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Abstract

The auditory system underlies the ability to perceive and respond to sound in the environment.
However, perception and behavioral responses to sound are not static, but change over time depending
on one’s sensory context and internal state. The neural mechanisms underlying this flexibility are not
yet well-understood. For example, how is it that by focusing our attention on a single speaker in
a crowded, noisy room we are able to improve our ability to perceive their words? Prior work has
investigated this by characterizing how the sound driven activity of single neurons in the auditory
system depend on behavioral state. Yet, sensory perception and behavior are not mediated by single
neurons in isolation. In this dissertation, we build on this work by studying how two aspects of behav-
ioral state, arousal and task engagement, co-modulate the activity of many neurons simultaneously in
auditory cortex.

We recorded extracellular spiking activity from neurons in primary auditory cortex (A1) of ferrets
using multi-electrode laminar probes. These probes allowed us to measure the activity of tens of
neurons simultaneously while animals passively listened to sound stimuli, or engaged in a behavioral
task. Pupil size has been shown to track changes in cognitive state, such as alertness, in addition
to changes in neural activity. Therefore, we also measured animal’s pupil size as an index of global
arousal over time.

To analyze the high-dimensional neural population recordings, we first developed a novel dimen-
sionality reduction method which allowed us to reliably measure how accurately populations of neurons
in A1 represented sound stimuli. Using this approach, we studied how representation of natural sound
stimuli changed between high and low states of arousal. We found that, unlike in previous studies
of single neurons, arousal could either improve or reduce the accuracy of sound representations in
Al. We showed that this diversity is explained only by considering population level covariability in
sensory-evoked responses between cells. Finally, we applied this same method to data collected from
animals performing an auditory task. While task engagement improved representations of sound stim-
uli, the improvement did not correlate with animal’s perceptual performance. However, the strength
of population level covariability did. These results provide new insight into how the information in
A1 may be used to guide behavioral choices. Taken together, our results argue that population co-
variability plays an important role in determining how accurately sound information is represented in

A1l and, ultimately, is used to guide behavior.
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1 Introduction

The human auditory system is responsible for mediating the perception of sound. Sound pressure
waves generated by speech, music, and other environmental sources enter the system via the ear where
they are transduced into electrical signals by the cochlea and routed to the brain via the auditory
nerve. At this early stage of processing, sound information is represented with remarkable fidelity
by the activity of neurons in the auditory system. At later stages of processing, the signals from
the auditory nerve are integrated with information from other sensory modalities as well as aspects
of internal state, such as attention and arousal. This results in complex patterns of neural activity
that depend not only on sound, but also on the overall context in which the sound was experienced.
These context-dependent patterns of activity are thought to help guide appropriate action selection in
response to sound by integrating sound information with an animal’s overall sensory and behavioral
context.

Work over the previous two decades has investigated how different aspects of context influence the
activity of single neurons in the auditory system. However, the brain consists of billions of intercon-
nected neurons that act in concert to drive perception and behavior. While informative, studies of
single auditory neurons have yet to yield a cohesive theory describing how neural activity translates
to sound-dependent behavior. In this dissertation, we take a step towards this larger understanding
by developing new computational analysis techniques to determine how the simultaneous activity of
many neurons is modulated by two aspects of behavioral state — arousal and task engagement — and

investigate how this relates to behavior and perception.

1.1 Overview of the auditory system

General anatomy and physiology of the auditory system

Neural processing of acoustic information begins in the inner ear where sound is decomposed into
its constituent frequency components and transduced into an electrical signal by the cochlea. This
signal is relayed to the brain via auditory nerve (AN) fibers, each of which contains information about
a different sound frequency channel. This organized frequency segregation is referred to as tonotopy
and it is a hallmark of the auditory system that is preserved throughout the processing hierarchy.
Once in the brain, sound information is routed through multiple brainstem structures before it crosses

the midline and ultimately reaches the auditory cortex (AC) (Figure 1.1).
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Figure 1.1: Schematic of auditory pathway. Simplified schematic of ascending auditory system
through auditory cortex. Reproduced from.!

Sound information is represented with high precision in early processing stages and underlies, for
example, detection of interaural timing and sound level differences? that help us to quickly localize
sound sources in our environment. Once relayed to the auditory cortex, the peripheral representa-
tion of spectrotemporal information is integrated with contextual information about internal state,>*
other sensory modalities,” and even motor activity.® In this dissertation, we will focus exclusively on

these later stages of processing and their importance for guiding sound-dependent behavior.

Ferret as a model system
In the work described in this dissertation, we used the ferret as an animal model. The ferret
is particularly well-suited for studying higher-order auditory representations, such as those that de-

pend on multimodal sensory and behavioral context. The ferret has a relatively advanced behavioral

3,7-9

repertoire and a well-defined auditory hierarchy within cortex'%!! that is largely absent from

other species, such as mice.'? 13 This hierarchy within auditory cortex is thought to be important for

mediating more complex sound-dependent behaviors.'4



1.2 Behavior state-dependent modulation of coding in auditory cortex

Auditory coding

In what follows, we will discuss how the neural code is modulated by behavioral state. In order to
do this, we first provide a brief framework for conceptualizing auditory coding.

Sound pressure waves cause neurons throughout the auditory pathway to fire action potentials. The
number and timing of action potentials, or spikes, elicited at any moment contain information about
the external world that can then be decoded by downstream brain regions to select the appropriate
behavioral response. The collection of physical features that elicit spikes in a given neuron comprise
its receptive field. For example, an auditory neuron’s receptive field is typically composed of some
combination of sound frequency, level, and temporal modulation. These features are summarized
using a spectrotemporal receptive field (STRF, Figure 1.2B). A neuron is said to be “tuned” to the
particular combination of features that cause it to fire the most action potentials. For example, the
example neuron shown in Figure 1.2B is tuned to sounds at roughly 800 Hz, with a response latency
of approximately 10 ms. Thus, the neuron’s pattern of spiking activity forms a neural code for the

presence (or absence) of this particular sound feature’s presence in the world over time.
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Figure 1.2: Receptive fields in auditory cortex. A. Top: Example sound pressure waveform.
Bottom: Response of a single auditory neuron. Vertical bars represent single action potentials. B.
Tllustration of receptive field estimation for a single neuron. Top: Stimulus spectrogram for a ferret
vocalization. Relative sound level across time and frequency is represented by color. Middle: Spiking
response of a single neuron across repeated repetitions (rows) of the stimulus spectrogram. Tick
marks represent action potentials. Bottom: Spiking response is summarized by binning spikes and
computing the mean in each bin across repetitions (blue). An STRF receptive field model (right),
captures most of the sound evoked spiking activity over time (red). In practice, STRFs are estimated
using normalized reverse correlation between a neuron’s PSTH and the stimulus spectrogram.'® This
can be thought of, roughly, as a spike-triggered average of the stimulus spectrogram. Figure is adapted
from.!6

Plasticity of the neural code in Auditory Cortex

The receptive field coding framework outlined in the previous section has classically been used
to describe the physiology of neurons in sensory brain areas. However, sensation, perception, and
action selection are not static, fixed processes with respect to physical stimuli. For example, carefully
focusing attention on a particular sound source — like a friend’s voice in a crowded bar — substantially
improves the ability to perceive what they are saying. Furthermore, even if you are able to perceive
their voice accurately, you may or may not choose to respond to them depending on internal factors
— like your motivation or your understanding of the topic — that are independent of the words they
spoke. How do sensory representations dynamically adapt to meet these changing requirements?

Early experiments investigated this by training ferrets to discriminate broad band noise associated



with a water reward from pure tone frequencies which were followed by a mild shock if the animal did
not correctly withhold from licking.? These studies found that the receptive fields of single auditory
neurons were enhanced at the pure tone target frequency relative to receptive fields measured in
the same neurons during passive conditions, when the sounds were no longer paired with reward or
punishment (Figure 1.3). Thus, the study demonstrated that by shifting their encoding to enhance the
representation of negative valence stimuli, AC neurons may help to adaptively guide the appropriate
motor response. Similar findings have subsequently been reported for different task designs,” animal

species,'” and brain areas.'®
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Figure 1.3: Receptive field plasticity in auditory cortex during behavior. A. STRF for single
example unit recorded during active tone-detection (behavior STRF) and during passive listening to
task stimuli (Passive STRF). Target frequency indicated by arrow in middle panel. B. Summary
of receptive field plasticity across single units in AC. STRFs are centered at target frequency before
pooling across units. Figure adapted from.?

While behavior state-dependent modulation of neural coding is well-documented, the neural sub-
strate underlying these phenomenon remains elusive in most cases. During passive conditions, electric
shock or reward pairing with specific sound frequencies leads to shifts in frequency tuning near the
paired tones.'® 29 Coupled with findings that punishment and reward are associated with neuromodu-
lator release in cortex,?! 23 these studies suggest that behavior-dependent plasticity may be mediated
by neuromodulatory systems. Recent work in anesthetized preps corroborates this hypothesis. Pair-
ing sound presentation with the release of acetycholine, leads to expansion at sound frequency?* and
similar results have been demonstrated for the neuromodulator noradrenaline.?® Therefore, while the
exact mechanisms appear to be complicated have not yet been fully described, neuromodulation seems

likely to contribute to the plasticity observed in AC during behavior.

Defining and measuring behavior state



43,7

Certain aspects of an animal’s behavior state, like goal directed task engagemen or selective

6 are manipulated by the experimenter and can be inferred with reasonably high levels

attention,?
of accuracy. However, at the same time as an experimenter manipulates experimental conditions,
animals also undergo fluctuations in other unobserved and uncontrolled aspects of behavior state,
such as arousal and wakefulness. These types of nonspecific changes in alertness occur independent
of experimenter defined task conditions e.g. animals cycle through high and low periods of arousal
every day, such as sleep vs. wakefulness. Importantly, changes in arousal state correlate with striking

427232 In practice, increased arousal

changes in neural spiking activity and neuromodulator release.
often coincides with an animal’s engagement in behavioral tasks. Thus, it is possible that some of the
behavior related plasticity observed in AC is not due to the task itself, but to nonspecific changes in
global brain state induced by heightened arousal or other uncontrolled state variables.

To address this possibility, recent work coupled measurements of pupil size, a non-invasive readout
of arousal state (see below: Pupil as an index of arousal state), with neural recordings in ferrets while
they performed a standard tone-detection task.” Using a novel application of linear regression, this
work showed that the effects of arousal and task engagement could be dissociated in the firing rates
of single neurons in both the midbrain and the auditory cortex.?® The study further demonstrated
that ignoring arousal state could lead to incorrect conclusions about the effects of task engagement

on neural activity, highlighting both the complexity of studying behavior state and the importance of

controlling for latent, unobserved state variables in behavioral experiments.

Pupil size as an index of arousal state and neuromodulation

In this dissertation, like in the previously described study,?® we use pupil size as index of global
arousal. Pupil size has been shown to correlate with a number of behavioral readouts that are gener-
ally thought to reflect arousal state.?* For example, pupil size is correlated with listening effort,3% 36
wakefulness,3” and locomotion.?”-2%38 Although recent studies have shown that more general readouts

29,38 pupil size has

of arousal, such as movement, seem to explain more variability in neural activity,
the advantage of being tightly coupled to known neuromodulatory activity in the locus coeruleus and
basal forebrain which project directly to auditory cortical regions.* 332 Thus, pupil size provides an
index for both arousal and neurmodulation that can be measured non-invasively in awake, behaving
animals, making it a powerful tool for studying behavioral state. For a more comprehensive review of

pupil size as index of arousal state, see.3%3°



1.3 Neural population coding

Recording the activity of large neural populations

When a neuron fires an action potential, ion channels along the cell membrane open and allow
positively charged ions to rush into the negatively charged cell body. This inward flux generates an
electrical potential difference (voltage) across the cell membrane that can be measured by placing a
high impedance electrode near the soma. The electrodes designed for this purpose are typically made
of material like tungsten or glass and are sharp and small in diameter, allowing them to be inserted into
the brain while causing minimal damage to neural tissue. Generally speaking, a single electrode allows
researchers to measure the activity of one, or maybe up to two or three, neurons at a time. By inserting
multiple electrodes, researchers are able to record a handle of neurons simultaneously, however, this
quickly becomes technically challenging as the number of electrodes that must me inserted into the
brain increases. Until recently, this technique was considered the gold standard in measuring neural
activity in vivo.

Over the past two decades, many of these challenges have been mitigated by the development of
high-density silicon microelectrode arrays e.g.*’ (Figure 1.4). These probes are designed to be small,
like a tungsten electrode, but each contains many, independent high-impedance recording sites. This
allows researchers to measure the spiking activity of tens to hundreds of neurons simultaneously with
just a single probe inserted into the brain. While still falling far short of the billions of neurons
contained in the brain, this technology offers a dramatic improvement over single electrodes and
theoretical work suggests that many key brain computations can be inferred accurately from neural

populations of this size.*!
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Figure 1.4: Silicon microelectrode arrays. A. Cartoon rendering of a 64-channel linear silicon
microelectrode array B. Scanning electron microscrope image of probe. C Example data collected si-
multaneously across 12 electrodes. Figures adapted from*? and https://masmanidislab.neurobio.
ucla.edu/technology.html.

Although the data presented in this dissertation were collected using high-density microelectrode
arrays, it is worth also highlighting that imaging techniques and genetically encoded calcium indicators
have, likewise, revolutionized neural population recording. In some cases, these imaging techniques
now allow researchers to record from thousands to tens of thousands of neurons simultaneously,*3
at least an order of magnitude increase over high-density electrode recordings. Importantly, though,
calcium signals are not equivalent to action potentials and there remain key advantages to using elec-
trical recordings.** Nevertheless, these studies have yielded important insights about the structure of

neural population activity, some of which we describe below.

Spiking activity is correlated across neurons

With the advent of neural population recording, one of the earliest and most ubiquitous find-
ings was that the activity of simultaneously recorded neurons was not independent, but correlated.
That is, when one neuron fires more spikes than average, the neurons nearby are likely to fire more

than average. These firing rate correlations are stimulus-independent; they are not the result of co-
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activation by co-tuned neurons. Therefore, since they cannot be explained by stimulus condition, they
have generally been referred to as noise correlations (Figure 1.5). Unless otherwise specified, in this

dissertation “correlations” or “correlated neural activity” will refer to noise correlations.
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Figure 1.5: Noise correlations. A. Tuning curves for two simultaneously recorded direction
selective units. Open circles indicate mean response across all trials for each direction. Closed circles
indicate single trial responses for a particular stimulus direction. B. Single trial responses (same as
closed dots in A) are correlated. This stimulus-independent correlation is called a noise correlation.
Figure adapted from.*

Origin of noise correlations

Noise correlations tend to be strongest amongst neurons that are close together, suggesting that
correlated activity may be due to recurrent connections between neurons within local networks. An-
other possibility is that noise correlations reflect noise in the afferent sensory pathway. For example,
two neurons in AC that share input from a single upstream auditory never fiber might co-vary ac-
cording to changes in the shared AN fiber’s rate. This hypothesis is supported by findings that noise
correlations are strongest in neurons with similar tuning.#64° A third hypothesis that has gained
support recently is that noise correlations are primarily the result of latent inputs to local circuits
that might not not be directly observes e.g. top-down co-activation of neurons by a neuromodulator.
This explanation is corroborated by recent work showing that noise correlations can be accurately
modeled using low-dimensional, latent processes that coherently modulate firing rates®® 3 and that
correlate with state variables, such as arousal,”® which are known to reflect neuromodulatory activ-
ity.31:32  Strikingly, when the firing rates of neurons are “corrected” by regressing out these latent

factors, noise correlations are no longer present in their activity.®!

Neural population (de)coding
A common analysis technique for determining what information is represented in neural activity

is neural decoding. Neural decoding uses the (spiking) activity of a single neuron, or population of



neurons, to predict which external stimuli were presented to the system. This approach has provided
important insights into how and where information is represented in the brain. For example, classic
work demonstrated that the ability to decode visual stimuli give activity of single neurons in area MT

closely corresponded to animal’s perceptual performance.®®

Thus, decoding can be used to identify
a possible neural substrate for perceptual discrimination.?® However, it has long been acknowledged
that behavior likely does not depend solely on single neurons, but on the coordinated activity of many
neurons within local neural circuits and communication across different brain areas.

Even before neural population recordings, a large body of theoretical work had explored the ques-
tion of how information represented by single neurons could be combined into a neural population
code.*6:56-61 Farly work demonstrated that pooling the information gleaned from serially recorded,
independent single neurons leads to drastic overestimates of decoding accuracy; large neural popu-
lations can discriminate between different stimuli much more reliably than animals can perform the
same behavioral task.“® However, simulations demonstrated that if the stimulus-independent activity
of single neurons is correlated, information scales sub-linearly with the number of neurons (Figure 1.6)
and may more closely resemble animal’s behavior,¢ highlighting the importance of neural population

recordings for understanding information coding in the brain.
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Figure 1.6: Noise correlations cause stimulus information to scale sub-linearly in neural
populations Signal to noise ratio is plotted as a function of population size when pooling over neurons
with different levels of noise correlation (r = 0 to r = 0.5). Figure adapted from.*°

Structure of noise correlations and their impact on population coding

While early work demonstrated that noise correlations can limit the accuracy of population coding,
subsequent work showed that this only occurred when noise was structured in a very specific way
relative to the stimuli being decoded.®? To illustrate this concept, consider the two-neuron illustration

in Figure 1.7. When correlated noise is oriented along the optimal discrimination axis, it fundamentally

10



limits decoding accuracy. This special type of correlation is referred to as information limiting.5?
However, when noise is oriented in any other direction with respect to the sensory discrimination axis,
optimal linear decoding is no longer affected, or can even be improved relative to the independent
noise case. In large neural populations where the dimensionality of the space is high (N neurons =
N dimensions), this latter case becomes more likely. In support of this, a number of experimental
studies have since suggested that noise correlations largely have no effect on, or can even improve,
neural decoding.%367 At the same time, recent data has found that the special case of information
limiting correlations do exist,%8 7" however, they are difficult to detect without massive amounts of
data and measuring them accurately requires the development of new analytical tools, which we

discuss more in chapter 2 of this dissertation.®®
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Figure 1.7: Noise correlations can help or hurt decoding. Simulated stimulus responses for two
neurons for two stimuli (green vs. gold). Ellipses represent the distribution of spike count responses
for each stimulus across many repetitions. Left column illustrates the case where response variability
is correlated and the right column shows the case where variability is independent between neurons. In
the first example (top), correlations are oriented perpendicular to the optimal discrimination boundary
(black line) and therefore make decoding difficult relative to the independent noise scenario. Middle
panel: correlations are beneficial to decoding. Bottom panel: correlations do not impact decoding.
Thus, the interaction between the noise correlation and the optimal decision boundary determine the
impact of noise correlation on stimulus decoding. Figure adapted from.5Y

Further complicating the role of correlations in decoding is the challenging, but critical question:
How does the brain actually decode information? For example, does the brain perform linear decoding
as illustrated in Figure 1.77 If so, is it optimal, or sub-optimal? Further, how do we as experimenters
know that the population of neurons we are recording from is actually used by the brain to decode
the stimuli that we present? The answers to each of these related questions can lead to dramatically
different impacts of correlations on decoding and we discuss the implications of this more in the
following section.

Finally, noise correlations are, by definition, stimulus-independent in the sense that they are not

directly caused by sensory stimulus activation. However, their orientation and magnitude can still
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change depending on the stimulus.47 %366

As an example to help understand this phenomenon,
imagine that noise correlations are multiplicative. In this case, correlations between two neurons will
be strongest when one or both neurons have a high firing rate i.e. during presentation of their preferred
stimulus. Furthermore, imagine that the two neurons do not have the same tuning preference. This
means that their peak firing rates will occur for different stimuli causing the orientation of correlations
to rotate in a stimulus dependent manner (Figure 1.8). In diversely tuned population of neurons
in the retina, noise correlations seem to follow this structure and contribute to improved decoding
accuracy.%%:%6 Additionally, even if noise correlations are due to additive noise and are not stimulus-
dependent (dashed lines Figure 1.8), correlations can still have stimulus-dependent impacts on coding
(correlations interfere with decoding stimulus 1 vs. stimulus 2, but not stimulus 2 vs. stimulus 3 —

Figure 1.8). These findings and illustrations highlight the importance of sampling a diverse stimulus

space to understand the impact of noise correlation on coding. Chapter 3 of this dissertation addresses

this topic.
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Figure 1.8: Stimulus-dependence of noise correlations. Two frequency tuned auditory neurons
were simulated with shared, multiplicative (or additive) noise. A. Tuning curves for two simulated
auditory neurons. Dashed lines indicate three specific stimuli. B. Joint tuning curve for cells 1 and
2 is shown in black. Colored ellipses indicate the responses distribution across many simulated trials
for each of the three stimuli indicated in A. Solid lines — distribution for multiplicative noise, dashed
lines — distribution for additive noise. Noise correlation coefficient for each stimulus is indicated in
the figure legend. Number in parentheses is correlation coefficient for additive noise.

1.4 Behavior-dependent modulation of neural population codes

In the final section of this introduction, we introduce the concept of behavior state modulating
noise correlations, and the impact this has on stimulus decoding, perception, and behavior. Although

the focus of this dissertation is on auditory coding, arousal, and task engagement, most prior work
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on the topic of state-dependent population codes, especially as they relate to stimulus coding and
perception, has been done using visual selective attention tasks and recording from visual cortex.
Therefore, in what follows we focus primarily on this body work.
Behavior state and noise correlations

Given that noise correlations can determine neural population coding accuracy, it is important
to understand their relationship to behavior and perception. Early on it was demonstrated that
noise correlations, like single cell receptive fields, are not a static property of neural populations.

Across cortical brain regions, noise correlation strength is sensitive to a range of state-dependent

7 51,72

changes, including fluctuations in pupil-indexed arousal,?” 2% 7! locomotion,?” anesthesia state,

26,74 and learning.’? Although state-dependent changes in

task engagement,” selective attention,
noise correlations are commonly reported, their impact on population coding and behavior remain a
topic of debate.

In one of the first studies to investigate this, Cohen et al. trained macaque monkeys to perform a
cued change detection task (Figure 1.9).2% The authors demonstrated that monkey’s ability to detect
a change in the visual stimulus was improved when they were cued to attend to the location where the
change was about to occur (Figure 1.9). While animals performed this task, Cohen et al. recorded
neural activity from the visual area V4. They found that the behavioral improvement associated
with attention coincided with a selective reduction in noise correlations amongst those neurons whose
receptive fields overlapped with the visual stimulus. Furthermore, this change in correlation led to a
direct improvement in neural decoding of the visual stimulus which correlated tightly with the animal’s
performance on single trials (Figure 1.9). Thus, this study offered one of the first examples where the

neural population was found to be the key unit of computation and their results argued that noise

correlations play an important role in perception and behavior.
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Figure 1.9: Attention improves perception and stimulus decoding. A. Schematic of cued-
change detection task. B. Example psychometric curve showing behavioral performance. Behavioral
shift represents the improvement in perception attributed to selective spatial attention to the cued
location. C. Cartoon schematic of procedure for measuring decoding accuracy (d’) D. Change in d’
between attended and unattended conditions is plotted as a function of behavioral shift (shown in B).
Figure adapted from.26

Follow up studies, however, have challenged these findings by demonstrating that the choice of
decoding method is critical when determining the impact of correlations.®>”® These studies have
typically argued, as discussed in the prior section, that only under very specific conditions will corre-
lations affect optimal linear decoding of stimulus identity®% ™ e.g. Figure 1.7. Yet, these theoretical
results remain somewhat paradoxical given the experimental finding that changes in noise correla-
tions, across different task designs and brain regions, are so tightly coupled with animal’s perceptual

performance.2652: 73

Sub-optimal decoding strategies
Ultimately, to understand the effect (or lack thereof) of noise correlations in sensory coding, we
must first determine how neural activity informs behavioral choices. More precisely, how is neural

activity in sensory areas decoded by downstream brain regions? Up to this point, we have discussed
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neural decoding as a method to determine what stimulus information is contained in a neural code.
While this approach provides an upper bound on the sensory information encoded by the system,
it does not answer the question of whether and/or how it is actually used to guide perception and
behavior. To do this, it is necessary to identify features of the neural activity that have an intersection
between sensory and choice information.”®

In a follow up study to,?% the same group identified the dimension of neural activity in visual area
V4 that carried maximal information about the monkey’s choice.’? Interestingly, they found that
the largest dimension of noise correlation was aligned with the choice decoding dimension, but not
with the optimal stimulus decoding axis. Thus, they concluded that animals seem to decode stimulus
information sub-optimally for any particular task, but instead might use a general purpose decoding

strategy that applies across many tasks. This hypothesis makes sense, as animal’s performance would

be perfect if they were to decode optimally from large neural populations.?? 77

Choice
decoder

Changed
Sy,
O’@clob(// Us
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Principal component 2

Principal component 1
(Noise correlation axis)

Figure 1.10: Noise correlations are aligned with choice decoding dimension in V4 popula-
tions during cued-change detection. Cartoon schematic adapted from.5? Ellipses represent the
distribution of spikes counts across trials of each condition: “M” corresponds to miss trials and “H”
to hit trials. Grey indicates the stimulus shown prior to the change and black indicates the changed
stimulus (see Figure 1.9). The first principal component of noise correlations is aligned with the
choice decoding axis, but only partially aligned with the optimal stimulus decoding axis. This leads
to sub-optimal stimulus decoding.

Another approach to identifying important dimensions in neural activity is to record simultaneously
from multiple brain regions and determine which aspects of upstream activity propagate downstream.
Although this approach is new and is not necessarily directly related to perception and behavior, it
has been used recently to demonstrate that communication subspaces between cortical areas appear to
be low-dimensional,”® like noise correlations themselves®' 23 (see above: Origin of noise correlations).

Thus, it appears likely to be a promising avenue for future research.
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Origin and dimensionality of state-dependent noise correlation modulation

179 studies have argued that noise correlations are low-dimensional,

Both modeling®3 and experimenta
meaning that neural activity primarily co-varies along a single axis in state space. However, recent
recordings from larger neural populations®® have discovered that multiple significant dimensions of
correlated activity exist. These findings are in line with other recent work showing that multiple
dimensions of behavior (e.g. running, whisking, face movement, pupil size etc.) can all coherently
modulate neural activity.?? If each of these state variables affects a slightly different subset of neu-
rons (e.g. running modulates a different population of neurons than pupil whisking), then correlated
activity in the population will be at least two dimensional.

These recent findings raise the question of whether state-dependent decreases in correlated activity,
e.g. due to selective spatial attention, reflect suppression of all dimensions of noise correlations or if
they are restricted to a relatively low-dimensional subspace. In the case of selective attention, this
was investigated in a re-analysis of the cued-change detection task data?® highlighted in the previous
section. In this study, Rabinowitz et al. used a Generalized Linear Model (GLM) to predict the
time-varying activity of V4 neural populations as a combination of stimulus drive, attention mediated
gain of sensory responses (cue), and latent sources of shared variability between neurons (shared
modulators) (Figure 1.11).5° They found that the model performed best with just a small number of
latent, shared modulators and, critically, only the variance of a single modulator was sensitive to the
attention cue (attend in vs. attend out). Thus, the study concluded that the state variable, attention,

seems to modulate just a single dimension of shared noise in V4 populations.
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Figure 1.11: Attentional modulation of noise correlations is low-dimensional. A. Schematic
detailing a GLM designed to predict firing rates in V4 neurons. The slow drift and shared modulators
are inferred parameters that are fit by the model, unknown the experimenter. B. Results from a single
model fit. The variance of the fit shared modulator scales with the attention cue, determined by the
experimenter. Figure adapated from.?°

In the work by Rabinowitz et al., attention was modeled as binary cue that experimenters had
precise control over. However, in practice an animal’s attention likely wanders from trial to trial. Thus,
an alternative interpretation of the results is that animal’s attention is more stable during attend-
in conditions and the shared modulator Rabinowitz et al. identified is in fact just the trial-to-trial
variability of attentional gain itself. This is slightly a nuanced point, but has important implications
for both perception and physiological mechanisms. In this latter scenario, perception is improved
during the attend-in condition not because noise is suppressed, but because the animal’s attention
wanders less. That is, they are more certain of where to direct their attention and therefore neural
responses vary less and perception improves. Physiologically, in this case, only a single mechanism is

80

required to support both the well-documented attention-dependent gain of sensory responses® and

the more recently observed reduction in noise correlations.?%

An elegant study by Denfield et al. recently tested this hypothesis by designing a variant of the
cued-change detection task in which they were able to manipulate the stability of an animal’s atten-
tion between experimental blocks.?! In agreement with the theory outlined above, noise correlations
were strongest when attention was most variable and when perception was the worst,®' supporting a

parsimonious model where changes in single unit sensory gain and noise correlations are mediated by

a single neural substrate.
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Abstract

Rapidly developing technology for large scale neural recordings has allowed
researchers to measure the activity of hundreds to thousands of neurons at
single cell resolution in vivo. Neural decoding analyses are a widely used tool
used for investigating what information is represented in this complex, high-
dimensional neural population activity. Most population decoding methods
assume that correlated activity between neurons has been estimated accu-
rately. In practice, this requires large amounts of data, both across observa-
tions and across neurons. Unfortunately, most experiments are fundamentally
constrained by practical variables that limit the number of times the neural
population can be observed under a single stimulus and /or behavior condition.
Therefore, new analytical tools are required to study neural population coding
while taking into account these limitations. Here, we present a simple and
interpretable method for dimensionality reduction that allows neural decod-
ing metrics to be calculated reliably, even when experimental trial numbers
are limited. We illustrate the method using simulations and compare its per-
formance to standard approaches for dimensionality reduction and decoding
by applying it to single-unit electrophysiological data collected from auditory

cortex.

2.1 Introduction

Neural decoding analysis identifies components of neural activity that carry information about the
external world (e.g. stimulus identity). This approach can offer important insights into how and where
information is encoded in the brain. For example, classic work by Britten et al. demonstrated that the
ability of single neurons in area MT to decode visual stimuli closely corresponds to animal’s perceptual
performance.?® Thus, by using decoding the authors identified a possible neural substrate for detection
of motion direction.’® Yet, behavior does not depend solely on single neurons. In the years since
this work, many theoretical frameworks have been proposed for how information might be pooled

46,56-61

across individual neurons into a population code. One clear theme that has emerged from this

work is that stimulus independent, correlated activity (i.e. noise correlations) between neurons may

46,57-61

substantially impact information coding. This has now been confirmed in vivo using decoding

analysis to measure the information content of large neural populations.5® 70 Therefore, covariability
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between neurons must be taken into account when measuring population coding accuracy.

Under most experimental conditions, estimates of pairwise correlation between neurons is unreliable
due to insufficient sampling (e.g. too few stimulus repeats).3? In these situations, traditional decoding
algorithms are likely to over-fit to noise in the neural data. This issue becomes even more apparent
as the number of pairwise interactions that must be estimated increases, a situation that is becoming
more common due to the recent explosion in large-scale neurophysiology techniques.®3 In some cases,
e.g. for chronic recording experiments and anesthetized preps, the number of trials can be increased
to circumvent this issue. However, in behavioral experiments, where the number of trials is often
fundamentally limited by variables such as animal performance, new analytical techniques for decoding
are required.

Here, we present decoding-based dimensionality reduction (dDR), a simple and generalizable
method for dimensionality reduction that significantly mitigates issues around estimating correlated
variability in experiments with a relatively low ratio of observations to neurons. Our method takes
advantage of recent observations that population covariability is often low-dimensional®%-52:54 to de-
fine a subspace where decoding analysis can be performed reliably while still preserving the dominant
mode(s) of population covariability. The dDR method can be applied to data collected across many
different stimulus and/or behavior conditions, making it a flexible tool for analyzing a wide range of
experimental data.

We motivate the requirement for dimensionality reduction by illustrating how estimates of a popu-
lar information decoding metric, d’2,°7%® can be biased by small experimental sample sizes. Building
on a simple two-neuron example, we demonstrate that low-dimensional structure in the covariability
of simulated neural activity can be leveraged to reliably decode stimulus information, even when the
number of neurons exceeds the number of experimental observations. Finally, we use a dataset col-
lected from primary auditory cortex to highlight the advantages of using dDR for neural population

decoding over standard principal component analysis.

2.2 Results

2.2.1 Small sample sizes limit the reliability of neural decoding analysis

Linear decoding, a common analytical method in neuroscience, identifies a linear, weighted com-
bination of neural activity along which distinct conditions (e.g. different sensory stimuli) can be
discriminated. In neural state-space, this weighted combination is referred to as the decoding axis,

Wopt, and it is the line along which the distance between stimulus classes is maximized and trial-trial
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variance is minimized (Fig. 2.1a, b). To quantify decoding accuracy, single-trial neural activity is
projected onto this axis and a decoding metric is calculated to quantify the discriminability of the
two stimulus classes. Here, we use d’?, the discrete analog of Fisher Information.®”%® This discrim-

59,62, 6870

inability metric has been used in a number of previous studies and has a direct relationship

to classical signal detection theory.5" 84
Looking at the simulated data in Figures 2.1a and b, one can appreciate that an accurate estimate
of wep: requires knowledge of both the mean response evoked by each stimulus class (p, vs. pp), as

well the population covariance, ¥ (summarized by the ellipses in Fig. 2.1a and b). Indeed, d'?, is

directly dependent on these features:

d? = ApTwep (2.1)
Wopr = X TAR (2.2)
Ap = prq — po (2.3)

Where p, and u, are the Nx1 vectors describing the mean response of an N-neuron population to
two stimuli, a vs. b, respectively, and X is the average NxN covariance matrix %(Ea + %) (e.g. Fig.
2.1c).

In practice, the pairwise spike count covariance between neurons (often referred to as noise corre-
lation, or rg.) is reported to be very small — on the order of 10~% or 1072.26:4%:65 Ag we can see from
the shuffled distribution in Figure 2.1a (bottom), this can pose a problem for accurate estimates of the
off-diagonal elements in ¥, and, as a consequence, W,y itself. This difficulty is especially pronounced
when sample sizes are relatively small (compare Fig. 2.1a to b). The estimates of covariance and
stimulus discriminability improve with increasing sample size, but robust performance is not reached
until ~ 100 stimulus repetitions, even for this case with relatively strong covariance (Fig. 2.1d). The
sample sizes (e.g. number of trials) in most experiments, especially those involving animal behavior,
are typically much lower, raising the question: How can one reliably quantify coding accuracy in large

neural populations observed over relatively few trials?
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Figure 2.1: Measurements of pairwise covariance and discriminability are unreliable when
sampling is limited. a. Top: k£ = 10 single trial spike count responses are drawn from standard
multivariate Gaussians N (pq,%) and N (pp, ) corresponding to two different stimulus conditions,
a and b. Ellipses show the standard deviation of spike counts across trials. Bottom: Reliability of
the pairwise covariance estimate between neuron 1 (n1) and neuron 2 (ng) is calculated by shuffling
values of nqy 500 times. The true covariance (red line) falls within this distribution, indicating that
estimates of covariance are not reliable for £ = 10. b. Same as in (a), but drawing k£ = 100 samples
for each stimulus. The narrower distribution of permuted measures indicates a greater likelihood
of identifying an accurate estimate of covariance. c. The covariance matrix, 3, used to generate
data in (a)/(b). The true pairwise covariance for this pair of simulated neurons has a value of 0.4.
d. Variance (02) of covariance estimates based on the permutation analysis in (a)/(b) for a range
of sample sizes, k (blue). Variance decays as O(725) (see Appendix). Overlaid is the difference in
stimulus discriminability, d’? (Eqn. 2.1), between estimation and validation sets (50-50 split) estimated
for each sample size (orange). Large values in the d’? difference for low k indicate overfitting of w,,: to
the estimation data. This difference asymptotes toward zero as sample size increases and the estimate
of covariance becomes reliable.

2.2.2 Neural activity is low-dimensional

Analysis of neural population data with dimensionality reduction has consistently revealed low-
dimensional structure in neural activity.®® Specifically, recent studies have found that stimulus-

independent variability (i.e. noise correlations) is dominated by a small number of latent dimen-

50,51,53, 54

sions. Noise correlations are thought to impact stimulus coding accuracy®® and are known

to depend on internal states, such as attention, that affect behavioral task performance.26:50.52.73
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These findings suggest that the space of neural activity relevant for understanding stimulus decoding,
and its relationship to behavior, may be small relative to the total number of recorded neurons.
When population data exhibits low-dimensional structure, the largest eigenvector(s) of ¥ (i.e. the
top principal components of population activity) provides a reasonable, low-rank approximation to
the full-rank covariance matrix. Importantly, these high variance dimensions of covariability can be
estimated accurately even from limited samples. To illustrate this, we simulated population spike
counts, X, for N = 100 neurons by drawing k samples from a multivariate Gaussian distribution with

mean p and covariance ¥ (Eqn. 2.4).

X = N(/l,, Z) + €indep. (24)

Where in Eqn. 2.4, €;,4cp. represents a small amount of independent noise added to each neuron,

effectively removing any significant structure in the smaller noise modes.
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Figure 2.2: Low-dimensional correlated activity can be estimated reliably for neural
populations, even when pairwise covariance cannot. a. Example covariance matrix, 3, for a
100-neuron population with low-dimensional covariance structure. b. Scree plot shows the fraction of
total population variance captured along each noise dimension, computed by PC A, for three different
datasets with varying dimensionality. Orange: 1-dimensional noise (1-D), covariance matrix in (a);
green: independent noise (Indep.); blue: power law decay (1/n). c. Surrogate datasets with varying
numbers of samples, &, are drawn from the three noise distributions in (b). For each dataset, the cosine
similarity between the estimate of the largest noise dimension, €é;, and the true noise dimension, e,
is plotted as function of sample size. For low-dimensional data, e; can be estimated very reliably. d.
Variance in the estimate of covariance, X; ;, for two neurons with a true covariance of 0.04 is plotted
as a function of the number of trials, as in Figure 1d. Even at sample sizes > 100, Var(im) ~ 0.02,
corresponding to a standard deviation of ~ 0.14. Therefore, estimates of ¥; ;, may be off by up to an
order of magnitude. Note that the amount of uncertainty does not depend on the dimensionality of
the data, and results for all three datasets overlap (see Appendix for an analytical derivation).

To investigate how different noise structures impact estimates of X, we simulated three different
surrogate populations. First, we simulated data with just one large, significant noise dimension (Fig.
2.2, 1-D data, orange). In this case, the first eigenvector can be estimated reliably, even from just a few
samples (Fig. 2.2c). However, when the noise is independent and shared approximately equally across
all neurons, estimates of the first eigenvector are poor (Fig. 2.2, Indep. noise, green). These first
two simulations represent extreme examples — in practice, population covariability tends to be spread
across at least a few significant dimensions.®¢ To investigate a scenario that more closely mirrors this

structure, we simulated a third dataset where the noise eigenspectrum decayed as 1/n, where n goes

25



from n =1 to N. Recent studies of large neural populations suggest that this power law relationship
is a reasonable approximation to real neural data.3¢ In this case, by k ~ 50 trials, estimates of the first
eigenvector are highly reliable, approaching a cosine similarity of &~ 0.9 between the estimated and
true eigenvectors (Fig. 2.2, 1/n noise, blue). In all simulations, regardless of dimensionality, we find
that estimates of single elements of ¥ (i.e. single noise correlation coefficients) are highly unreliable
(Fig. 2.2d), as we see in the two-neuron example (Fig. 2.1d).

Collectively, these simulations demonstrate that accurate estimates of covariance need not necessar-
ily be limited by uncertainty in estimates of individual noise correlation coefficients themselves. In the
following sections we describe a simple decoding-based dimensionality reduction algorithm, dDR, that
leverages low-dimensional structure in neural population activity to facilitate reliable measurements

of neural decoding.

2.2.3 decoding-based Dimensionality Reduction (dDR)

The dDR algorithm operates on a pairwise basis. That is, given a set of neural data collected
over S different conditions, a different dDR projection exists for each of the ﬁ unique pairs. For
simplicity, we will describe the case where S = 2, and consider these to be two unique stimulus condi-
tions. However, note that the method can be applied in exactly the same manner to handle datasets
with many different types and numbers of decoding conditions, where a unique dD R projection would
then exist for each pair.

Let us consider the spiking response of an N-neuron population evoked by two different stimuli, S,
and Sy, over k-repetitions of each stimulus. From this data we form two response matrices, A and B,
each with shape Nxk. Remembering that our goal is to estimate discriminability (d'?, Eqn. 2.1), the
dDR projection should seek to preserve information about both the mean response evoked by each
stimulus condition, p, and uy, as well as the stimulus-independent noise covariance, 3. Therefore,
we define the first dimension of dDR to be the axis that maximally separate p, and p,. We call this

the signal axis.

signal = g — py = Ap (2.5)

Next, we compute the first eigenvector of 3, e;. This represents the largest noise mode of the
neural population activity. Together, signal (Ap) and e; span the plane in state-space that is most
optimized for reliable decoding. Finally, to form an orthonormal basis, we define the second dDR

dimension as the axis orthogonal to Ag in this plane. As this second dimension is designed to preserve
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noise covariance, we call this the noise; axis.

noise; = e; — e  Apt (2.6)

The process outlined above is schematized graphically in Figure 2.3.

Thus, the signal and noise; axes make up a 2x/V set of weights, analogous to the loading vectors
in standard PC A, for example. By projecting our Nxk data onto this new basis, we capture both the
stimulus coding dimension (Ap) and preserve the principal covariance dimension (ey), two critical
features for measuring stimulus discriminability. Importantly, because e; can be measured more
robustly than ¥ itself (Figure 2.2), performing this dimensionality reduction helps mitigate the issues

we encounter due to small sample sizes and large neural datasets.

Raw data in state-space 1. Compute Ap 2. Center data and compute e; 3. Project into dDR space
N2 Stimulus a n; e;
Stimulus b
Q
€ 0
o
=4
N Signal (Ap)

ns

Figure 2.3: decoding-based Dimensionality Reduction (dDR). Left to right: Responses of 3
neurons (ni,ns,n3) to two different stimuli are schematized in state-space. Ellipsoids illustrate the
variability of responses across trials. 1. To perform dDR, first the difference is computed between
the two mean stimulus responses, Au. 2. Next, the mean response is subtracted for each stimulus
to center the data around 0, and PC'A is used to identify the first eigenvector of the noise covariance
matrix, e; (additional noise dimensions e,,,m > 1 can be computed, see text). 3. Finally, the raw
data are projected onto the plane defined by Ap and e;.

As mentioned in the previous section, neural data often contains more than one significant dimen-
sion of correlated trial-trial variability. To account for this, dDR can easily be extended to include
more noise dimensions. To include additional dimensions, we deflate the spike count matrix, X, by
subtracting out the signal and noise; dimensions identified by standard dDR, then perform PCA
on the residual matrix to identify m further noise dimensions. Note, however, that for increasing m
the variance captured by each dimension gets progressively smaller. Therefore, estimation of these
subsequent noise dimensions becomes less reliable and will eventually become prone to over-fitting,
especially with small sample sizes. For this reason, care should be taken when extending dDR in this

way.
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To demonstrate the performance of the dDR method, we generated three sample datasets contain-
ing N = 100 neurons and S = 2 stimulus conditions. FEach of the three datasets contained unique
noise covariance structure: 1. ¥ contained one significant dimension (Fig. 2.4a) 2. ¥ contained two
significant dimensions (Fig. 2.4b) 3. Noise variance decayed as 1/n (Fig. 2.4c). For each dataset, we
measured cross-validated d’?> between stimulus condition a and stimulus condition b using standard
dD R with one noise dimension (dD Ry ), with two noise dimensions (dDRz), or with three noise dimen-
sions (dDR3). We also estimated d’? using the full-rank data, without performing dDR. Figure 2.4
plots the decoding performance of each method as a function of sample size (i.e. number of stimulus
repetitions). In each case, d'? is normalized to the asymptotic performance of the full-rank approach,
when the number of samples is >> than the number of neurons. This provides an approximate
estimate of true discriminability for the population.

In contrast to the full-rank data where overfitting leads to dramatic underestimation of d’? on the
test data for most sample sizes (Fig. 2.4 grey lines), we find that d'? estimates after performing dDR
are substantially more accurate and, critically, more reliable across sample sizes. That is, asymptotic
performance of the dDR method is reached much more quickly than for the full-rank method.

For the one-dimensional noise case, note that there is no benefit of including additional dDR
dimensions (Fig. 2.4a), while for the higher dimensional data shown in Figure 2.4b-c, we see some
improvements with dD Ry and dD R3. However, these benefits don’t begin to appear until k£ becomes
large and they diminish with increasing noise dimensions — the improvement of dD Ry over dDR; is
larger than that of dDR3 to dDRy Fig. 2.4b-c. This is because subsequent noise dimensions are, by

definition, lower variance and therefore more difficult to estimate reliably from limited sample sizes.
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Figure 2.4: Evaluation of decoding accuracy and reliability with dDR. a. Analysis of data
with one-dimensional (1-D) noise covariance. For each sample size, k, 100 datasets were generated
from the same multivariate Gaussian distribution (Eqn. 2.4) where ¥ was a rank-one covariance
matrix and the mean response vector, u, corresponded to one of two stimulus conditions, a or b.
Top: Scree plot of noise covariance. Bottom: Cross-validated discriminability, d'?, between a and b
computed with full-rank data and with dDR using one (dDR;), two (dDR3) or three (dDR3) noise
dimensions, as a function of sample size. Mean d'? across all 100 surrogate datasets is shown here.
For k >> N, the dDR results converge to the asymptotic value of the full-rank d’?. However, even for
small k, the dDR analyses estimates are much more accurate than the full-rank approach. b. Same
as in (a), but for two-dimensional noise covariance data. In this case, dD Ry captures the second noise
dimension and outperforms the standard 1-D approach (dDR;) c. Same as in (a) and (b), but for
1/n noise covariance.

2.2.4 dDR recovers more decoding information than standard principal component

analysis

One popular method for dimensionality reduction of neural data is principal component analysis
(PCA).85 Generally speaking, PCA can be implemented on neural data in one of two ways: single
trial PC'A or trial-averaged PC'A. In the single trial approach (stPC'A), principal components are
measured across all single trials and all experimental conditions. The resulting PC's capture variance
both across single trials and across different e.g. stimulus conditions. In trial-averaged PC' A (taPCA),
single trial responses are averaged per experimental condition first, and PC's are measured over the
resulting N-neuron x S-condition spike count matrix. In this case, for different stimulus conditions,

the PC's specifically capture variance of stimulus-evoked activity rather than trial-trial variability,
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making this a more logical choice for many decoding applications. In the case of S = 2, as we
have outlined above for the dDR illustration (Fig. 2.3), taPCA is equivalent to A, the first dDR
dimension. Thus, dDR can roughly be thought of as a way to combine taPC'A and stPCA — taPCA
identifies the signal dimension and stPC A identifies the noise dimension(s).

To demonstrate the relative decoding performance achieved using each method, we applied each
to a dataset collected from primary auditory cortex in an awake, passively listening ferret. N = 52
neurons were recorded simultaneously using a 64-channel laminar probe?? as in.3%87:8%  Auditory
stimuli consisting of narrowband (0.3 octave bandwidth) noise bursts were presented alone (-Inf dB)
or with a pure tone embedded at varying SNRs (0 dB, —5 dB, —10 dB) in the hemifield contralateral
to the recording site (see Experimental Methods). Each stimulus was repeated 50 times. For stPC' A
and dDR, we selected only the top m = 2 total dimensions, and for taPC A, we selected the single
dimension, Apu, that exists for S = 2. This dataset allowed us to investigate how each dimensionality
reduction method performs for two distinct, behaviorally relevant neural decoding questions: How
well can neural activity perform fine discriminations (tone-in-noise detection), discriminating noise
alone vs. noise with tone? How well can it perform coarse discriminations (frequency discrimination),

discriminating noise centered at frequency A vs. noise at frequency B?
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Figure 2.5: dDR outperforms PCA for fine sensory discrimination. a. Heatmap shows mean
z-scored spike counts of N = 52 simultaneously recorded units for 15 different narrowband noise
bursts (0.3 octave bandwidth tiling 5 octaves, z-axis). Each row shows tuning for one unit, with red
indicating higher firing rate response. b. Population tuning curve for noise alone (black, data from
panel a) and noise plus —10, —5, and 0 dB tones (light to dark red), computed by averaging tuning
curves across neurons. c-e. Decoding analysis for tone-in-noise detection. c. Scatter plot compares
single trial responses to noise alone at best frequency (on-BF, blue) vs. noise + —5dB tone (orange),
projected into dDR space. Ellipses show standard deviation across trials, marginal histograms show
projection of data onto optimal decoding axis (wep:) or onto Ap (equivalent to performing trial-
averaged PCA). d. Estimate of d’? as a function of sample size (number of trials, k) using each
dimensionality reduction method. For each point, d'?> was averaged over 100 random samplings of k
trials, drawn without replacement. Shading indicates standard error. e. Fraction variance explained
by each noise component (green) computed by performing PC A on mean-centered single trial data.
The alignment of each noise component with the signal axis is shown in purple. f~h Same as panels
(c)-(e), for noise alone on-BF vs. noise along off-BF (see panel b).

The Al dataset displayed a range of frequency tuning (Fig. 2.5a), with the majority of units tuned
to =~ 3.5 kHz. We therefore defined this as the best frequency of the recording site (on-BF, Fig. 2.5b).
For tone detection, we measured discriminability (d’?, Eqn. 2.1) between on-BF noise alone (on-BF,
-Inf dB) and on-BF noise plus tone (on-BF, —5 dB), which each drove similar sensory responses (Fig.
2.5b-c). For frequency discrimination, we measured discriminability between the neural responses to
on-BF noise and off-BF noise, where off-BF was defined as ~ 1 octave away from BF, and drove
a very different population response (Fig. 2.5b, f). In both cases, taPCA and dDR outperformed

stPCA (Fig. 2.5d, g). This first result is unsurprising due to the fact that stPC' A is the only method
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not explicitly designed to capture variability in the sensory response. The top PC's are dominated
by dimensions of trial-trial variability that do not necessarily contain stimulus information and thus
underestimate d’? relative to the other two methods.

We also find that dDR consistently performs as well or better than taPC A. For the tone detection
data, the sensory signal (Ap) is small (i.e., trial-averaged responses to the two stimuli were similar)
and covariability is partly aligned with Ap. Under these conditions, dDR makes use of correlated
activity to optimize the decoding axis (w,p:) and improve discriminability. taPCA, on the other
hand, has no information about these correlations and is therefore equivalent to projecting the single
trial responses onto the signal axis, Ap. Thus, it underestimates d’? (Fig. 2.5¢, d). In the frequency
discrimination example, Ap is large. The covariability has similar magnitude to the previous example,
but it is not aligned to the discrimination axis, and thus has no impact on wg,. In this case, dDR and
taPC A perform similarly (Fig. 2.5f-g). These examples highlight that under behaviorally relevant

conditions, dD R can offer a significant improvement over standard PC' A, even with as few as 10 trials.

2.3 Discussion

We have described a new, simple method for dimensionality reduction of neural population data,
dDR. This approach combines strategies for both trial-averaged PC A and single-trial PC'A to identify
important dimensions of population activity that govern neural coding accuracy. Using both simulated
and real neural data, we demonstrated that the method performs robustly for neural decoding analysis
in low experimental trial count regimes where the performance of full-rank methods break down.
Across a range of behaviorally relevant stimulus conditions, dDR consistently performs as well or

better than standard principal component analysis.

2.3.1 Applications

dDR is designed to optimize the performance of linear decoding methods in situations where
sample sizes are small. This is often the case for neurophysiology data collected from behaving
animals, where the number of stimulus and/or behavior conditions are fundamentally limited by
task performance. In these situations, using full-rank decoding methods is unfeasible as it leads to
dramatic overfitting and unreliable performance.®? Dimensionality reduction methods, such as PC A,
can be used to mitigate overfitting issues. However, the correct implementation of PC'A in neural
data is often ambiguous, and multiple different approaches to dimensionality reduction have been

proposed.®> We suggest dDR as a simple, standardized alternative that captures the strengths of

32



different PC' A approaches. Unlike conventional PCA, the signal and noise axes that comprise the
dDR space have clear interpretations with respect to neural decoding. Importantly, dDR components
explicitly preserve stimulus-independent population covariability. In addition to being important for

26,50,52,73,89 11

overall information coding, this covariability is known to depend on behavior state
stimulus condition.4:63:66:90  Therefore, approaches that do not preserve these dynamics, such as
trial-averaged PC' A, may not accurately characterize how information coding changes across varying

behavior and/or stimulus conditions.

2.3.2 Interpretability and visualization

A key benefit of dDR is that the axes making up the dDR subspace are easily interpretable: The
first axis (signal) represents the dimension with maximal information about the difference in evoked
activity between the two conditions to be decoded, and the second (noise) axis captures the largest
mode of condition-independent population covariability in the data. Therefore, within the dDR
framework it is straightforward to investigate how this covariability interacts with discrimination,
an important question for neural information coding. Further, standard dDR (with a single noise
dimension) can be used to easily visualize high-dimensional population data, as in Fig. 2.5. For
methods like PCA, it can be difficult to dissociate signal and noise dimensions, as the individual
principal components can represent an ambiguous mix of task conditions, stimulus conditions, and

91 Moreover, with PC A the number of total dimensions is typically selected

trial-trial variability.
based on their cumulative variance explained, rather than by selecting the dimensions that are of

interest for decoding, as in dDR.

2.3.3 Extensions

Latent variable estimation:

dDR makes the assumption that latent sources of low-dimensional neural variability can be cap-
tured using simple, linear methods, such as PC'A. While these methods often seem to recover mean-
ingful dimensions of neural variability,’? a growing body of work is investigating new, alternative

methods for estimating these latent dynamics,?:51:92,93

and this work will continue to lead to impor-
tant insights about the nature of shared variability in neural populations.

We suggest that dDR can be extended to incorporate these new methods. For example, rather
than defining dDR on a strictly per decoding pair basis, a global noise axis could be identified across

all experimental conditions using a custom latent variable method. This could then be applied to

the decoding-based dimensionality reduction such that the resulting dDR space explicitly preserves

33



activity in this latent space to investigate how it interacts with coding.
Incorporating additional dDR dimensions:

In this work we have described dDR primarily as a transformation from N-dimensions to two
dimensions, signal and noise, with the exception of Figure 2.4. In our code repository, https:
//github.com/crheller/dDR, we include examples that demonstrate how the dDR method can be
extended to include additional dimensions. However, as discussed in the main text, it is important
to remember that estimates of neural variability beyond the first principal component may become
unreliable as variance along these dimensions gets progressively smaller, especially in low trial regimes.
In short, while information may be contained in dimensions > m = 2, caution should be used to ensure

that these dimensions can be estimated reliably.

2.3.4 Code availability

We provide Python code for dDR which can be downloaded and installed by following the instruc-
tions at https://github.com/crheller/dDR. We also include a short demo notebook that highlights
the basic work flow and implementation of the method to simulated data. All code used to generate

the figures in this manuscript is available in the repository.

2.4 Experimental Methods

2.4.1 Surgical procedure

All procedures were performed in accordance with the Oregon Health and Science University
Institutional Animal Care and Use Committee (IACUC) and conform to standards of the Association
for Assessment and Accreditation of Laboratory Animal Care (AAALAC). The surgical approach was
similar to that described previously.'® Adult male ferrets were acquired from an animal supplier
(Marshall Farms). Head-post implantation surgeries were then performed in order to permit head-
fixation during neurophysiology recordings. Two stainless steel head-posts were fixed to the animal
along the midline using bone cement (Palacos), which bonded to the skull and to stainless steel screws
that were inserted into the skull. After a two-week recovery period, animals were habituated to a
head-fixed posture and auditory stimulation. At this point, a small (0.5 - 1 mm) craniotomy was

opened above primary auditory cortex (Al) for neurophysiological recordings.
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2.4.2 Neurophysiology

Recording procedures followed those described previously.?3 87 Briefly, upon opening a cran-
iotomy, 1 - 4 tungsten micro-electrodes (FHC, 1-5 M) were inserted to characterize the tuning and
response latency of the region of cortex. Sites were identified as Al by characteristic short latency
responses, frequency selectivity, and tonotopic gradients across multiple penetrations.!® Subsequent
penetrations were made with a 64-channel silicon electrode array.?? Electrode contacts were spaced 20
pm horizontally and 25 pum vertically, collectively spanning 1.05 mm of cortex. Data were amplified
(RHD 128-channel headstage, Intan Technologies), digitized at 30 KHz (Open Ephys?) and saved to
disk for further analysis.

Spikes were sorted offline using Kilosort2 (https://github.com/MouseLand/Kilosort2). Spike
sorting results were manually curated in phy (https://github.com/cortex-1lab/phy). For all sorted
and curated spike clusters, a contamination percentage was computed by measuring the cluster isola-
tion in feature space. All sorted units with contamination percentage less than or equal to 5 percent
were classified as single-unit activity. All other stable units that did not meet this isolation criterion

were labeled as multi-unit activity. Both single and multi-units were included in all analyses.

2.4.3 Acoustic stimuli

Digital acoustic signals were transformed to analog (National Instruments), amplified (Crown),
and delivered through a free-field speaker (Manger) placed 80 cm from the animal’s head and 30°
contralateral to the the hemisphere in which neural activity was recorded. Stimulation was controlled
using custom MATLAB software (https://bitbucket.org/lbhb/baphy), and all experiments took
place inside a custom double-walled sound-isolating chamber (Professional Model, Gretch-Ken).

Auditory stimuli consisted of narrowband white noise stimuli with ~ 0.3 octave bandwidth. In
total, we presented fifteen distinct, non-overlapping noise bursts spanning a 5 octave range. Each
noise was presented alone (-Inf dB) condition, or with a pure tone embedded at its center frequency
for a range of different signal to noise ratios (—10dB, —5dB, 0dB). Thus, each experiment consisted
of 60 unique stimuli (4 SNR conditions X 15 center frequencies). Overall sound level was set to 60
dB SPL. Stimuli were 300ms in duration with 200ms IST and each sound was repeated 50 times per

experiment in a pseudo-random sequence.
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2.5 Appendix

2.5.1 Variance of parameter estimates

In this work, we approximate the spike counts of a neural population as being drawn from a mul-
tivariate Gaussian with mean p and covariance Y¥.. The accuracy of our estimates of these respective
parameters depends on how large the sample size is. That is, if we draw just two samples from the
distribution N (u, X), our estimates of g and 3 will be highly variable across repeated iterations of this
sampling. This means that when sample size is small we can’t be certain of the measured parameter
values. Here, we provide a brief derivation showing how the uncertainty in each of these parameter

values depends on sample size, k.

Mean (u):

We will investigate the mean of just a single neuron, pu, for simplicity. Here, and in the following
cases, we assume the data has been centered such that the mean response across all trials for each
neuron is zero. Consider repeated samples of a random variable, z;, drawn from N(0,0?). Let us
define the variable Y to be the mean of a random sequence of i.i.d. numbers, z;...z, with E[z;] = p

and Var(z;) = o2

Y =

T =

k
>
i=1

Next, we can ask how wvariable our estimates of Y are with increasing sample size.

Var(Y) = Var(

> )

i=1

| =

k
1
Var(Y) = =l Z Var(x;)
i=1

Var(Y) = —

Thus, estimates of the mean spike count for a single neuron, p, decay with increasing sample size as:

o(7) (2.7)
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Single neuron variance (Xg4iqq):
For the variance of single neurons, i.e. the diagonal elements of ¥, we can similarly derive their

uncertainty as a function of k by defining Y as:

1 k
Var(Y) = (CEIE Z: 204

20%
k—1

Var(Y) =

Thus, the uncertainty in single neuron variance depends the neuron’s true variance o2, and decays as

a function of sample size k.

1

O(z—9)

(2.8)

Covariance (X):
And finally, for uncertainty of the covariance between two correlated neurons = and y, i.e. the off-

diagonal elements of X, we define Y as:

As above, can write:

k
Var(Y) = ﬁ Z Var(z;y;)

Then, using the three following identities:
Var(zy) = Ela®y?] — Blay]®
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E[2*y’] = cov(a®,y?) + E[2*|E[y’]
E[XY]? = (cov(z,y) + E[z]E[y])”

We can write the following expression for the Var(Y), taking E[z] = Efy] = 0:

2(32 )2+ 0202 - %,
Var(Y):( L k‘—ly y)

where X, , is the true covariance between neurons z and y, and o2 and 05 represent each neuron’s

respective independent variance. Thus, as for single neuron variance, the uncertainty in covariance

decays with sample size, k (Eqn. 2.9). Note, though, that typical covariance values are much smaller

than single neuron variance, making this a much more difficult parameter to estimate given a particular

sample size.

O(%) (2.9)
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Abstract

The ability to discriminate between complex natural sounds is critical for
survival. Changes in arousal and other aspects of behavioral state can impact
the accuracy of sensory coding, affecting both the reliability of single neuron
responses and the degree of correlated noise between neurons. However, it is
unclear how these effects interact to influence coding of diverse natural stimuli.
We recorded the spiking activity of neural populations in primary auditory cor-
tex (A1) evoked by a large library of natural sounds while monitoring changes
in pupil size as an index of arousal. Heightened arousal increased response
magnitude and reduced noise correlations between neurons. Despite improv-
ing on average, arousal reduced population coding accuracy for a significant
portion of sensory discriminations. Using a normative modeling approach, we
demonstrated that this diversity can be explained by coherent, low-dimensional
suppression of response variability in A1. The degree to which this modulation
was aligned with high-dimensional natural sound-evoked activity was variable,

resulting in stimulus-dependent changes in coding accuracy.

3.1 Introduction

Humans and other animals are able to discriminate between a multitude of natural sounds. This
ability is not static, as the precision of sensory representations by neural activity fluctuates with
changes in behavioral state.”> Arousal, task engagement, and attention have all been reported to

3,17,18,28,96-102

modulate the magnitude and selectivity of single neuron auditory responses, as well as

correlated variability across neural populations, often referred to as noise correlations.?6:7173:74 Ip
general, increased arousal and focused attention are associated with increased response magnitude and
decreased noise correlations which are believed to enhance the accuracy of sensory coding.?6:27,71,95
However, the mechanisms that produce these changes, and the consistency of their effects between
different behavioral contexts, are not fully understood.

Recent studies have argued that attention-driven changes in both single neuron responses and
correlated activity can be modeled as fluctuations in a single, latent signal that coherently modulates
the activity of a subset of neurons. These findings suggest that state-dependent neural population

50,81

activity occurs in a low-dimensional subspace, supporting theoretical models in which a single

mechanism accounts for changes in single neuron responses and correlated variability.?? 13 Fluctua-
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tions in arousal, measured by luminance-independent changes in pupil size, modulate neural activity

27,28, 71 yet these changes can occur independent of attention.’* Previous

in similar ways to attention,
work has not specifically investigated the dimensionality of arousal-dependent signaling and it remains
uncertain whether, like other behavioral contexts, it can be explained by a low-dimensional process.

Most studies of population coding accuracy rely on relatively small, simple stimulus sets that drive
neural activity in stereotyped ways.26:72:104 Yet, theoretical work predicts that noise correlations can
either enhance or impair coding accuracy, depending on their alignment with the stimulus-evoked
activity in the neurons being studied.*3:59:62:63,66,103,105 If the effects of arousal are relatively high-
dimensional, meaning that they suppress noise along many different dimensions of neural activity, they
should improve coding accuracy of most sensory stimuli equally. Alternatively, if the effects of arousal
are confined to a low-dimensional subspace of neural activity, their alignment with sensory-evoked
responses should be variable, resulting in stimulus-dependent changes in coding accuracy.

In the present study, we investigated the dimensionality of arousal-dependent signaling and its
impact on coding accuracy by recording population activity from primary auditory cortex while pre-
senting a large library of natural sounds. We simultaneously monitored arousal level using pupil
size.#2® Arousal could either improve, or reduce, neural discriminability of natural sounds measured

96 This diversity is consistent with the hypothesis that arousal

using an optimal linear decoder.!
acts on a low-dimensional subspace rather than providing a generalized improvement in coding accu-
racy. Using a normative latent variable model, we demonstrate that low-dimensional, pupil-dependent
modulation of correlated activity is required to accurately reproduce these effects. In contrast with
attention, modulation of single neuron gain and noise correlations by arousal were distinct. These
processes operated on different neural populations and timescales. Thus, our results demonstrate that

arousal drives robust, but selective changes in population coding accuracy across diverse sound stimuli

and that these changes act through at least two distinct mechanisms.

3.2 Results

We recorded simultaneous single- and multi-unit activity from primary auditory cortex (Al)
of awake, head-fixed ferrets using 64- or 128-channel linear silicon probes*® (n = 729 sorted-units,
20 recording sites, eight animals, Figure 3.1A, C). During each recording session, we presented a
diverse set of randomly interleaved natural sound excerpts!?” (e.g. Figure 3.2B) in the acoustic field
contralateral to the recording hemisphere (Figure 3.1A). Pupil size was measured continuously using

infrared video during neural recordings to track spontaneous fluctuations in arousal®?® (Figure 3.1A,
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B).
In ferret Al, changes in pupil size are associated with mostly monotonic changes in neural firing

rate.8

Therefore, to assess overall pupil-related changes in activity, we split the neural data in
half based on the median pupil size during each experiment (large pupil/high arousal vs. small
pupil/low arousal). When pupil was large, responses to the same sound were stronger and more
reliable than when pupil was small. We measured the pupil-dependent modulation index of sound
evoked activity and confirmed that average responses were significantly enhanced during high arousal
(M1 =0.083+£0.007,p < 0.001 Bootstrap test; 3.1E). Additionally, during large pupil trials population
activity was desynchronized relative to the small pupil state. Stimulus-independent fluctuations in
the population PSTH were often observed during small pupil trials, while they were absent during
large pupil trials (Figure 3.1D). Consistent with this observation, pairwise noise correlations were
significantly reduced in the high arousal state (pgmaqu = 0.084 £ 0.008 vs. pigrge = 0.064 £ 0.010, p =
0.005, Bootstrap test, n = 20 recording sessions, 10423 + 533 stimulus x unit pairs per session; Figure

3.1F). This pattern of desynchronization is consistent with previous reports in ferret,?® mouse,* 2771

and primate.!08
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Figure 3.1: Pupil-indexed arousal modulates neural responses to natural sound stimuli.
A. Single- and multi-unit activity was recorded from A1l of awake, head-fixed ferrets using laminar
electrode arrays during presentation of natural sound stimuli. Pupil size, an index of arousal, was
measured simultaneously using infrared video. B. Pupil trace from one recording session. Pupil
size varied substantially over the course of the session, indicating spontaneous transitions between
high and low arousal states. Top: Three distinct natural sound excerpts were randomly interleaved
during the session (a, b, and ¢). C. Schematic of 64-channel laminar array (UCLA probe) used
to record neural activity. Filled circles represent electrode channels on which at least one unit was
detected during the same session (n = 55 total units for this example). D. Example data is shown
for two example trials, during which the same natural sound excerpt (excerpt b) was presented.
Example trials are highlighted in panel B. Top: Spectrogram of 3 s natural sound excerpt presented
during each trial. Middle: Population raster plot of spiking activity by all simultaneously recorded
units during a single stimulus presentation when pupil was large (left, red inset) and when pupil
was small (right, blue inset). Bottom: Population peri-stimulus time histogram (PSTH) response,
averaged across units during the single trial (red / blue) and averaged over all repetitions of sound
excerpt b (gray). E. Pupil modulation index for all recorded units (n = 729 from n = 20 recording
sessions). Sound evoked responses were generally larger during high arousal states, when pupil was
large (M = 0.083+0.007,p < 0.001 Bootstrap test) F. Means within recording session are shown by
individual grey lines. Error bars represent standard error of mean across sites and bars represent the
mean. Pairwise noise correlations were reduced during high arousal states (psmqn = 0.084 £ 0.007 vs.
Plarge = 0.064 £ 0.010, p < 0.001, Bootstrap test, n = 20 recording sessions, 10423 £ 533 stimulus X
neuron pairs per session).

3.2.1 Arousal can either improve, or reduce, neural decoding accuracy of natural stimuli

Previous work suggests that the larger sound evoked responses and reduced variability associated

27,71

with high arousal states enhances the accuracy of neural coding. To measure the effects of

arousal on coding accuracy in the current dataset, we measured neural discriminability of natural
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sounds using d’?, a well-established metric of neural population discriminability.>”°962,68,69,109 g2

describes the ability to discriminate between two stimuli using an optimal linear decoder trained on
population responses in state-space. When sound-evoked activity between stimulus classes is distinct,
and response variability within class is low, d’? is large. To prevent overfitting of the decoding axis
to noise in the high-dimensional population data, we projected single trial activity into a reduced
dimensionality space that was designed for robust estimation of d’2.1%6 The dimensionality of this space
was selected by determining where cross-validated estimates of d’? plateaued, indicating overfitting
(Figure S2). For a detailed description of the decoding procedure, see methods and Figure S1.

For this analysis, we defined a ”stimulus“ by binning responses to natural sound excerpts into
non-overlapping 250 ms bins (e.g. Figure 3.2A). Pairwise discriminability was then measured for all
stimulus pairs within a recording session (mean number of stimulus pairs per recording: 1167 & 256).
Examples taken from our data suggest that the interaction between arousal and stimulus discriminabil-
ity is heterogeneous (Figure 3.2B). For example, arousal-dependent suppression of response variability
can be aligned with (Figure 3.2B - Stim. as vs. di) or orthogonal to (Figure 3.2B - Stim. a; vs.
as) the sensory discrimination axis. Thus, increased arousal either helps (Figure 3.2B - Stim. as vs.
dy), or hurts (Figure 3.2B - Stim. ay vs. ag), stimulus discriminability. Given these observations, we
hypothesized that arousal may exert more diverse effects on stimulus discrimination than previously

reported.
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Figure 3.2: Natural sounds evoke diverse sensory responses. A. Spectrograms of four natural
sound excerpts repeated during a single experiment. ”"Stimuli“ were defined by binning excerpts into
12 non-overlapping 250 ms bins (e.g. three example stimuli are highlighted). Thus, d’? was measured
for 66 stimulus pairs in this experiment. B. Population responses for each stimulus were projected
into the space defined by the first two principal components of trial-averaged activity across all 12
stimuli (Stim. PC; and Stim. PCy). Pairwise measurements of d’? are indicated for the three
highlighted stimulus pairs. Left: Single trial data collected over the entire experiment. Dots represent
the projection of a single trial. Ellipses are centered on the mean response across trials and their
size represents the standard deviation across trials. Grey stimuli represent the nine other stimuli
not specifically highlighted in A. Middle/Right: Same, divided by stimulus trials where pupil was
large /small.

Across all stimulus pairs within a single experiment, arousal-dependent changes in pairwise stim-
ulus discriminability varied substantially. While many stimulus pairs showed increased d’?, others
did not change and many showed a decrease (Figure 3.3A). Across all recording sessions, stimu-
lus discriminability was enhanced during high arousal states on average ( ﬁrge = 32.33 £ 0.26 vs.
d? . =18.99+0.16, p < 0.001, Bootstrap test, n = 20 recording sessions, 1167 & 256 stimulus pairs
per session). However, a substantial fraction of stimulus pairs were more discriminable during low
arousal states (29.240.8%). The sign of d"? changes was not dependent on baseline stimulus discrim-
inability (Figure S3). Furthermore, the same amount of diversity was observed when excluding stimuli

with unreliable and/or weak responses (Figure S4) arguing that this diversity is a real feature of the

data and is not due to "noisy* estimates of trial-trial variability and/or stimulus discriminability.
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Figure 3.3: Arousal can increase or decrease neural discriminability of natural sounds. A.
Left: Heatmap intensity indicates d’?> measured during large pupil trials for each pair of 0.25 s sound
segments in one example experiment. The spectrogram and the first two principal-component (PC)
projections of average evoked activity for each stimulus are shown along the heatmap axes. Middle:
Same, for d’? computed across small pupil trials. Right: Normalized change in d’2, Ad'?, between
large and small pupil. Positive values indicate better stimulus discriminability during high arousal.
All three heatmaps are sorted according to the Ad’? matrix. B: Scatter plot of d’? for large/small
pupil conditions across all experimental sessions. Color indicates the density of points at each location.
Stimulus pairs (n = 23,352 total) were randomly subsampled for visualization (n = 2500 displayed
here).

3.2.2 A low-dimensional latent variable model accounts for diversity of arousal-dependent

coding changes

Based on examples (e.g. Figure 3.2B), we hypothesized that pupil-dependent changes in response
variance could cause the heterogeneity observed in Ad? measurements. To test this, we designed
a normative latent variable model (Figure 3.4A, Equn. 3.6) to determine whether pupil-dependent
changes in covariance alone could account for the effects of arousal. The model was fit in two stages.
In the first stage, the mean sensory evoked response of each neuron (PSTH) was scaled and offset
according to pupil size in order to minimize the mean squared error between the predicted and
actual time varying firing rate response (Eqn. 3.5).2%33 In the second stage, the pupil weights for
each neuron were frozen. Pupil-dependent single neuron (independent) variance and pupil-dependent
shared variance was then added to the predicted firing rate of each neuron. Weights for independent
and shared variance were optimized for each neuron such that the pupil-dependent covariance matrix
of the resulting response matched the actual data (e.g. Figure 3.4B, Equ. 3.6). Because the model
required a large amount of data to fit, we restricted our analysis to a subset of recordings (n = 7

recordings from three animals) in which each stimulus was repeated at least 80 times during the
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experiment.
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Figure 3.4: Normative latent variable model architecture. A. Schematic of model architec-
ture. Sensory responses, f(s(t)) were estimated for each neuron by computing the peri-stimulus time
histogram (PSTH) across all repetitions of each stimulus. The PSTH for each neuron, 4, was provided
as input to the model. Model fitting was split into two stages. During the first stage, pupil-dependent
sensory responses of single neurons was predicted by minimizing the mean-square error between pre-
dicted firing rate and true firing rate. In this first stage, only the pupil weights (blue) were fit (Eqn.
3.5). In the second model fitting stage, single neuron pupil weights were frozen and pupil-dependent
single neuron variance (e(t)p(t), orange) and pupil-dependent shared variance (my(t)p(t), green) were
added to responses. During the second stage of fitting pupil-dependent variance weights were opti-
mized to minimize the mean squared error between predicted and actual large/small pupil covariance
matrices (Eqn. 3.6). Models were fit to the rank-1 approximation of the covariance matrix to prevent
overfitting. B. The neuron-by-neuron difference covariance matrix (small pupil covariance minus large
pupil covariance) for a single recording site is plotted for the model output, the rank-1 approximation
to the raw data, and the full-rank raw data.

To test whether the model generated responses recapitulated the diversity observed in Ad’, we com-
puted Ad’? for the model responses and compared the result to the actual Ad’? for each stimulus pair.

We found that a model using just a single pupil-dependent shared modulator and pupil-dependent sin-

47



gle neuron variance closely replicated the actual arousal-dependent changes in discriminability (Figure
3.5A, right). To determine if this result required pupil-dependent shared and/or single neuron vari-
ance, we tested two additional models (Eqns. 3.7, 3.8). In the first model, pupil was shuffled for both
shared and single neuron variance terms, making both terms independent of pupil (Figure 3.5A, left:
pupil-independent variance). In the second model, pupil was shuffled only for the shared modulator(s)
but preserved for single neuron variance (Figure 3.5A, middle: pupil-dependent single neuron vari-
ance). Neither model was able to perform as well as the full model containing pupil-dependent shared
modulation (Figure 3.5B). Indeed, without pupil-dependent noise, Ad'? was virtually always positive
for the model generated response (Figure 3.5A, left), in contrast to our finding that arousal can also
reduce stimulus discriminability. This is in line with previous work arguing that pupil-dependent
changes in response gain alone consistently improve sensory coding.?”>2%

Finally, we found that adding additional pupil-dependent shared modulators did not improve
Ad'? predictions (Figure 3.5B), suggesting that pupil-dependent modulation of variance occurs in a
low-dimensional subspace. This result was consistent even when fitting our model to higher rank
estimations of the pupil-dependent covariance matrices, arguing that it is not an artifact of the model

fitting procedure (Figure S5).
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Figure 3.5: Pupil-dependent response variability accounts for diversity in state-dependent
coding. A. Ad’? measured using responses output by normative latent variable models (y-axis) are
compared with actual Ad’? for individual stimulus pairs across n = 7 recording sites. Three different
model results are shown: A model with pupil-independent variance (blue), pupil-dependent single
neuron variance only (orange), and a model with both pupil-dependent single neuron variance and
shared variance (green). B. Model performance is quantified by computing the absolute error in
Ad"? prediction for each stimulus pair. Lines represent bootstrapped 95% confidence intervals. p-
values were computed using paired bootstrap samples between the error of two respective models (see
Methods: Statistical Methods).
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3.2.3 Arousal-dependent changes in gain and correlated variability operate on highly

overlapping populations

Studies of selective attention have shown that attention-related changes in response gain of single
neurons and the strength of correlated variability are related. In this framework, changes in correlated
variability simply reflect changes in the variance of single neuron’s sensory gain across trials.?% 8! Thus,
a single, shared mechanism appears to mediate changes in both gain and correlation. We wondered
if a single mechanism also produced effects of arousal, or if changes in gain and correlated variability
were mediated by separate mechanisms.

To investigate this question we first characterized pupil-dependent modulation of sensory evoked
gain. To do this, we subtracted the mean sensory response across all trials (PSTH) from the first
stage model prediction (Eqn. 3.5) in our latent variable model. At this stage of the model fit, the only
trial-to-trial variability in responses was entirely attributable to pupil-dependent gain (Figure 3.4A).
We then performed PCA on the residual responses which, by definition, identified the dimensions
where pupil-dependent changes in gain were largest and accounted for the most response variability.
Across recording sites, this space was low-dimensional; the first PC accounted for at least 65% of
total gain variability in all cases (Figure 3.6A).

Next, we compared this first principal component to the pupil-dependent shared modulator weights
that were fit during the second stage of model fitting (Figure 3.4A, Eqn. 3.6). For the pupil-dependent
shared modulator, weights were highly correlated with the first PC indicating that changes in stimulus-
independent response variance overlapped with first order changes in sensory evoked response gain
(Figure 3.6B). We confirmed that this correlation was not a trivial consequence of neural activity being
low dimensional by also comparing the model weights for a pupil-independent shared modulator.
Although these were also correlated with gain, the relationship was much weaker than for pupil-

dependent noise (Figure 3.6B).
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Figure 3.6: Arousal-dependent changes in evoked response magnitude and correlated

variability operate on overlapping neural populations. A. Cummulative fraction variance
explained by each prinicipal component of pupil-dependent gain modulation. Each line represent a
single recording session. B. Left: Loading weights for the first PC in A are plotted against the pupil-
dependent shared modulator weights from the normative latent variable model. One data point per
neuron. 7 indicates the correlation coefficient for all neuron weights across all recording sites. Right:
Same, but for pupil-independent model weights. Thus, this correlation offers a noise floor for the
relationship between first and second order model weights.

3.3 Discussion

Previous studies have suggested that behavior-dependent modulation of neural population coding

29,50,51,53,54,81 That, is, signals reflecting behavioral state are well-

operates in a low-dimensional space.
described by processes that modulate the activity of many neurons coherently and produce correlated
variability in sensory responses. However, most previous work has utilized relatively small, focused
stimulus sets. This raises questions about whether the observed low-dimensional processes are a
consequence of the stimuli tested, or if they are a general feature of state-dependent modulation. These
questions are critical for understanding population coding of sensory stimuli. Theoretical studies have
long shown that correlated variability can impact coding accuracy, but only if it aligns with the sensory
tuning of neurons in the population.®® Thus, the dimensionality of the mechanisms driving correlated
variability and how they interact with sensory selectivity is critical for understanding their impact on
sensory processing.

In the case of pupil-indexed arousal, we found that correlated activity is modulated in a low-
dimensional subspace of primary auditory cortex (A1) that was highly overlapping with the arousal-

dependent changes in single neuron responses. These modulations were present across a diverse set

of natural sound stimuli and their effect on neural discrimination of sounds varied substantially with
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the sound stimulus; some stimulus discriminations were improved by arousal and others were reduced.
This heterogeneous relationship between coding and arousal is predicted for a low-dimensional state

signal interacting with relatively high-dimensional stimulus-evoked activity.

3.3.1 Effects of shared intrinsic variability on discriminability are stimulus-dependent

Correlated, intrinsic variability within neural populations is ubiquitous in cortex. Even before this
phenomenon was observed experimentally, substantial efforts were made to develop a theoretical un-
derstanding of how correlated activity might affect coding by neural populations.*6:55:57,60,62,110-112
This early work established that correlated variability can interfere with the brain’s ability to accu-
rately discriminate sensory stimuli. Therefore, experimental characterization of this phenomenon is
critical to fully understand neural population codes.

Although evidence for intrinsic correlation is widespread, experimental studies have provided con-
flicting evidence as to whether or not it does in fact interfere with population coding.436366,68,69,103,105,109
There are at least two reasons why the reported effects of correlated variability might vary across stud-
ies. First, the dimensions containing interfering noise appear to often be very low variance.58 69,109
Thus, detecting this noise could require recording large amounts of data, both over many neurons and
over many trials, a methodology that has only recently become feasible.68:6%199 A second possibility
is related to the fact that the impact of correlated noise depends on the tuning of neurons in the pop-

29,62,105 Therefore, discrepancies in

ulation being read out and their relationship with the noise space.
previous work might be explained by differences in the neural populations that were sampled and/or
in the stimuli that were tested. Because the effects of correlated noise may depend on the stimuli that
are presented, it is important to characterize coding accuracy across a wide array of sensory space.
Indeed, our results showed that the effects of correlated variability on coding are highly variable and
only benefit specific sensory discriminations.

Because there is a trade-off between the number of stimuli that can be presented and the number of
times that each can be repeated during a single recording session, questions about stimulus-dependent
changes in population coding have been difficult to completely address in a single study. Unlike recent
work, %8 69,109 we measured neural responses to a large set of stimuli over a relatively small num-
ber of repeats and neurons. Thus, we could not measure low-variance dimensions and draw strict
conclusions about the presence (or absence) of information-limiting noise.%? Instead, we leveraged a
new dimensionality reduction approach (dDR'%) with which we were able to reliably estimate the

interaction between the dominant, high-variance noise dimensions and sensory discrimination across

a large acoustic stimulus space. This approach revealed substantial variability of arousal dependent
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changes in coding within each recording site, highlighting the practical benefit of dimensionality reduc-
tion techniques for studying neural population dynamics across a diversity of stimulus and behavioral

contexts.8®

3.3.2 State-dependent coding in auditory cortex

It is increasingly clear that neural activity in primary sensory regions of the brain is modulated

1.27-30.71 " Arousal here refers to spontaneous changes in

by non-sensory variables, including arousa
alertness as measured by pupil diameter, even in the absence of a behavioral task.?® Similar to
previous work, we find that increased arousal is associated with enhanced excitability and reduced
noise correlations in A1.%28 71 These effects boost the neural signal to noise ratio in V127 and improve
population coding accuracy of tonal stimuli in A1.7!

Building on this previous work, we explored the effects of arousal on population coding accuracy
across a large space of natural sounds. Consistent with prior results, increases in pupil-indexed arousal
led to improved discriminability between sounds on average. However, the relative magnitude of this
improvement varied substantially across stimuli and many sensory discriminations were even harmed
by increased arousal. Using a normative modeling approach, we demonstrated that this variability
could be explained by low-dimensional modulation of shared variance.

The strong stimulus dependence highlights the importance of a broad exploration of state-dependent
changes in neural coding across the sensory response space. Parametric stimuli might be used in the
future to more systematically probe sound feature representations across a range of behaviorally
relevant stimuli. For example, one study of auditory processing began to address this question in
anesthetized animals.”® In this work, Kobak et al. measured population coding in Al of sounds that
varied along two dimensions: Inter-aural level (ILD) and absolute binaural level (ABL). By inducing
different states of cortical activation with urethane anaesthesia, the authors demonstrated that in the
awake (desynchronized) state, noise and signal subspaces shift to become orthogonal, thereby facili-
tating accurate encoding across both ILD and ABL. Extending this approach to spectro-temporally

113

varying and ethologically relevant naturalistic stimuli,"*° especially in the context of behavior, will be

critical for a complete understanding of state-dependent population coding.
3.3.3 Mechanisms driving arousal-dependent changes in sensory-evoked activity and
correlated neural variability

Recent studies of selective attention have suggested that correlated variability results from the

coherent modulation of many neurons by an intrinsic behavioral state variable.’%8%103 In a study
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by Denfield et al., macaques were trained on a visual change-detection task in which the stability of
spatial selective attention was manipulated between behavioral blocks.®! Because the gain of evoked
responses in visual cortex is known to be coherently modulated by attention,?° the authors proposed
that the magnitude of correlated variability should be highest when attention itself is most variable,
as changes in gain are shared across neurons within the receptive field. Indeed, when animals were
required to switch attention between multiple locations within a behavioral block, noise correlations
were strongest. This idea of correlations produced by a shifting spotlight of attention is consistent
with previous characterizations of neural population activity and attention®® and agrees well with
theoretical work.?3193 These findings offer a parsimonious explanation for why gain changes are
accompanied by a reduction in noise correlations during traditional cued change-detection tasks, where
attention is focused stably on a single spatial location.26

Similar to the case of visual selective attention, we found that arousal-dependent modulation of
evoked rates and shared variability occurred in largely overlapping neural populations. However, a
model with only pupil-dependent gain modulation did not accurately reproduce the discriminability
changes observed in our data, while incorporating an additional source of pupil-dependent shared mod-
ulation did. Therefore, whether or not these processes reflect independent mechanisms of modulation
is difficult to tease apart in our data.

Pupil-indexed changes in arousal are slow, happening on the order of seconds (e.g. Figure 3.1A)
while, by design, the shared modulator in our model acted on a faster timescale (=~ 4 Hz). One
possibility is that pupil offers only an approximate read out of arousal-associated modulation of
evoked responses in auditory cortex. In this case, a model containing only pupil-dependent gain
would fail to replicate the precise variability in sensory responses across time. Therefore, adding
a second shared modulator to our model may simply be providing this added resolution, allowing
the variance of the pupil-dependent gain signal to vary with arousal, as well as its magnitude. This
explanation is consistent with the mechanism of visual selective attention. However, because we did

1.81 did for attention, we are

not experimentally manipulate the variability of arousal, as Denfield et a
not able to conclusively test this hypothesis.

An alternative hypothesis is that the two effects are caused by distinct cortical mechanisms. Al-
though it was not feasible to directly isolate the circuitry underlying these distinct effects in the
current study, we propose that they may arise through a combination of neuromodulation and intra-
cortical feedback. Several studies have shown a strong correlation between slow fluctuations in pupil

diameter and brain-wide release of norepinephrine and acetlycholine,3? making these modulators good

candidates for mediating the slow changes in response baseline and gain across individual neurons.
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The decrease in correlated activity, on the other hand, may arise due to modulation of feedback from
other cortical areas that are themselves targeted by the same neuromodulatory signals.

Intracortical pathways to auditory cortex have been identified from multiple areas, including vi-
sual,” motor® and prefrontal cortex.!'* These inputs can activate inhibitory networks that desyn-
chronize local network activity, and modulating their strength could produce the de-correlation effects
observed in the current study. Given the diversity of these intracortical signals, it might seem sur-
prising that the arousal-related changes reported here should occur in such a low-dimensional space,
shared by slow, pupil-indexed gain modulation. However, if the same inhibitory networks are acti-
vated by slow changes in arousal and introcortical signalling, it’s possible that the gain and correlation
effects would appear in overlapping population of neurons, as we observed. Further investigation with
selective control of feedback from different cortical areas will determine if, in fact, the impact of signals

from these different cortical areas can be dissociated in Al.

3.4 Materials and Methods

3.4.1 Surgical procedure:

All procedures were performed in accordance with the Oregon Health and Science University
Institutional Animal Care and Use Committee (IACUC) and conform to standards of the Association
for Assessment and Accreditation of Laboratory Animal Care (AAALAC). The surgical approach was
similar to that described previously.” 1828115 Five young adult male ferrets were acquired from an
animal supplier (Marshall Farms). Head-post implantation surgeries were then performed in order to
permit head-fixation during neurophysiology recordings. Two stainless steel head-posts were fixed to
the animal along the midline using UV-cured dental composite (Charisma) or bone cement (Palacos),
which bonded to the skull and to stainless steel screws that were inserted into the skull. After a
two-week recovery period, animals were habituated to a head-fixed posture and auditory stimulation.
At this point, a small (0.5 - 1 mm) craniotomy was opened above primary auditory cortex (A1) for

neurophysiological recordings.

3.4.2 Acoustic stimuli:

Digital acoustic signals were transformed to analog (National Instruments), amplified (Crown), and
delivered through a free-field speaker (Manger) placed 80 cm from the animal’s head and 30°contralateral
to the the hemisphere in which neural activity was recorded (Figure 3.1). Stimulation was controlled

using custom MATLAB software (https://bitbucket.org/lbhb/baphy), and all experiments took
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place inside a custom double-walled sound-isolating chamber (Professional Model, Gretch-Ken).
Natural sounds stimuli were presented in four different configurations. Set 1 consisted of 93, 3-sec
samples (2.5 sec ISI, n = 3 sites), set 2 consisted of 306, 4-sec samples (1 sec ISI, n = 14 sites), set 3
consisted of 306, 1-sec samples (0.5 sec ISI, n = 6 sites), and set 4 consisted of 2, 3-sec samples of ferret
vocalizations (2.5 sec ISI, n = 2 sites). In sets 1-3, the stimulus sets contained species conspecific
and heterospecific vocalizations, speech, music, and environmental sounds chosen to sample diverse
spectro-temporal statistics.1%7 All stimuli were presented at 65 dB SPL. During every experimental
session, a subset of samples were repeated at least ten times (set 1: 3 samples, set 2: 18 samples,
set 3: 18 samples, set 4: all samples), while the remainder were played only once. In order to study
the trial-to-trial variability in neural responses, only the high-repeat sounds were included in this
study. The order in which stimuli were presented was generated pseudo-randomly. Stimuli were
played continuously until all sound samples in the library had been presented. In the case of set 1,
the entire stimulus set was repeated 2-3 times. This meant that experiments lasted approximately 40
minutes. The full sound library can be accessed at https://bitbucket.org/lbhb/baphy). Some of

data used in this study has been published previously.2 38

3.4.3 Neurophysiology:

Upon opening a craniotomy, 1 - 4 tungsten micro-electrodes (FHC, 1-5 M) were inserted to
characterize the tuning and response latency of the region of cortex. Sites were identified as Al by
characteristic short latency responses, frequency selectivity, and tonotopic gradients across multiple
penetrations.!? 116 Subsequent penetrations were made with a single (64-channel) or dual shank (128-
channel) silicon electrode array.?® Electrode contacts were spaced 20 pum horizontally and 25 pm
vertically, collectively spanning 1.05 mm of cortex. On each consecutive recording day, we changed
the location of the electrode penetration to access fresh cortical tissue, expanding the craniotomy as
necessary. Data were amplified (RHD 128-channel headstage, Intan Technologies), digitized at 30
KHz (Open Ephys™) and saved to disk for further analysis.

Spikes were sorted offline using Kilosort!!” or Kilosort2 (https://github.com/MouseLand/Kilosort2).
Spike sorting results were manually curated in phy (https://github.com/cortex-1lab/phy). For all
sorted and curated spike clusters, a contamination percentage was computed by measuring the cluster
isolation in feature space. All sorted units with contamination percentage less than or equal to 5
percent were classified as single-unit activity. All other stable units that did not meet this isolation

criterion were labeled as multi-unit activity.
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3.4.4 Pupillometry:

During neurophysiological recordings, video of the ipsilateral pupil (relative to the recording
hemisphere) was collected using an open source camera (Adafruit TTL Serial Camera) fitted with
a lens (M12 Lenses PT-2514BMP 25.0 mm) whose focal length allowed placement of camera 10 cm
from the eye. Contrast was increased using infrared illumination. Ambient light levels were fixed for
each experiment at roughly 1500 lux to provide maximum dynamic range of pupil size.2® Pupil size
was measured offline by fitting an ellipse to each video frame using using a custom machine learning
algorithm (Python and Tensorflow). The area of the ellipse was extracted and saved for analysis with
neurophysiological data. Pupil data was shifted by 750 ms relative to spike times in order to account
for the lagged relationship between changes in pupil size and neural activity in auditory cortex and
to allow for comparison with previous research.*

The pupil tracking algorithm itself utilized a deep learning approach. Our model architecture
was based on DenseNet201,118 which is available through Keras (https://keras.io/). In order to
transform the output of the model to pupil ellipse predictions, we added a single global pooling layer
and a final prediction layer in which five pupil ellipse parameters (x-position, y-position, minor axis,
major axis, and rotation), and eight eyelid keys points (x-y positions of the top / bottom eyelid and
the corners of the eye) were fit to each video frame. In order to initialize model weights, the model was
pre-trained on ImageNet,''? then fine-tuned using roughly 500 previously analyzed, nonconsecutive
frames from video of the pupil of multiple different ferrets (data from?®). Qualitatively, after this first
round of training the model performed well, even on novel video frames of pupil from new animals.
However, in cases where the pupil video quality was poor, or differed substantially from the video
frames in our training data set, we noticed failures in the model predictions. To further improve
the model, we employed an active learning procedure. For each new analyzed video, pupil ellipse
fits were analyzed qualitatively by experimenters. If the fit quality was deemed poor, predictions
for these frames were manually corrected and added to the training data set. The model was then
retrained and the analysis rerun. The network became robust to varying levels of video quality and
performed consistently without the need for user intervention. The code for this analysis is available

at https://github.com/LBHB/nems_db.

3.4.5 Movement exclusion:

During experiments, we observed that blinks were often associated with periods of high arousal

and more global facial / body movements. As this motor activity is known to modulate cortical
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29,38 e used our videos of pupil to exclude blinks from our analysis to isolate pupil-indexed

activity,
changes in arousal state. To this, we measured the variance of the animal’s eyelid over time using a
sliding window and excluded periods where this variance trace exceed 0.25 time the standard deviation

of eyelid movement across the entire experiment. Visual inspection showed that this procedure was

effective at removing most periods of blinking and movement.

3.4.6 Pupil modulation index:

To quantify overall pupil-dependent modulation in single neurons without differentiating between
baseline and gain, we measured an overall pupil modulation index (MI). M1 was defined by as the
mean sound-evoked response when pupil was large minus the mean response when pupil was small,
normalized by the sum of these two quantities. Large and small trials were defined based on a median

split of pupil size across the entire recording session.

MI — Tlarge — Tsmall (31)

'Flarge + Tsmall

3.4.7 Noise correlations:

Pairwise noise correlations were measured by grouping spike counts into 250 ms bins, extracting
only evoked periods (epochs when sound stimuli were playing), and computing Pearson’s correlation
between all pairwise combinations of z-scored spike counts. Z-scores were calculated for each stimulus
independently, as in Eqn. 3.2, where r(t) is the single trial response, 7 is the trial averaged response,
and o is the standard deviation of spike counts across repetitions. Therefore, the z-scored spike counts

Z(t) of each neuron i for each stimulus s had mean zero and standard deviation one.

(3.2)

3.4.8 Pairwise stimulus discrimination:

Natural sound excerpts were broken into non-overlapping 250 ms segments, similar to the pro-
cedure followed by Pachitariu et al., 201520 (illustrated in Figure 3.2A). For each pair of stimulus
segments, we extracted the N neuron X k trial response matrices, A and B. Because the number of
recorded neurons was greater than the number of stimulus repetitions, we first performed decoding-
based dimensionality reduction (dDR'%), method similar to PC'A, but designed to specifically pre-

serve only significant dimensions of the population response relevant for decoding. We selected the
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dimensionality of this space using cross-validation (Figure S2). This procedure allowed us to reliably
estimate population statistics and coding accuracy without overfitting to single-trial noise in the data.
We quantified decoding accuracy in this reduced-dimensionality space by measuring neural stimulus

discriminability, d’?, the discrete analog of Fisher information:5” 59 62,68,69,109

d? = ApTS  Ap = ApTwop (3.3)

where Ap represents the vector connecting the mean ensemble responses to stimulus A and stimulus
B, X = %(Z 4 + Xp) represents the mean noise-covariance matrix, and wo,; is the optimal decoding
axis, i.e. the vector orthogonal to the optimal linear discrimination hyperplane in state-space. In
practice, we estimated w,,; using 50-percent of trials (training data) then projected the held out 50-
percent of trials (test data) onto this vector and measured discriminability. For a detailed schematic of
this procedure, see Figure S1. Pupil-dependent measurements of d’? followed an identical procedure,

but before measuring discriminability, the test data was first split in half based on median pupil size.

Pupil-dependent changes in stimulus discriminability:

d'’?, measured across pupil states, could vary greatly across the sensory responses. Therefore, in
order to measure pupil-dependent changes in coding accuracy across recording sites, we used a nor-
malized metric, Ad’?. For each stimulus pair, Ad’? was defined as d’? measured during large pupil

trials minus d’? for small pupil trials, normalized by the sum of these two quantities.

d/2 _ d/2
Ad/z _ large small 34
d;irge + dISQmall ( )

3.4.9 Normative latent variable model:

In order to determine if pupil-dependent modulation of response variance predicted the effect of
arousal on stimulus discriminability, we designed a normative latent variable model (Eqn. 3.6. The

model was fit in two stages. Only the second stage of model fitting used the normative framework.

Stage 1: Pupil-dependent modulation of evoked response magnitude:

During the first stage of model fitting, we fit a state-dependent generalized linear encoding model
similar to those described in previous work.?8:33 For each recorded unit, 7, the input to this model was
defined as the peri-stimulus time histogram (PSTH) response averaged over all stimulus repetitions

(r0,i(t)). The predicted firing rate was calculated by scaling the PSTH by a pupil-dependent multi-
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plicative and additive factor to model pupil-dependent changes in gain and baseline firing rate over
time (Eqn. 3.5). To account for a possible nonlinear relationship between pupil size and neuromodula-
tion, the pupil signal was first passed through a static sigmoid nonlinearity, F' (double exponentiall).
The parameters of this nonlinearity, as well as the gain (fy) and baseline (1) coefficients for each
neuron were fit simultaneously using 10-fold jackknifed cross validation in order to minimize the mean-

squared-error between the predicted and actual time varying firing rate response of each neuron.

74(t) = Bo (1 n F(p(t))ro,i(t)) T ﬂlF(p(t)) (3.5)

Stage 2: Normative approach to fitting pupil-dependent response variability

In the second stage of model fitting, we used a normative modeling framework. Thus, rather
than predict time-varying response rate of each neuron, we optimized the model to predict the state-
dependent population covariance matrix. Thus, the model did not seek to predict actual neural
activity, but to generate a population responses whose state-dependent covariance matched that of
the real data.

The input to this model was defined by the predicted response of each neuron from stage 1, #;(t).
Its output, for each neuron, z;(t), was generated by adding pupil (p(¢)) dependent single neuron (¢;(t))
and/or shared (my(t)) variance to the first stage prediction. A pupil-independent, neuron-independent
baseline term, d was included to account for state-independent correlations (Eqn. 3.6). Noise signals

(e and my,) were generated with Gaussian white noise (u =0, o = 1).

zi(t) = 7i(t) + Z wi kp(t)my(t) + (d+ uip(t))ei(t) (3.6)

On each iteration of the fit, the stimulus-dependent large / small pupil covariance matrices were
computed for the model generated responses and compared with the actual covariance matrices. Model
weights were optimized to minimize the mean-square-error between the model and actual data. Thus,
if five neurons were recorded for three different sensory stimuli, the model was tasked with predicting
150 covariance coefficients (five neurons x five neurons x three stimuli x two pupil conditions). To
reduce model fit times, we fit to a randomly selected of 10 stimuli for each recording site.

Additionally, we found that models trained to predict the full-rank covariance matrices seems to
suffer from overfitting in some instances. Therefore, we fit models on reduced rank approximations to
the true covariance matrix using singular value decomposition. The simplest model that maximized

performance was fit using the rank-1 covariance matrix approximation (Figure S5).
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Finally, to test the requirement of pupil-dependent noise, we tested two additional models. One in
which pupil was shuffled (p0(¢)) for the shared modulator term (Equn. 3.7) and one where pupil was
shuffled for both the shared modulator and the independent noise term (Eqn. 3.8). Shuffling pupil
breaks the correlation between the variance modulation and arousal state while still preserving the
overall number of model parameters and theoretical rank of model generated covariance, allowing us

to determine if pupil was necessary to explain the effects in our data.

K
zi(t) = 7i(t) + Z wi 1 pO()mi (t) + (d + uip(t))ei(t) (3.7)
k=1
K
zi(t) = 7i(t) + Z w; 1 pO(t)my, () + (d + u;p0(t))€; () (3.8)
k=1

All models / stages of model fitting were performed using the Neural Encoding Model System

(NEMS, https://github.com/LBHB/NEMS).

3.4.10 Comparing evoked-response modulation to shared variability model weights

To determine if the effects of arousal on sensory response gain overlapped with modulation of
correlated variability, we compared the evoked-response modulation measured in the first stage of the
latent variable model fit to the shared modulator weight(s) (W}) in the second stage of model fitting.

While the sigmoid transformation applied to the pupil during the first model fitting stage improved
model performance, it made it difficult to interpret the gain (8y) and baseline (3;) parameters directly.
Therefore, rather than extract them directly we instead measured the pupil-dependent modulation
using PCA. To do this, we computed the difference between the model prediction #;(t) and rg;(¢),
the state-independent PSTH. This difference summarized the pupil-dependent modulation of sensory
evoked responses. Therefore, we then performed PC' A on the difference and defined the first principal
component as the axis where most modulation occurred. We then compared the loading weights of

this PC with the W, weights extracted from the latent variable model (Eqn. 3.6).

3.4.11 Statistical methods

Our data followed a nested structure; multiple cells were recorded from the same animal and many
different stimuli were presented during each experimental session. Therefore, it is possible our results
could be biased by differences between animals and/or experimental recording session. To account for

this, in all of our statistical tests we took one of the following two approaches: (1) Averaged metrics

60


https://github.com/LBHB/NEMS

across cells (or pairs of cells) and sound stimuli within a recording session before performing statistical
tests or (2) Performed statistical tests using hierarchical bootstrapping.'?! Although each approach
reduces statistical power relative to treating each individual measurement as independent, they provide
a more conservative estimate of p-values and reduce the chance of detecting false positives.!?!

For all statistical tests measuring large vs. small pupil effects where we first averaged results within
recording session, we performed a two-tailed Wilcoxon signed-rank test. For each test, we report the
test statistic, W, the p-value, and the exact n number of recording sessions used to perform the test.
In cases where we performed a hierarchical bootstrap, we report the direct bootstrap probability of
the null hypothesis.'?! In both cases, we also provide the mean and standard error of the number of
measurements per recording session.

All bootstrapped confidence intervals (e.g. in Figure 3.5) were also generated using the hierarchical
bootstrap resampling procedure. For paired tests, e.g. testing the difference in model performance for
different architectures (Figure 3.5, S5), the paired statistic was first computed for each observation (in
this case, for the difference in model performance for each stimulus pair), resampled using hierarchical

bootstrapping, and the direct probability of this resampled distribution being different than zero was

reported.?!

3.5 Data Availability

The datasets analyzed in this study are available from the corresponding author upon reasonable

request.
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