. Change in d′
between attended and unattended conditions is plotted as a function of behavioral shift (shown in B).
Figure adapted from.26

Follow up studies, however, have challenged these findings by demonstrating that the choice of

decoding method is critical when determining the impact of correlations.62,75 These studies have

typically argued, as discussed in the prior section, that only under very specific conditions will corre-

lations affect optimal linear decoding of stimulus identity62,75 e.g. Figure 1.7. Yet, these theoretical

results remain somewhat paradoxical given the experimental finding that changes in noise correla-

tions, across different task designs and brain regions, are so tightly coupled with animal’s perceptual

performance.26,52,73

Sub-optimal decoding strategies

Ultimately, to understand the effect (or lack thereof) of noise correlations in sensory coding, we

must first determine how neural activity informs behavioral choices. More precisely, how is neural

activity in sensory areas decoded by downstream brain regions? Up to this point, we have discussed
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neural decoding as a method to determine what stimulus information is contained in a neural code.

While this approach provides an upper bound on the sensory information encoded by the system,

it does not answer the question of whether and/or how it is actually used to guide perception and

behavior. To do this, it is necessary to identify features of the neural activity that have an intersection

between sensory and choice information.76

In a follow up study to,26 the same group identified the dimension of neural activity in visual area

V4 that carried maximal information about the monkey’s choice.52 Interestingly, they found that

the largest dimension of noise correlation was aligned with the choice decoding dimension, but not

with the optimal stimulus decoding axis. Thus, they concluded that animals seem to decode stimulus

information sub-optimally for any particular task, but instead might use a general purpose decoding

strategy that applies across many tasks. This hypothesis makes sense, as animal’s performance would

be perfect if they were to decode optimally from large neural populations.52,77

(Noise correlation axis)

Figure 1.10: Noise correlations are aligned with choice decoding dimension in V4 popula-
tions during cued-change detection. Cartoon schematic adapted from.52 Ellipses represent the
distribution of spikes counts across trials of each condition: “M” corresponds to miss trials and “H”
to hit trials. Grey indicates the stimulus shown prior to the change and black indicates the changed
stimulus (see Figure 1.9). The first principal component of noise correlations is aligned with the
choice decoding axis, but only partially aligned with the optimal stimulus decoding axis. This leads
to sub-optimal stimulus decoding.

Another approach to identifying important dimensions in neural activity is to record simultaneously

from multiple brain regions and determine which aspects of upstream activity propagate downstream.

Although this approach is new and is not necessarily directly related to perception and behavior, it

has been used recently to demonstrate that communication subspaces between cortical areas appear to

be low-dimensional,78 like noise correlations themselves51–53 (see above: Origin of noise correlations).

Thus, it appears likely to be a promising avenue for future research.
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Origin and dimensionality of state-dependent noise correlation modulation

Both modeling53 and experimental79 studies have argued that noise correlations are low-dimensional,

meaning that neural activity primarily co-varies along a single axis in state space. However, recent

recordings from larger neural populations68 have discovered that multiple significant dimensions of

correlated activity exist. These findings are in line with other recent work showing that multiple

dimensions of behavior (e.g. running, whisking, face movement, pupil size etc.) can all coherently

modulate neural activity.29 If each of these state variables affects a slightly different subset of neu-

rons (e.g. running modulates a different population of neurons than pupil whisking), then correlated

activity in the population will be at least two dimensional.

These recent findings raise the question of whether state-dependent decreases in correlated activity,

e.g. due to selective spatial attention, reflect suppression of all dimensions of noise correlations or if

they are restricted to a relatively low-dimensional subspace. In the case of selective attention, this

was investigated in a re-analysis of the cued-change detection task data26 highlighted in the previous

section. In this study, Rabinowitz et al. used a Generalized Linear Model (GLM) to predict the

time-varying activity of V4 neural populations as a combination of stimulus drive, attention mediated

gain of sensory responses (cue), and latent sources of shared variability between neurons (shared

modulators) (Figure 1.11).50 They found that the model performed best with just a small number of

latent, shared modulators and, critically, only the variance of a single modulator was sensitive to the

attention cue (attend in vs. attend out). Thus, the study concluded that the state variable, attention,

seems to modulate just a single dimension of shared noise in V4 populations.
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Figure 1.11: Attentional modulation of noise correlations is low-dimensional. A. Schematic
detailing a GLM designed to predict firing rates in V4 neurons. The slow drift and shared modulators
are inferred parameters that are fit by the model, unknown the experimenter. B. Results from a single
model fit. The variance of the fit shared modulator scales with the attention cue, determined by the
experimenter. Figure adapated from.50

In the work by Rabinowitz et al., attention was modeled as binary cue that experimenters had

precise control over. However, in practice an animal’s attention likely wanders from trial to trial. Thus,

an alternative interpretation of the results is that animal’s attention is more stable during attend-

in conditions and the shared modulator Rabinowitz et al. identified is in fact just the trial-to-trial

variability of attentional gain itself. This is slightly a nuanced point, but has important implications

for both perception and physiological mechanisms. In this latter scenario, perception is improved

during the attend-in condition not because noise is suppressed, but because the animal’s attention

wanders less. That is, they are more certain of where to direct their attention and therefore neural

responses vary less and perception improves. Physiologically, in this case, only a single mechanism is

required to support both the well-documented attention-dependent gain of sensory responses80 and

the more recently observed reduction in noise correlations.26

An elegant study by Denfield et al. recently tested this hypothesis by designing a variant of the

cued-change detection task in which they were able to manipulate the stability of an animal’s atten-

tion between experimental blocks.81 In agreement with the theory outlined above, noise correlations

were strongest when attention was most variable and when perception was the worst,81 supporting a

parsimonious model where changes in single unit sensory gain and noise correlations are mediated by

a single neural substrate.
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Abstract
Rapidly developing technology for large scale neural recordings has allowed

researchers to measure the activity of hundreds to thousands of neurons at

single cell resolution in vivo. Neural decoding analyses are a widely used tool

used for investigating what information is represented in this complex, high-

dimensional neural population activity. Most population decoding methods

assume that correlated activity between neurons has been estimated accu-

rately. In practice, this requires large amounts of data, both across observa-

tions and across neurons. Unfortunately, most experiments are fundamentally

constrained by practical variables that limit the number of times the neural

population can be observed under a single stimulus and/or behavior condition.

Therefore, new analytical tools are required to study neural population coding

while taking into account these limitations. Here, we present a simple and

interpretable method for dimensionality reduction that allows neural decod-

ing metrics to be calculated reliably, even when experimental trial numbers

are limited. We illustrate the method using simulations and compare its per-

formance to standard approaches for dimensionality reduction and decoding

by applying it to single-unit electrophysiological data collected from auditory

cortex.

2.1 Introduction

Neural decoding analysis identifies components of neural activity that carry information about the

external world (e.g. stimulus identity). This approach can offer important insights into how and where

information is encoded in the brain. For example, classic work by Britten et al. demonstrated that the

ability of single neurons in area MT to decode visual stimuli closely corresponds to animal’s perceptual

performance.55 Thus, by using decoding the authors identified a possible neural substrate for detection

of motion direction.55 Yet, behavior does not depend solely on single neurons. In the years since

this work, many theoretical frameworks have been proposed for how information might be pooled

across individual neurons into a population code.46,56–61 One clear theme that has emerged from this

work is that stimulus independent, correlated activity (i.e. noise correlations) between neurons may

substantially impact information coding.46,57–61 This has now been confirmed in vivo using decoding

analysis to measure the information content of large neural populations.68–70 Therefore, covariability
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between neurons must be taken into account when measuring population coding accuracy.

Under most experimental conditions, estimates of pairwise correlation between neurons is unreliable

due to insufficient sampling (e.g. too few stimulus repeats).82 In these situations, traditional decoding

algorithms are likely to over-fit to noise in the neural data. This issue becomes even more apparent

as the number of pairwise interactions that must be estimated increases, a situation that is becoming

more common due to the recent explosion in large-scale neurophysiology techniques.83 In some cases,

e.g. for chronic recording experiments and anesthetized preps, the number of trials can be increased

to circumvent this issue. However, in behavioral experiments, where the number of trials is often

fundamentally limited by variables such as animal performance, new analytical techniques for decoding

are required.

Here, we present decoding-based dimensionality reduction (dDR), a simple and generalizable

method for dimensionality reduction that significantly mitigates issues around estimating correlated

variability in experiments with a relatively low ratio of observations to neurons. Our method takes

advantage of recent observations that population covariability is often low-dimensional50–52,54 to de-

fine a subspace where decoding analysis can be performed reliably while still preserving the dominant

mode(s) of population covariability. The dDR method can be applied to data collected across many

different stimulus and/or behavior conditions, making it a flexible tool for analyzing a wide range of

experimental data.

We motivate the requirement for dimensionality reduction by illustrating how estimates of a popu-

lar information decoding metric, d′2,57,58 can be biased by small experimental sample sizes. Building

on a simple two-neuron example, we demonstrate that low-dimensional structure in the covariability

of simulated neural activity can be leveraged to reliably decode stimulus information, even when the

number of neurons exceeds the number of experimental observations. Finally, we use a dataset col-

lected from primary auditory cortex to highlight the advantages of using dDR for neural population

decoding over standard principal component analysis.

2.2 Results

2.2.1 Small sample sizes limit the reliability of neural decoding analysis

Linear decoding, a common analytical method in neuroscience, identifies a linear, weighted com-

bination of neural activity along which distinct conditions (e.g. different sensory stimuli) can be

discriminated. In neural state-space, this weighted combination is referred to as the decoding axis,

wopt, and it is the line along which the distance between stimulus classes is maximized and trial-trial
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variance is minimized (Fig. 2.1a, b). To quantify decoding accuracy, single-trial neural activity is

projected onto this axis and a decoding metric is calculated to quantify the discriminability of the

two stimulus classes. Here, we use d′2, the discrete analog of Fisher Information.57,58 This discrim-

inability metric has been used in a number of previous studies59,62,68–70 and has a direct relationship

to classical signal detection theory.57,84

Looking at the simulated data in Figures 2.1a and b, one can appreciate that an accurate estimate

of wopt requires knowledge of both the mean response evoked by each stimulus class (µa vs. µb), as

well the population covariance, Σ (summarized by the ellipses in Fig. 2.1a and b). Indeed, d′2, is

directly dependent on these features:

d′2 = ∆µTwopt (2.1)

wopt = Σ−1∆µ (2.2)

∆µ = µa − µb (2.3)

Where µa and µb are the Nx1 vectors describing the mean response of an N -neuron population to

two stimuli, a vs. b, respectively, and Σ is the average NxN covariance matrix 1
2 (Σa + Σb) (e.g. Fig.

2.1c).

In practice, the pairwise spike count covariance between neurons (often referred to as noise corre-

lation, or rsc) is reported to be very small – on the order of 10−1 or 10−2.26,45,65 As we can see from

the shuffled distribution in Figure 2.1a (bottom), this can pose a problem for accurate estimates of the

off-diagonal elements in Σ, and, as a consequence, wopt itself. This difficulty is especially pronounced

when sample sizes are relatively small (compare Fig. 2.1a to b). The estimates of covariance and

stimulus discriminability improve with increasing sample size, but robust performance is not reached

until ≈ 100 stimulus repetitions, even for this case with relatively strong covariance (Fig. 2.1d). The

sample sizes (e.g. number of trials) in most experiments, especially those involving animal behavior,

are typically much lower, raising the question: How can one reliably quantify coding accuracy in large

neural populations observed over relatively few trials?

22



Decoding axis (wopt)

ovariance

a b c

d

0

4

8

0 3 6 0 3 6

Figure 2.1: Measurements of pairwise covariance and discriminability are unreliable when
sampling is limited. a. Top: k = 10 single trial spike count responses are drawn from standard
multivariate Gaussians N (µa,Σ) and N (µb,Σ) corresponding to two different stimulus conditions,
a and b. Ellipses show the standard deviation of spike counts across trials. Bottom: Reliability of
the pairwise covariance estimate between neuron 1 (n1) and neuron 2 (n2) is calculated by shuffling
values of n1 500 times. The true covariance (red line) falls within this distribution, indicating that
estimates of covariance are not reliable for k = 10. b. Same as in (a), but drawing k = 100 samples
for each stimulus. The narrower distribution of permuted measures indicates a greater likelihood
of identifying an accurate estimate of covariance. c. The covariance matrix, Σ, used to generate
data in (a)/(b). The true pairwise covariance for this pair of simulated neurons has a value of 0.4.
d. Variance (σ2) of covariance estimates based on the permutation analysis in (a)/(b) for a range
of sample sizes, k (blue). Variance decays as O( 1

k−1 ) (see Appendix). Overlaid is the difference in
stimulus discriminability, d′2 (Eqn. 2.1), between estimation and validation sets (50-50 split) estimated
for each sample size (orange). Large values in the d′2 difference for low k indicate overfitting of wopt to
the estimation data. This difference asymptotes toward zero as sample size increases and the estimate
of covariance becomes reliable.

2.2.2 Neural activity is low-dimensional

Analysis of neural population data with dimensionality reduction has consistently revealed low-

dimensional structure in neural activity.85 Specifically, recent studies have found that stimulus-

independent variability (i.e. noise correlations) is dominated by a small number of latent dimen-

sions.50,51,53,54 Noise correlations are thought to impact stimulus coding accuracy60 and are known

to depend on internal states, such as attention, that affect behavioral task performance.26,50,52,73
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These findings suggest that the space of neural activity relevant for understanding stimulus decoding,

and its relationship to behavior, may be small relative to the total number of recorded neurons.

When population data exhibits low-dimensional structure, the largest eigenvector(s) of Σ (i.e. the

top principal components of population activity) provides a reasonable, low-rank approximation to

the full-rank covariance matrix. Importantly, these high variance dimensions of covariability can be

estimated accurately even from limited samples. To illustrate this, we simulated population spike

counts, X, for N = 100 neurons by drawing k samples from a multivariate Gaussian distribution with

mean µ and covariance Σ (Eqn. 2.4).

X = N (µ,Σ) + εindep. (2.4)

Where in Eqn. 2.4, εindep. represents a small amount of independent noise added to each neuron,

effectively removing any significant structure in the smaller noise modes.
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Figure 2.2: Low-dimensional correlated activity can be estimated reliably for neural
populations, even when pairwise covariance cannot. a. Example covariance matrix, Σ, for a
100-neuron population with low-dimensional covariance structure. b. Scree plot shows the fraction of
total population variance captured along each noise dimension, computed by PCA, for three different
datasets with varying dimensionality. Orange: 1-dimensional noise (1-D), covariance matrix in (a);
green: independent noise (Indep.); blue: power law decay (1/n). c. Surrogate datasets with varying
numbers of samples, k, are drawn from the three noise distributions in (b). For each dataset, the cosine
similarity between the estimate of the largest noise dimension, ê1, and the true noise dimension, e1,
is plotted as function of sample size. For low-dimensional data, e1 can be estimated very reliably. d.
Variance in the estimate of covariance, Σi,j , for two neurons with a true covariance of 0.04 is plotted
as a function of the number of trials, as in Figure 1d. Even at sample sizes > 100, V ar(Σ̂i,j) ≈ 0.02,
corresponding to a standard deviation of ≈ 0.14. Therefore, estimates of Σi,j , may be off by up to an
order of magnitude. Note that the amount of uncertainty does not depend on the dimensionality of
the data, and results for all three datasets overlap (see Appendix for an analytical derivation).

To investigate how different noise structures impact estimates of Σ, we simulated three different

surrogate populations. First, we simulated data with just one large, significant noise dimension (Fig.

2.2, 1-D data, orange). In this case, the first eigenvector can be estimated reliably, even from just a few

samples (Fig. 2.2c). However, when the noise is independent and shared approximately equally across

all neurons, estimates of the first eigenvector are poor (Fig. 2.2, Indep. noise, green). These first

two simulations represent extreme examples – in practice, population covariability tends to be spread

across at least a few significant dimensions.86 To investigate a scenario that more closely mirrors this

structure, we simulated a third dataset where the noise eigenspectrum decayed as 1/n, where n goes
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from n = 1 to N . Recent studies of large neural populations suggest that this power law relationship

is a reasonable approximation to real neural data.86 In this case, by k ≈ 50 trials, estimates of the first

eigenvector are highly reliable, approaching a cosine similarity of ≈ 0.9 between the estimated and

true eigenvectors (Fig. 2.2, 1/n noise, blue). In all simulations, regardless of dimensionality, we find

that estimates of single elements of Σ (i.e. single noise correlation coefficients) are highly unreliable

(Fig. 2.2d), as we see in the two-neuron example (Fig. 2.1d).

Collectively, these simulations demonstrate that accurate estimates of covariance need not necessar-

ily be limited by uncertainty in estimates of individual noise correlation coefficients themselves. In the

following sections we describe a simple decoding-based dimensionality reduction algorithm, dDR, that

leverages low-dimensional structure in neural population activity to facilitate reliable measurements

of neural decoding.

2.2.3 decoding-based Dimensionality Reduction (dDR)

The dDR algorithm operates on a pairwise basis. That is, given a set of neural data collected

over S different conditions, a different dDR projection exists for each of the S!
2!(S−2)! unique pairs. For

simplicity, we will describe the case where S = 2, and consider these to be two unique stimulus condi-

tions. However, note that the method can be applied in exactly the same manner to handle datasets

with many different types and numbers of decoding conditions, where a unique dDR projection would

then exist for each pair.

Let us consider the spiking response of an N -neuron population evoked by two different stimuli, Sa

and Sb, over k-repetitions of each stimulus. From this data we form two response matrices, A and B,

each with shape Nxk. Remembering that our goal is to estimate discriminability (d′2, Eqn. 2.1), the

dDR projection should seek to preserve information about both the mean response evoked by each

stimulus condition, µa and µb, as well as the stimulus-independent noise covariance, Σ. Therefore,

we define the first dimension of dDR to be the axis that maximally separate µa and µb. We call this

the signal axis.

signal = µa − µb = ∆µ (2.5)

Next, we compute the first eigenvector of Σ, e1. This represents the largest noise mode of the

neural population activity. Together, signal (∆µ) and e1 span the plane in state-space that is most

optimized for reliable decoding. Finally, to form an orthonormal basis, we define the second dDR

dimension as the axis orthogonal to ∆µ in this plane. As this second dimension is designed to preserve

26



noise covariance, we call this the noise1 axis.

noise1 = e1 − e1∆µT (2.6)

The process outlined above is schematized graphically in Figure 2.3.

Thus, the signal and noise1 axes make up a 2xN set of weights, analogous to the loading vectors

in standard PCA, for example. By projecting our Nxk data onto this new basis, we capture both the

stimulus coding dimension (∆µ) and preserve the principal covariance dimension (e1), two critical

features for measuring stimulus discriminability. Importantly, because e1 can be measured more

robustly than Σ itself (Figure 2.2), performing this dimensionality reduction helps mitigate the issues

we encounter due to small sample sizes and large neural datasets.

Figure 2.3: decoding-based Dimensionality Reduction (dDR). Left to right: Responses of 3
neurons (n1, n2, n3) to two different stimuli are schematized in state-space. Ellipsoids illustrate the
variability of responses across trials. 1. To perform dDR, first the difference is computed between
the two mean stimulus responses, ∆µ. 2. Next, the mean response is subtracted for each stimulus
to center the data around 0, and PCA is used to identify the first eigenvector of the noise covariance
matrix, e1 (additional noise dimensions em,m > 1 can be computed, see text). 3. Finally, the raw
data are projected onto the plane defined by ∆µ and e1.

As mentioned in the previous section, neural data often contains more than one significant dimen-

sion of correlated trial-trial variability. To account for this, dDR can easily be extended to include

more noise dimensions. To include additional dimensions, we deflate the spike count matrix, X, by

subtracting out the signal and noise1 dimensions identified by standard dDR, then perform PCA

on the residual matrix to identify m further noise dimensions. Note, however, that for increasing m

the variance captured by each dimension gets progressively smaller. Therefore, estimation of these

subsequent noise dimensions becomes less reliable and will eventually become prone to over-fitting,

especially with small sample sizes. For this reason, care should be taken when extending dDR in this

way.
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To demonstrate the performance of the dDR method, we generated three sample datasets contain-

ing N = 100 neurons and S = 2 stimulus conditions. Each of the three datasets contained unique

noise covariance structure: 1. Σ contained one significant dimension (Fig. 2.4a) 2. Σ contained two

significant dimensions (Fig. 2.4b) 3. Noise variance decayed as 1/n (Fig. 2.4c). For each dataset, we

measured cross-validated d′2 between stimulus condition a and stimulus condition b using standard

dDR with one noise dimension (dDR1), with two noise dimensions (dDR2), or with three noise dimen-

sions (dDR3). We also estimated d′2 using the full-rank data, without performing dDR. Figure 2.4

plots the decoding performance of each method as a function of sample size (i.e. number of stimulus

repetitions). In each case, d′2 is normalized to the asymptotic performance of the full-rank approach,

when the number of samples is >> than the number of neurons. This provides an approximate

estimate of true discriminability for the population.

In contrast to the full-rank data where overfitting leads to dramatic underestimation of d′2 on the

test data for most sample sizes (Fig. 2.4 grey lines), we find that d′2 estimates after performing dDR

are substantially more accurate and, critically, more reliable across sample sizes. That is, asymptotic

performance of the dDR method is reached much more quickly than for the full-rank method.

For the one-dimensional noise case, note that there is no benefit of including additional dDR

dimensions (Fig. 2.4a), while for the higher dimensional data shown in Figure 2.4b-c, we see some

improvements with dDR2 and dDR3. However, these benefits don’t begin to appear until k becomes

large and they diminish with increasing noise dimensions – the improvement of dDR2 over dDR1 is

larger than that of dDR3 to dDR2 Fig. 2.4b-c. This is because subsequent noise dimensions are, by

definition, lower variance and therefore more difficult to estimate reliably from limited sample sizes.
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Figure 2.4: Evaluation of decoding accuracy and reliability with dDR. a. Analysis of data
with one-dimensional (1-D) noise covariance. For each sample size, k, 100 datasets were generated
from the same multivariate Gaussian distribution (Eqn. 2.4) where Σ was a rank-one covariance
matrix and the mean response vector, µ, corresponded to one of two stimulus conditions, a or b.
Top: Scree plot of noise covariance. Bottom: Cross-validated discriminability, d′2, between a and b
computed with full-rank data and with dDR using one (dDR1), two (dDR2) or three (dDR3) noise
dimensions, as a function of sample size. Mean d′2 across all 100 surrogate datasets is shown here.
For k >> N , the dDR results converge to the asymptotic value of the full-rank d′2. However, even for
small k, the dDR analyses estimates are much more accurate than the full-rank approach. b. Same
as in (a), but for two-dimensional noise covariance data. In this case, dDR2 captures the second noise
dimension and outperforms the standard 1-D approach (dDR1) c. Same as in (a) and (b), but for
1/n noise covariance.

2.2.4 dDR recovers more decoding information than standard principal component

analysis

One popular method for dimensionality reduction of neural data is principal component analysis

(PCA).85 Generally speaking, PCA can be implemented on neural data in one of two ways: single

trial PCA or trial-averaged PCA. In the single trial approach (stPCA), principal components are

measured across all single trials and all experimental conditions. The resulting PCs capture variance

both across single trials and across different e.g. stimulus conditions. In trial-averaged PCA (taPCA),

single trial responses are averaged per experimental condition first, and PCs are measured over the

resulting N -neuron x S-condition spike count matrix. In this case, for different stimulus conditions,

the PCs specifically capture variance of stimulus-evoked activity rather than trial-trial variability,
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making this a more logical choice for many decoding applications. In the case of S = 2, as we

have outlined above for the dDR illustration (Fig. 2.3), taPCA is equivalent to ∆µ, the first dDR

dimension. Thus, dDR can roughly be thought of as a way to combine taPCA and stPCA – taPCA

identifies the signal dimension and stPCA identifies the noise dimension(s).

To demonstrate the relative decoding performance achieved using each method, we applied each

to a dataset collected from primary auditory cortex in an awake, passively listening ferret. N = 52

neurons were recorded simultaneously using a 64-channel laminar probe40 as in.33,87,88 Auditory

stimuli consisting of narrowband (0.3 octave bandwidth) noise bursts were presented alone (-Inf dB)

or with a pure tone embedded at varying SNRs (0 dB, −5 dB, −10 dB) in the hemifield contralateral

to the recording site (see Experimental Methods). Each stimulus was repeated 50 times. For stPCA

and dDR, we selected only the top m = 2 total dimensions, and for taPCA, we selected the single

dimension, ∆µ, that exists for S = 2. This dataset allowed us to investigate how each dimensionality

reduction method performs for two distinct, behaviorally relevant neural decoding questions: How

well can neural activity perform fine discriminations (tone-in-noise detection), discriminating noise

alone vs. noise with tone? How well can it perform coarse discriminations (frequency discrimination),

discriminating noise centered at frequency A vs. noise at frequency B?
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Fine discrimination (tone detection)

Figure 2.5: dDR outperforms PCA for fine sensory discrimination. a. Heatmap shows mean
z-scored spike counts of N = 52 simultaneously recorded units for 15 different narrowband noise
bursts (0.3 octave bandwidth tiling 5 octaves, x-axis). Each row shows tuning for one unit, with red
indicating higher firing rate response. b. Population tuning curve for noise alone (black, data from
panel a) and noise plus −10, −5, and 0 dB tones (light to dark red), computed by averaging tuning
curves across neurons. c-e. Decoding analysis for tone-in-noise detection. c. Scatter plot compares
single trial responses to noise alone at best frequency (on-BF, blue) vs. noise + −5dB tone (orange),
projected into dDR space. Ellipses show standard deviation across trials, marginal histograms show
projection of data onto optimal decoding axis (wopt) or onto ∆µ (equivalent to performing trial-
averaged PCA). d. Estimate of d′2 as a function of sample size (number of trials, k) using each
dimensionality reduction method. For each point, d′2 was averaged over 100 random samplings of k
trials, drawn without replacement. Shading indicates standard error. e. Fraction variance explained
by each noise component (green) computed by performing PCA on mean-centered single trial data.
The alignment of each noise component with the signal axis is shown in purple. f-h Same as panels
(c)-(e), for noise alone on-BF vs. noise along off-BF (see panel b).

The A1 dataset displayed a range of frequency tuning (Fig. 2.5a), with the majority of units tuned

to ≈ 3.5 kHz. We therefore defined this as the best frequency of the recording site (on-BF, Fig. 2.5b).

For tone detection, we measured discriminability (d′2, Eqn. 2.1) between on-BF noise alone (on-BF,

-Inf dB) and on-BF noise plus tone (on-BF, −5 dB), which each drove similar sensory responses (Fig.

2.5b-c). For frequency discrimination, we measured discriminability between the neural responses to

on-BF noise and off-BF noise, where off-BF was defined as ≈ 1 octave away from BF, and drove

a very different population response (Fig. 2.5b, f). In both cases, taPCA and dDR outperformed

stPCA (Fig. 2.5d, g). This first result is unsurprising due to the fact that stPCA is the only method
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not explicitly designed to capture variability in the sensory response. The top PCs are dominated

by dimensions of trial-trial variability that do not necessarily contain stimulus information and thus

underestimate d′2 relative to the other two methods.

We also find that dDR consistently performs as well or better than taPCA. For the tone detection

data, the sensory signal (∆µ) is small (i.e., trial-averaged responses to the two stimuli were similar)

and covariability is partly aligned with ∆µ. Under these conditions, dDR makes use of correlated

activity to optimize the decoding axis (wopt) and improve discriminability. taPCA, on the other

hand, has no information about these correlations and is therefore equivalent to projecting the single

trial responses onto the signal axis, ∆µ. Thus, it underestimates d′2 (Fig. 2.5c, d). In the frequency

discrimination example, ∆µ is large. The covariability has similar magnitude to the previous example,

but it is not aligned to the discrimination axis, and thus has no impact on wopt. In this case, dDR and

taPCA perform similarly (Fig. 2.5f-g). These examples highlight that under behaviorally relevant

conditions, dDR can offer a significant improvement over standard PCA, even with as few as 10 trials.

2.3 Discussion

We have described a new, simple method for dimensionality reduction of neural population data,

dDR. This approach combines strategies for both trial-averaged PCA and single-trial PCA to identify

important dimensions of population activity that govern neural coding accuracy. Using both simulated

and real neural data, we demonstrated that the method performs robustly for neural decoding analysis

in low experimental trial count regimes where the performance of full-rank methods break down.

Across a range of behaviorally relevant stimulus conditions, dDR consistently performs as well or

better than standard principal component analysis.

2.3.1 Applications

dDR is designed to optimize the performance of linear decoding methods in situations where

sample sizes are small. This is often the case for neurophysiology data collected from behaving

animals, where the number of stimulus and/or behavior conditions are fundamentally limited by

task performance. In these situations, using full-rank decoding methods is unfeasible as it leads to

dramatic overfitting and unreliable performance.82 Dimensionality reduction methods, such as PCA,

can be used to mitigate overfitting issues. However, the correct implementation of PCA in neural

data is often ambiguous, and multiple different approaches to dimensionality reduction have been

proposed.85 We suggest dDR as a simple, standardized alternative that captures the strengths of
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different PCA approaches. Unlike conventional PCA, the signal and noise axes that comprise the

dDR space have clear interpretations with respect to neural decoding. Importantly, dDR components

explicitly preserve stimulus-independent population covariability. In addition to being important for

overall information coding, this covariability is known to depend on behavior state26,50,52,73,89 and

stimulus condition.45,63,66,90 Therefore, approaches that do not preserve these dynamics, such as

trial-averaged PCA, may not accurately characterize how information coding changes across varying

behavior and/or stimulus conditions.

2.3.2 Interpretability and visualization

A key benefit of dDR is that the axes making up the dDR subspace are easily interpretable: The

first axis (signal) represents the dimension with maximal information about the difference in evoked

activity between the two conditions to be decoded, and the second (noise) axis captures the largest

mode of condition-independent population covariability in the data. Therefore, within the dDR

framework it is straightforward to investigate how this covariability interacts with discrimination,

an important question for neural information coding. Further, standard dDR (with a single noise

dimension) can be used to easily visualize high-dimensional population data, as in Fig. 2.5. For

methods like PCA, it can be difficult to dissociate signal and noise dimensions, as the individual

principal components can represent an ambiguous mix of task conditions, stimulus conditions, and

trial-trial variability.91 Moreover, with PCA the number of total dimensions is typically selected

based on their cumulative variance explained, rather than by selecting the dimensions that are of

interest for decoding, as in dDR.

2.3.3 Extensions

Latent variable estimation:

dDR makes the assumption that latent sources of low-dimensional neural variability can be cap-

tured using simple, linear methods, such as PCA. While these methods often seem to recover mean-

ingful dimensions of neural variability,52 a growing body of work is investigating new, alternative

methods for estimating these latent dynamics,50,51,92,93 and this work will continue to lead to impor-

tant insights about the nature of shared variability in neural populations.

We suggest that dDR can be extended to incorporate these new methods. For example, rather

than defining dDR on a strictly per decoding pair basis, a global noise axis could be identified across

all experimental conditions using a custom latent variable method. This could then be applied to

the decoding-based dimensionality reduction such that the resulting dDR space explicitly preserves
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activity in this latent space to investigate how it interacts with coding.

Incorporating additional dDR dimensions:

In this work we have described dDR primarily as a transformation from N -dimensions to two

dimensions, signal and noise, with the exception of Figure 2.4. In our code repository, https:

//github.com/crheller/dDR, we include examples that demonstrate how the dDR method can be

extended to include additional dimensions. However, as discussed in the main text, it is important

to remember that estimates of neural variability beyond the first principal component may become

unreliable as variance along these dimensions gets progressively smaller, especially in low trial regimes.

In short, while information may be contained in dimensions > m = 2, caution should be used to ensure

that these dimensions can be estimated reliably.

2.3.4 Code availability

We provide Python code for dDR which can be downloaded and installed by following the instruc-

tions at https://github.com/crheller/dDR. We also include a short demo notebook that highlights

the basic work flow and implementation of the method to simulated data. All code used to generate

the figures in this manuscript is available in the repository.

2.4 Experimental Methods

2.4.1 Surgical procedure

All procedures were performed in accordance with the Oregon Health and Science University

Institutional Animal Care and Use Committee (IACUC) and conform to standards of the Association

for Assessment and Accreditation of Laboratory Animal Care (AAALAC). The surgical approach was

similar to that described previously.18 Adult male ferrets were acquired from an animal supplier

(Marshall Farms). Head-post implantation surgeries were then performed in order to permit head-

fixation during neurophysiology recordings. Two stainless steel head-posts were fixed to the animal

along the midline using bone cement (Palacos), which bonded to the skull and to stainless steel screws

that were inserted into the skull. After a two-week recovery period, animals were habituated to a

head-fixed posture and auditory stimulation. At this point, a small (0.5 - 1 mm) craniotomy was

opened above primary auditory cortex (A1) for neurophysiological recordings.
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2.4.2 Neurophysiology

Recording procedures followed those described previously.33,87 Briefly, upon opening a cran-

iotomy, 1 - 4 tungsten micro-electrodes (FHC, 1-5 MΩ) were inserted to characterize the tuning and

response latency of the region of cortex. Sites were identified as A1 by characteristic short latency

responses, frequency selectivity, and tonotopic gradients across multiple penetrations.10 Subsequent

penetrations were made with a 64-channel silicon electrode array.40 Electrode contacts were spaced 20

µm horizontally and 25 µm vertically, collectively spanning 1.05 mm of cortex. Data were amplified

(RHD 128-channel headstage, Intan Technologies), digitized at 30 KHz (Open Ephys94) and saved to

disk for further analysis.

Spikes were sorted offline using Kilosort2 (https://github.com/MouseLand/Kilosort2). Spike

sorting results were manually curated in phy (https://github.com/cortex-lab/phy). For all sorted

and curated spike clusters, a contamination percentage was computed by measuring the cluster isola-

tion in feature space. All sorted units with contamination percentage less than or equal to 5 percent

were classified as single-unit activity. All other stable units that did not meet this isolation criterion

were labeled as multi-unit activity. Both single and multi-units were included in all analyses.

2.4.3 Acoustic stimuli

Digital acoustic signals were transformed to analog (National Instruments), amplified (Crown),

and delivered through a free-field speaker (Manger) placed 80 cm from the animal’s head and 30◦

contralateral to the the hemisphere in which neural activity was recorded. Stimulation was controlled

using custom MATLAB software (https://bitbucket.org/lbhb/baphy), and all experiments took

place inside a custom double-walled sound-isolating chamber (Professional Model, Gretch-Ken).

Auditory stimuli consisted of narrowband white noise stimuli with ≈ 0.3 octave bandwidth. In

total, we presented fifteen distinct, non-overlapping noise bursts spanning a 5 octave range. Each

noise was presented alone (-Inf dB) condition, or with a pure tone embedded at its center frequency

for a range of different signal to noise ratios (−10dB, −5dB, 0dB). Thus, each experiment consisted

of 60 unique stimuli (4 SNR conditions X 15 center frequencies). Overall sound level was set to 60

dB SPL. Stimuli were 300ms in duration with 200ms ISI and each sound was repeated 50 times per

experiment in a pseudo-random sequence.
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2.5 Appendix

2.5.1 Variance of parameter estimates

In this work, we approximate the spike counts of a neural population as being drawn from a mul-

tivariate Gaussian with mean µ and covariance Σ. The accuracy of our estimates of these respective

parameters depends on how large the sample size is. That is, if we draw just two samples from the

distribution N (µ,Σ), our estimates of µ and Σ will be highly variable across repeated iterations of this

sampling. This means that when sample size is small we can’t be certain of the measured parameter

values. Here, we provide a brief derivation showing how the uncertainty in each of these parameter

values depends on sample size, k.

Mean (µ):

We will investigate the mean of just a single neuron, µ, for simplicity. Here, and in the following

cases, we assume the data has been centered such that the mean response across all trials for each

neuron is zero. Consider repeated samples of a random variable, xi, drawn from N (0, σ2). Let us

define the variable Y to be the mean of a random sequence of i.i.d. numbers, xi...xn with E[xi] = µ

and V ar(xi) = σ2.

Y =
1

k

k∑
i=1

xi

Next, we can ask how variable our estimates of Y are with increasing sample size.

V ar(Y ) = V ar
(1

k

k∑
i=1

xi

)

V ar(Y ) =
1

k2

k∑
i=1

V ar(xi)

V ar(Y ) =
1

k2

k∑
i=1

σ2

V ar(Y ) =
σ2

k

Thus, estimates of the mean spike count for a single neuron, µ, decay with increasing sample size as:

O
(1

k

)
(2.7)
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Single neuron variance (Σdiag):

For the variance of single neurons, i.e. the diagonal elements of Σ, we can similarly derive their

uncertainty as a function of k by defining Y as:

Y =
1

k − 1

k∑
i=1

x2i

V ar(Y ) = V ar
( 1

k − 1

k∑
i=1

x2i

)

V ar(Y ) =
1

(k − 1)2

k∑
i=1

V ar(x2i )

V ar(Y ) =
1

(k − 1)2

k∑
i=1

2σ4

V ar(Y ) =
2σ4

k − 1

Thus, the uncertainty in single neuron variance depends the neuron’s true variance σ2, and decays as

a function of sample size k.

O
( 1

k − 1

)
(2.8)

Covariance (Σ):

And finally, for uncertainty of the covariance between two correlated neurons x and y, i.e. the off-

diagonal elements of Σ, we define Y as:

Y =
1

k − 1

k∑
i=1

xiyi

As above, can write:

V ar(Y ) = V ar
( 1

k − 1

k∑
i=1

xiyi

)

V ar(Y ) =
1

(k − 1)2

k∑
i=1

V ar(xiyi)

Then, using the three following identities:

V ar(xy) = E[x2y2]− E[xy]2
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E[x2y2] = cov(x2, y2) + E[x2]E[y2]

E[XY ]2 =
(
cov(x, y) + E[x]E[y]

)2
We can write the following expression for the V ar(Y ), taking E[x] = E[y] = 0:

V ar(Y ) =
(2(Σ2

x,y)2 + σ2
xσ

2
y − Σx,y

k − 1

)
where Σx,y is the true covariance between neurons x and y, and σ2

x and σ2
y represent each neuron’s

respective independent variance. Thus, as for single neuron variance, the uncertainty in covariance

decays with sample size, k (Eqn. 2.9). Note, though, that typical covariance values are much smaller

than single neuron variance, making this a much more difficult parameter to estimate given a particular

sample size.

O
( 1

k − 1

)
(2.9)
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Abstract
The ability to discriminate between complex natural sounds is critical for

survival. Changes in arousal and other aspects of behavioral state can impact

the accuracy of sensory coding, affecting both the reliability of single neuron

responses and the degree of correlated noise between neurons. However, it is

unclear how these effects interact to influence coding of diverse natural stimuli.

We recorded the spiking activity of neural populations in primary auditory cor-

tex (A1) evoked by a large library of natural sounds while monitoring changes

in pupil size as an index of arousal. Heightened arousal increased response

magnitude and reduced noise correlations between neurons. Despite improv-

ing on average, arousal reduced population coding accuracy for a significant

portion of sensory discriminations. Using a normative modeling approach, we

demonstrated that this diversity can be explained by coherent, low-dimensional

suppression of response variability in A1. The degree to which this modulation

was aligned with high-dimensional natural sound-evoked activity was variable,

resulting in stimulus-dependent changes in coding accuracy.

3.1 Introduction

Humans and other animals are able to discriminate between a multitude of natural sounds. This

ability is not static, as the precision of sensory representations by neural activity fluctuates with

changes in behavioral state.95 Arousal, task engagement, and attention have all been reported to

modulate the magnitude and selectivity of single neuron auditory responses,3,17,18,28,96–102 as well as

correlated variability across neural populations, often referred to as noise correlations.26,71,73,74 In

general, increased arousal and focused attention are associated with increased response magnitude and

decreased noise correlations which are believed to enhance the accuracy of sensory coding.26,27,71,95

However, the mechanisms that produce these changes, and the consistency of their effects between

different behavioral contexts, are not fully understood.

Recent studies have argued that attention-driven changes in both single neuron responses and

correlated activity can be modeled as fluctuations in a single, latent signal that coherently modulates

the activity of a subset of neurons. These findings suggest that state-dependent neural population

activity occurs in a low-dimensional subspace,50,81 supporting theoretical models in which a single

mechanism accounts for changes in single neuron responses and correlated variability.53,103 Fluctua-
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tions in arousal, measured by luminance-independent changes in pupil size, modulate neural activity

in similar ways to attention,27,28,71 yet these changes can occur independent of attention.54 Previous

work has not specifically investigated the dimensionality of arousal-dependent signaling and it remains

uncertain whether, like other behavioral contexts, it can be explained by a low-dimensional process.

Most studies of population coding accuracy rely on relatively small, simple stimulus sets that drive

neural activity in stereotyped ways.26,72,104 Yet, theoretical work predicts that noise correlations can

either enhance or impair coding accuracy, depending on their alignment with the stimulus-evoked

activity in the neurons being studied.43,59,62,63,66,103,105 If the effects of arousal are relatively high-

dimensional, meaning that they suppress noise along many different dimensions of neural activity, they

should improve coding accuracy of most sensory stimuli equally. Alternatively, if the effects of arousal

are confined to a low-dimensional subspace of neural activity, their alignment with sensory-evoked

responses should be variable, resulting in stimulus-dependent changes in coding accuracy.

In the present study, we investigated the dimensionality of arousal-dependent signaling and its

impact on coding accuracy by recording population activity from primary auditory cortex while pre-

senting a large library of natural sounds. We simultaneously monitored arousal level using pupil

size.4,28 Arousal could either improve, or reduce, neural discriminability of natural sounds measured

using an optimal linear decoder.106 This diversity is consistent with the hypothesis that arousal

acts on a low-dimensional subspace rather than providing a generalized improvement in coding accu-

racy. Using a normative latent variable model, we demonstrate that low-dimensional, pupil-dependent

modulation of correlated activity is required to accurately reproduce these effects. In contrast with

attention, modulation of single neuron gain and noise correlations by arousal were distinct. These

processes operated on different neural populations and timescales. Thus, our results demonstrate that

arousal drives robust, but selective changes in population coding accuracy across diverse sound stimuli

and that these changes act through at least two distinct mechanisms.

3.2 Results

We recorded simultaneous single- and multi-unit activity from primary auditory cortex (A1)

of awake, head-fixed ferrets using 64- or 128-channel linear silicon probes40 (n = 729 sorted-units,

20 recording sites, eight animals, Figure 3.1A, C). During each recording session, we presented a

diverse set of randomly interleaved natural sound excerpts107 (e.g. Figure 3.2B) in the acoustic field

contralateral to the recording hemisphere (Figure 3.1A). Pupil size was measured continuously using

infrared video during neural recordings to track spontaneous fluctuations in arousal4,28 (Figure 3.1A,
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B).

In ferret A1, changes in pupil size are associated with mostly monotonic changes in neural firing

rate.28 Therefore, to assess overall pupil-related changes in activity, we split the neural data in

half based on the median pupil size during each experiment (large pupil/high arousal vs. small

pupil/low arousal). When pupil was large, responses to the same sound were stronger and more

reliable than when pupil was small. We measured the pupil-dependent modulation index of sound

evoked activity and confirmed that average responses were significantly enhanced during high arousal

(MI = 0.083±0.007, p < 0.001 Bootstrap test; 3.1E). Additionally, during large pupil trials population

activity was desynchronized relative to the small pupil state. Stimulus-independent fluctuations in

the population PSTH were often observed during small pupil trials, while they were absent during

large pupil trials (Figure 3.1D). Consistent with this observation, pairwise noise correlations were

significantly reduced in the high arousal state (ρsmall = 0.084± 0.008 vs. ρlarge = 0.064± 0.010, p =

0.005, Bootstrap test, n = 20 recording sessions, 10423± 533 stimulus x unit pairs per session; Figure

3.1F). This pattern of desynchronization is consistent with previous reports in ferret,28 mouse,4,27,71

and primate.108
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Figure 3.1: Pupil-indexed arousal modulates neural responses to natural sound stimuli.
A. Single- and multi-unit activity was recorded from A1 of awake, head-fixed ferrets using laminar
electrode arrays during presentation of natural sound stimuli. Pupil size, an index of arousal, was
measured simultaneously using infrared video. B. Pupil trace from one recording session. Pupil
size varied substantially over the course of the session, indicating spontaneous transitions between
high and low arousal states. Top: Three distinct natural sound excerpts were randomly interleaved
during the session (a, b, and c). C. Schematic of 64-channel laminar array (UCLA probe) used
to record neural activity. Filled circles represent electrode channels on which at least one unit was
detected during the same session (n = 55 total units for this example). D. Example data is shown
for two example trials, during which the same natural sound excerpt (excerpt b) was presented.
Example trials are highlighted in panel B. Top: Spectrogram of 3 s natural sound excerpt presented
during each trial. Middle: Population raster plot of spiking activity by all simultaneously recorded
units during a single stimulus presentation when pupil was large (left, red inset) and when pupil
was small (right, blue inset). Bottom: Population peri-stimulus time histogram (PSTH) response,
averaged across units during the single trial (red / blue) and averaged over all repetitions of sound
excerpt b (gray). E. Pupil modulation index for all recorded units (n = 729 from n = 20 recording
sessions). Sound evoked responses were generally larger during high arousal states, when pupil was
large (MI = 0.083± 0.007, p < 0.001 Bootstrap test) F. Means within recording session are shown by
individual grey lines. Error bars represent standard error of mean across sites and bars represent the
mean. Pairwise noise correlations were reduced during high arousal states (ρsmall = 0.084± 0.007 vs.
ρlarge = 0.064± 0.010, p < 0.001, Bootstrap test, n = 20 recording sessions, 10423± 533 stimulus X
neuron pairs per session).

3.2.1 Arousal can either improve, or reduce, neural decoding accuracy of natural stimuli

Previous work suggests that the larger sound evoked responses and reduced variability associated

with high arousal states enhances the accuracy of neural coding.27,71 To measure the effects of

arousal on coding accuracy in the current dataset, we measured neural discriminability of natural

43



sounds using d′2, a well-established metric of neural population discriminability.57,59,62,68,69,109 d′2

describes the ability to discriminate between two stimuli using an optimal linear decoder trained on

population responses in state-space. When sound-evoked activity between stimulus classes is distinct,

and response variability within class is low, d′2 is large. To prevent overfitting of the decoding axis

to noise in the high-dimensional population data, we projected single trial activity into a reduced

dimensionality space that was designed for robust estimation of d′2.106 The dimensionality of this space

was selected by determining where cross-validated estimates of d′2 plateaued, indicating overfitting

(Figure S2). For a detailed description of the decoding procedure, see methods and Figure S1.

For this analysis, we defined a ”stimulus“ by binning responses to natural sound excerpts into

non-overlapping 250 ms bins (e.g. Figure 3.2A). Pairwise discriminability was then measured for all

stimulus pairs within a recording session (mean number of stimulus pairs per recording: 1167± 256).

Examples taken from our data suggest that the interaction between arousal and stimulus discriminabil-

ity is heterogeneous (Figure 3.2B). For example, arousal-dependent suppression of response variability

can be aligned with (Figure 3.2B - Stim. a2 vs. d1) or orthogonal to (Figure 3.2B - Stim. a1 vs.

a2) the sensory discrimination axis. Thus, increased arousal either helps (Figure 3.2B - Stim. a2 vs.

d1), or hurts (Figure 3.2B - Stim. a1 vs. a2), stimulus discriminability. Given these observations, we

hypothesized that arousal may exert more diverse effects on stimulus discrimination than previously

reported.
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Figure 3.2: Natural sounds evoke diverse sensory responses. A. Spectrograms of four natural
sound excerpts repeated during a single experiment. ”Stimuli“ were defined by binning excerpts into
12 non-overlapping 250 ms bins (e.g. three example stimuli are highlighted). Thus, d′2 was measured
for 66 stimulus pairs in this experiment. B. Population responses for each stimulus were projected
into the space defined by the first two principal components of trial-averaged activity across all 12
stimuli (Stim. PC1 and Stim. PC2). Pairwise measurements of d′2 are indicated for the three
highlighted stimulus pairs. Left: Single trial data collected over the entire experiment. Dots represent
the projection of a single trial. Ellipses are centered on the mean response across trials and their
size represents the standard deviation across trials. Grey stimuli represent the nine other stimuli
not specifically highlighted in A. Middle/Right: Same, divided by stimulus trials where pupil was
large/small.

Across all stimulus pairs within a single experiment, arousal-dependent changes in pairwise stim-

ulus discriminability varied substantially. While many stimulus pairs showed increased d′2, others

did not change and many showed a decrease (Figure 3.3A). Across all recording sessions, stimu-

lus discriminability was enhanced during high arousal states on average (d′2large = 32.33 ± 0.26 vs.

d′2small = 18.99± 0.16, p < 0.001, Bootstrap test, n = 20 recording sessions, 1167± 256 stimulus pairs

per session). However, a substantial fraction of stimulus pairs were more discriminable during low

arousal states (29.2± 0.8%). The sign of d′2 changes was not dependent on baseline stimulus discrim-

inability (Figure S3). Furthermore, the same amount of diversity was observed when excluding stimuli

with unreliable and/or weak responses (Figure S4) arguing that this diversity is a real feature of the

data and is not due to ”noisy“ estimates of trial-trial variability and/or stimulus discriminability.
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Figure 3.3: Arousal can increase or decrease neural discriminability of natural sounds. A.
Left: Heatmap intensity indicates d′2 measured during large pupil trials for each pair of 0.25 s sound
segments in one example experiment. The spectrogram and the first two principal-component (PC)
projections of average evoked activity for each stimulus are shown along the heatmap axes. Middle:
Same, for d′2 computed across small pupil trials. Right: Normalized change in d′2, ∆d′2, between
large and small pupil. Positive values indicate better stimulus discriminability during high arousal.
All three heatmaps are sorted according to the ∆d′2 matrix. B: Scatter plot of d′2 for large/small
pupil conditions across all experimental sessions. Color indicates the density of points at each location.
Stimulus pairs (n = 23, 352 total) were randomly subsampled for visualization (n = 2500 displayed
here).

3.2.2 A low-dimensional latent variable model accounts for diversity of arousal-dependent

coding changes

Based on examples (e.g. Figure 3.2B), we hypothesized that pupil-dependent changes in response

variance could cause the heterogeneity observed in ∆d′2 measurements. To test this, we designed

a normative latent variable model (Figure 3.4A, Eqn. 3.6) to determine whether pupil-dependent

changes in covariance alone could account for the effects of arousal. The model was fit in two stages.

In the first stage, the mean sensory evoked response of each neuron (PSTH) was scaled and offset

according to pupil size in order to minimize the mean squared error between the predicted and

actual time varying firing rate response (Eqn. 3.5).28,33 In the second stage, the pupil weights for

each neuron were frozen. Pupil-dependent single neuron (independent) variance and pupil-dependent

shared variance was then added to the predicted firing rate of each neuron. Weights for independent

and shared variance were optimized for each neuron such that the pupil-dependent covariance matrix

of the resulting response matched the actual data (e.g. Figure 3.4B, Eqn. 3.6). Because the model

required a large amount of data to fit, we restricted our analysis to a subset of recordings (n = 7

recordings from three animals) in which each stimulus was repeated at least 80 times during the
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Figure 3.4: Normative latent variable model architecture. A. Schematic of model architec-
ture. Sensory responses, f(s(t)) were estimated for each neuron by computing the peri-stimulus time
histogram (PSTH) across all repetitions of each stimulus. The PSTH for each neuron, i, was provided
as input to the model. Model fitting was split into two stages. During the first stage, pupil-dependent
sensory responses of single neurons was predicted by minimizing the mean-square error between pre-
dicted firing rate and true firing rate. In this first stage, only the pupil weights (blue) were fit (Eqn.
3.5). In the second model fitting stage, single neuron pupil weights were frozen and pupil-dependent
single neuron variance (ε(t)p(t), orange) and pupil-dependent shared variance (mk(t)p(t), green) were
added to responses. During the second stage of fitting pupil-dependent variance weights were opti-
mized to minimize the mean squared error between predicted and actual large/small pupil covariance
matrices (Eqn. 3.6). Models were fit to the rank-1 approximation of the covariance matrix to prevent
overfitting. B. The neuron-by-neuron difference covariance matrix (small pupil covariance minus large
pupil covariance) for a single recording site is plotted for the model output, the rank-1 approximation
to the raw data, and the full-rank raw data.

To test whether the model generated responses recapitulated the diversity observed in ∆d′, we com-

puted ∆d′2 for the model responses and compared the result to the actual ∆d′2 for each stimulus pair.

We found that a model using just a single pupil-dependent shared modulator and pupil-dependent sin-
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gle neuron variance closely replicated the actual arousal-dependent changes in discriminability (Figure

3.5A, right). To determine if this result required pupil-dependent shared and/or single neuron vari-

ance, we tested two additional models (Eqns. 3.7, 3.8). In the first model, pupil was shuffled for both

shared and single neuron variance terms, making both terms independent of pupil (Figure 3.5A, left:

pupil-independent variance). In the second model, pupil was shuffled only for the shared modulator(s)

but preserved for single neuron variance (Figure 3.5A, middle: pupil-dependent single neuron vari-

ance). Neither model was able to perform as well as the full model containing pupil-dependent shared

modulation (Figure 3.5B). Indeed, without pupil-dependent noise, ∆d′2 was virtually always positive

for the model generated response (Figure 3.5A, left), in contrast to our finding that arousal can also

reduce stimulus discriminability. This is in line with previous work arguing that pupil-dependent

changes in response gain alone consistently improve sensory coding.27,28

Finally, we found that adding additional pupil-dependent shared modulators did not improve

∆d′2 predictions (Figure 3.5B), suggesting that pupil-dependent modulation of variance occurs in a

low-dimensional subspace. This result was consistent even when fitting our model to higher rank

estimations of the pupil-dependent covariance matrices, arguing that it is not an artifact of the model

fitting procedure (Figure S5).
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Figure 3.5: Pupil-dependent response variability accounts for diversity in state-dependent
coding. A. ∆d′2 measured using responses output by normative latent variable models (y-axis) are
compared with actual ∆d′2 for individual stimulus pairs across n = 7 recording sites. Three different
model results are shown: A model with pupil-independent variance (blue), pupil-dependent single
neuron variance only (orange), and a model with both pupil-dependent single neuron variance and
shared variance (green). B. Model performance is quantified by computing the absolute error in
∆d′2 prediction for each stimulus pair. Lines represent bootstrapped 95% confidence intervals. p-
values were computed using paired bootstrap samples between the error of two respective models (see
Methods: Statistical Methods).
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3.2.3 Arousal-dependent changes in gain and correlated variability operate on highly

overlapping populations

Studies of selective attention have shown that attention-related changes in response gain of single

neurons and the strength of correlated variability are related. In this framework, changes in correlated

variability simply reflect changes in the variance of single neuron’s sensory gain across trials.50,81 Thus,

a single, shared mechanism appears to mediate changes in both gain and correlation. We wondered

if a single mechanism also produced effects of arousal, or if changes in gain and correlated variability

were mediated by separate mechanisms.

To investigate this question we first characterized pupil-dependent modulation of sensory evoked

gain. To do this, we subtracted the mean sensory response across all trials (PSTH) from the first

stage model prediction (Eqn. 3.5) in our latent variable model. At this stage of the model fit, the only

trial-to-trial variability in responses was entirely attributable to pupil-dependent gain (Figure 3.4A).

We then performed PCA on the residual responses which, by definition, identified the dimensions

where pupil-dependent changes in gain were largest and accounted for the most response variability.

Across recording sites, this space was low-dimensional; the first PC accounted for at least 65% of

total gain variability in all cases (Figure 3.6A).

Next, we compared this first principal component to the pupil-dependent shared modulator weights

that were fit during the second stage of model fitting (Figure 3.4A, Eqn. 3.6). For the pupil-dependent

shared modulator, weights were highly correlated with the first PC indicating that changes in stimulus-

independent response variance overlapped with first order changes in sensory evoked response gain

(Figure 3.6B). We confirmed that this correlation was not a trivial consequence of neural activity being

low dimensional by also comparing the model weights for a pupil-independent shared modulator.

Although these were also correlated with gain, the relationship was much weaker than for pupil-

dependent noise (Figure 3.6B).
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Figure 3.6: Arousal-dependent changes in evoked response magnitude and correlated
variability operate on overlapping neural populations. A. Cummulative fraction variance
explained by each prinicipal component of pupil-dependent gain modulation. Each line represent a
single recording session. B. Left: Loading weights for the first PC in A are plotted against the pupil-
dependent shared modulator weights from the normative latent variable model. One data point per
neuron. r indicates the correlation coefficient for all neuron weights across all recording sites. Right:
Same, but for pupil-independent model weights. Thus, this correlation offers a noise floor for the
relationship between first and second order model weights.

3.3 Discussion

Previous studies have suggested that behavior-dependent modulation of neural population coding

operates in a low-dimensional space.29,50,51,53,54,81 That is, signals reflecting behavioral state are well-

described by processes that modulate the activity of many neurons coherently and produce correlated

variability in sensory responses. However, most previous work has utilized relatively small, focused

stimulus sets. This raises questions about whether the observed low-dimensional processes are a

consequence of the stimuli tested, or if they are a general feature of state-dependent modulation. These

questions are critical for understanding population coding of sensory stimuli. Theoretical studies have

long shown that correlated variability can impact coding accuracy, but only if it aligns with the sensory

tuning of neurons in the population.59 Thus, the dimensionality of the mechanisms driving correlated

variability and how they interact with sensory selectivity is critical for understanding their impact on

sensory processing.

In the case of pupil-indexed arousal, we found that correlated activity is modulated in a low-

dimensional subspace of primary auditory cortex (A1) that was highly overlapping with the arousal-

dependent changes in single neuron responses. These modulations were present across a diverse set

of natural sound stimuli and their effect on neural discrimination of sounds varied substantially with
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the sound stimulus; some stimulus discriminations were improved by arousal and others were reduced.

This heterogeneous relationship between coding and arousal is predicted for a low-dimensional state

signal interacting with relatively high-dimensional stimulus-evoked activity.

3.3.1 Effects of shared intrinsic variability on discriminability are stimulus-dependent

Correlated, intrinsic variability within neural populations is ubiquitous in cortex. Even before this

phenomenon was observed experimentally, substantial efforts were made to develop a theoretical un-

derstanding of how correlated activity might affect coding by neural populations.46,55,57,60,62,110–112

This early work established that correlated variability can interfere with the brain’s ability to accu-

rately discriminate sensory stimuli. Therefore, experimental characterization of this phenomenon is

critical to fully understand neural population codes.

Although evidence for intrinsic correlation is widespread, experimental studies have provided con-

flicting evidence as to whether or not it does in fact interfere with population coding.43,63,66,68,69,103,105,109

There are at least two reasons why the reported effects of correlated variability might vary across stud-

ies. First, the dimensions containing interfering noise appear to often be very low variance.68,69,109

Thus, detecting this noise could require recording large amounts of data, both over many neurons and

over many trials, a methodology that has only recently become feasible.68,69,109 A second possibility

is related to the fact that the impact of correlated noise depends on the tuning of neurons in the pop-

ulation being read out and their relationship with the noise space.29,62,105 Therefore, discrepancies in

previous work might be explained by differences in the neural populations that were sampled and/or

in the stimuli that were tested. Because the effects of correlated noise may depend on the stimuli that

are presented, it is important to characterize coding accuracy across a wide array of sensory space.

Indeed, our results showed that the effects of correlated variability on coding are highly variable and

only benefit specific sensory discriminations.

Because there is a trade-off between the number of stimuli that can be presented and the number of

times that each can be repeated during a single recording session, questions about stimulus-dependent

changes in population coding have been difficult to completely address in a single study. Unlike recent

work,68,69,109 we measured neural responses to a large set of stimuli over a relatively small num-

ber of repeats and neurons. Thus, we could not measure low-variance dimensions and draw strict

conclusions about the presence (or absence) of information-limiting noise.62 Instead, we leveraged a

new dimensionality reduction approach (dDR106) with which we were able to reliably estimate the

interaction between the dominant, high-variance noise dimensions and sensory discrimination across

a large acoustic stimulus space. This approach revealed substantial variability of arousal dependent
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changes in coding within each recording site, highlighting the practical benefit of dimensionality reduc-

tion techniques for studying neural population dynamics across a diversity of stimulus and behavioral

contexts.85

3.3.2 State-dependent coding in auditory cortex

It is increasingly clear that neural activity in primary sensory regions of the brain is modulated

by non-sensory variables, including arousal.27–30,71 Arousal here refers to spontaneous changes in

alertness as measured by pupil diameter, even in the absence of a behavioral task.30 Similar to

previous work, we find that increased arousal is associated with enhanced excitability and reduced

noise correlations in A1.4,28,71 These effects boost the neural signal to noise ratio in V127 and improve

population coding accuracy of tonal stimuli in A1.71

Building on this previous work, we explored the effects of arousal on population coding accuracy

across a large space of natural sounds. Consistent with prior results, increases in pupil-indexed arousal

led to improved discriminability between sounds on average. However, the relative magnitude of this

improvement varied substantially across stimuli and many sensory discriminations were even harmed

by increased arousal. Using a normative modeling approach, we demonstrated that this variability

could be explained by low-dimensional modulation of shared variance.

The strong stimulus dependence highlights the importance of a broad exploration of state-dependent

changes in neural coding across the sensory response space. Parametric stimuli might be used in the

future to more systematically probe sound feature representations across a range of behaviorally

relevant stimuli. For example, one study of auditory processing began to address this question in

anesthetized animals.72 In this work, Kobak et al. measured population coding in A1 of sounds that

varied along two dimensions: Inter-aural level (ILD) and absolute binaural level (ABL). By inducing

different states of cortical activation with urethane anaesthesia, the authors demonstrated that in the

awake (desynchronized) state, noise and signal subspaces shift to become orthogonal, thereby facili-

tating accurate encoding across both ILD and ABL. Extending this approach to spectro-temporally

varying and ethologically relevant naturalistic stimuli,113 especially in the context of behavior, will be

critical for a complete understanding of state-dependent population coding.

3.3.3 Mechanisms driving arousal-dependent changes in sensory-evoked activity and

correlated neural variability

Recent studies of selective attention have suggested that correlated variability results from the

coherent modulation of many neurons by an intrinsic behavioral state variable.50,81,103 In a study
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by Denfield et al., macaques were trained on a visual change-detection task in which the stability of

spatial selective attention was manipulated between behavioral blocks.81 Because the gain of evoked

responses in visual cortex is known to be coherently modulated by attention,80 the authors proposed

that the magnitude of correlated variability should be highest when attention itself is most variable,

as changes in gain are shared across neurons within the receptive field. Indeed, when animals were

required to switch attention between multiple locations within a behavioral block, noise correlations

were strongest. This idea of correlations produced by a shifting spotlight of attention is consistent

with previous characterizations of neural population activity and attention50 and agrees well with

theoretical work.53,103 These findings offer a parsimonious explanation for why gain changes are

accompanied by a reduction in noise correlations during traditional cued change-detection tasks, where

attention is focused stably on a single spatial location.26

Similar to the case of visual selective attention, we found that arousal-dependent modulation of

evoked rates and shared variability occurred in largely overlapping neural populations. However, a

model with only pupil-dependent gain modulation did not accurately reproduce the discriminability

changes observed in our data, while incorporating an additional source of pupil-dependent shared mod-

ulation did. Therefore, whether or not these processes reflect independent mechanisms of modulation

is difficult to tease apart in our data.

Pupil-indexed changes in arousal are slow, happening on the order of seconds (e.g. Figure 3.1A)

while, by design, the shared modulator in our model acted on a faster timescale (≈ 4 Hz). One

possibility is that pupil offers only an approximate read out of arousal-associated modulation of

evoked responses in auditory cortex. In this case, a model containing only pupil-dependent gain

would fail to replicate the precise variability in sensory responses across time. Therefore, adding

a second shared modulator to our model may simply be providing this added resolution, allowing

the variance of the pupil-dependent gain signal to vary with arousal, as well as its magnitude. This

explanation is consistent with the mechanism of visual selective attention. However, because we did

not experimentally manipulate the variability of arousal, as Denfield et al.81 did for attention, we are

not able to conclusively test this hypothesis.

An alternative hypothesis is that the two effects are caused by distinct cortical mechanisms. Al-

though it was not feasible to directly isolate the circuitry underlying these distinct effects in the

current study, we propose that they may arise through a combination of neuromodulation and intra-

cortical feedback. Several studies have shown a strong correlation between slow fluctuations in pupil

diameter and brain-wide release of norepinephrine and acetlycholine,32 making these modulators good

candidates for mediating the slow changes in response baseline and gain across individual neurons.
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The decrease in correlated activity, on the other hand, may arise due to modulation of feedback from

other cortical areas that are themselves targeted by the same neuromodulatory signals.

Intracortical pathways to auditory cortex have been identified from multiple areas, including vi-

sual,5 motor6 and prefrontal cortex.114 These inputs can activate inhibitory networks that desyn-

chronize local network activity, and modulating their strength could produce the de-correlation effects

observed in the current study. Given the diversity of these intracortical signals, it might seem sur-

prising that the arousal-related changes reported here should occur in such a low-dimensional space,

shared by slow, pupil-indexed gain modulation. However, if the same inhibitory networks are acti-

vated by slow changes in arousal and introcortical signalling, it’s possible that the gain and correlation

effects would appear in overlapping population of neurons, as we observed. Further investigation with

selective control of feedback from different cortical areas will determine if, in fact, the impact of signals

from these different cortical areas can be dissociated in A1.

3.4 Materials and Methods

3.4.1 Surgical procedure:

All procedures were performed in accordance with the Oregon Health and Science University

Institutional Animal Care and Use Committee (IACUC) and conform to standards of the Association

for Assessment and Accreditation of Laboratory Animal Care (AAALAC). The surgical approach was

similar to that described previously.7,18,28,115 Five young adult male ferrets were acquired from an

animal supplier (Marshall Farms). Head-post implantation surgeries were then performed in order to

permit head-fixation during neurophysiology recordings. Two stainless steel head-posts were fixed to

the animal along the midline using UV-cured dental composite (Charisma) or bone cement (Palacos),

which bonded to the skull and to stainless steel screws that were inserted into the skull. After a

two-week recovery period, animals were habituated to a head-fixed posture and auditory stimulation.

At this point, a small (0.5 - 1 mm) craniotomy was opened above primary auditory cortex (A1) for

neurophysiological recordings.

3.4.2 Acoustic stimuli:

Digital acoustic signals were transformed to analog (National Instruments), amplified (Crown), and

delivered through a free-field speaker (Manger) placed 80 cm from the animal’s head and 30°contralateral

to the the hemisphere in which neural activity was recorded (Figure 3.1). Stimulation was controlled

using custom MATLAB software (https://bitbucket.org/lbhb/baphy), and all experiments took
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place inside a custom double-walled sound-isolating chamber (Professional Model, Gretch-Ken).

Natural sounds stimuli were presented in four different configurations. Set 1 consisted of 93, 3-sec

samples (2.5 sec ISI, n = 3 sites), set 2 consisted of 306, 4-sec samples (1 sec ISI, n = 14 sites), set 3

consisted of 306, 1-sec samples (0.5 sec ISI, n = 6 sites), and set 4 consisted of 2, 3-sec samples of ferret

vocalizations (2.5 sec ISI, n = 2 sites). In sets 1-3, the stimulus sets contained species conspecific

and heterospecific vocalizations, speech, music, and environmental sounds chosen to sample diverse

spectro-temporal statistics.107 All stimuli were presented at 65 dB SPL. During every experimental

session, a subset of samples were repeated at least ten times (set 1: 3 samples, set 2: 18 samples,

set 3: 18 samples, set 4: all samples), while the remainder were played only once. In order to study

the trial-to-trial variability in neural responses, only the high-repeat sounds were included in this

study. The order in which stimuli were presented was generated pseudo-randomly. Stimuli were

played continuously until all sound samples in the library had been presented. In the case of set 1,

the entire stimulus set was repeated 2-3 times. This meant that experiments lasted approximately 40

minutes. The full sound library can be accessed at https://bitbucket.org/lbhb/baphy). Some of

data used in this study has been published previously.28,88

3.4.3 Neurophysiology:

Upon opening a craniotomy, 1 - 4 tungsten micro-electrodes (FHC, 1-5 MΩ) were inserted to

characterize the tuning and response latency of the region of cortex. Sites were identified as A1 by

characteristic short latency responses, frequency selectivity, and tonotopic gradients across multiple

penetrations.10,116 Subsequent penetrations were made with a single (64-channel) or dual shank (128-

channel) silicon electrode array.40 Electrode contacts were spaced 20 µm horizontally and 25 µm

vertically, collectively spanning 1.05 mm of cortex. On each consecutive recording day, we changed

the location of the electrode penetration to access fresh cortical tissue, expanding the craniotomy as

necessary. Data were amplified (RHD 128-channel headstage, Intan Technologies), digitized at 30

KHz (Open Ephys94) and saved to disk for further analysis.

Spikes were sorted offline using Kilosort117 or Kilosort2 (https://github.com/MouseLand/Kilosort2).

Spike sorting results were manually curated in phy (https://github.com/cortex-lab/phy). For all

sorted and curated spike clusters, a contamination percentage was computed by measuring the cluster

isolation in feature space. All sorted units with contamination percentage less than or equal to 5

percent were classified as single-unit activity. All other stable units that did not meet this isolation

criterion were labeled as multi-unit activity.
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3.4.4 Pupillometry:

During neurophysiological recordings, video of the ipsilateral pupil (relative to the recording

hemisphere) was collected using an open source camera (Adafruit TTL Serial Camera) fitted with

a lens (M12 Lenses PT-2514BMP 25.0 mm) whose focal length allowed placement of camera 10 cm

from the eye. Contrast was increased using infrared illumination. Ambient light levels were fixed for

each experiment at roughly 1500 lux to provide maximum dynamic range of pupil size.28 Pupil size

was measured offline by fitting an ellipse to each video frame using using a custom machine learning

algorithm (Python and Tensorflow). The area of the ellipse was extracted and saved for analysis with

neurophysiological data. Pupil data was shifted by 750 ms relative to spike times in order to account

for the lagged relationship between changes in pupil size and neural activity in auditory cortex and

to allow for comparison with previous research.4

The pupil tracking algorithm itself utilized a deep learning approach. Our model architecture

was based on DenseNet201,118 which is available through Keras (https://keras.io/). In order to

transform the output of the model to pupil ellipse predictions, we added a single global pooling layer

and a final prediction layer in which five pupil ellipse parameters (x-position, y-position, minor axis,

major axis, and rotation), and eight eyelid keys points (x-y positions of the top / bottom eyelid and

the corners of the eye) were fit to each video frame. In order to initialize model weights, the model was

pre-trained on ImageNet,119 then fine-tuned using roughly 500 previously analyzed, nonconsecutive

frames from video of the pupil of multiple different ferrets (data from28). Qualitatively, after this first

round of training the model performed well, even on novel video frames of pupil from new animals.

However, in cases where the pupil video quality was poor, or differed substantially from the video

frames in our training data set, we noticed failures in the model predictions. To further improve

the model, we employed an active learning procedure. For each new analyzed video, pupil ellipse

fits were analyzed qualitatively by experimenters. If the fit quality was deemed poor, predictions

for these frames were manually corrected and added to the training data set. The model was then

retrained and the analysis rerun. The network became robust to varying levels of video quality and

performed consistently without the need for user intervention. The code for this analysis is available

at https://github.com/LBHB/nems_db.

3.4.5 Movement exclusion:

During experiments, we observed that blinks were often associated with periods of high arousal

and more global facial / body movements. As this motor activity is known to modulate cortical
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activity,29,38 we used our videos of pupil to exclude blinks from our analysis to isolate pupil-indexed

changes in arousal state. To this, we measured the variance of the animal’s eyelid over time using a

sliding window and excluded periods where this variance trace exceed 0.25 time the standard deviation

of eyelid movement across the entire experiment. Visual inspection showed that this procedure was

effective at removing most periods of blinking and movement.

3.4.6 Pupil modulation index:

To quantify overall pupil-dependent modulation in single neurons without differentiating between

baseline and gain, we measured an overall pupil modulation index (MI). MI was defined by as the

mean sound-evoked response when pupil was large minus the mean response when pupil was small,

normalized by the sum of these two quantities. Large and small trials were defined based on a median

split of pupil size across the entire recording session.

MI =
r̄large − r̄small

r̄large + r̄small
(3.1)

3.4.7 Noise correlations:

Pairwise noise correlations were measured by grouping spike counts into 250 ms bins, extracting

only evoked periods (epochs when sound stimuli were playing), and computing Pearson’s correlation

between all pairwise combinations of z-scored spike counts. Z-scores were calculated for each stimulus

independently, as in Eqn. 3.2, where r(t) is the single trial response, r0 is the trial averaged response,

and σ is the standard deviation of spike counts across repetitions. Therefore, the z-scored spike counts

Z(t) of each neuron i for each stimulus s had mean zero and standard deviation one.

Zi(t) =
ri(t)− r0,i(s)

σi(s)
(3.2)

3.4.8 Pairwise stimulus discrimination:

Natural sound excerpts were broken into non-overlapping 250 ms segments, similar to the pro-

cedure followed by Pachitariu et al., 2015120 (illustrated in Figure 3.2A). For each pair of stimulus

segments, we extracted the N neuron X k trial response matrices, A and B. Because the number of

recorded neurons was greater than the number of stimulus repetitions, we first performed decoding-

based dimensionality reduction (dDR106), method similar to PCA, but designed to specifically pre-

serve only significant dimensions of the population response relevant for decoding. We selected the
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dimensionality of this space using cross-validation (Figure S2). This procedure allowed us to reliably

estimate population statistics and coding accuracy without overfitting to single-trial noise in the data.

We quantified decoding accuracy in this reduced-dimensionality space by measuring neural stimulus

discriminability, d′2, the discrete analog of Fisher information:57,59,62,68,69,109

d′2 = ∆µT Σ−1∆µ = ∆µTwopt (3.3)

where ∆µ represents the vector connecting the mean ensemble responses to stimulus A and stimulus

B, Σ = 1
2 (ΣA + ΣB) represents the mean noise-covariance matrix, and wopt is the optimal decoding

axis, i.e. the vector orthogonal to the optimal linear discrimination hyperplane in state-space. In

practice, we estimated wopt using 50-percent of trials (training data) then projected the held out 50-

percent of trials (test data) onto this vector and measured discriminability. For a detailed schematic of

this procedure, see Figure S1. Pupil-dependent measurements of d′2 followed an identical procedure,

but before measuring discriminability, the test data was first split in half based on median pupil size.

Pupil-dependent changes in stimulus discriminability:

d′2, measured across pupil states, could vary greatly across the sensory responses. Therefore, in

order to measure pupil-dependent changes in coding accuracy across recording sites, we used a nor-

malized metric, ∆d′2. For each stimulus pair, ∆d′2 was defined as d′2 measured during large pupil

trials minus d′2 for small pupil trials, normalized by the sum of these two quantities.

∆d′2 =
d′2large − d′2small

d′2large + d′2small

(3.4)

3.4.9 Normative latent variable model:

In order to determine if pupil-dependent modulation of response variance predicted the effect of

arousal on stimulus discriminability, we designed a normative latent variable model (Eqn. 3.6. The

model was fit in two stages. Only the second stage of model fitting used the normative framework.

Stage 1: Pupil-dependent modulation of evoked response magnitude:

During the first stage of model fitting, we fit a state-dependent generalized linear encoding model

similar to those described in previous work.28,33 For each recorded unit, i, the input to this model was

defined as the peri-stimulus time histogram (PSTH) response averaged over all stimulus repetitions

(r0,i(t)). The predicted firing rate was calculated by scaling the PSTH by a pupil-dependent multi-
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plicative and additive factor to model pupil-dependent changes in gain and baseline firing rate over

time (Eqn. 3.5). To account for a possible nonlinear relationship between pupil size and neuromodula-

tion, the pupil signal was first passed through a static sigmoid nonlinearity, F (double exponential16).

The parameters of this nonlinearity, as well as the gain (β0) and baseline (β1) coefficients for each

neuron were fit simultaneously using 10-fold jackknifed cross validation in order to minimize the mean-

squared-error between the predicted and actual time varying firing rate response of each neuron.

r̂i(t) = β0

(
1 + F

(
p(t)

)
r0,i(t)

)
+ β1F

(
p(t)

)
(3.5)

Stage 2: Normative approach to fitting pupil-dependent response variability

In the second stage of model fitting, we used a normative modeling framework. Thus, rather

than predict time-varying response rate of each neuron, we optimized the model to predict the state-

dependent population covariance matrix. Thus, the model did not seek to predict actual neural

activity, but to generate a population responses whose state-dependent covariance matched that of

the real data.

The input to this model was defined by the predicted response of each neuron from stage 1, r̂i(t).

Its output, for each neuron, zi(t), was generated by adding pupil (p(t)) dependent single neuron (εi(t))

and/or shared (mk(t)) variance to the first stage prediction. A pupil-independent, neuron-independent

baseline term, d was included to account for state-independent correlations (Eqn. 3.6). Noise signals

(ε and mk) were generated with Gaussian white noise (µ = 0, σ = 1).

zi(t) = r̂i(t) +

K∑
k=1

wi,kp(t)mk(t) +
(
d+ uip(t)

)
εi(t) (3.6)

On each iteration of the fit, the stimulus-dependent large / small pupil covariance matrices were

computed for the model generated responses and compared with the actual covariance matrices. Model

weights were optimized to minimize the mean-square-error between the model and actual data. Thus,

if five neurons were recorded for three different sensory stimuli, the model was tasked with predicting

150 covariance coefficients (five neurons x five neurons x three stimuli x two pupil conditions). To

reduce model fit times, we fit to a randomly selected of 10 stimuli for each recording site.

Additionally, we found that models trained to predict the full-rank covariance matrices seems to

suffer from overfitting in some instances. Therefore, we fit models on reduced rank approximations to

the true covariance matrix using singular value decomposition. The simplest model that maximized

performance was fit using the rank-1 covariance matrix approximation (Figure S5).
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Finally, to test the requirement of pupil-dependent noise, we tested two additional models. One in

which pupil was shuffled (p0(t)) for the shared modulator term (Eqn. 3.7) and one where pupil was

shuffled for both the shared modulator and the independent noise term (Eqn. 3.8). Shuffling pupil

breaks the correlation between the variance modulation and arousal state while still preserving the

overall number of model parameters and theoretical rank of model generated covariance, allowing us

to determine if pupil was necessary to explain the effects in our data.

zi(t) = r̂i(t) +

K∑
k=1

wi,kp0(t)mk(t) +
(
d+ uip(t)

)
εi(t) (3.7)

zi(t) = r̂i(t) +

K∑
k=1

wi,kp0(t)mk(t) +
(
d+ uip0(t)

)
εi(t) (3.8)

All models / stages of model fitting were performed using the Neural Encoding Model System

(NEMS, https://github.com/LBHB/NEMS).

3.4.10 Comparing evoked-response modulation to shared variability model weights

To determine if the effects of arousal on sensory response gain overlapped with modulation of

correlated variability, we compared the evoked-response modulation measured in the first stage of the

latent variable model fit to the shared modulator weight(s) (Wk) in the second stage of model fitting.

While the sigmoid transformation applied to the pupil during the first model fitting stage improved

model performance, it made it difficult to interpret the gain (β0) and baseline (β1) parameters directly.

Therefore, rather than extract them directly we instead measured the pupil-dependent modulation

using PCA. To do this, we computed the difference between the model prediction r̂i(t) and r0,i(t),

the state-independent PSTH. This difference summarized the pupil-dependent modulation of sensory

evoked responses. Therefore, we then performed PCA on the difference and defined the first principal

component as the axis where most modulation occurred. We then compared the loading weights of

this PC with the Wk weights extracted from the latent variable model (Eqn. 3.6).

3.4.11 Statistical methods

Our data followed a nested structure; multiple cells were recorded from the same animal and many

different stimuli were presented during each experimental session. Therefore, it is possible our results

could be biased by differences between animals and/or experimental recording session. To account for

this, in all of our statistical tests we took one of the following two approaches: (1) Averaged metrics
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across cells (or pairs of cells) and sound stimuli within a recording session before performing statistical

tests or (2) Performed statistical tests using hierarchical bootstrapping.121 Although each approach

reduces statistical power relative to treating each individual measurement as independent, they provide

a more conservative estimate of p-values and reduce the chance of detecting false positives.121

For all statistical tests measuring large vs. small pupil effects where we first averaged results within

recording session, we performed a two-tailed Wilcoxon signed-rank test. For each test, we report the

test statistic, W , the p-value, and the exact n number of recording sessions used to perform the test.

In cases where we performed a hierarchical bootstrap, we report the direct bootstrap probability of

the null hypothesis.121 In both cases, we also provide the mean and standard error of the number of

measurements per recording session.

All bootstrapped confidence intervals (e.g. in Figure 3.5) were also generated using the hierarchical

bootstrap resampling procedure. For paired tests, e.g. testing the difference in model performance for

different architectures (Figure 3.5, S5), the paired statistic was first computed for each observation (in

this case, for the difference in model performance for each stimulus pair), resampled using hierarchical

bootstrapping, and the direct probability of this resampled distribution being different than zero was

reported.121

3.5 Data Availability

The datasets analyzed in this study are available from the corresponding author upon reasonable

request.

3.6 Author contributions

CRH and SVD designed experiments. CRH performed experiments, analyzed data, and developed

pupil tracking software. MLE, DS, and LPS assisted with data collection. LPS assisted with soft-

ware development for pupil tracking. CRH and SVD wrote the manuscript. All authors edited the

manuscript.
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Bin sound stimuli into 
250 ms chunks

For two sound segments, A and B, 
extract the N x k (neuron x trial) matrices 

Split each dataset in half
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Figure S1: Calculating neural discriminability. Procedure for measuring discriminability of
natural sound segments by neural populations in primary auditory cortex (A1). Stimuli were binned
into 250 ms chunks, and a discrimination index, d′2, was calculated between each pairwise combination
of segments. To prevent over-fitting to noise in the data, we took two steps: First, we performed cross-
validation, estimating the optimal decoding axis using 50% of the data and evaluating d′2 along this
axis with the held out 50%. Second, because we were in a trial-limited regime where the number of
stimulus repetitions, k, was often less than the number of neurons, N , we performed dimensionality
reduction which allowed us to reliably estimate neural discriminability for each pair of stimuli. The
dimensionality of this reduced space was chosen using cross-validated estimates of d′2 (Figure S2).
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High rep-count data Low rep-count dataA

B

Number of noise dimensions
included in dDR

Figure S2: Choosing number of dimensions for decoding-based dimensionality reduction.
To reduce the dimensionality of our data, we used dDR, a method designed specifically for measuring
decoding accuracy from trial-limited data.106 dDR is composed of the stimulus discrimination axis,
∆µ (Eqn. 4.4), as well as a user-defined number of noise dimensions. A. We measured cross-validated
decoding accuracy (d′2) using dDR with between one and seven noise dimensions. Results are sub-
divided into two groups: high rep-count data, where the number of stimulus repetitions exceeded the
number of recorded neurons and low rep-count data, where the number of stimulus repetitions was
less than the number of recorded neurons. Individual lines (orange / blue) represent d′2 averaged
across all stimulus pairs for a single recording session. Black lines are mean ± the standard error of
the mean across recordings. For the high rep-count data, we began to observe saturation of d′2 in a
couple of recording sites at n = 7 noise dimensions. Therefore, we chose to use seven noise dimensions
to analyze the high rep-count data. For the low rep-count data, information saturated much more
quickly, with some sites already showing no improvement between n = 1 and n = 2 dimensions. Thus,
for the low rep-count data we used only one noise dimension. B. Mean change in d′2 (∆d′2) across
stimulus pairs is plotted in the same fashion as in A. Choice of dimensionality had little effect on the
overall impact of arousal on decoding accuracy.
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Figure S3: Heterogeneity of ∆d′2 is not explained by baseline discriminability. We split
∆d′2 based on the median absolute stimulus discriminability across all trials (d′2) and measured the
fraction of stimulus pairs that showed an increase in coding accuracy in each group for each recording
site. Orange lines indicate low rep-count sites and blue lines indicate high rep-count sites, as in
Figure S2. We found no significant difference between small and large baseline d′2 stimulus pairs
(p = 0.629,W = 83, Wilcoxon sign test, n = 20 recording sessions.)
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Figure S4: Heterogeneity of ∆d′2 is not explained by unreliable response estimates. Using
cross validation, we identified the stimuli whose noise distributions could be estimated reliably. That
is, sites where the first PC of single trial responses could be estimated above chance performance (see
Methods). A. Same as in Figure 3.3B, but only for reliable stimulus pairs. d′2 increased significantly
overall (d′2large = 33.88 ± 0.96 vs. d′2small = 23.54 ± 0.79, p < 0.001, Bootstrap test, n = 20 recording
sessions, 39.6 ± 6.1 stimulus pairs per session). Across sites the mean percentage of stimulus pairs
with ∆d′2 < 0 was 29.8 ± 1.4%. Almost identical to larger dataset. B. Same as in Figure S3, for
reliable stimulus pairs. We observed no significant different between pairs with large and small baseline
discriminability (p = 0.937,W = 38, Wilcoxon sign test, n = 20 recording sites).
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Figure S5: Normative latent variable model selection. Normative models were fit to optimize
predictions of either the rank-1, rank-2, or rank-3 approximations to pupil-dependent covariance
matrices. Relaxing model constraints to fit rank-2 / rank-3 covariance matrices did not improve
predictions of ∆d′2. Colors indicate model architecture specified in the figure legend. As in Figure
3.5, lines represent bootstrapped 95% confidence intervals and p-values were measured using paired
bootstrapped samples of differences in model error for the different architectures.
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Abstract
Sound-evoked activity of single neurons in primary auditory cortex (A1) is

modulated by active task engagement, enhancing the neural discriminability

of task-relevant sound features. At the neural population level, task engage-

ment also suppresses correlated variability (i.e., noise correlations) between

pairs of simultaneously recorded neurons. Theoretical work suggests that a

reduction in noise correlations can improve sensory coding accuracy, but it

is unknown how these task related changes actually impact coding in A1 or

behavioral performance. We analyzed data from A1 of ferrets performing a

go / no-go tone detection task. Multi-channel neural data was collected using

linear microelectrode arrays during alternating passive and active (engaged)

listening blocks. As expected, transitions from passive to active listening were

associated with modulation of evoked activity and decreased noise correlation.

Using an optimal linear decoder, we found that discrimination of task-relevant

sound categories by neural populations was improved during active listening

blocks. Notably, this effect could be almost entirely attributed to modulation

of single neuron responses; discrimination did not benefit from reduced noise

correlations. Furthermore, we found that noise correlation strength could pre-

dict trial-trial behavior performance, while neural decoder accuracy could not.

The decoupling of decoder accuracy from behavioral performance suggests that

downstream brain areas utilize a non-optimal readout of activity in A1.

4.1 Introduction

Task engagement is known to modulate the gain and variance of single neuron sensory responses in

auditory cortex (AC)3,7, 11,17,122,123 as well as suppress correlated trial-to-trial variability across neu-

rons i.e. noise correlations.73,74 While neural discrimination of task-relevant sounds by single neuron

activity is improved during engagement relative to passive listening,7,11,122 it is currently unknown

how noise correlations in auditory cortex affect discrimination. Furthermore, the precise relationship

between perception and task-dependent plasticity in noise correlations has not been explored. A re-

cent study found that bouts of correlated activity preceded detection failures of tones embedded in

background noise,124 suggesting that increased noise correlations may lead to perceptual deficits in

AC for at least some auditory tasks.
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Work in the visual system recently demonstrated that neural population activity is the key compu-

tational unit underlying perception in a change detection task.52 This work found that reductions in

noise correlations predict the improvements in task performance associated with learning and selective

attention but do not predict improvement of an optimal decoder trained to discrimination stimuli from

neural activity. Effects also vary between visual areas. In visual area V4, noise correlation changes

are restricted to a low-dimensional neural state-space that overlaps with choice related information.52

This pattern was not observed for neurons recorded in primary visual cortex (V1) during the same

task; noise correlations in V1 did not predict task performance.52 Thus data from the visual sys-

tem indicate that stimulus information shifts to a sub-optimal, choice-dominated read-out in later

processing stages.

Here, we studied the relationship between behavior and neural population coding in primary au-

ditory cortex (A1) of ferrets engaged in three simple go / no-go tone detection tasks. Across three

different task designs, we observed a robust decrease in noise correlations during active task engage-

ment compared to during passive presentation of sound stimuli. Optimal linear decoding of go vs.

no-go task stimuli by population activity was also improved during engagement. However, decoding

of go vs. no-go cues was not impacted by changes in noise correlation and was consistently found

to be higher than animal’s psychometric performance, even during passive listening. This decoupling

of decoder performance and behavior indicates that sound information is not read out optimally in

A1 for these tasks. In contrast, changes in noise correlations were tightly coupled to animal’s task

performance. Thus, it appears that A1 may adopt a more general purpose decoding strategy that

benefits from reduced variability in population activity.

4.2 Results

We trained nine young adult male ferrets to perform one of three variants of a go / no-go tone

vs. noise discrimination task (Tasks A, B, and C). Schematics of a single behavioral trial are shown

for each task in Figure 4.1. Despite small differences in the precise trial structure and sound stimuli

(Methods), all three tasks required animals to lick in response to a target tone in order to receive

reward. Licking during reference noise burst stimuli was penalized with a time out. Task C also

required animals to perform frequency discrimination in addition to tone vs. noise discrimination.

For details on task structure and sound stimuli, see Methods: Behavioral training.

Animal’s task performance was measured using a behavior discrimination index, DI, the area under

the receiver operating characteristic curve for responses to target tone stimuli vs. reference noise
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bursts.125 This metric ranged from 0 to 1, with 0.5 indicating chance performance and 1 indicating

perfect performance. Although closely related to the standard signal detection theory metric, d′,

the discrimination index also takes into account reaction time. In our task, most target stimuli

were significantly above animal’s psychometric threshold and miss trials were rare. Therefore the

discrimination index helped to improve resolution of behavioral task-engagement and performance.
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Figure 4.1: Go / no-go task paradigms. Nine ferrets were each trained on one of three different go
/ no-go tone detection tasks. All tasks were similar in that they required animals to detect the presence
of a target tone in a sequence of distractor noises. Tones were either presented in in isolation or masked
by noise. The precise trial structure and acoustic stimuli varied between tasks. Most notably, in task
A distractor stimuli were broadband noise, while narrowband noise (0.5 octave bandwidth) was used
in tasks B and C. Additionally, tasks B and C contained explicit catch stimuli that could occur in
place of a target during the a subset of trials. This feature was absent from task A. For more details
on each of the tasks, see methods: Behavioral training. Finally, task C is unique in that it required
animals to perform frequency discrimination in addition to tone vs. noise discrimination.

Once animals reached the behavioral criterion of stable, above chance performance, a craniotomy

was opened over primary auditory cortex (A1) and neural activity was recorded using single shank 64-

channel or dual shank 128-channel silicon microelectrode arrays40 inserted perpendicular to the brain’s

surface. Target tone stimuli for each session were chosen to match the most common best frequency

of neurons recorded at that site. In tasks B and C, narrowband noise bursts were chosen to span

a three octave range around the target frequency, while broadband noise in task A was fixed across
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recording sessions. To measure the effect of task-engagement on activity in A1, neural responses to

task stimuli were compared between active and passive listening conditions. Passive blocks consisted

of identical sound stimuli, but licking was no longer rewarded or penalized. For all analyses presented

in the following sections, we did not observe substantial differences between data collected from the

three tasks, therefore all data was pooled.

Transitions between active task-engagement and passive listening are known to be correlated with

changes in overall levels of arousal, as indexed by pupil size.33 As arousal is known to independently

modulate neural activity in A128,33,71 and more generally throughout cortex,27,38,86 we simultaneously

recorded pupil size during physiology recordings in order to control for pupil-associated changes in

firing rates (see Methods, Eqn. 4.3). These controls had little effect on the main conclusions presented

here, therefore we conclude that our results are driven primarily by changes in neural activity specific

to task-engagement.

4.2.1 Task-dependent improvement of target vs. reference discriminability in A1 does

not predict behavior performance

Behavioral performance was measured as the ability to discriminate reference noise bursts from

target tones, either presented in isolation or embedded in noise. To investigate if neural activity in A1

supported task performance, we asked how well reference and target stimuli could be discriminated

based on neural population activity. We measured the pairwise decoding accuracy between each target

and all references using optimal linear decoding.57,58 Decoding performance was quantified with the

signal detection theory metric, d′.84 Therefore, a unique neural d′ was associated with each target

(e.g. each SNR) within a behavioral session (60 total target vs. reference discriminations across seven

animals and 28 recording sessions).

It is known that trial-to-trial variability in neural population activity can critically impact decoding

accuracy.46,57–61 However, this variability cannot be measured reliably in neural populations using the

relatively small number of trials available in a typical behavioral experiment,68 and standard measures

of decoding accuracy like neural d′ are likely to be biased by overfitting to experimental variability

in population responses. Therefore, we performed a decoding-based dimensionality reduction106 to

project population activity into a 2-D space optimized for reliable measurement of trial-trial variability

and d′. The first dimension of this space was defined as the axis in neural activity space passing through

the mean reference response and mean target response (sensory discrimination axis) and the second

axis captured the first principal component of trial-to-trial variability (noise axis,106). The decoding

space was defined using data from both active and passive listening conditions, allowing unbiased
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comparison of responses between the two states.

During active task engagement, responses to target and reference stimuli were more separated along

the discrimination axis, and trial-trial variability was strongly suppressed (Figure 4.2A), reflecting

task-dependent suppression of noise correlations (Figure S1). Neural d′ was measured in this space

separately for active and passive conditions. Neural discriminability of target and reference sounds was

significantly improved during task-engagement (d′ active: 2.58 vs. neural d′ passive: 2.18, p < 0.001

hierarchical bootstrap test) (Figure 4.2B). However, the improvement was not significantly correlated

with the animal’s behavioral performance (Figure 4.2C), indicating that animals do not utilize an

optimal linear readout of activity in A1 to guide behavior in this task. These results were consistent

even after controlling for pupil-indexed changes in sensory responses (Figure S2), which are known to

modulate excitability of single units in A1.28
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Figure 4.2: Task-dependent improvements in neural discriminability are not predicted
by behavior performance. A. Example distributions of target and catch responses for a single
recording session collected during task B. Single trial population spike count responses (dots) are
projected into a reduced dimensionality decoding space.106 Ellipses represent one standard deviation
of responses across all trials. Dashed line represents the optimal linear decision boundary. B. For
each target / recording site combination (n = 60 total combinations), active target vs. reference
discriminability is plotted against passive discriminability. Discriminability (d′) is significantly greater
during active task engagement (p < 0.001, hierarchical bootstrap test). C. The change in neural d′
between active and passive conditions is plotted as a function of behavioral performance. There is no
significant relationship between the two (cross-validated R2 = −0.059, 95% bootstrapped confidence
interval of slope: (−0.007, 0.022).

4.2.2 Task-dependent suppression of noise correlations explains behavior performance

but not neural decoding accuracy

Improvements in neural d′ could be explained by increased separation along the discrimination axis

and/or a reduction of variance in the decoding space. We observed that both of these features of neural

population activity were modulated by task-engagement, but the changes in variance occurred mostly

along an axis that was orthogonal to the sensory discrimination axis (e.g. Figure 4.2A). Thus, we

hypothesized that changes in variance contribute little to the task-dependent improvement in decoding

(Figure 4.2B). To test this prediction, we defined two population level metrics: signal magnitude and

shared noise variance (illustrated in Figure 4.3A) which, respectively, captured sensory discrimination
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separation and correlated response variability. As expected, both were consistently modulated by

task-engagement (Figure 4.3B), however, the modulation of signal magnitude explained the bulk of

changes in decoding accuracy (95% confidence interval of R2 signal magnitude (0.11, 0.34) vs. shared

noise variance: (0.02, 0.17)) (Figure 4.3C). These results did not change after controlling for pupil

size (95% confidence interval of R2 signal magnitude (0.19, 0.29) vs. shared noise variance: (-0.005,

0.13)) (Figure S3A, B).

Recent work in the visual system has suggested that changes in correlated variability, but not

response magnitude, are tightly coupled to perceptual performance.52 Therefore, we next determined

the extent to which behavioral performance could predict changes in signal magnitude and shared

noise variance. In line with this previous work, we found that behavioral performance and shared

noise variance were significantly correlated, while signal magnitude was not (95% confidence interval

for R2 signal magnitude vs. behavior: (-0.18, -0.006) and shared noise variance vs. behavior: (.125,

0.224)) (Figure 4.3D). Thus, animals’ task performance is best when shared response variability is

smallest. Again, these results could not be explained by spontaneous fluctuations in pupil-indexed

arousal (95% confidence interval for R2 signal magnitude vs. behavior: (-0.109, 0.023) and shared

noise variance vs. behavior: (0.061, 0.164)) (Figure S3C).
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Figure 4.3: Changes in shared variability explain behavior, but not stimulus discrim-
inability. A. Cartoon schematic. Ellipses represent response distributions for a reference (grey) vs.
target (red) stimulus. Two metrics were defined to describe population activity in the decoding space:
Signal magnitude and shared noise variance (see Methods) B. For each target / recording site combi-
nation (n = 60 total combinations), the two metrics are compared for active and passive conditions.
C. The contribution of each metric to task-dependent changes in discriminability (d′) were determined
by performing multiple linear regression. Cross-validated, unique R2 is plotted for each metric. Error
bars represent 95% bootstrapped confidence intervals (signal magnitude: (0.11, 0.34), shared noise
variance: (0.02, 0.17)). D. The change in signal magnitude and noise variance are plotted against
behavioral performance. Shaded regions represent 95% confidence intervals of best fit regression line.
Signal magnitude is not significantly correlated with behavior (R2 95% confidence interval: (-0.18,
-0.006)). Shared noise variance is significantly correlated with behavior (R2 95% confidence interval:
(0.125, 0.224)).

4.3 Discussion

Go / no-go auditory discrimination tasks have been used extensively to investigate the impact of

task engagement and attention on auditory coding. Prior work has found that engaging in auditory

tasks improves neural discrimination of sound by single A1 neurons.3,7, 11,17,123 A recent study ex-

panded on this work by pooling single neurons recorded serially across multiple go / no-go tasks and,

in line with single cell results, demonstrated that pseudo-populations could more accurately discrimi-
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nate target from reference stimuli during engaged conditions relative to passive listening.122 However,

studies that have recorded population activity in A1 have found that activity is correlated between

neurons. Further, the strength of correlated activity is sensitive to behavioral state28,71,73,74 and may

even limit the ability to detect pure tones embedded in noise.124 These findings raise questions about

utility of using single neurons to understand population coding in auditory cortex.

We addressed outstanding questions about the relationship between behavior and population cod-

ing by recording activity in A1 of ferrets performing three different go / no-go tasks. In line with

previous work, we found neural discrimination of task stimuli is improved during active task engage-

ment and correlated activity is suppressed. We were able to investigate how each of these effects related

to the level of behavioral performance. While behavioral performance does not track improvements

in neural discrimination, task-dependent reductions in correlated activity do.

4.3.1 Implications for auditory coding in A1

Our finding that task-dependent suppression of correlated activity predicts behavioral performance

while neural discriminability does not is at odds with the idea that sound information is decoded

optimally from A1. We propose two possible explanations for this result. First, A1 is not necessary

for performing these behaviors or, second, activity in A1 is decoded sub-optimally by downstream

brain regions.

Whether or not auditory cortex is required for different auditory behaviors is currently the topic

of much debate, with a number of results providing contradictory conclusions.17,126–133 Some of the

disparity is likely to be explained by the method and efficacy of cortical inactivation and/or lesion used

in each study. In addition, some of the variability in results may be explained by the hypothesis that

the necessity of AC depends on how perceptually demanding the task is. For example, processing

in A1 seems to be dispensable for performing very simple tasks, such as pure tone detection or

discrimination of dissimilar tones,134 but might be required for tasks that come closer to animal’s

perceptual threshold.17 All of the behavioral tasks in the manuscript contained at least one pure

tone target presented in isolation, while only certain blocks and/or task paradigms required the more

difficult task of tone-in-noise detection. And even then, most target SNRs were well above perceptual

threshold. Therefore, it is possible that auditory cortex is dispensable for the simple go / no-go

discrimination tasks tested here.

This conclusion is challenged, however, by the striking modulation of A1 activity observed during

engagement both for our tasks as well as across a range of similar task designs.3,7, 11,33 Specifically,

if A1 was completely irrelevant it seems unlikely that we would observe such a robust association
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between correlated variability and behavioral performance. Therefore, we argue that our results favor

the second hypothesis, that activity in A1 is decoded sub-optimally. Work in the visual system has

demonstrated a finding that is consistent with this idea.52 Noise correlation strength is strongly

suppressed by attention and learning in V4. Using a choice decoder trained on V4 activity, the study

found that the dimensions of neural activity that are informative about choice are aligned with noise

correlations, but not with stimulus information.52 This suggests that learning and attention improve

perception by suppressing variability along a sub-optimal stimulus readout in V4. Unfortunately,

performance in our tasks was high, so that animals performed very few miss trials. Therefore, we did

not have sufficient data to build a choice decoder and test this hypothesis in A1.

4.3.2 Underlying mechanisms responsible for state-dependent modulation of correlated

activity A1

The origin of stimulus-independent, correlated variability (i.e. noise correlations) has been de-

bated over the past two decades. However, emerging evidence gleaned from recent large scale neural

population recordings have helped provide some clarity. In most cases, correlated activity is accurately

modeled using low-dimensional, latent processes that co-modulate neurons.50,51 In addition, changes

in behavioral state, such as fluctuations in arousal and motivation,29,38,54 co-modulate activity.

To isolate correlated activity related specifically to task demands, we controlled for changes in

firing rate that could be explained using pupil size, a common index of global arousal.4,28 Controlling

for pupil-indexed arousal reduced task-related changes in noise correlations significantly but did not

remove them completely. One potential explanation for this is residual shared variability in task-

dependent gain of sensory responses. Prior work has demonstrated that co-tuned neurons in A1

exhibit consistent gain changes during task-engagement.3,11 Though the sign of these changes depends

on task-reward structure,7 it is typically consistent across neurons within a task condition. Thus,

variable gain from trial to trial is likely to produce shared response variability. Furthermore, if

gain is more stable during task-engagement (e.g. because animals know the target frequency to

attend), then correlated activity would be reduced during active task engagement as we observe in

our data. A similar explanation was recently proposed for spatial attention-dependent reductions

of noise correlations in visual cortex.81 Future studies in auditory cortex could test this hypothesis

conclusively by alternating between task blocks where animals must attend to many different sound

frequencies simultaneously and task blocks where the target frequency is fixed throughout a session.
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4.4 Materials and Methods

4.4.1 Surgical procedure

All procedures were performed in accordance with the Oregon Health and Science University

Institutional Animal Care and Use Committee (IACUC) and conform to standards of the Association

for Assessment and Accreditation of Laboratory Animal Care (AAALAC). The surgical approach was

similar to that described previously.7,18,28,115 Nine young adult male ferrets were acquired from an

animal supplier (Marshall Farms). Head-post implantation surgeries were then performed in order to

permit head-fixation during neurophysiology recordings. Two stainless steel head-posts were fixed to

the animal along the midline using UV-cured dental composite (Charisma) or bone cement (Palacos),

which bonded to the skull and to stainless steel screws that were inserted into the skull. After a

two-week recovery period, animals were habituated to a head-fixed posture and auditory stimulation.

They were then trained on one of three go / no-go tone detection tasks (see below). Once they reached

consistent above chance task performance, a small (0.5 - 1 mm) craniotomy was opened above primary

auditory cortex (A1) for neurophysiological recordings.

4.4.2 Behavioral training and acoustic stimuli

Stimulus delivery:

Digital acoustic signals were transformed to analog (National Instruments), amplified (Crown), and

delivered through a free-field speaker (Manger) placed 80 cm from the animal’s head and 30°contralateral

to the the hemisphere in which neural activity was recorded (Figure 3.1). Stimulation was controlled

using custom MATLAB software (https://bitbucket.org/lbhb/baphy), and all experiments took

place inside a custom double-walled sound-isolating chamber (Professional Model, Gretch-Ken).

Behavioral training:

Animals were trained on one of three go / no-go task paradigms, each of which is described in detail

below and also briefly in the results. During training, animals were provided access to water ad libitum

on weekends, but were placed on water restriction during the weekdays (Monday through Friday),

allowing them to maintain >90% of their baseline body weight long term. On weekdays, they were

given the opportunity to receive liquid reward during behavioral training. In each of the three task

paradigms, animals were trained to lick a fluid spout in response to a target tone in order to receive a

sweetened, nutrient rich fluid reward (Ensure). Licking during presentation of any other (distractor)

sounds was punished with a brief time out. In all tasks, behavioral performance was measured using a
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discrimination index (DI), which is closely related to the signal detection theory metric, d′,84 but also

includes information about reaction time.7,135 The DI was defined as the area under the receiver op-

erating characteristic curve for responses to target tone stimuli vs. reference noise bursts.125 Thus, DI

ranged between 0 and 1, with 1 indicating perfect performance and 0.5 indicating chance performance.

Task A: Tone in broadband noise This task was described in a previous publication.33 Data from

4 animals trained on this task is included here. Briefly, each behavioral trial consisted of two to

five broadband noise bursts (TORCs - Temporally Orthogonal Ripple Combinations136) followed by a

pure tone target presented in isolation (Inf dB, pure tone detection) or embedded in a TORC (tone-

in-noise detection, SNR between tone and noise could range from +5dB to -15dB, depending on the

experimental condition). TORCs were selected from a library of 30 total samples. Each spanned five

octaves. All sounds were presented for 0.75s duration with a 0.7s inter-stimulus interval. Animals

were rewarded for licking 0.2 to 1.5s following the target onset (hit trials) and were penalized with

a 5-8s timeout for failure to lick (miss trials). Licking at any other point during the trial was also

penalized with a 5-8s timeout. Regardless of the trial outcome, the next trial began after a random

delay of 2 - 3 sec.

A single behavioral block typically consisted of 60-100 trials with the same target frequency (100-

20,000 Hz) and same distribution of target SNRs. Between each block, target frequency could change.

Over the course of training, target frequency was chosen randomly in order to span the range of ferret

hearing137 while during neurophysiology the target frequency was chosen to match the most common

best frequency in the recorded population of neurons.

Task B: Tone in narrowband noise Two animals were trained on this task. Neurophysiology data

is included for one animal. On each trial, a random number of narrowband white noise bursts (1-8)

were followed by a pure tones presented in isolation (+Inf dB) or embedded in noise (SNRs: 0dB,

-5dB, and -10dB). Noise bursts had 0.5 octave bandwidth and spanned 3 octaves around the target

frequency. Sounds were 300 ms in duration with 200 ms ISI. On 25% of trials, a catch noise (-Inf SNR

at the target frequency) was played at a time when the target could occur. On catch trials, a pure

tone target always appeared at the end of the trial so that correct reject trials could be dissociated

from lapse trials. Licking responses during the catch noise, or during any other noise burst, were

treated as a false alarm and penalized with a timeout ranging from 4-8 sec while licking 0.2 to 0.8

sec following a target onset resulted in a liquid reward as in Task A. Miss trials were not penalized.

Target tone frequency was fixed across behavioral blocks within a day, but changed randomly between
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days to span the hearing range for ferrets.137 Behavioral blocks typically lasted between 80 and 200

trials.

Task C: Frequency discrimination Two ferrets were trained on this task. Neurophysiology data is

included for one of these animals. Similar to task B, animals were trained to discriminate pure tone

targets from narrowband noise. However, in this task each behavioral block consisted of up to two

targets, each +Inf dB and separated by < 0.3 octaves. In addition, the catch noise was replaced by

a catch tone (also +Inf dB) separated by at least 0.5 octaves from all target tones. Noise bursts and

trial structure were equivalent to task B.

4.4.3 Neurophysiology

Upon reaching behavioral criterion, neurophysiological recordings were completed for seven of the

nine animals. A small, 0.5 to 1 mm craniotomy was opening above auditory cortex and 1 - 4 tungsten

micro-electrodes (FHC, 1-5 MΩ) were inserted to characterize the tuning and response latency of

the region of cortex. Sites were identified as A1 by characteristic short latency responses, frequency

selectivity, and tonotopic gradients across multiple penetrations.10,116 Subsequent penetrations were

made with a single (64-channel) or dual shank (128-channel) silicon electrode array.40 Electrode

contacts were spaced 20 µm horizontally and 25 µm vertically, collectively spanning 1.05 mm of

cortex. On each consecutive recording day, we changed the location of the electrode penetration to

access fresh cortical tissue, expanding the craniotomy as necessary. Data were amplified (RHD 128-

channel headstage, Intan Technologies), digitized at 30 KHz (Open Ephys94) and saved to disk for

further analysis.

Spikes were sorted offline using Kilosort117 or Kilosort2 (https://github.com/MouseLand/Kilosort2).

Spike sorting results were manually curated in phy (https://github.com/cortex-lab/phy). For all

sorted and curated spike clusters, a contamination percentage was computed by measuring the cluster

isolation in feature space. All sorted units with contamination percentage less than or equal to 5

percent were classified as single-unit activity. All other stable units that did not meet this isolation

criterion were labeled as multi-unit activity. In all analyses presented here, both multi units and single

units are included.

4.4.4 Pupillometry

During neurophysiological recordings, video of the ipsilateral pupil (relative to the recording

hemisphere) was collected using an open source camera (Adafruit TTL Serial Camera) fitted with
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a lens (M12 Lenses PT-2514BMP 25.0 mm) whose focal length allowed placement of camera 10 cm

from the eye. Contrast was increased using infrared illumination. Ambient light levels were fixed for

each experiment at roughly 1500 lux to provide maximum dynamic range of pupil size.28 Pupil size

was measured offline by fitting an ellipse to each video frame using using a custom machine learning

algorithm (Python and Tensorflow https://github.com/LBHB/nems_db). The minor axis of the fit

ellipse was extracted and saved for analysis with neurophysiological data. Blinks were detected and

excluded as in28 and pupil data was shifted by 750 ms relative to spike times in order to account for

the lagged relationship between changes in pupil size and neural activity in auditory cortex and to

allow for comparison with previous research.4

Pupil correction:

In this work, we were interested in studying task-dependent changes in correlated neural activity.

Because spontaneous changes in arousal are known to coherently modulate firing rates in A139 and

fluctuations in arousal may be different between active and passive states (e.g. depending on task

performance,33 it was important to control for any neural variability not directly attributable to

task-engagement.

To remove changes in firing rate that were associated with pupil, we regressed out all stimulus-

independent variability that could be explained with pupil size. We performed this correction on a

per-neuron, per-stimulus basis to completely remove pupil-associated changes in firing.

For each neuron (i) and stimulus (s) the mean response across all trials was measured (r̄i,s) and

subtracted from the true response (ri,s, Eqn. 4.1). A linear regression model was used to predict to

the residual variability in firing rate with pupil size (r̂residi,s , Eqn. 4.2). The prediction of this model

was then subtracted, and the remaining, pupil-corrected, trial to trial variability was added back to

the mean stimulus response (Eqn. 4.3).

rresidi,s
= ri,s − r̄i,s (4.1)

r̂residi,s
= β1p(t) + β0 (4.2)

rcorri,s = r̄i,s +
(
rresidi,s − r̂residi,s

)
(4.3)
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4.4.5 Neural population decoding of target vs. reference stimuli

In order to measure the neural discriminability of target and reference stimuli, we used the

information theoretic measure, d′2, the discrete analog of Fisher Information,57,58 to measure the

discriminability between each target stimulus and all reference stimuli. References were structured

slightly differently between tasks, but always had equivalent behavioral meaning. Therefore, we

grouped them into a single stimulus class in order to allow comparison of results across task paradigms.

Thus, d′2 was defined as:

d′2 = ∆µT Σ−1∆µ = ∆µTwopt (4.4)

where ∆µ represents the vector connecting the mean ensemble responses to a single target stimulus

(TAR) and the mean response across all references (REF), Σ = 1
2 (ΣREF + ΣTAR) represents the

mean noise-covariance matrix, and wopt is the optimal decoding axis, i.e. the vector orthogonal to

the optimal linear discrimination hyperplane in state-space. Ensemble responses for a given sound

stimulus were neuron X trial matrices of spike counts elicited in the first 200 ms following sound onset

for each neuron on each sound repetition. Throughout the manuscript we report d′, rather than d′2,

in order to provide a more interpretable metric in light of classic signal detection theory.84

Estimation of optimal decoding accuracy is known to be unstable in the regime where the number

of neurons is large and the number of trials is relatively small.68 Therefore, in order to reliably mea-

sure d′2, we first projected our data into a 2-dimensional space using decoding-based dimensionality

reduction (dDR).106 Though similar to standard implementations of PCA, dDR explicitly preserves

the dimensions of neural population activity that are most important for performing optimal linear

decoding. The first axis in dDR space is defined as ∆µ, the sensory discrimination axis, and the

second axis preserves the maximal dimension of correlated activity i.e. the first principal component

of stimulus-independent variability.

4.4.6 Population decoding metrics

In order to quantify which features of the population activity were modulated by task-engagement,

and how each contributed to decoding accuracy, we defined two metrics: signal magnitude and shared

noise variance. Signal magnitude was defined as the vector magnitude of ∆µ, the axis connecting the

mean ensemble response to the target vs. reference stimuli. Thus, this metric quantifies how separable

two stimuli are based only on their trial-averaged sensory evoked activity. Shared noise variance, in

contrast, summarizes the amount of overall trial-to-trial variability across repeated stimulus presenta-
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tions. To measure shared noise variance, response distributions in the dDR space (e.g. Figure 4.2A)

were mean-centered and total variance of the distribution was measured.

4.4.7 Statistical Methods

Our data followed a multi-level hierarchical structure. That is, for each recording session, we

measured the decoding accuracy and associated metrics (see above) for multiple different target vs.

reference pairs. To prevent outlier recording sessions from biasing statistical conclusions, we used

hierarchical bootstrapping.121

For all linear regression models (e.g. testing for correlation between decoding accuracy and be-

havioral performance) we re-sampled by bootstrapping and performed 10-fold nested cross-validation

in order to predict all data within each bootstrap sample. The 95% confidence interval for R2, mea-

sured across 100 bootstraps, is reported in all regression analysis. We concluded that the relationship

between two variables is significant when the confidence interval is in the range R2 > 0.
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4.5 Supplemental Material

p = 0.0 p = 0.002

Figure S1: Task-engagement suppresses noise correlations. Noise correlations were measured
for all simultaneously recorded cell pairs during active and passive conditions. Correlations were
grouped per site by computing the mean across all cell pairs. Each grey line represents one site,
orange bars represent means across sites. Both before (left) and after (right) controlling for effects
of pupil-indexed (Methods) we observe a significant reduction in correlation strength during active
listening. Raw data: median active = 0.16, median passive = 0.05, p = 0.0, W = 28, Wilcoxon
signed-rank test. Pupil-corrected responses: median active = 0.24, median passive = 0.05, p = 0.002,
W = 50, Wilcoxon signed-rank test.
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Figure S2: Task-dependent improvements in neural discriminability are not pupil-
dependent. Same as in Figure 4.2 but after controlling for changes in response magnitude that
could be explained by pupil-indexed arousal (see Methods) B. For each target / recording site com-
bination (n = 60 total combinations), active target vs. reference discriminability is plotted against
passive discriminability. Discriminability (d′) is significantly greater during active task engagement
(p = 0.007, hierarchical bootstrap test). C. The change in neural d′ between active and passive condi-
tions is plotted as a function of behavioral performance. There is no significant relationship between
the two (cross-validated R2 = −0.077, 95% bootstrapped confidence interval of slope: (−0.011, 0.023).
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Figure S3: Changes in shared variability explain behavior, but not stimulus discrim-
inability. Same as Figure 4.3, but after correcting for pupil-dependent variability in spike rates
(see Methods) B. For each target / recording site combination (n = 60 total combinations), the
two metrics are compared for active and passive conditions. C. The contribution of each metric to
task-dependent changes in discriminability (d′) were determined by performing multiple linear regres-
sion. Cross-validated, unique R2 is plotted for each metric. Error bars represent 95% bootstrapped
confidence intervals (signal magnitude: (0.19, 0.29), shared noise variance: (-0.005, 0.13)). D. The
change in signal magnitude and noise variance are plotted against behavioral performance. Shaded
regions represent 95% confidence intervals of best fit regression line. Signal magnitude is not signifi-
cantly correlated with behavior (R2 95% confidence interval: (-0.109, 0.023)) Shared noise variance is
significantly correlated with behavior (R2 95% confidence interval: (0.061, 0.164 )).

85



5 Conclusions

In addition to encoding acoustic information, activity in AC is modulated by many aspects of

behavioral state such as a locomotion,6 arousal,,28,33,71 and task-engagement.3,7, 11,17,33,122 These

state changes significantly affect the response properties of single neurons, but their effect on neural

population codes is less well understood.

This dissertation builds on previous studies of state-dependent neural coding by investigating how

the collective activity of many simultaneously recorded neurons in auditory cortex are modulated by

two aspects of behavioral state, arousal and task-engagement. In chapter two, we present a novel

method for dimensionality reduction of neural data that facilitates reliable estimates of population

decoding accuracy when data are trial limited. In chapters three and four, we apply this method to

neural population data collected from awake, behaving ferrets. Chapter three shows that the effects of

increased arousal on neural decoding accuracy of natural sound stimuli are much more heterogeneous

than previously thought. This study highlights the importance of studying population coding accuracy

using rich, ethologically relevant sensory stimuli. Finally, in chapter four we studied the effect of task

engagement on neural discrimination of task relevant sound cues. Our results indicate that activity

in primary auditory cortex is decoded suboptimally by downstream brain regions. Thus simultaneous

recordings of population activity and behavior led to new insights about how sound information in

A1 contributes to behavior.

5.1 Methods for dimensionality reduction of neural data

In chapter two, we present a new method for dimensionality reduction of neural population

data, dDR, adding to a growing library of existing tools that have been applied to neural data.85

We developed dDR specifically to facilitate measurements of population coding accuracy when data

are trial limited – that is, when the number of recorded neurons exceeds the number of stimulus

repetitions during a given experimental condition. This is an increasingly common situation thanks

to the explosion in technology for neural population recordings.83 During behavioral experiments,

the problem is even more apparent because the number of times a stimulus is repeated is often

fundamentally limited by animal performance and motivation.

The studies presented in chapters three and four highlight the benefits of dDR as a method

for understanding population coding accuracy. In chapter three, we studied state-dependent coding

accuracy across an extremely wide range of natural sound stimuli. Due to the large number of
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different stimuli, we were fundamentally constrained in the number of times each could be presented.

Therefore, without dDR reliable estimates of coding accuracy would have been unfeasible. In chapter

four, we apply the method to data collected from animals actively engaged in a tone vs. noise

detection task. Even though stimulus repetitions were limited by animal’s motivation, the method

allowed us to measure discrimination of task cues by neural populations reliably during active task

engagement. Critically, dDR preserves information of correlated population variability. In both

studies, we found that characterizing the impact of correlated neural activity on discrimination was

critical for understanding how state-dependent coding relates to behavioral performance.

5.2 State-dependent coding of natural sensory stimuli

In chapter three, we study how arousal affects the representation of natural sounds in primary

auditory cortex. Prior work has found that increased arousal leads to increased signal-to-noise ratio

of single unit responses in visual cortex,27 increased gain and reliability in ferret A1,28 and changes

in frequency selectivity in mouse.71 Furthermore, population activity is decorrelated in high arousal

states.27,28,71 Collectively, these changes are believed to enhance the reliability of sensory coding.

Unlike previous work, we find that within a cortical column, arousal can either improve, or reduce,

population coding accuracy of natural sounds. We demonstrate that this diversity is the result of a

stimulus-dependent relationship with low-dimensional correlated activity in A1; when correlations are

suppressed along the axis of sensory discrimination, sound discrimination improves. We find that this

only happens for a small subset of natural sound stimuli, explaining why previous studies that used

limited stimulus sets have not observed the same phenomenon.

In this study, we defined coding accuracy as the ability to discriminate between randomly se-

lected, unique 250 ms natural sound excerpts. Though there is some precedent for this choice,120 it

is fundamentally arbitrary. While our results highlight the theoretical diversity of state-dependent

sound discrimination in A1, we cannot say whether or not the neurons we recorded from are actually

responsible for making said discriminations. Therefore, it is our hope that future work will build on

this study by applying the methods we have developed to targeted recordings of specific populations

of neurons and/or sensory stimuli that are more ethologically relevant. Additionally, the diversity of

state-dependent coding changes that we observed help to contextualize prior conflicting reports on

the impact that correlated variability has on population coding.43,59,62,63,66,103,105

Finally, to characterize state-dependent modulation of correlated variability we utilized a normative

latent variable modeling framework. In more standard modeling approaches such as,50 models are
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typically fit to the actual time varying neural response. The normative framework is unique in that

model weights are not optimized to predict the actual neural data, but to generate simulated neural

activity that match high-level features of the actual data – in our case, model weights were fit to match

the state-dependent population covariance matrices. Thus, without worrying about “overfitting” to

single trial variability in the true responses, were able to easily test hypotheses about the impact of

state-dependent modulation of covariability on neural decoding accuracy. This study explored only a

relatively small space of latent variable model architectures. Future work testing alternative models

under the normative framework will provide further insight into the precise nature of state-dependent

modulation and its impact on sensory coding and behavior.

5.3 State-dependent changes in correlated population activity as a window

into behavior-relevant sensory coding

In chapter four, we investigate the impact of task-engagement on tone vs. noise discrimination

by A1 populations. Studies of serially recorded, single neurons have repeatedly shown that neural

discriminability is improved during active task-engagement relative to passive listening.3,7, 11,17,122

These changes are rapid and reversible,3 and are thought to provide behavioral flexibility. Yet, changes

in neural selectivity underlying these discrimination improvements have been shown to persist for a

short time after task engagement, and their direct relationship to behavioral performance has not

been demonstrated. Therefore, questions remain regarding the link between state-dependent neural

discriminability and behavior. In one study, it was found that suppression of trial-to-trial response

variability, not sensory selectivity, more closely followed behavioral performance and predicted changes

in neural discriminability,123 though this doesn’t always seem to be the case.138

A separate line of work has demonstrated that correlated variability between neurons is significantly

suppressed during task engagement,73,74 raising the question of whether and how correlated noise is

related to sound discriminability and behavior. To address this, we used multi-channel recordings

from primary auditory cortex during behavior. In line with previous results, we found that single

neuron sound-evoked responses were enhanced by task engagement and correlated variability was

suppressed. Leveraging our method for dimensionality reduction, dDR, we measured discriminability

of task cues by A1 populations. Although task engagement improved decoding accuracy, in agreement

with previous work, we demonstrated that the suppression of correlated variability played no role and

that the improvement in discriminability could not predict animal’s behavior performance. Thus,

these results indicate that sound information is decoded suboptimally from A1.
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Unlike stimulus discrimination, we discovered that the changes in correlated variability were tightly

coupled to animal’s task performance. Theoretical work has demonstrated that when correlated

variability is suppressed along coding dimensions, accuracy of the population code is improved. Thus,

one possible explanation for our results is that the change in correlated variability is oriented along a

suboptimal decoding axis which guides animal’s behavioral choice. Although we were not able to test

this hypothesis with our data, recent work suggest that, as least in macaque visual area V4, this is the

case.52 Additionally, the fact that the relationship between correlated variability and task performance

was consistent across all three behavioral tasks we tested suggests that it may be a general processing

mechanism employed by animals when making perceptual judgements. Thus, the structure of changes

in correlated variability may offer a window into how information in a given brain area is read out by

downstream regions.

5.4 State-dependent modulation across cortical layers and celltypes

Previous work exploring state-dependent modulation of sensory coding has shown that the effects

of behavioral state vary between celltypes and cortical layers. For example, work in macaque visual

cortex has shown that attention-dependent modulation of response gain and correlated variability

predominate in supragranular layers.81 In mouse visual cortex the impact of locomotion and arousal

differs between fast-spiking putative interneurons and regular spiking pyramidal neurons.27 More

generally, GABA-ergic interneurons are reported to be the targets of neuromodulation and mediators

of state-dependent gain changes across cortical areas.139 In auditory cortex specifically, optogentic

manipulation of PV+ interneurons can modulate tone responses and behavior140 and models of AC

circuits suggest that modulation of inhibition can affect network level properties of neural activity.140

Thus, even from these few examples it is clear that not all cells are equal in their role for state-

dependent modulation of sensory coding. Unfortunately, in the data we present in this dissertation,

we were unable to reliably distinguish between celltypes and laminar location. Future work that

incorporates this information through the use of new genetic and viral tools coupled with population

recordings will be critical for advancing our understanding of cortical circuits and state-dependent

modulation.
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