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Abstract

Improving Speech Intelligibility through Spectral Style Conversion

Tuan Anh Dinh
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School of Medicine

July 2021

Thesis Advisor: Alexander Kain

Oral communication is the most important way for delivering information in our daily life. Unfortu-

nately, the quality of such communication can be degraded by 1) speech disorders (e.g. dysarthria)

and 2) surrounding environments (e.g. noise or reverberation). Style conversion is a technology

that modifies the source speaking style of a speaker to sound like a more intelligible target speak-

ing style of either the same or different speaker. For speech enhancement, style conversion helps

either typical or disordered speech become more intelligible prior to its presentation in adverse en-

vironments. The technology can make the widely-used speaking-devices in commercial (e.g. mobile

phone, GPS), medical (e.g. assisted-speech) and military (e.g. ground troop relays) circumstances,

more intelligible. Moreover, the technology can become instrumental for the next generation of

speaking-aid and hearing aid devices, which is highly demanded now.

In the dissertation, I consider new machine learning based-approaches for style conversion.

Inspired by the intelligibility gain of clear (CLR) speaking style over habitual (HAB) speaking

style, I propose several HAB-to-CLR spectral mappings approaches for intelligibility improvement.

In the first approach, I propose a machine-learnable, compact and interpolable representation

for spectral style conversion, which was realized by the means of the Variational Autoencoder from

the high-dimensional Mel-cepstrum coefficients. In a vocoding experiment, I showed that using a

12-dimensional VAE-based representation (VAE-12) achieved significantly better perceived speech

xii



quality compared to a 12-dimensional Mel-cepstrum feature. In a voice conversion experiment, I

showed that mapping VAE-12 resulted in significantly better perceived speech quality compared

to a 40-dimensional Mel-cepstrum feature, with similar speaker accuracy, thus demonstrating the

efficiency of mapping in a low-dimensional latent feature space. In a HAB-to-CLR conversion

experiment, I showed that this VAE-12 together with a custom skip-connection deep neural network

significantly improved the speech intelligibility for one speaker with mild dysarthria, with the

average keyword recall accuracy increasing from 24% to 46%.

In the second approach, I propose the use of conditional Generative Adversarial Nets (cGANs)

in HAB-to-CLR spectral mappings for typical speakers and speakers with mild dysarthria. Specifi-

cally, our cGANs-based spectral style mapping can address the over-smoothing issue of our previous

feed-forward networks-based spectral style mapping. I evaluated the performance of the cGANs

in three tasks: 1) speaker-dependent one-to-one mappings, 2) speaker-independent many-to-one

mappings, and 3) speaker-independent many-to-many mappings in terms of intelligibility. In the

first task, cGANs outperformed a traditional deep neural network mapping in terms of average

keyword re-call accuracy and the number of speakers with improved intelligibility. In the second

task, I significantly improved intelligibility of one of three speakers, without any source speaker

training data. In the third and most challenging task, I improved keyword recall accuracy for two

of three speakers, but without statistical significance.

In the third approach, I propose two conversion methods to improve naturalness and intelli-

gibility of alaryngeal speech (LAR), which is more distorted than mild dysarthria. Specifically,

the first method utilized a feed-forward network for predicting binary voicing/univoicing and the

degree of voicing (aperiodicity). The second method adopted cGANs to learn alaryngeal speech

spectra to clearly-articulated speech spectra. To address the unusable fundamental frequency (F0)

information of alaryngeal speech, I created a synthetic fundamental frequency trajectory with an

intonation model consisting of phrase and accent curves. For the two conversion methods, I showed

that adaptation always increased the performance of pre-trained models, objectively. In subjective

testing involving four LAR speakers, I significantly improved the naturalness of two speakers, and

I also significantly improved the intelligibility of one speaker.

In the fourth approach, I report preliminary results of improving speech intelligibility using

duration conversion. Although these results were not positive, I show potential directions for

further study on duration conversion and speech intelligibility.

Overall, the results show the potential of applying machine learning techniques in mapping

speech to improve its intelligibility. These methods can improve speech intelligibility for typical

speakers, speakers with mild Parkinson’s disease, and more serious case of alaryngeal speech.

xiii



Chapter 1

Introduction

1.1 Motivation

1.1.1 Unintelligible Speech

Speech is probably the most important biosignal for human communication. The way that people

typically talk is referred to as habitual speech [172]. However, habitual speech becomes less in-

telligible in noise conditions. Habitual speech is also hard to understand for people with hearing

impairments (e.g., due to age) and non-native speakers. Current speaking devices (e.g., Amazon

Alexa, and Apple Siri), which create synthetic speech similar to the habitual speech of people, can

also be difficult to understand, especially in noisy environments, which exacerbate many speech

conditions (Figure 1.1). There are also cases involving atypical speakers whose speech is hard to

understand (Figure 1.2). For example, mild dysarthria, which is a speech motor disorder, usually

results in a substantive decrease in speech intelligibility, especially in noise conditions. Alaryn-

geal speech, which is produced by people who have undergone laryngectomy, is even harder to

understand.

1.1.2 Listener Side Solution

One approach to increase the intelligibility of speech in noise is to use noise suppression and

cancellation. Specifically, Michelsanti explored a conditional Generative Adversarial Nets-based

approach for mapping the spectral features of noisy speech to those of intelligible speech [143]. Jean-

Marc focused on the main perceptual characteristics of speech – spectral envelope and periodicity

– for noise suppression in real time with low complexity [218]. Isik proposed POCoNet involving

a large U-Net with DenseNet and self-attention blocks with frequency-positional embeddings for

high-quality noise cancellation [92].

1



2

Figure 1.1: Synthetic speech of speaking devices is degraded by noise

Figure 1.2: Atypical speech is hard to understand, especially in noise

However, the above approaches require listeners to use noise cancellation devices (e.g., noise-

cancelling headphones), which take as input a noisy speech signal and output an enhanced signal

with higher intelligibility and quality. Thus, the processing happens on the listener side. Yet there

are many cases, such as transit announcements, where listeners do not have noise cancellation

devices; thus, a listener-side solution might not be practical in many cases.

1.1.3 Lessons from Real Speakers: Habitual versus Clear Speech

In real life conversation, people adjust their voice to overcome communication difficulties due to

speaking disorders, hearing impairment of listeners, and background noise. For example, teachers

speak louder and more slowly to help students understand better. To make habitual speech more

intelligible in noise, speakers adopt special clear speaking styles, which are resilient to changing

environments and listeners’ specificity. This clear speech is highly articulated. Specifically, re-

searchers reported the extension of phoneme duration in clear speech [173, 60, 61]. In combination

with extended phoneme duration, the longer and more frequent pauses lead to a significant de-

crease of speaking rate, from 160–200 words per minute (wpm) in habitual speech to 90–100 wpm

in clear speech [173, 121]. These studies also showed that clear speech has higher intelligibility than

habitual speech in adverse environments. The relationship between acoustic changes of prosodic

and spectral features and the intelligibility gain of clear speech was investigated in a number of

studies [95, 203]. The spectral and prosodic variations from habitual to clear speech are probably
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significant contributors to the improved intelligibility of clear speech. In addition, Brenk also found

that the combination of spectrum and duration is a contributing factor to the varied intelligibility

of slow speech [27].

1.1.4 Speaker Side Solution

In contrast to a listener side solution, a speaker side approach is to convert habitual speech directly

from speakers into clear speech prior to its distortion due to background noise. The conversion

into clear speech should make the speech more resilient to noise (see Figure 1.3 and Figure 1.4).

Specifically, habitual speech (typical or dysarthric speech) is converted into clear speech using

signal processing or machine learning-based methods. Thus, the approach is known as as style

conversion, which aims to modify a sentence uttered in a source speaking style to sound like it

is uttered in a target speaking style. In other words, style conversion alters the style-dependent

characteristics of speech signals, such as spectral and prosodic features, in order to improve the

perceived intelligibility of linguistic content. Different from listener side approach, the speaker

side approach has the benefit of processing a clean input signal, which is more convenient than

processing noisy signals on the listener side.

Another speaker-side approach is to convert the speech of atypical speakers into the intelligible

speech of normal speakers. The approach is preferred when the clear speech of atypical speakers

is not available or it is impossible for the atypical speakers to create intelligible speech.

1.1.5 Previous Work on the Speaker Side Solution

There has been previous work on the speaker side solution. Koutsogiannaki investigated the

characteristics of the short-term energy of clear speech compared to habitual speech [118]; then

she applied filters to habitual speech to create these characteristics of clear speech. Her technique

resulted in modified speech with higher intelligibility. However, her approach also showed a trade-

off between intelligibility and naturalness of modified speech because those speech modifications

are impossible for speakers to make. Moreover, her approach did not model the conversion from

habitual to clear speech.

To make dysarthric speech become more intelligible, Mohammadi utilized HAB-to-CLR spec-

tral style conversion on habitual vowels using a Gaussian Mixture Model [145]. In a different ap-

proach, Kain converted dysarthric speech into typical speech using a Gaussian Mixture Model [96].

Kazuhiro and Othmane converted alaryngeal speech into typical speech using deep neural net-

works [109, 16]. The machine learning-based methods (e.g., deep neural networks) showed the



4

Figure 1.3: Make habitual speech (generated by speech synthesizer) more resilient to noise

Figure 1.4: Make atypical speech (spoken by people with dysarthria) more resilient to noise

most promising results; but there is still room for improvement.

1.2 Thesis Problem and Statement

Modifying the habitual speech of typical and atypical speakers on the speaker side to increase

intelligibility in noise is a challenging problem. My thesis is that the speech intelligibility of typical

and atypical speakers can be improved automatically by learning how they map their voice and

make it more intelligible.

Specifically, I converted habitual speech of typical speakers into clear speech, which is known as

style conversion, using machine learning-based methods. I also evaluated the efficacy of these style

conversion methods on a more challenging case involving an atypical speaker with mild dysarthria.

I further pursued the challenge of converting alaryngeal speech, which is barely understandable

compared to mildly-dysarthric speech, into intelligible speech.

1.3 Specific Aims of the Dissertation

First objective: To determine effective spectral representations for spectral voice and style con-

version. Up until now, high-dimensional (e.g., 40-dimensional) Mel-cepstral coefficients

(MCEP), a commonly used short-term spectral feature in speech processing, have been
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mapped between source and target in voice and style conversion. Although high-dimensional

MCEPs have shown an exceptional quality of speech vocoding (analysis and synthesis), they

may not exhibit the necessary interpolability for voice and style conversion. An interpolable

feature ensures that even when two or more parameter vectors are averaged (e.g., as part of

a mapping procedure), the result remains near the manifold of possible speech. I contrasted

two new sets of spectral features: 1) probabilistic peak tracking (PPT) features, which is a

formant-like hand-crafted feature, and 2) manifold features, which is machine learnable by

Variational Autoencoder (VAE) [115]. The hypothesis is that compact and interpolable spec-

tral features are more effective for voice and style conversion mappings between source and

target. The two sets of features were integrated into a high quality vocoder, WORLD [152].

I extensively evaluated the two sets of spectral features by comparing them to each other and

to baselines, which are two commonly used spectral representations: line spectral frequency

(LSF) and Mel-cepstrum coefficients, in speech reconstruction, voice conversion, and style

conversion tasks (Chapter 3).

Second objective: To develop effective HAB-to-CLR spectral mappings using well-established

machine learning algorithms. Motivated by the success of conditional Generative Adversar-

ial Nets (cGANs) [93] in machine learning, I utilized cGANs to map the spectral features

of habitual speech to those of clear speech. The hypothesis is that the cGANs-based map-

pings can do detailed spectral modifications, unlike commonly used statistical and rule-based

methods [145, 117], which can achieve better performance of spectral style conversion map-

pings. Specifically, cGANs were investigated in three spectral style conversion mappings: 1)

one-to-one mappings, 2) many-to-one mappings, and 3) many-to-many mappings for intel-

ligibility improvement in noisy environments. I compared the performance of cGANs-based

mappings to a baseline of feed-forward networks with custom skip-connections in one-to-one

style conversion mappings. I extensively evaluated the performance of the three mappings

on both typical speakers and speakers with mild dysarthria (Chapter 4).

Third objective: To develop effective conversion methods from alaryngeal speech to intelligible

speech, using well-established machine learning algorithms. Alaryngeal speech is unnatural

sounding and difficult-to-understand speech for several reasons, including poor voice quality,

poor voiced/voiceless differentiation, and poor articulatory precision [112]. It is important

to note that intelligible speech is different from clear speech in the previous objectives. The

hypothesis is that utilizing machine learning-based spectral conversion mappings, voicing,
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and voicing degree prediction can compensate for severe speech disorders (e.g., due to laryn-

gectomy). Therefore, I propose an approach that has two parts for transforming alaryngeal

speech (LAR) to intelligible speech (INT). The first part predicts binary voicing/univoicing

and the degree of voicing (aperiodicity) using feed-forward networks. The second part is for

LAR-to-INT spectral mappings using cGANs. Moreover, to address the unusable fundamen-

tal frequency (F0) information of LAR speech, I created a synthetic fundamental frequency

trajectory with an intonation model consisting of phrase and accent curves. I evaluated the

LAR-to-INT conversion methods on an alaryngeal speech database (Chapter 5).

Fourth objective: To investigate the performance of uniform and non-uniform duration style

conversion. I show preliminary results of improving speech intelligibility using duration

conversion. The hypothesis is that phoneme (and even sub-phoneme) segments are changed

unequally (or non-uniformly) during the process; and a non-uniform duration style conversion

is better in improving speech intelligibility in comparison to a uniform conversion. Therefore,

I evaluated the performance of uniform and non-uniform duration conversion in terms of

intelligibility in an ideal case when (oracle) sentence and phoneme-level scaling factors are

given (Chapter 6).

1.4 Contributions

The contribution of the first objective is a compact and interpolable manifold feature, which is

effective for speech reconstruction, spectral voice conversion mappings, and HAB-to-CLR spectral

style mappings. For speech reconstruction, the manifold feature, which is realized by VAE, was as

good as commonly-used spectral features. For voice conversion mappings, using the new represen-

tation obtained better speaker similarity than using high-dimensional MCEPs and LSFs. For style

conversion mappings, I significantly increased the sentence-level intelligibility of dysarthric speech

in noisy environments with a subjective evaluation. This is reported in Tuan Dinh, Alexander Kain,

Kris Tjaden, Using a Manifold Vocoder for Spectral Voice and Style Conversion, Interspeech, 2019.

The contribution of the second objective is a novel cGAN-based spectral style mapping between

habitual and clear speech. I increased the sentence-level intelligibility of dysarthric speech in noisy

environments, subjectively and significantly. This finding is published in Tuan Dinh, Alexander

Kain, Kris Tjaden, Improving Speech Intelligibility through Speaker Dependent and Independent

Spectral Style Conversion, Interspeech, 2020.

The contribution of the third objective is two conversion methods and a fundamental frequency

(F0) synthesis method for LAR-to-INT speech mappings. I improved the perceived naturalness and
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intelligibility of alaryngeal speech, significantly. This finding is published in Tuan Dinh, Alexander

Kain, Robin Samlan, Beiming Cao, Jun Wang, Increasing the Intelligibility and Naturalness of

Alaryngeal Speech Using Voice Conversion and Synthetic Fundamental Frequency, Interspeech,

2020.

The contribution of the fourth objective is an analysis on the effect of changing speaking style on

phoneme and sentence duration, which showed that phoneme duration was not changed uniformly.

However, my effort of conducting non-uniform style duration conversion did not outperform the

uniform conversion. I attribute the failure to the artifacts created by duration conversion algo-

rithms. Further work should be done to reduce the artifacts in order to examine the performance

of duration conversion on speech intelligibility.

1.5 Dissertation Outline

In Chapter 2, I present the 1) differences between clear speech and habitual speech, 2) relationship

between acoustic features and improved intelligibility of clear speech, 3) a literature review of voice

conversion methods, 4) subjective measurements of intelligibility, and 5) a literature review of au-

tomatic approaches for intelligibility improvement. In Chapter 3, I contrast manifold features to

probabilistic peak tracking features in speech vocoding, voice conversion, and style conversion. In

Chapter 4, I present my cGAN-based mapping for spectral style conversion. In Chapter 6, I present

my preliminary study on uniform and nonuniform duration style conversion for intelligibility im-

provement. In Chapter 5, I present two conversion methods and a fundamental frequency synthesis

method for improving naturalness and intelligibility of alaryngeal speech. Finally, I summarize my

contributions and present possible future directions in Chapter 7.



Chapter 2

Background and Related Work

In this chapter, I review the background literature. In Section 2.1, I review the literature regarding

intelligibility and acoustic differences between habitual and clear speech. In Section 2.2, I review

the relationship between acoustic features and speech intelligibility. In Section 2.3, I review voice

conversion frameworks, because I used voice conversion techniques for improving intelligibility. In

Section 2.4, I review automatic methods for improving intelligibility. Finally, I review different

assessment methods of speech intelligibility in Section 2.5.

2.1 Habitual and Clear Speech

Picheny used the term habitual speech (HAB) to refer to speech produced under the instruction,

“speak in the same manner as you would during an ordinary conversation” [172]. In contrast,

he used clear speech (CLR) to refer to speech produced under the instruction “speak clearly, as

you would when talking to hearing-impaired listeners”. Although the term “clear” implies higher

intelligibility of perceived speech, it is possible that clear speech does not have intelligibility advan-

tages over habitual speech for some listeners [59]. In this dissertation, I refer to habitual and clear

speech as the speaking styles in response to the above-mentioned instructions. In Section 2.1.1, I

review work on the intelligibility of habitual versus clear speech under a variety of conditions, and

in Section 2.1.2, I review work on the acoustic differences between habitual and clear speech.

2.1.1 Intelligibility of Clear Speech

There has been great interest in the intelligibility gain of clear speech over habitual speech, which

have both been examined with various listener groups, including a) 18–32 aged normal-hearing

listeners [120, 133, 59, 137], b) 61–88 aged normal-hearing listeners [84], c) 60–89 aged hearing-

impaired listeners [172, 181, 213], d) 19–33 aged, simulated hearing-impaired listeners [137], and

e) school-aged children with and without learning disabilities [25]. The common finding is that

8
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clear speech is more intelligible than habitual speech, across all speakers. For example, Pinechy

reported a significant intelligibility difference of 17 percentage points for hearing-impaired listeners

compared with habitual and clear nonsense sentences [172]. The improved intelligibility of clear

speech was found to be independent of 1) listeners, 2) presentation levels, and 3) frequency-gain

characteristics. However, Ferguson concluded that the advantage of clear speech was listener-

dependent [60]. Ferguson also found that there is no advantage for clear vowels when elderly

hearing-impaired listeners identified the front vowels, which they attributed to the raising of F2

values to the hearing-loss region of the hearing-impaired listeners (e.g. 2000–2500 Hz). Similarly,

Maniwa reported that simulated hearing-impaired listeners benefited from clear speech in dis-

criminating sibilants in /s/–/S/, and /z/–/Z/ pairs, but they did not benefit from clear speech in

discriminating voiceless non-sibilants in /f/–/T/ pairs [137]. Ferguson and Maniwa showed that

the advantage of clear speech depends on the hearing ability of listeners as well as on the kinds of

hearing loss (if any). Thus, the intelligibility advantage of clear speech depends on the the age of

listeners and their hearing ability [60].

In addition to listener conditions, speech materials have been investigated for intelligibility

differences between habitual and clear speech. There are two principal kinds of speech materi-

als: 1) word-level materials, with nonsense syllables allowing more control over the phonemes to

be evaluated, and 2) sentence-level materials resembling daily communication. Examples of the

first type include vowels in /b/–/V/–/d/ context [60], and VCV syllables where the consonant

is a fricative [137]; examples of the second type include nonsense sentences [172, 171] and mean-

ingful sentences [181, 24]. A drawback of using meaningful sentences is existing semantic cues,

which could be used by listeners to compensate for the reduced intelligibility [74]. Several studies

found that elderly listeners (aged 65-77) are relatively better at using these semantic cues than

younger listeners (aged 22-29) due to well-preserved linguistic knowledge with age, although aging

reduced hearing ability in the presence of background noise [191, 225, 174, 73]. Additionally, it

is important to note that phoneme-level intelligibility should not be used to obtain sentence-level

intelligibility [7].

2.1.2 Acoustic Differences between Habitual and Clear Speech

There has been great interest in investigating the acoustic differences between habitual and clear

speech [173, 60, 25, 121]. Interestingly, the findings were not always in agreement due to the

variability of speakers, speech materials, and analysis methods. Major findings have focused on the

differences in three main aspects of speech: 1) prosodic (a combination of fundamental frequency,

energy and phoneme duration), 2) spectral (such as formant and formant-normalized spectrum),
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and 3) phonological aspects.

The prosodic studies of clear speech show a slight increase in mean and variability (or range)

of fundamental frequency (F0) [173, 25, 121]. Also, an increased consonant-vowel energy ratio

(CVR) has been reported in clear speech for stops and fricatives [25]. In contrast, the increased

CVR was only reported in affricates of clear speech [121]. Picheny found greater root-mean squared

(RMS) intensities for unvoiced stop consonants in clear speech [173]. Researchers also reported

the extension of phoneme duration, especially in the tense vowels: /i:/, /u/, /A/, and /O/ in clear

speech [173, 60, 61]. In combination with the reduced phoneme duration, the longer and more

frequent pauses lead to a significant decrease of speaking rate from 160–200 words per minute

(wpm) in habitual speech to 90–100 wpm in clear speech [173, 121]. Additionally, Krause showed

an increased amplitude modulation for low modulation frequencies (up to 3–4 Hz) of clear speech

on a small number of speakers [121]. Krause concluded that the increased depth of envelope helped

syllables to be better distinguished from one another. Krause et al. also investigated the duration

between the time of burst and the onset of the voicing (VOT). They found increased VOTs for

voiceless stop consonants in clear speech for one of the speakers.

Spectral studies of clear speech show an expanded vowel space via formant frequencies [173, 60,

25]. Other work shows higher energies of long-term average spectra at higher frequencies [121], with

Krause showing a deceased spectral tilt. The second formant displacement from the target has been

shown to be significantly less in clear speech; specifically, Picheny found that formant displacement

was dependent on vowel duration more for lax vowels for both habitual and clear speech [173],

and Moon found more variation of formant frequencies in lax vowels [149]. Additionally, Godoy

compared the averaged short-term spectral envelope of clear and habitual speech [66], which showed

that clear speech has higher energy in two frequency bands: [2000, 4800] and [5600, 8000].

Phonological studies showed: 1) vowel reduction (e.g., vowels becoming shwa-like), 2) degem-

ination (e.g., two similar phonemes merged into one sound), and 3) alveolar flaps occurred more

often in habitual speech [119]. In contrast, bursts of the stop consonants in word final position

tended to be released more often, and the sound insertion of a schwa after a voiced consonant

occurred more often in clear speech [173, 121].

In conclusion, existing studies show the main acoustic differences between clear and habitual

speech as: 1) increased F0 mean and range of clear speech relative to habitual speech, 2) longer

phoneme duration in clear speech, 3) increased amplitude modulation for clear speech, 4) increased

vowel spaces in clear speech, 5) higher energies at higher frequency regions in clear speech, and 6)

phoneme insertions (e.g., schwa) occur more often in clear speech.

In the next section, I discuss the contribution of the features to speech intelligibility.
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Figure 2.1: Hybridization method to investigate the acoustic cause for the improved intelligibility
of clear speech (CLR). HAB denotes habitual speech. The features in consideration are duration
(D), energy (E), intonation (I), and spectrum (S).

2.2 Acoustic Features and Speech Intelligibility

The correlation between changes in certain acoustic features (e.g., fundamental frequency) and

speech intelligibility have been considered [77]. The relationship between stimulus variability and

spoken word recognition has also been investigated [190]. Moreover, a hybridization method (as

shown in Figure 2.1) has been used to examine the acoustic causes of intelligibility gain in clear

speech [203] and slow speech [27]. I review the relationships between different prosodic and spectral

features and speech intelligibility. I do not limit the review to the intelligibility of clear speech,

but I summarize general studies of acoustic features and speech intelligibility [190, 26, 77, 27, 203].

2.2.1 Prosodic Features

Fundamental Frequency (F0)

Fundamental Frequency (F0) studies show no correlation between mean F0 and sentence intelli-

gibility when considering gender [26]. Other studies show decreased or increased F0 values with
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a global percentage of 10, 20, or 30%, which did not have any impact on word identification

rate [189]. A phonetic relevance hypothesis reported that F0 mean is not relevant to intelligibil-

ity [189]. In other research, the range of F0 (the difference between maximum F0 and minimum

F0) showed significant correlations with sentence intelligibility for one out of 20 speakers [26]. In

contrast, another study showed that the correlation between F0 range and word intelligibility is

not significant [77]. The differences between the these studies include 1) speech material (sentence

versus word intelligibility), 2) measurement of F0 values (logarithmic versus linear scale), and 3)

speakers.

The role of F0 as an important hint for English phoneme identification remains arguable.

English vowels can be described in terms of the frequencies of the lowest three formants and

formants transitions, regardless of F0 values. Similarly, other findings also confirmed that phoneme

identity of non-tonal languages such as English is virtually independent of F0 [168]. In contrast,

other findings showed that the distance between F0 and F1 affect the perception of vowel height.

Although the mean F0 values of clear speech tends to be higher, the relationship between F0 and

intelligibility remains debatable.

Energy

There were two types of energy measurements that were considered: 1) the consonant-vowel ratio

(CVR), which is the relative energy ratio between consonants and neighboring vowels, and 2)

overall energy, which is the average energy of speech signal. One study found that the artificial

amplification of the CVR can improve intelligibility (on the order of 10 percentage points) at

both the VCV word and nonsense sentence-level [78]; however, this study did not specify which

consonants to amplify or the specific level of amplification. Although there is an increased CVR

in clear speech due to stop release burst and fricatives [25], the CVR may not be a contributing

factor to the increased intelligibility of naturally spoken speech. However, artificial amplification

of the CVR was effective for intelligibility improvement.

In contrast, overall energy or intensity was reported to significantly affect intelligibility [63].

Overall energy is not a factor of interest; therefore, most studies normalize the overall ampli-

tude for both habitual and clear speech to the same level. Even after normalizing energy, clear

speech is still more intelligible than habitual speech, which indicates that other features cause im-

proved intelligibility. In a recent study, Brenk investigated the effect of root-mean-squared (RMS)

energy on intelligibility gains and losses of slowed speech, using a hybridization technique [27]

(Figure 2.1). He concluded that the RMS energy trajectory was an important contributing factor

to the increased or decreased intelligibility of slowed speech for people with dysarthria secondary



13

to Multiple Sclerosis.

Duration

A variety of studies looked at the effect of phoneme, word, and sentence-level duration on speech

intelligibility. One study reported a positive correlation between monosyllabic word duration and

word-level intelligibility [77]. In contrast, another study showed no correlation between speaking

rate, which was measured from overall sentence duration, and sentence-level intelligibility [26].

Natural and artificial changes in speaking rate resulted in impaired identification of spoken words;

this finding showed the importance of speaking rate for intelligibility [189].

When matching the speaking rate of habitual and clear speech (with differences of no more

than 25 wpm), clear speech was still more intelligible than habitual speech (59% intelligibility of

clear speech compared to 45% intelligibility of habitual speech), which showed that other features

cause the improved intelligibility [121].

Hillenbrand reported phoneme duration as an important cue for vowel identity [85]. Varying

the vowel duration of /hVd/ syllables degraded vowel identity and significantly affected the vowel

contrasts of (/A/-/O/-/2/), and (/æ/-/E/). Bradlow reported a positive correlation between stop

closure duration and rate of /d/ detection as in “walled town” [26]. They also showed that a long

duration of /s/ relative to the surrounding vowels as in “play seems” led to syllable affiliation

(“place seems”). Thus, the inter-segmental timing was concluded to be important for speech

intelligibility.

Although Hillenbrand found that the phoneme-level perceptions were less important than word-

or sentence-level perception [85], one should pay attention to inter-segmental timing in a controlled

experiment at the phoneme-level. The failure of intelligibility improvement by uniformly stretching

phoneme duration can be attributed to the disrupted naturalness of inter-segmental timing. Uchan-

ski addressed the errors in inter-segmental timing of modified speech by borrowing the phoneme

duration from clear speech [214].

Although a variety of studies have examined the relationship between speech intelligibility and

phoneme, word, and sentence duration, the findings are not consistent. Therefore, based on these

studies, conclusions that the duration (or speaking rate) alone is the acoustic cause of increased

intelligibility of clear speech cannot be drawn.

Along with clear speech, a variety of studies have investigated the intelligibility benefit from

slowed speech. Specifically, the intelligibility gain of slow speech was investigated for speakers

with dysarthria secondary to Parkinson’s disease (PD) and Multiple Sclerosis (MS) [206]. The
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comparison of intelligibility between habitual and SLOW speaking rates showed increased intelli-

gibility for both speaker groups when slowing down speaking rates. In a follow-up study, Stipanic

further confirmed the variable effects of rate reduction on intelligibility quantified by orthographic

transcription [192]. Similarly, both intelligibility gains and losses following rate reduction were

reported for a group of speakers with hypokinetic dysarthria of matching severity [140]. In an-

other work, Van investigated the effects of a number of rate control techniques [165], which did

not show an improved intelligibility with slower speaking rate at group level. However, five out

of 19 showed a meaningful increase of more than 8% intelligibility with slower speaking rates. In

a follow-up study, he examined the effect of rate control methods on intelligibility for a larger

group of 27 speakers with different types of dysarthria [164]. Compared to his previous study,

half of the participants showed a significant increase in intelligibility secondary to at least one

rate control method. However, pooling the group results over all rate control methods showed an

overall reduction of intelligibility when slowing down speaking rate. Another study showed the

same trend with scaled intelligibility evaluation for speakers with dysarthria secondary to PD and

MS [205]. A recent study also showed that sentence duration alone was not a contributing factor

to intelligibility associated with slowed rate [27] for speakers with dysarthria secondary to MS. In

conclusion, these studies focused on varying effects of rate reduction methods on intelligibility in

speakers with various types of dysarthria and neurological diagnoses, and these studies did not

have an agreement on the role of rate reduction on improving speech intelligibility.

Pauses

The pause is a part of speaking rate along with phoneme duration. Krause reported that when

controlling the speaking rate in habitual and clear speech, the pause frequency and duration

were nearly equivalent in both habitual and clear speech, which showed that pause frequency and

duration are not contributing factors to increased intelligibility of clear speech [121]. However,

the study only involved 18–29 aged listeners with normal hearing ability. It might be long pause

duration benefits people with hearing loss or elderly (over 60) listeners. Further investigation on

the topic is necessary but outside of the scope of this dissertation.

Amplitude Modulation

A variety of studies showed that temporal envelope is an important factor for speech intelligibil-

ity [51, 52]. Temporal envelope is a change in the amplitude and frequency of sound perceived by

humans over time. The researchers reported that the amplitude modulation in the range between

4 Hz and 16 Hz is the most important for sentence intelligibility, and the amplitude modulation
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as low as 2 Hz is important for phoneme identification [51, 52].

In another study, Liu examined the importance of temporal envelope and fine temporal struc-

ture on speech perception in auditory chimera speech [134], which showed that the temporal

envelope contributed more to clear speech at a high signal-to-noise ratio, while the fine structure

contributed more at a low signal-to-noise ratio. However, the auditory chimera was less intelligible

than the original habitual speech, which showed a negative influence of processing artifacts on

their findings. Similarly, modifying the temporal intensity envelope had detrimental effects on

intelligibility because of processing artifacts [122]. As a result, minimizing the processing artifacts

is necessary for a further investigation of amplitude modulation.

2.2.2 Spectral Features

Formant Frequencies

Hillenbrand investigated the important role of formant movement for speech intelligibility using

naturally produced speech, as well as synthesized speech with either original formants or flat

formants [86]. One of the findings is that synthesized speech with original formants had higher

rates of vowel identification than signals with flat formants, which showed the importance of

formant movement in vowel identification. Moreover, Smits reported that the formant transitions

related to prevocalic voiced stops were more effective than the bursts of the same stops for stop

identification [188]. They concluded that the important role of formant transition was highly

dependent on the vowel context.

In addition, Turner showed the effect of lengthening formant transitions of the stop consonants

on the synthesized syllables with hearing-impaired listeners [212], which showed that the stop

identification rates increased rapidly when stretching the formant transitions of the stop consonants

from 5 ms to 160 ms. The performance became close to perfect at a transition of 20 ms and longer

for normal hearing listeners; however, not all hearing-impaired listeners benefited from longer

formant transitions. Therefore, the advantage of lengthened formant transitions was limited by a

listener’s hearing loss [212].

In another study, Moon reported formant undershoot of the second formant frequency in vowels

/i:/, /I/, /E/ , and /ei/ to be less dramatic in the clear speech style than in the habitual speaking

style [149]. In CVC materials, the first and second formant frequencies of tense vowels reached

their target frequencies and had less variance in clear than in habitual speech. In contrast, Krause

found that the formant values extracted from the vowel midpoints were not closer to the formant

target frequencies nor less variant in clear speech spoken at habitual speaking rates (clear/normal)



16

than in habitual speech [121]. They argued that the formant contour of clear/normal speech might

have reached the formant target frequencies closer than the formant contour of habitual speech,

and measurement at one time point might not be sufficient to capture the differences.

Many researchers have been interested in the relationship between vowel space and speech in-

telligibility. They showed that speakers with larger vowel spaces are more intelligible than speakers

with reduced spaces [26, 77]. Specifically, the speakers who had wide F1 ranges (defined as the

difference between F1 for /i:/ as in “easy” and F1 for /A/ in “pot”) tended to be more intelligible

than speakers with a smaller F1 range. The F2 range (defined as the difference between F2 for

/i:/ and F2 for /O/) is significantly correlated with sentence intelligibility [26].

In another study, Ferguson concluded that steady-state formant values for back vowels, dynamic

formant movement, and duration for front vowels were important cues for the vowel identities with

young normal-hearing listeners [60].

Spectral Balance

In a variety of studies, speakers tend to raise vocal effort and overall energy to make speech more

intelligible. The process of raising vocal effort correlated with increased values of F0 and formant

amplitudes of F1, F2 and F3; moreover, the formant amplitudes in the higher range grew more

than those in the lower range [130]. Krause found narrower formant bandwidths in clear speech

than those in habitual speech at normal speaking rate of 200 wpm, which showed higher formant

amplitudes in the short-term spectra of clear speech compared with habitual speech [121]. A raised

energy in the 1–3 kHz frequency range of long-term average spectrum (LTAS) is significantly

correlated with intelligibility [121, 77]. However, Hazan found that the slope of the LTAS did

not correlate with intelligibility [77]. A recent study compared the short-term average spectrum

(STAS) of clear and habitual speech [66], which showed that clear speech has higher energy in

two frequency bands: [2000, 4800] and [5600, 8000]. In conclusion, the increased energy in 1) the

frequency range of 1–3 kHz for LTAS, and 2) the two frequency bands: [2000, 4800] and [5600,

8000] for STAS were responsible for the improved intelligibility of clear speech.

Speaker Characteristics

A number of studies showed that speech quality significantly affects speech intelligibility. The

variation in speaking style (normal, nasalized, child-directed, whispered, excited, and elongated)

presented in a single block reduced word intelligibility relative to a single speaking style [189],

which shows that the speech quality is relevant to word intelligibility. In other research, Hazan

showed that less-intelligible speakers were perceived as sounding “mumble, unpleasant, muffled,
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or weak”, relative to the more intelligible speakers [77]. However, the study also showed that the

quality dimensions of voice excitation (harsh/smooth, creaky/non-creaky, husky/not-husky) were

not correlated with intelligibility [77].

Another important contributing factor of speech intelligibility is gender difference. Bradlow and

Hazan found that female speakers were more intelligible than male speakers [26, 77]. Bradlow also

observed that female speakers featured: 1) wider F0 range, 2) larger vowel space, 3) more precised

inter-segmental timing, and 4) less frequent alveolar flapping relative to male speakers [26, 25].

However, it is unclear whether an intelligibility of 93.4% for female speakers (compared to an

intelligibility of 81.1% for male speakers) could be attributed to one factor or a combination of

these factors.

2.2.3 Combination of Features

The above studies showed high correlations between various acoustic features and speech intelligi-

bility. Note that the high correlations do not necessarily imply causality. The acoustic causes of

improved intelligibility of clear speech [95, 203] and slowed speech [27] were investigated using a

hybridization technique (Figure 2.1). In this method, researchers prepare parallel data of clear and

habitual speech. Then, they insert different components of clear speech into habitual speech to in-

crease its intelligibility. The clear components can be duration (D), energy (E), intonation (I), and

spectrum (S) (Figure 2.1). Researchers look for clear components that increase the intelligibility

of habitual speech. Moreover, these studies also looked at the combination of features. Kain found

that a combination of spectrum and duration was sufficient to improve sentence-level intelligibility

of habitual speech for one speaker; while F0, energy, phoneme sequence, and pause information

were not [95]. In a follow-up study, Tjaden investigated the acoustic variables explaining intel-

ligibility variation for two speakers with dysarthria secondary to Parkinson’s disease [203]. The

results showed that a combination of clear spectrum and duration yielded a 13.4% improvement

of transcription intelligibility; while only clear energy yielded 8.7% improvement, and only clear

spectrum yielded 18% improvement [203]. In a recent study, Brenk showed that a combination

of duration and short-term spectrum was an important contributing factor to the intelligibility

changes of slow speech for people with dysarthria secondary to Multiple Sclerosis [27].

2.3 Voice Conversion

The voice conversion framework (VC) can be used for style conversion (SC); thus, SC is closely

related to VC. VC is a process of transforming a source speaker’s speech so it sounds like a target
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speaker’s speech. In other words, the speaker-related factors of speech is mapped between source

and target speakers, while the linguistic content is preserved. Different from VC, SC techniques

are used to map style-related factors of speech between source (e.g habitual) and target (e.g clear)

speaking styles in order to improve the perceived intelligibility. Although a previous attempt in

my research group in applying a VC technique for SC achieved only a modest result [145], the VC

techniques are worthwhile to investigate for the task of SC.

In this section, I review the fundamentals of VC. Figure 2.2 presents an overview of a VC frame-

work, which contains two phases: 1) training phase, and 2) conversion phase. During the training

phase, parallel utterances, which contain pairs of utterances from source and target speakers with

the same linguistic content, are prepared. In the speech analysis step, the speech waveform of

the source and target utterances is converted into speech features (e.g fundamental frequency (F0),

and spectrum) (Section 2.3.1); then, the speech features are further analyzed into mapping features

(Section 2.3.2). The time alignment step (Section 2.3.3) aligns the sequences of mapping features

between source and target speaker. Lastly, the train mapping function step produces a mapping

function from the aligned mapping features (Section 2.3.4 and Section 2.3.5).

In the conversion phase, mapping features are obtained from a new utterance of the source

speaker. During map the features step, converted features are calculated by applying the mapping

function on the source mapping features. The final speech synthesis step produces an converted

utterance from the converted features.

2.3.1 Speech Features

In general, a vocoder is responsible for 1) extracting speech features from a waveform in the initial

speech analysis step, and 2) reconstructing a waveform from speech features in the final speech

synthesis step. The performance of the vocoding (analysis and synthesis) process determines the

best quality that VC or SC systems can achieve. Most analysis and synthesis techniques are

frame-level (frame-by-frame), which splits speech signals into small, overlapped frames to ensure

the statistical stationary of the speech features in the frames. The length of the frame can be

either constant or relative to the pitch period of the signal (known as pitch-synchronous analysis).

Different vocoders have different assumptions on speech models, which can be classified into

two main categories: 1) source-filter models and 2) signal-based models. The source-filter model

assumes that an excitation signal (related to vocal cord movement and frication noise) passes

through the vocal tract (represented by a filter) to produce speech signals. The excitation signal

(or source signal) and the filter are assumed to be independent from each other. Two commonly

used filter models are: 1) all-pole (e.g., linear predictive coding (LPC)) [13] and 2) log-spectrum
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Figure 2.2: Voice conversion framework [56]
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filters (e.g., mel-log spectrum approximation (MLSA) [91]). In the two models, a spectral envelop

filter represents the vocal tract. Although the independence between source signal and filter is

assumed, the pitch periods show up as sharp peaks and deep valleys (known as harmonics) in the

spectral envelope. Clearly, the occurrence of pitch information in a spectrum violates the inde-

pendence assumption between source signal and filter. In an attempt to alleviate the interference

between signal periodicity and the spectrum, Kawahara proposed the STRAIGHT vocoder, which

has a pitch-adaptive time-frequency spectral smoothing [106]. He updated it with the TANDEM-

STRAIGHT vocoder in order to provide a unified computation of spectrum, fundamental frequency

and aperiodicity [107]. However, Morise also proposed an improvement on STRAIGHT to address

its inefficient spectral smoothing method, which involves calculating the short-term Fourier trans-

form twice. He proposed the CheapTrick algorithm in WORLD vocoder [150, 152], which proved

to be a more efficient spectral analysis and smoothing method than that of STRAIGHT. Note that

the smooth spectrum is easier to model and manipulate.

Researchers calculated the excitation signal in a variety of rule-based methods including 1)

a pulse/noise model using periodic pulse/noise for voiced/unvoiced speech segment, 2) glottal

excitation models [36, 222], 3) residual signals [97, 195], 4) mixed excitation [167, 166], and 5)

band aperiodicity [82, 34]. In another approach, the excitation signal was predicted using deep

learning-based methods, including 1) LPCNet [219], 2) GlottDNN [4], and 3) GlottGAN [21].

In contrast to source-filter models, the signal-based models do not make any restrictive assump-

tions (e.g., independence of source signal and filter); therefore, they usually have higher quality.

The disadvantage is that they are less flexible for modification. Some examples of the model

are: 1) pitch-synchronous overlap-add (PSOLA) [157] using varying frame sizes related to pitch

to create short frames of speech signal, 2) Linear Predictive PSOLA allowing simple vocal tract

modifications [216], and 3) Harmonic plus noise models (HNM) decomposing speech signal into

harmonics (sinusoids with frequencies relevant to pitch) [193].

2.3.2 Mapping Features

Typically, the speech features (e.g. spectrum) are not effective to manipulate with mapping func-

tions in VC or SC; therefore, the speech features are further processed to calculate the mapping

features that are more suitable for manipulation. I review the commonly used mapping features

in the following.
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Spectral envelope

Researchers used the logarithm of the magnitude spectrum as mapping features, which required

more constraints for the VC mapping functions to work with the high-dimensional mapping fea-

tures [217, 194]. To emphasize the perceptual information, the frequency scales were warped to

Mel- or Bark-scale. Note that the features are highly correlated.

Cepstrum

A small set of cepstral coefficients can be used to represent a spectral envelope. To obtain the

cepstral coefficients, a discrete cosine transform was applied on the logarithm of the magnitude

spectrum. To emphasize the perceptual information, researchers warped the frequency scales of

the magnitude spectrum on Mel-scale, which resulted in mel-cepstrum coefficients (MCEP) [90].

The cepstral coefficients are uncorrelated.

Line spectral frequencies

Line spectral frequencies (LSFs) are associated with frequency and formant structure. The features

have better quantification and interpolation proprieties [169], which are preferred by statistical

methods [94]. The frame-based LSF parameters monotonically increase; therefore, they are highly

correlated.

Formants

Formant frequencies and corresponding bandwidths can be used to approximate magnitude spec-

trum [144, 229]. Due to the compactness of the features, the quality of synthesised speech is limited

when modifying the formants.

Among the mapping features, mel-cepstrum coefficients and line spectral frequencies are the

most commonly used features [148]. However, appropriate mapping features need to be both

compact and interpolable, and thus ideally suited for regression approaches that involve averaging.

Interpolability ensures that even when two or more parameter vectors are averaged, the result

remains near the manifold of possible speech; this property does not hold for MCEPs, and line

spectral frequencies. In Chapter 3, I examine novel spectral mapping features that satisfy both

compactness and interpolability; and I use the MCEPs and line spectral frequencies as baselines

to evaluate the novel mapping features.
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2.3.3 Time-alignment

Typically, a parallel corpus of utterances are used in the training phase of VC systems, which

consists of utterance pairs from source and target speakers with the same linguistic content. After

extracting mapping features from the utterances, the sequences of source and target mapping

features are aligned, which helps the source and target mapping features be equal in lengths.

Commonly, a dynamic time warping (DTW) algorithm is used to obtain the best time alignment

between each utterance pair [3, 98]. The alignment results in equally-long source and target

sequences of mapping features. The DTW alignment assumes that the same phonemes of the

speakers have similar features; however, the assumption is not always true and might result in

sub-optimal alignments, since the speech features are not speaker-independent.

The impact of the frame-level alignment on the performance of VC mapping is investigated in

a number of studies, especially when one frame aligns with multiple other frames[156, 81, 67, 146].

The findings showed that a combination of DTW and a simple voice activity detection (VAD)

technique achieved a successful alignment [81]. Other studies reported to filter out the source-

target training pairs that are unreliable, based on a confidence measure [211, 178]. The time-

alignment process is typically independent from training mapping function between source and

target features, which may lead to sub-optimal results of the two processes. Therefore, a recent

study examined a sequence-to-sequence model with attention in learning the time-alignment and

a mapping function, simultaneously [199].

2.3.4 Spectral Mapping

After time-alignment, the VC mappings must be learned to represent the relationship between

the source and target spectral (mapping) features. Given the source mapping features Xtrain =[
xtrain1 , ...,xtrainN

]
and target mapping features Ytrain =

[
ytrain1 , ...,ytrainN

]
, x> = (x1, ..., xD)

and y> = (y1, ..., yD) are D-dimensional vectors, the goal of the training stage is to build a

mapping function F : Ytrain = F
(
Xtrain

)
. At conversion time, an unseen source features

X = [x1, ...,xNtest ] of length N test is transformed by the mapping function F into estimated

target features Ŷ (as in Equation 2.1).

F (X) = Ŷ = [ŷ1, ..., ŷNtest ] (2.1)

Generally, the mappings are performed frame-by-frame, which means that each frame is mapped

independently of other frames ŷ = F (x). To model the time-dependence of speech frames, recent

models often consider more context to go beyond the frame-by-frame mapping.
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Codebook Mapping

Abe used vector quantization (VQ) to reduce the number of source-target pairs in an optimized

way [3]. During the training phase, he formed a codebook with M code vectors using hard clustering

on source and target features separately. The code vectors were denoted as cxm and cym for source

and target features, for m=[1, ...,M ] respectively. At conversion time, the closet centroid vector

of the source codebook cxm was retrieved and the corresponding target codebook cym was selected.

FVQ (x) = cym (2.2)

where m = argη=[1,...,M ]min d
(
cxη ,x

)
.

The advantage of the VQ approach is its compactness due to the use of clustering approach

to determine the codebook. The disadvantage is the discontinuity of generated feature sequences.

The disadvantage was alleviated by using a large codebook, which requires more parallel data.

The quantification error was reduced using fuzzy VQ, which utilizes soft clustering [184, 12, 211].

Given an unseen source feature x, a continuous weight wxmis computed for each codebook using a

weight function. The mapped feature is a weighted sum of the centroid vectors

FfuzzyVQ(x) =

M∑
m=1

wxmcym (2.3)

where wxm = weight(xxm, c
y
m).

The weight function was calculated using a variety of methods: 1) Euclidean distance [184], 2)

phonetic information [186], 3) exponential decay [11], 4) vector field smoothing [76], 5) statistical

approaches [129]. The traditional VQ is a special case of fuzzy-VQ, where only one centroid has a

weight of one, and the rest have zero contribution.

Mixture of Linear Mappings

Instead of using centroid vectors, Valbret proposed the linear multivariate regression (LMR) which

linearly transforms source mapping features x into target mapping features [217].

FLMR (x) = Amx + bm (2.4)

where m = argη=[1,...,M ]min d
(
cxη ,x

)
, and Am and bm are regression parameters. Similar to VQ,

the disadvantage of the approach is the discontinuity in the predicted features when the clusters

change between neighboring frames. Inspired from fuzzy-VQ, the linear regression was updated to

solve the discontinuities

FweightedLMR (x) =

M∑
m=1

wxm (Amx + bm) (2.5)
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where wxm = weight(cym,x).

To estimate the parameter of the mapping function, Kain proposed a joint-density of the source-

target mapping feature vectors, called joint-density Gaussian mixture model (JDGMM) [97]. A

joint feature vector zt =
[
x>t ,y

>
t

]
is created from a source mapping feature xt and a target mapping

feature yt. He then fits a Gaussian mixture model (GMM) to the joint data. A known issue of

GMM-based mappings is to generate speech with muffled quality. The reason is that generated

features are averaged; resulting in wide formant bandwidths in the converted spectra. This problem

is also known as over-smoothing, because the converted spectral envelops are smoothed. Post-

processing techniques were used to compensate for the over-smoothing issue [207, 208, 196].

Neural Network Mapping

Typically, the association between source and target mapping features is complex and not linear.

To represent the non-linear relationship, researchers used artificial neural networks (ANNs). ANNs

have a number of neurons which are grouped into multiple layers. An ANN performs a non-linear

mapping function with the form of y = f (Wx + b) where f is called the activation function (e.g.,

sigmoid, tangent hyperbolic, rectified linear units, or linear function). ANNs have two (or more)

layers, which is defined as

FANN (x) = f2 (W2f1 (W1x + b1) + b2) (2.6)

where Wi, bi, fi represents the weight, bias and activation function for the ith layer, respectively.

ANNs with more than two layers are called deep neural networks (DNNs). The sizes of initial

input and final output layers are constant, which depends on the size of source and target mapping

features. However, the sizes of the intermediate layers are empirically decided.

Narendranath attempted to use ANNs to map formant frequencies [161]. Later, Makki used

principal component analysis to calculate a compact representation of speech features as mapping

features [136]. Desai investigated the performance of a three-layer ANN in mapping mel-cepstral

features [42]. Moreover, a variety of ANN architectures was examined for VC mapping including: 1)

Feedforward architecture [42, 14], 2) restricted Boltzmann machine [33], 3) joint architectures [33,

147], and 4) recurrent architectures [160]. Generative models were investigated in VC such as 1)

Generative adversarial network (GAN) models [102, 103] and variational autoencoders [19, 87]. To

capture long-term dependency information, Xie used sequence error minimization instead of frame

error minimization [227]. Another way to model time dependency is to use RNNs, which implicitly

model temporal behavior by looking at information from previous input frames in addition to

current input frames [159, 160]. Kameoka investigated convolution sequence-to-sequence (seq2seq)
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models in VC mapping, which convert not only spectral aspects but also prosodic aspects of source

speech, simultaneously [100]. In a follow-up study, Tanaka improved the performance of the seq2seq

models using attention models [199].

Frequency Warping Mappings

Motivated by the differences of formant frequencies, formant bandwidths and energies in each

frequency band between different speakers, researchers focused on the manipulation of formant

location, formant bandwidths and energy in certain frequency bands. The advantage of this ap-

proach is to accept high-dimensional mapping features (e.g., harmonic vocoders), which provide

higher speech quality compared to more compact vocoders (e.g., LSF vocoders). Specifically, the

conversion of source spectral features into target spectral features is achieved by warping the fre-

quency axis to adjust formant location and bandwidth, and then adjusting the energies in each

frequency band [57, 58].

There have been a variety of attempts to use frequency warping mappings in VC. Valbret

conducted the mapping directly on log-spectral features, which subtracted the source spectral

tilt before warping, and added the target spectral tilt after warping to the log-spectrum [217].

In another study, source formant frequencies and bandwidths were converted to match target

values [144, 210]. Other researchers investigated a number of vocal tract length normalization

(VTLN) techniques. Sundermann examined piece-wise linear, power, quadratic, and bi-linear

VTLN functions [194]; while Morley estimated VTLN parameters using an iterative algorithm [154].

In addition to formant information, the average energy of spectral bands is an important

factor of speaker individuality. Typically, researchers subtracted the source spectral tilt before the

frequency warping, then they added the target spectral tilt to take care of the average energy. In

another study, Tamura applied a simple amplitude scaling to shift the average energy of source

speech [198]. In a different approach, Godoy combined frequency warping and amplitude scaling

to add more degrees of freedom to the mapping [68, 69].

There have been numerous extensions of the frequency warping mappings such as in com-

bination with GMMs [55, 230], dictionary-based methods [185, 215], maximizing spectral corre-

lation [202], equalizing formant frequencies as preprocessing step [146], and exemplar-based ap-

proach [201].
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2.3.5 Prosodic Modeling

Although prosodic features (pitch, duration, spectral balance, energy) are important for speaker

identity [83, 154], the majority of VC literature focuses on spectral mappings. For duration mod-

elling, decision tree [39] and duration-embedded hidden Markov models [226] were investigated.

The commonly used pitch transformation is a linear transformation, which globally shifts the

source pitch contour using average and standard deviation of the source speaker’ s F0 and target

speaker’s F0.

F̂0
y

=
σy

σx
(F0x − µx) + µy (2.7)

where µ and σ represent mean and standard deviation of the log-scaled F0, F0x denotes F0 of the

source speaker, and F̂0
y

denotes predicted F0 of the target speaker [31].

In another approach, the spectral features and F0 were modelled jointly, which improved both

spectral and F0 conversion [54, 75]. In yet another study, the new F0 values were calculated from

a converted spectrum using GMM [53].

2.4 Automatic Approaches for Improving Intelligibility

An approach to increase the intelligibility of speech in adverse environments is to use noise sup-

pression and cancellation [138, 32, 113, 224, 143, 218, 92]. In this approach, noisy speech signal

is processed to emphasize the speech components and alleviate the noise components (see Sec-

tion 1.1.2). The approach requires noise cancellation devices (e.g., noise cancelling headphones)

for users, which takes as input a noisy speech signal and outputs an enhanced signal with higher

intelligibility and quality.

However, noise cancellation devices are not always available for users. Another approach is

to alter the speech signal prior to presentation in a noisy environment; these techniques can be

classified into several categories, including utilizing audio and signal properties such as amplitude

compression [163], dynamic range compression [20, 22], peak-to-rms reduction [177], and formant-

enhancement [28]. Other techniques exploit the knowledge of a noise masker such as optimizations

based on a speech intelligibility index [180] or glimpse proportion measure [197, 200].

There are also techniques that consider the intelligibility gains due to a clear speaking style [172,

60, 59], inspired by the acoustic characteristics of clear speech such as spectral flattening and vowel

space expansion [8, 66]. In this section, I review the intelligibility improvement techniques that

modify speech signals prior to presentation in noisy environments. The techniques can be classified

into two main groups: 1) rule-based techniques, and 2) statistical techniques.
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For rule-based techniques, Gordon showed that elderly listeners have difficulty processing brief

consonant cues such as burst portions of stops [74]. Therefore, they increased the intensity of

the consonants in consonant-vowel (CV) syllables to improve the consonant identification rate.

Successful results were achieved by intensifying the consonant energy in CV and vowel-consonant-

vowel (VCV) sequences for normal hearing listeners [71, 77] and hearing-impaired listeners [72].

Hazan adjusted the degree of amplification of the burst and aspiration to improve the intelligibility

of nonsense sentence materials [77]. In another approach, intensifying the CV ratio (known as

energy redistribution) using voiced/unvoiced information as well as increasing the spectral energy

center of gravity by high-pass filtering increased monosyllabic word intelligibility over unmodified

speech [187]. However, Gordon showed that lengthening only consonant duration in CV syllables

was unable to affect intelligibility for normal-hearing listeners aged 65–72 [71]. In the same study,

consonant identification was improved by a combination of intensifying the consonant energy and

lengthening consonant duration.

It was found that extending pause duration for people with hearing loss [214], and inserting

additional pauses between words in a sentence for both young and elderly people with or without

hearing loss [73] did not benefit intelligibility of meaningful sentences. In contrast, Liu reported

an 13% absolute improvement of intelligibility by inserting pauses between words, and normalizing

root-mean-squared (RMS) energy of the speech [134]. However, the author did not exclude pauses

when calculating RMS energy, which resulted in increased energy as well as an increased signal-to-

noise ratio of the speech. Therefore, the absolute improvement could be attributed to the increased

signal-to-noise ratio instead of the inserted pauses.

Other studies focused on modifying the modulation of spectral envelope. Narne increased the

depth of modulation of the speech envelope by 15 dB, which resulted in an improved consonant

identification rate by listeners with auditory neuropathy [162]. Kusumoto showed that modulation

enhancement of the temporal envelope from 1 to 16 Hz improved consonant recognition rates by

6% points in a reverberant condition with normal hearing listeners [124]. However, the word-level

success of the modulation enhancement techniques does not necessarily transfer to sentence-level

success [78].

Inspired by the acoustic changes of clear speech, Godoy combined spectral shaping and dynamic

range compression to expand the vowel space, which resulted in improved intelligibility in several

signal-to-noise ratios [66]. The disadvantage of the technique is the trade-off between naturalness

and intelligibility. In fact, the quality of their modified speech degraded perceptually because their

spectral modification could not be achieved by humans. Moreover the simple modifications may

overlook important features that impact speech intelligibility.
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In addition to rule-based techniques, researchers attempted to use statistical techniques for

intelligibility improvement. Kain attempted to use Gaussian mixture model (GMM)-based voice

conversion to transform the vowels of speaker with dysarthria to closely match the vowel space of

a non-dysarthric (target) speaker, which resulted in improved intelligibility of dysarthric vowels

of one speaker [96]. Previously, hybridization was utilized to investigate the acoustic causes of

improved intelligibility in clear speech [95, 203] (see Section 2.2), which reported that it should

be possible to automatically increase the intelligibility of speech by learning a mapping between

habitual and clear features, or SC. However, a previous mapping experiment, which utilized a

GMM, only showed very modest improvements, and was conducted only on vowels [145]. The

mappings can be limited by: 1) inappropriate mapping features, and 2) over-smoothing problem

of the mapping techniques [207], which introduced artifacts to the modified speech as well as

degrading the naturalness of modified speech. I address the limitation of mapping features in

Chapter 3; and I address the over-smoothing issue of mapping techniques in Chapter 4.

2.5 Speech Intelligibility Assessment

Speech intelligibility assessment focused on the performance of listeners when speech is presented

in noisy environments [116]. Specifically, researchers evaluated speech intelligibility in different

levels, including 1) phoneme-level intelligibility such as phoneme identification accuracy [51, 52],

vowel identification accuracy [212, 86], stop consonant identification accuracy [188], consonant

identification accuracy [71, 74, 162], 2) word-level intelligibility such as word identification accu-

racy [189], and 3) sentence-level intelligibility such as sentence transcription accuracy [205], keyword

recall accuracy [27]. It’s important to note that phoneme-intelligibility cannot be used to predict

sentence-level intelligibility [7]. Additionally, Horvitz evaluated speech intelligibility using a intel-

ligibility preference test [9]; specifically, they evaluated speech intelligibility of a system relative to

another system. In Chapter 3, 4, and 6, I utilize the keyword recall accuracy test to evaluate the

performance of spectral style conversion. In Chapter 5, I utilize the intelligibility preference test.

2.6 Conclusion

In this chapter, I reviewed the studies on 1) the acoustic differences between habitual and clear

speech, 2) the contributions of acoustic features to speech intelligibility, 3) fundamentals of voice

conversion techniques, 4) speech modification techniques for intelligibility improvement, and 5)

evaluation methods for speech intelligibility. The spectrum and duration proved to be important
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contributing factors for increased intelligibility of clear speech. Researchers attempted to convert

the spectral envelope of habitual vowels to closely match the spectrum of clear vowels, which

resulted in modest results. The modest results can be attributed to 1) inappropriate acoustic

features for mappings, and 2) over-smoothing problem of the mapping techniques, which introduced

artifacts to the modified speech as well as degraded its naturalness. I will address these two

limitations in the upcoming chapters in order to improve the performance of SC mappings.



Chapter 3

Spectral Features for Voice and Style

Conversion

In this chapter, I contrast two new sets of spectral mapping features: 1) probabilistic peak track-

ing (PPT) features, which are formant-like hand-crafted features (Section 3.1), and 2) manifold

features, which are machine learnable by a Variational Autoencoder (Section 3.2).1 The two sets

of features are integrated into an existing high quality vocoder, WORLD. I extensively evaluate

the two sets of features by comparing them to each other and to two baselines in three different

tasks: speech reconstruction (Section 3.3), voice conversion (Section 3.4), and style conversion (Sec-

tion 3.5). The baselines are two commonly used spectral representations: line spectral frequency

and mel-cepstrum coefficients.

3.1 Probabilistic Peak Tracking Features

Motivated by the importance of formant frequencies and formant bandwidths on speech intelli-

gibility (see Section 2.2), I propose formant-like hand-crafted features that are the frequencies of

the peaks in the magnitude (energy) spectrum. Moreover, I assume that the peak frequencies

change slowly and continuously over time, which ensures the smoothness of the peak frequency

contours. This assumption, however, sometimes causes the peak frequency contours not to pass

through spectral peaks. Therefore, peak bandwidths are used to represent the presence or absence

of magnitude peaks: a wide bandwidth represents the absence of a peak at that frequency, while a

narrower bandwidth represents the presence of a peak. As a result, a spectrum is represented by

a small number of peaks frequencies and corresponding peak bandwidths.

1In this chapter, Section 3.1 was part of my qualifying exam and is not published. The remaining sections are
based on a paper published in Interspeech [44], Using a Manifold Vocoder for Spectral Voice and Style Conversion,
Tuan Dinh, Alexander Kain, Kris Tjaden.
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Specifically, I use nine peak frequencies to represent the speech spectrogram. These nine peak

frequencies consist of one glottal formant frequency [23], four peak frequencies in the lower fre-

quencies and the other four in the higher frequencies. The glottal formant frequency is linear

proportional to fundamental frequency [47]. In vowels, such as /a/, the four low-band peak fre-

quencies are important because they are intended to capture the first four formants. In some

consonants, the low-band peak frequencies are not as informative as high-band peak frequencies.

For example, in frication such as /s/, the low band frequencies are not informative; while, the high

band frequencies are informative. When a peak bandwidth is very wide, the peak frequency is

probably not informative.

In the rest of this section, I calculate an initial estimation of peak frequencies using the statistic

of formant frequencies in each phoneme category (Section 3.1.1). I examine how the formant

frequencies change with respect to the change in the spectrogram; I want my peak frequencies

to change as rapidly as the formant frequencies (Section 3.1.2). Using the initial estimation of

peak frequencies and how rapidly peak frequencies change over time, I compute the nine peak

frequencies on a spectrogram (Section 3.1.3). One can improve the results of the primary tracking

using a secondary tracking (Section 3.1.4). After obtaining the peak frequencies, I estimate their

corresponding peak bandwidths to reconstruct the spectrogram (Section 3.1.5). I present how to

integrate the PPT feature in a vocoder (Section 3.1.6).

3.1.1 Initial Peak Frequencies

In this section, I estimate initial values for the peak frequencies. The initial peak frequencies add

a global constrain that will be used by the tracker in Section 3.1.3.

I used the WORLD magnitude spectrogram [152]. The spectrogram is smoothed in both time

and frequency domain; and the smoothness reduces spurious peaks created by pitch and harmonics.

It brings an advantage for peak tracking based on the magnitude spectrogram when the dominant

peaks become clearer than those peaks created by harmonics.

I first calculate the histograms for each formant frequency in each phoneme category in a

TIMIT formant database [41], which provides phoneme labels, phoneme boundaries, and the first

four formant frequencies F1–4. Figure 3.1 shows the histogram of the formant frequencies for the

phoneme /a/ and the corresponding modes. I select the mode of the histogram of each formant

frequency for each phoneme category as the initial estimate of the four low-band peak frequencies.

For the initial estimate of the four peak frequencies in the high band, I do not have formants for

them in the database. Instead, I select equally spaced values (5000, 6000, 7000, 8000 Hz). Finally,

I add an initial estimate of glottal formant frequency at 200 Hz. As a result, each spectrum in
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Figure 3.1: Histogram of the first 4 formant frequencies F1–4 of phoneme /a/ with 4 modes

a phoneme category k is represented by a 9-dimensional vector mk consisting of four low-band

frequencies, four high-band frequencies, and one glottal formant frequency. During testing, given

a phoneme label, one can retrieve the nine formant frequencies and use them as the initial peak

frequencies.

In real-life applications, however, the phoneme labels are not always available. Therefore, I

built a phoneme classifier. The classifier receives as input acoustic feature Xt and outputs the

posterior probability p(k|Xt) of Xt belonging to phoneme category k.

The classifier is based on the work of Song [223], a convolution neural network (CNN)-based

phoneme classifier.2 The network’s structure (see Figure 3.2) consists of four convolution layers

with sizes 128, 256, 384, and 384. The first two convolutions layers have max pooling of size (2×2).

The filter sizes of the convolution layers are (3× 5), (3× 5), (3× 3), (3× 3), respectively. I select

padding schemes for the convolution layers as valid, valid, valid, same, respectively. The convo-

lution layers are dedicated to extract meaningful features from a time-frequency representation of

speech. A speech spectrum is represented as 32 log-Mel filter-banks. I stack 12 frames before and

after the current frame to make a 25 ×32 input image of the spectrogram. As a result, the input

2My implementation differs from his in that I used one less convolution layer and one less dense layer. I also
specify the padding scheme and early stopping.
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Figure 3.2: CNN architecture for phoneme classification
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size for the CNN is (25 × 32). For the frames near the beginning or the end of sentences, I copy

the first or the last frame, respectively. The convolution layers are followed by 2 densely connected

layers with the sizes 1024 and 512, and finally a sigmoid layer for phoneme classification, generat-

ing a phonetic posterior-gram. Parametric ReLU is used as activation functions for all layers. To

help parametric ReLU work effectively, batch normalization layers are applied before parametric

ReLU. To avoid over-fitting, dropout layers are applied after the convolution and dense layers with

a dropout rate of 20%. The Adam optimizer [114] is used to optimize the categorical cross-entropy

function. Early stopping is used to stop the training process when there is no progress in the

validation set.

I trained the classifier on the TIMIT formant database, which has 35 phoneme categories [41].

The 630 speakers in TIMIT are divided into train/validation/test as 462/144/24 designated speak-

ers. I eliminate the spoken dialect samples for all speakers. I use a data generator to train the

model on one sentence at a time. The frame error rates for validation and test were 21% and 22%,

respectively, which is very close to the state-of-the art performance [223].

Using the phoneme classifier, the initial peak frequencies of each spectrum can be obtained

as weighted sum of posterior probability p(k|X (t)) and the nine formant frequencies of phoneme

category k as follows:

ˆpeak(t) =

K∑
k=1

mk · p(k|X (t)) (3.1)

where mk is the mode (or the basic vector) of formant frequencies of class k, and p is the posterior

probability that an acoustic vector X (t) at time t belongs to class k. The Equation 3.1 says that

the values ˆpeak(t) does not change when two frames are in the same phonetic classes k. It happens

at the middle of a phoneme when the evidence of the phoneme class p(k|X (t)) is high. When those

frames are at the transition of two phoneme classes, the likelihood of previous phoneme fades out

while that of the next phoneme fades in. It creates a smooth transition of peak frequencies between

two phoneme classes. During the peak tracking, I assume peak frequencies on a spectrum should

not be far away from the initial peak frequencies. An example of the initial peak frequencies are

shown as dashed blue lines in Figure 3.3.

3.1.2 Spectral and Formant Frequency Change

In this section, I use the TIMIT formant database to examine the relationship between how the

spectrogram changes from one time point to the next and how the formant frequencies change as

well. The results of the analysis will be used in the next section when I track the peak frequencies.

To represent the spectral change, I define the average absolute difference between the features
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Figure 3.3: Initial peak frequencies (dashed blue lines) and final PPT results (solid red lines)

of two consecutive non-overlapping normalized (i. e. means are subtracted from) log-spectra as

follows:3

SC(t) =
1

256

∑
|SPEC(t+ 2)− SPEC (t) | (3.2)

in which, the scalar SC(t) is the spectral change at time t; SPEC(t) and SPEC(t + 2) are log-

spectrum from 0–4 kHz at time t and t+2, respectively; SPEC(t) has a length of 256. The reason

for using a length of 256 is that I apply a Fourier transform with a length of 1024 on 16 kHz speech

signals on my corpus; therefore, a spectrum has a length of 256 to represent 4 kHz.

To represent the formant change, I also define the average first-order difference between first

four formant frequencies F1–4 as the formant change (FC) as follows:

FC(t) =
1

4

∑
|formant(t)− formant(t− 1)| (3.3)

in which the scalar FC(t) is the formant frequency change at time t; formant(t) and formant(t−1)

are the vectors of the first four formant frequencies at time t and t− 1, respectively; the formant

frequencies are the first four formant frequencies available in TIMIT dataset (Section 3.1.1).

For each audio file in the TIMIT dataset, I calculate the SC and FC. I fit a linear model

FC = α× SC with intercept set to 0 to obtain a linear coefficient (slope) α = 0.7 as in Figure 3.4.

3I calculated the difference between frames at time t and t+ 2, since two consecutive frames are 50% overlapped.
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Figure 3.4: distribution contour (orange line) of spectral change (spectral discontinuity) SC and
formant change (peak discontinuity) FC

I assume the peak frequency PC change is the same as the formant frequency change FC. It does

make sense to apply alpha to the lower four, but I use this for all nine peak frequencies. In testing,

with a given spectral change SC(t) at time t, I calculate the peak frequency change P̂C(t) at time

t, which represents how rapidly the peak frequencies shift, as follows

P̂C(t) = 0.7× SC(t) (3.4)

3.1.3 Primary Peak Tracking

In this section, I calculate peak frequencies using a probabilistic peak tracking procedure taking

as inputs a spectrogram, initial peak frequencies (see Section 3.1.1) and how rapidly the peak

frequencies change (see Section 3.1.2). The peak tracking procedure involves an observation prob-

ability of a peak frequency having a value of f Hz, a transition probability of a peak frequency to

change from one point to another point, and the Viterbi algorithm.

First, I calculate the observation probability. I consider a normalized WORLD log-spectrogram

norm-spec as the probability of a frequency f being a peak frequency:

p (f is a peak frequency|norm-spec(t)) = norm-spec (t, f) (3.5)
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where 1 ≤ k ≤ 9 . I assume that the initial peak frequencies peakk(t) follows a normal distribution

with the initial peak frequencies ˆpeakk(X (t)) as means;

p (peakk (t) |X(t)) ∼ N
(
peakk (t) ; ˆpeakk(t), σ

)
(3.6)

of 500 Hz. I do not use a pre-defined, speaker-independent range to search for a peak frequency.

I define an observation probability of a peak frequency having a value of f as follows:

p (peakk (t) = f) = p (f is a peak frequency|norm− spec(t))× p (peakk( t )|X(t)) (3.7)

Second, I calculate the transition probability. Recall that I assume that the peak change P̂C of

peak frequencies from one point to another is not high and it should be proportional to the change

SC on a spectrogram. I define the transition probability of peak frequencies peakk from time t to

t− 1 with 1 ≤ k ≤ 9 as follows:

p (peakk(t)|peakk(t–1)) ∼

1 |peakk(t)− peakk(t–1)| < P̂C(t)

N
(
|peakk(t)− peakk(t–1)|; P̂C(t), 500Hz

)
otherwise

(3.8)

where P̂C(t) = 0.7× SC(t) (see Equation 3.4).

Third, with the above observation and transition probability, I use the Viterbi algorithm to

track the peak frequency trajectories individually except I track the glottal formant frequency and

the first peak frequency jointly because the two frequencies are close to each other. I first track

lower frequencies, then higher ones. A result of the probabilistic peak tracking is shown as solid

red lines in Figure 3.3.

3.1.4 Secondary Peak Tracking (Optional)

A speech spectrum could have more than nine peak frequencies. By tracking more peaks (which I

referred to as secondary peaks), the spectrum can be represented more precisely. The secondary

peak tracking is optional because primary peaks are probably sufficient in modeling speech spec-

trum. The secondary peaks could be tracked in a secondary path and forced to be between primary

peaks. I do not explore this in this work.

3.1.5 Bandwidth Computation

In this section, I explain how I compute the peak bandwidths. Peak bandwidth is computed in an

iterative process so that the computed peak bandwidth and peak frequencies can best reconstruct

the original spectrum using an all-pole model.
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To calculate the range of the peak bandwidths, I use the widely-used formula of formant

bandwidths:

bw =
− log r

π
· Fs (3.9)

where Fs is the sampling rate, r is the pole location; r ∈ [0, 1]. As a result, I have bw ∈ (0,+∞).

I define a loss function that can be used in a iterative process for calculating bandwidths

bw ∈ (0,+∞) as follows:
1

512

∑
w (orit − g · synt)

2 (3.10)

in which, orit is a original spectrum, synt is a frequency response of an all-pole filter with the filter

coefficients calculated from the peak frequencies peak(t) (see Section 3.1.3) and the peak band-

widths bwt (see Section 3.1.5) at time t. I normalize the 9-dimensional frequency vector peak(t)

and I add 2 extra real poles (zero and one) to peak(t) as a requirement of my implementation of

an all-pole filter.

The scalar g is used to equalize the root mean square energy (RMSE) of orit and synt, and it

is calculated as follows:

g =
RMSE(orit)

RMSE(synt)
(3.11)

Moreover, I define an error weight vector w to emphasize the errors at the peak frequencies as

follows:

w = 0.5 + 0.5 · orit −min(orit)

max(orit)−min(orit)
(3.12)

I use the L-BFGS-B algorithm [29, 228] to search for the best values of bandwidth bwt in

(0,+∞) that minimize the loss in Eq. 3.10.

3.1.6 Integrating PPT Features into a Vocoder

I integrate PPT into the WORLD vocoder [152, 150], but it can be integrated into other vocoders

(for more details about vocoders, see Chapter 2). First, I extract fundamental frequency, mag-

nitude spectrogram, and aperiodicity using the WORLD vocoder. Second, the peak frequencies

and corresponding peak bandwidths are computed from the magnitude spectrogram. Third, the

magnitude spectrogram is reconstructed from peak frequencies and peak bandwidths using all-pole

model. Finally, I synthesize speech from fundamental frequency, reconstructed spectrogram, and

aperiodicity (Figure 3.5).
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Figure 3.5: Integrate PPT into WORLD vocoder

Figure 3.6: Integrate VAE into WORLD vocoder

3.2 Manifold Features

I propose a new type of feature that is both compact and interpolable, and thus ideally suited for

regression approaches that involve averaging. Both compactness and interpolability are realized

through projection of high-dimensional acoustic features onto a lower-dimensional manifold that

is learned from a large multi-speaker database of speech data. Thus, the features are specialized

to only model acoustic events related to speech, as opposed to music or other sources. Moreover,

interpolability ensures that even when two or more parameter vectors are averaged, the result

remains near the manifold of possible speech; this property does not hold for MCEPs, linear

predictive coefficients, or the log-magnitude discrete-time Fourier spectrogram. Manifold learning

is implemented with the use of a variational autoencoder.

3.2.1 Variational Autoencoder

The variational autoencoder (VAE) is a latent variable generative model, which combines varia-

tional inference and deep learning [115]. The latent variable generative model pθ(x|z), also called

a decoder, is a deep neural network (DNN) with parameters θ. The inference model qφ(z|x), also

called the encoder, is represented by another DNN with parameters φ. The latent variable z is a

compact representation of the observation x, generated by an encoder mapping the input space

into its corresponding latent space. In this section, the VAE encoder predicts the mean µz and log-

variance logσ2
z of the posterior distribution qφ(z|x) from a 39-dimensional input vector (as shown

in Figure 3.7). The decoder predicts the observation x̂ from samples of z. I learn the parameters
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Figure 3.7: Structure of variational autoencoder. This figure is based on a figure in [170]

θ and φ by maximizing the variational lower bound L (θ, φ; x) given by

L (θ, φ; x) = E
qφ(z|x)

[log (pθ(z|x))]−DKL(qφ(z|x)|pθ(z|x)) (3.13)

where DKL denotes the Kullback-Leibler divergence.

Often, the inference model qφ(z|x) is parameterized using a diagonal Gaussian distribution

N
(
z;µ, diag(σ2

z)
)
. The prior is modeled as an isotopic parameterless Gaussian distribution p(z) =

N (z; 0, I). To yield a differentiable network after sampling, I use the common technique of re-

parameterizing the random variable z ∼ qφ(z|x) as a deterministic variable z = µz +σz�ε, where

� denotes an element-wise product, and vector ε is sampled from N (0, I). Recent studies showed

the efficacy and interpolability of VAE-based latent representation in modeling and transforming

speech [88, 19, 89].

My VAE encoder consists of three fully-connected layers with 256 nodes each and a 12-

dimensional Gaussian parametric layer modeling z. No activation function is applied to the Gaus-

sian parametric layer. For other layers, I use rectified linear units. The decoder is identical except

for the Gaussian layer. I use µz as my compact representation of x. To train the VAE, I use the

TIMIT [41] dataset. Of the 630 available speakers I select all 462 speakers designated for training

and all 144 designated for validation. As is convention, I eliminate the spoken dialect samples (SA

sentences) for all speakers. I train with the Adam optimizer [114], a mini-batch size of 256, and

early stopping.
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3.2.2 Integrate Manifold Features into a Vocoder

For the initial analysis and final synthesis, I use the WORLD vocoder [152, 150]. Our process

is inserted as additional steps after analysis and before synthesis. Specifically, I first calculate

the 40-dimensional MCEP (MCEP-40) from the inverse Fourier transform of the 512-point mel-

warped log spectrogram. (Reconstruction from MCEP-40 resulted in no perceivable degradation as

compared to the vocoder using the high-resolution spectrogram.) In a second step, I subtract the

mean, calculated on the whole dataset, with the goal of reducing the channel effect of a particular

dataset (cepstral mean subtraction); I also exclude the zeroth coefficient C0, representing energy.

The resulting 39-dimensional vector is then encoded as a 12-dimensional latent representation by

the VAE, and then immediately decoded (as shown in Figure 3.7). I re-add the zeroth-coefficient

C0 unmodified. Finally, I calculate a new high-resolution spectrogram from the resulting MCEP,

and synthesize a new speech waveform, using the original fundamental frequency and aperiodicity

information (Figure 3.6).

3.3 Experiment: Reconstruction Quality

In this section, I compare Probabilistic Peak Tracking feature and manifold feature to each other

and to the baselines of line spectral frequency and mel-cepstrum coefficients (for more details

about the baselines, see Section 2.3.2) in the task of speech reconstruction. The manifold features

are realized by VAE; thus, I denote it as VAE. In addition to my proposed systems with 20-

dimensional PPT features (PPT-20), 12-dimensional VAE features (VAE-12), I also implemented

two other systems for comparison. The MCEP-12 system used 12th-order MCEP to represent the

spectrogram; here I chose the order/dimensionality to be the same as the VAE-12 system. The

LSF-20 system used 20th-order linear predictive coefficients converted to line spectral frequencies

(LSF) to represent the spectrogram, calculated using the autocorrelation method derived from the

inverse Fourier transform of the squared magnitude spectrogram. The LSF order was chosen to

produce an expected log-spectral distortion (LSD) approximately similar to that of VAE-12.

To evaluate reconstruction quality, I use the voice conversion challenge (VCC) 2016 database [209],

which features 5 male and 5 female speakers. Each speaker has 162 parallel utterances. We ar-

bitrarily selected two female (SF1, TF1) and two male speakers (SM2, TM1). Using these four

speakers and all available sentences, the mean (and standard deviation in parentheses) LSD in dB

produced by the three vocoding systems were as follows: VAE-12 8.0 (3.0), MCEP-12: 9.18 (3.0),

LSF-20: 8.7 (3.4), PPT-20: 9.37 (2.73). Objectively, it appears that the three systems are roughly

comparable. However, it is known that the LSD measure is a poor predictor of human perception.
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A
B

LSF-20 MCEP-12 VAE-12 PPT-20

NAT +0.77* +1.34* +1.02* +1.28*
LSF-20 +1.08* -0.04 +0.26*

MCEP-12 -0.44* -0.31*
VAE-12 +0.45*

Table 3.1: Relative quality between original and vocoded stimuli. Positive values show A is better
than B. Results marked with an asterisk are significantly different (p < 0.001) as compared to 0
(representing no preference) in a 1-sample t-test.

To evaluate reconstruction quality perceptually, I select the comparative mean opinion score

(CMOS) approach to compare the speech quality of the four vocoding systems and natural speech

(NAT). At each trial, participants listen to samples A and B in sequence and are then asked: “Is

A more natural than B?” Participants select a response from a 5-point scale that consisted of

“definitely better” (+2), “better” (+1), “same” (0), “worse” (−1), and “definitely worse” (−2).

For the test materials, I used 4 speakers, 32 sentences, and 4 systems and thus 6 condition pairs,

resulting in 4×32×6 = 768 unique trials. The perceived loudness differences between these stimuli

were minimized using a root-mean-square A-weighted (RMSA) measure [2].4 For the experiment,

I want each listener to hear each unique sentence only once (presentation order was randomized);

therefore I needed 768 ÷ 32 = 24 listeners to cover all trials. This and subsequent experiments

were conducted on Amazon Mechanical Turk (AMT); I required listeners to have an approval rate

≥ 90% and to live in the U. S. Table 3.1 shows the pair-wise relative quality of the systems (after

an appropriate transformation handling the random presentation order of A and B). All synthetic

systems were statistically significantly different from NAT; the difference between MCEP-12 and

LSF-20, as well as the difference between MCEP-12 and VAE-12 were also significant; the latter

shows that VAE-12 was able to code the speech spectrogram more efficiently. The difference

between PPT-20 and LSF-20 were statistically significantly, as well as between PPT-20 and VAE-

12; it shows VAE-12 outperform PPT-20 in terms of both size and perceived speech quality. The

difference between LSF-20 and VAE-12 was not significant.

From Table 3.1, it is difficult to give an ordering of the systems in terms of quality. For example,

it is easy to determine that NAT is the best system, while, MCEP-12 is the worst. It is hard to

determine the second best system between LSF-20 and VAE-12. Table 3.1 showed an insignificant

difference (0.04) between LSF-20 and VAE-12. To overcome this, I projected the non-negative

pair-wise relative quality matrix to a single dimension, using multiple dimensional scaling (MDS),

4Samples for the experiment and the next two experiments are available at
https://tuanad121.github.io/samples/2019-09-15-Manifold/
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Figure 3.8: Reconstruction quality

Figure 3.9: Voice conversion quality

a dimensionality reduction technique that attempts to preserve the pair-wise distances of data

points. Figure 3.8 shows the result. When looking at the pair-wise relative quality matrix, the

difference between LSF-20 and VAE-12 is not statistically significant. According to MDS, LSF-20

is better than VAE-12 in terms of reconstruction quality. The PPT-20 is the second worst system.

Therefore, I chose not to use PPT-20 in the upcoming experiments.

3.4 Experiment: Voice Conversion

Voice conversion is the task of converting voice from a source speaker to sound like it is spoken by

a target speaker. In this section, I compare manifold features to each other and to the baselines

of line spectral frequency and mel-cepstrum coefficients in the task of voice conversion. I use

comparative mean opinion score (CMOS) to evaluate speaker accuracy (Section 3.4.1), and speech

quality (Section 3.4.2).

I perform a voice conversion experiment using four systems based on different spectral fea-

tures: MCEP-40 (popular features for voice conversion), VAE-12 (my proposed manifold features),

MCEP-12 (dimension-matched comparison to VAE), and LSF-20 (another classic voice conversion

features). I use the same four speakers from the VCC corpus that I used in Section 3.3, and I

arbitrarily arrange them into four source/target speaker pairs (two intra-gender and two inter-

gender): SM2→TM1 (M2M), SM2→TF1 (M2F), SF1→TF1 (F2F), SF1→TM1 (F2M). I divided

the available 163 sentences into 100 training, 30 validation, and 32 test sentences.

During training, I first align all sentences of a given source and target speakers using dynamic

time warping (DTW) on 32nd-order log filter bank features. Next, I analyze sentences with all
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the systems. Finally, I train a spectral mapping from source to target features for each system.

The mapping is implemented by a deep neural network (DNN) with four hidden layers of 512

nodes each. For each layer I use batch normalization, parametric ReLu [79], and dropout (at a

rate of 20%). For the input vector, I add context by concatenating the current frame with the

five preceding and the 5 following frames. I normalize the input and outputs of the network via

standard scaling. Similar to training the VAE, I use the Adam optimizer, a mini-batch size of 256,

and early stopping, for this and subsequent mapping experiments.

During conversion of the test sentences, I first analyze the source with the vocoder, then com-

pute the desired spectral feature, and map it. In order to measure spectral mapping performance in

isolation, I create output sentences from the mapped and aligned (to the target) spectral features,

and the unmodified target energy, F0, and aperiodicity information. For the LSF-20 system, when

necessary, we sort the mapped features per frame to satisfy the required monotonicity of LSFs.

Finally, I minimized loudness differences using the RMSA measure.

3.4.1 Speaker Accuracy

Similar to Section 3.3, I use CMOS to evaluate the similarity between converted source speaker

and the target speaker. In this test, listeners hear two different sentences A and B, and are

then asked “is B spoken by the same speaker as A?” Listeners respond using a 5-point scale

comprised of “definitely same” (+2), “same” (+1), “unsure” (0), “different” (−1), and “definitely

different” (−2). One sentence is a converted sample (from source to target) and the other is

an unmodified (NAT) sample. I want to determine whether converted samples sound similar to

the target speaker (“same” condition), but sound different from the source speaker (“different”

condition). Specifically, in half of the tests (“same” condition), listeners compare modified samples

to natural speech of the target speaker. In other half (“different” condition), listeners compare

modified samples to natural speech of the source speaker. In “different condition” of inter-gender

conversions, however, listeners compare modified samples to natural speech of a speaker who has

the same gender as the target speaker. For example, in SM2→TF1 conversion (M2F), I compare

modified samples to natural speech of SF1 for the “different” condition and to natural speech of

TF1 for the “same” condition.

Our test involved 32 sentences × 4 systems × 4 conversions × 2 conditions (“same” or a “differ-

ent”) = 1,024 unique trials. The experiment was conducted on AMT (with the same requirements

as in Section 3.3) with 1024 ÷ 32 = 32 participants to cover all trials. Table 3.2 shows that VAE-12

had the best average conversion performance (0.7). I used a two-tailed t-test to compare VAE-12

to other systems and found that it was significantly different (p < 0.05) to LSF-20.
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pair
system

LSF-20 MCEP-12 MCEP-40 VAE-12

F2M 0.6 (1.2) 0.18 (1.7) 0.0 (1.4) 0.47 (1.14)
M2F 0.4 (1.2) 0.8 (1.2) 1.0 (1.17) 0.9 (1.4)
F2F 0.5 (1.17) 1.0 (1.16) 0.6 (1.19) 0.7 (1.4)
M2M -0.3 (1.3) -0.5 (1.1) 0.5 (1.2) 0.8 (1.2)

average 0.3 (1.27) 0.4 (1.4) 0.5 (1.3) 0.7 (1.4)

Table 3.2: Speaker accuracy for the same condition

A
B

LSF-20 MCEP-12 MCEP-40 VAE-12

NAT 1.8* 1.8* 1.67* 1.7*
LSF-20 0.0 -0.54* -1.08*

MCEP-12 -0.27* -0.5*
MCEP-40 -0.5*

Table 3.3: Relative quality between vocoded target and mapping, results marked with an asterisk
are significantly different (p < 0.001) in a one-sample t-test.

3.4.2 Speech Quality

I use CMOS to compare the speech quality between the four mapping systems and the NAT

condition (“is A better than B?”), using a 5-point scale comprised of “definitely better” (+2),

“better” (+1), “unsure” (0), “worse” (−1), and “definitely worse” (−2). The test involved 32

sentences × 4 conversions × 10 system pairs, resulting in 1,280 unique trials. I conducted the

listening test on AMT with 1,280 ÷ 32 = 40 listeners, with each listener hearing 32 unique sentence

materials. The results in Table 3.3 show that VAE-12 outperformed MCEP-40 and LSF-20. The

multidimensional scaling shown in Figure 3.9 shows that VAE-12 was the closest to NAT.

3.5 Experiment: Style Conversion

Different from voice conversion, style conversion is the task of converting the speech of a speaker

from a source style to sound like a target style in order to improve speech intelligibility. In style

conversion, one can convert spectral characteristics and duration characteristics of habitual speech

to clear speech (as shown in Figure 3.10). In this section and Chapter 4, I focus on converting

spectral characteristics. In Chapter 6, I present an attempt on converting duration characteristics.

First, I establish which speakers benefit from using the clear spectrum in place of habitual spec-

trum via a hybridization approach, as speakers use different strategies to produce clear speech. I

then use a keyword recall accuracy test to measure the intelligibility of hybridized stimuli, compared

with a purely-vocoded habitual condition, and a purely-vocoded clear condition (Section 3.5.2).
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Figure 3.10: Spectral mapping for converting speaking style

Second, I evaluate the efficacy of my manifold feature for the purpose of mapping habitual style

to clear style and thus improving speech intelligibility for selected speakers (Section 3.5.4).

3.5.1 Data

I use a database collected by Tjaden [204, 205]. The corpus consists of 78 speakers consisting

of typical speakers (CS, N=32), speakers with multiple sclerosis (MS, N=30), and speakers with

Parkinson’s disease (PD, N=16). All read the same 25 Harvard sentences (Appendix A) in habitual

and clear conditions (loud, slow, and fast conditions are also available). I used the speakers that

Tjaden found to have the highest intelligibility difference between their clear and habitual speech.

I imposed a minimum threshold of 20% absolute difference; this resulted in 11 speakers (6 CS, 2

MS, and 3 PD).

3.5.2 Hybridization

I first establish which speakers benefit from using the clear spectrum in place of the habitual

spectrum (via a hybridization approach), as speakers use different strategies to produce clear

speech. To this end, I measure the intelligibility of hybridized stimuli [95, 203], compared with a

purely vocoded habitual condition, and a purely vocoded clear condition. The hybridized stimuli

were created by combining the clear spectrum, aligned to the habitual style, with habitual F0, and

habitual aperiodicity information, using the WORLD vocoder. I minimized the loudness differences

of stimuli by using an RMSA measure. Finally, each utterance was mixed with babble noise at 0

dB SNR to avoid saturation effects.
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MSF7 MSF15 PDF3 PDF7 PDM6 CSM4 CSM8 CSM7 CSM6 CSF8 CSF12

vocoded HAB 68 45 5 13 30 26 42 35 30 26 18

hybrid 59 37 7 22* 55* 30 43 53* 39* 25 24

vocoded CLR 80* 53 11* 25* 56* 74* 49 65* 60* 44* 53*

Table 3.4: Average keyword accuracy. Results marked with an asterisk were significantly different
(p < 0.05) as compared to the vocoded HAB condition in a two-tailed t-test.

The speech intelligibility test design consisted of 25 sentences × 11 speakers × 3 conditions =

825 unique trials. I performed the test on AMT, wherein 66 participants listened to 25 Harvard

utterances (see appendix A), which contain five keywords each. Listeners typed out each sentence

as best as they could; their responses were subsequently manually scored. I then calculated the

average number of keywords correctly identified. Table 3.4 shows the average keyword accuracy. I

observed that spectral hybridization led to statistically significant improvements in speakers PDF7,

PDM6, CSM7, and CSM6, but also resulted in degradations for MSF7 and MSF15.

3.5.3 Mapping

I evaluate the efficacy of my proposed VAE-12 system for the purpose of mapping habitual style

to clear style and thus improving speech intelligibility for speakers that have shown to benefit

from the clear spectrum. I use the top three speakers PDF7, PDM6, and CSM7 that showed the

most benefit in the hybridization experiment. I align each habitual utterance to its parallel clear

utterance of the same speaker using DTW on 32nd-order log filter-bank features. Then, I train

speaker-dependent mappings from habitual VAE-12 to clear VAE-12, where I use two different

DNN structures. The first structure is a typical feedforward network used in the previous voice

conversion experiment (also called DNN-mapping VAE). For the second structure (also called Skip-

mapping VAE), I introduce skip connections [80], as shown in Figure 3.11; I hypothesize that the

latter structure is more appropriate when input and output are very similar as is the case here.

The use of skip-connection is motivated by the fact that the spectral difference in style conversion

is not as big as it is in voice conversion.

I create conversion stimuli consisting of the mapped VAE-12, and F0 and aperiodicity informa-

tion from the original habitual speech. To create the 25 conversion sentences, I use a leave-one-out

approach. Otherwise, network configurations and training parameters are identical to the voice

conversion experiment.
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Figure 3.11: DNN architecture with skip connection

CSM7 PDF7 PDM6

vocoded HAB 38 13 24
DNN-mapping VAE 32 13 35
Skip-mapping VAE 38 11 46 *

hybrid 56* 27* 50*
vocoded CLR 69* 23* 41*

Table 3.5: Average keyword accuracy. Results marked with an asterisk are significantly different
(p < 0.05) as compared to the vocoded HAB condition in a two-tailed t-test.

3.5.4 Speech Intelligibility

To evaluate speech intelligibility, I designed a test consisting of 25 sentences × 3 speakers × 5

conditions (2 purely vocoded, 1 hybrid, 2 mappings) = 375 unique trails. The test was conducted

similarly to the previous one in 3.5.2, except 30 listeners participated. The hybrid stimuli show an

upper bound (or “oracle” mapping) on the intelligibility for the VAE-mapping. Table 3.5 shows

average keyword accuracy. For PDM6, hybrid speech was significantly better than habitual speech

(50 versus 24). Although DNN-mapping VAE was better than habitual speech (35 versus 24),

their difference was not statistically significant. I observed that the VAE-mapping using a custom

DNN with skip connection (skip-mapping VAE) led to a statistically significant improvement for

speaker PDM6, but no significant differences in other cases, using a two-tailed t-test.

3.6 Conclusion

I proposed a compact and interpolable feature for spectral regression, implemented by a speaker-

independent VAE. In a speech reconstruction experiment, I showed that using VAE-12 achieved

significantly better perceived speech quality compared to a MCEP-12 feature. The PPT-20 did not

show advantages over VAE-12 in speech reconstruction quality. In a voice conversion experiment, I
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showed that mapping VAE-12 resulted in significantly better perceived speech quality compared to

a MCEP-40 feature, with similar speaker accuracy, thus demonstrating the efficiency of mapping in

a low-dimensional latent feature space. I also showed that VAE-12 outperformed LSF-20 in terms

of similar speaker accuracy. In a habitual to clear style conversion experiment, I showed that

VAE-12 together with a custom skip-connection deep neural network significantly improved the

speech intelligibility of one of three speakers, with the average keyword recall accuracy increasing

from 24% to 46%.



Chapter 4

Spectral Mapping for Style Conversion of

Typical and Dysarthric Speech

In the previous chapter, I utilized a feedforward network with custom skip-connection for the

style conversion task of mapping the manifold features of habitual speech to those of clear speech.

In this chapter, I further improve the performance of the style conversion mapping.1 Motivated

by the success of conditional Generative Adversarial Nets (cGANs) in machine learning, I utilize

cGANs for the style conversion task of mapping the manifold features of habitual speech to those

of clear speech. I give an overview of cGANs, I describe the application of cGANs for mapping

speaking styles, and I present my configuration for the following experiments (Section 4.1). Specifi-

cally, conditional cGANs are investigated with three mappings: one-to-one mappings (Section 4.2),

many-to-one mappings (Section 4.3), and many-to-many mappings (Section 4.4). For one-to-one

mappings, I compare the performance of cGANs-based one-to-one mappings to my manifold model

(for more details about my manifold model, see Chapter 3). For each of the three mappings, I ex-

tensively evaluate the performance of the cGANs on both typical speakers and speakers with mild

dysarthria secondary to Parkinson’s disease for intelligibility improvement in a noisy environment.

4.1 Conditional Generative Adversarial Nets

4.1.1 Overview of cGANs

Traditional GANs have a generative model or a generator (G) and a discriminative model or a

discriminator (D), that together play a min-max game [70] (as shown in Figure 4.1). Component

G tries to fool component D by generating outputs close to the real data, while component D is

1This chapter is based on a paper published in Interspeech [45], Improving Speech Intelligibility through Speaker
Dependent and Independent Spectral Style Conversion, Tuan Dinh, Alexander Kain, Kris Tjaden. This chapter
gives more details.

50
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Figure 4.1: Structure of traditional GAN [5]

trained to distinguish the output of component G from real data. Component G is a mapping

function from random noise z to y, G : {z} → y. The GAN model is trained to minimize the

adversarial loss LGAN(D,G):

min
G

max
D
LGAN(D,G) = Ey [logD(y)] + Ez [log(1−D(G(z)))] (4.1)

In contrast, a cGAN model learns a mapping from an input x and random noise z to y,

G : {x, z} → y. The cGAN model has both G and D conditioned on input x, trained to minimize

the adversarial loss LcGAN(D,G) [93]:

min
G

max
D
LcGAN(D,G) = Ex,y [logD(x, y)] + Ex,z [log(1−D(x,G(x, z)))] (4.2)

4.1.2 cGANs for Style Conversion

Previously, Michelsanti applied a cGAN in speech denoising to map the spectral features of noisy

speech to those of intelligible speech [143]. Thus, his work has a similar goal of improving speech

intelligibility as us. In his case, he is interested in typical speakers and building hearing-aid devices

for listeners to reduce noise. Michelsanti used convolution neural networks as his generator. He

found that random noise input z is not useful; instead, he used spectral features of noisy speech

as input.

In my case, I applied a cGAN in spectral style conversion to map the spectral features of

habitual speech to those of clear speech. I am interested in atypical speakers and building the

speaking-aid devices (Figure 1.4). My goal is to help the habitual speech become more resilient

to noise. Different from Michelsanti, I use feedforward networks (Figure 4.2) because they work

better with my manifold features. Motivated by Michelsanti, I do not use random noise z. Instead,

my generator maps habitual speech features to aligned clear speech features as shown in Figure 4.3.
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Figure 4.2: Generator architecture with skip connection
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Figure 4.3: cGAN framework for converting habitual manifold features (VAE-12) to clear manifold
features (VAE-12)

For the input vector of G, I add context by concatenating the current habitual frame in my

VAE-12 representation with five preceding and five following frames, which helps capture the

temporal dependency of speech frames. I normalize the input and outputs of the network via

standard scaling. The input of D consists of either the output of G or aligned clear feature frames,

combined with the current habitual feature frame (what I want the output to be conditioned on).

Thus, both G and D are conditioned on the current habitual feature. In addition to the adversarial

loss function LcGAN(D,G) in Equation 4.2, I also minimize the L1 loss between the output of G

and the ground truth; this addition is demonstrated to generate less blurry output compared to

a root-mean-squared reconstruction loss [93]. I add the L1 loss with a scaling factor of 100 to

L(D,G).

4.1.3 Configuration of cGANs

In this section, I present the configuration of cGANs that is used in the three mapping experiments.

The structure of G is shown in Figure 4.2. For the purpose of comparison, the generator structure

is the same as my previous manifold network (Section 3.2). By adding the input of G to the output

of its last layer, I expect the network to focus on the difference between the habitual and clear
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manifold features (VAE-12). The discriminator is a DNN with two hidden layers of 256 nodes each,

and a single node output layer with sigmoidal activation function. To help stabilize the training

process, I used 1) a leaky ReLU activation function with a slope of −0.2 for negative inputs for

both G and D, 2) a dropout layer following each hidden layer of D with a dropout rate of 0.5,

3) the Adam optimizer with a batch size of 128, and 4) weights initialized from a zero-centered

normal distribution with standard deviation 0.02 [37]. I used a momentum of 0.5, a learning rate

decay of 0.00001, and learning rate of 0.0001 for D, and 0.0002 for G.

4.2 One-to-One Mapping

In this section, I apply my proposed cGAN conversion method to convert between two styles of

a speaker; specifically, I aim to convert the spectral aspects of the habitual style to those of the

clear style. I compare the intelligibility of mapped speech using my cGANs-based mappings to

a baseline of a feedforward network with custom skip-connections (see Section 3.5). I conduct a

keyword recall accuracy test (see Section 2.5) to calculate speech intelligibility.2

4.2.1 Data

I use a database with 78 speakers consisting of typical speakers (CS, N=32), speakers with multiple

sclerosis (MS, N=30), and speakers with Parkinson’s disease (PD, N=16) [204, 205]. All read the

same 25 Harvard sentences (see appendix A) in habitual and clear conditions (loud, slow, and fast

conditions were also available). Speaker’s names consist of group, gender, and number, e. g. PDF7

is the seventh female speaker with PD.

4.2.2 Method

I apply my proposed cGAN conversion method to convert between two styles of a speaker; specif-

ically, I aim to convert the spectral aspects of a the habitual style to those of the clear style, in

an effort to improve the speech intelligibility of the former. For analysis and synthesis, I used

manifold features VAE-12 (see Section 3.2). I extract fundamental frequency (F0), aperiodicity,

and VAE-12 from each utterance.

I selected three speakers: CSM7, PDF7, and PDM6, who have been shown to benefit the most

from the clear spectrum. I aligned each habitual utterance to its parallel clear utterance of the

same speaker using dynamic time warping (DTW) on 32nd-order log filter bank features. Then, I

2This one-to-one mapping is an attempt to improve the performance of the DNN mapping described in Section 3.5
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mapping
speaker

PDF7 PDM6 CSM7

DNN 16.8 16.67 16.44
GAN 12.85 12.58 12.67

Table 4.1: Average LSD (in dB)

pre-trained the generator that maps habitual VAE-12 to clear VAE-12, minimizing mean-squared-

error loss. Pre-training stops when there is no progress in a validation set; the maximum number

of epochs was 100. Finally, I trained my proposed cGAN structure up to 300 epochs.

I create conversion stimuli using the mapped VAE-12, and F0 and aperiodicity information

from the source habitual speech. To create the 25 conversion sentences, I use a leave-one-out

approach, using 22 sentences for training and two for validation. Hybrid stimuli are created by

replacing the habitual spectra with their aligned clear spectra [95].3

4.2.3 Objective Evaluation

I compare the performance of my proposed cGAN to my previous DNN. Table 4.1 shows the average

log spectral distortion (LSD) between mapped VAE-12 and clear VAE-12. The cGAN mapping has

typically smaller average LSD than its DNN counterpart. Specifically, Figure 4.4 shows the LSD

of 25 test sentences from my two mappings. For most sentences, the LSD of the GAN mapping

is lower than the LSD of the DNN mapping. Moreover, Figure 4.5 shows the variance ratio
σ2
CLR

σ2
MAP

between clear VAE-12 and mapped VAE-12 for each feature component. The smaller variance

ratio of the cGAN mapping method reported that the over-smoothing effect is reduced compared

to the DNN-based method. Figure 4.6 shows a comparison of various spectrum.

4.2.4 Subjective Evaluation

LSD is not a good predictor for human perception; therefore, to evaluate speech intelligibility, I

designed a test consisting of 25 sentences × 3 speakers (CSM7, PDF7, PDM6) × 5 conditions (2

purely vocoded, 1 hybrid, 2 mappings) = 375 unique trials in a Latin-square design. I performed

the test on the Amazon Mechanical Turk, where 60 participants listened to 25 Harvard utterances

containing five keywords each (Appendix A). Listeners typed out each sentence as best as they

could, and I calculated the average number of keywords correctly identified. The hybrid stimuli

show an upper bound (or “oracle” mapping) on the intelligibility improvement. The vocoded HAB

3Samples for the one-to-one method and the next two methods are available at
https://tuanad121.github.io/samples/2020-10-25-Dysarthria/
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Figure 4.6: Spectrum of habitual speech (HAB), DNN mapping (DNN), cGAN mapping (GAN),
and clear speech (CLR). Note the difference in formants between 2–4 kHz from the 50th–100th

frame between the DNN and cGAN methods.

and vocoded CLR are obtained through analysis and resynthesis with unchanged parameters, using

the manifold vocoder. I minimized the loudness differences between stimuli by normalizing gains

in accordance with a RMSA measure. Finally, each utterance was mixed with babble noise at

0 dB SNR to avoid response saturation effects. Figure 4.7 shows average keyword accuracy. I

observed that the cGAN mapping led to a statistically significant improvement (p < 0.001) for

two speakers: PDM6 and CSM7, using a two-tailed t-test. In both cases, the cGAN mapping

significantly outperformed the DNN-mapping, improving the intelligibility of two of three speakers,

compared to my previous work where only one speaker improved.

4.3 Many-to-One Mappings

A disadvantage of one-to-one mappings is its requirement of specific training on the source speaker’s

clear speech. However, clear speech is typically unavailable for new source speakers in real life

applications. Therefore, I study a many-to-one mapping approach where I map habitual speech of

multiple speakers to the clear speech of a target speaker with the best sentence-level intelligibility.

I trained two gender-dependent mappings that mapped all habitual VAE-12 features of all male

(or female) speakers to clear VAE-12 of a male (or female) target speaker.
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Figure 4.7: Keyword recall accuracy of three speakers. The dashed lines show statistically signifi-
cant differences.

I use the same data as the previous experiment (Section 4.2.1). I select the clear speech of

the two speakers CSM10 and CSF15, which has the highest sentence-level intelligibility [204, 205]

for the male and female case, respectively. I train two gender-dependent mappings that mapped

all habitual VAE-12 features of all male (or female) speakers (except one of three speaker CSM7,

PDF7, PDM6) to clear VAE-12 of CSM10 or CSF15, respectively. The habitual speech of the

three speakers CSM7, PDF7, and PDM6 is used for testing. The mapped VAE-12, in combination

with the original F0 and aperiodicity of the source speaker, are used to create conversion stimuli.

Hybrid stimuli are created by replacing habitual spectra of the source speaker with aligned clear

spectra of the target speaker using hybridization (Section 3.5.2).

4.3.1 Objective Evaluation

The average LSD between mapped and clear spectrum, with LSD between the input habitual and

clear spectrum in parentheses, were: 17.32 (21.57) dB for CSM7, 22.7 (27.62) dB for PDF7, and

18.8 (23.28) dB for PDM6, confirming that the mapped speech is closer to clear speech than the

input habitual speech.
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Figure 4.8: Keyword recall accuracy of three speakers. The ’vocoded CLR’ condition denotes clear
speech of target speakers CSM10 and CSF15 for male and female cases, respectively. The dashed
lines show statistically significant differences.

4.3.2 Subjective Evaluation

To evaluate the efficacy of the method in terms of intelligibility, I designed a test consisting of

25 sentences × 3 source speakers (CSM7, PDF7, PDM6) × 3 conditions (vocoded HAB, cGAN-

mapping, hybrid) + 25 sentences × 2 target speakers (CSM10, CSF15) × 1 condition (vocoded

CLR) = 275 unique trials. I conducted the listening experiment similarly to the previous one,

except the number of listeners was 44.

Figure 4.8 shows the resulting keyword accuracy. I found that my many-to-one style conversion

significantly improved the intelligibility of one speaker of three test speakers from 17.6% to 34.4%,

using a two-tailed t-test (p < 0.01) , while there is no improvement in other cases.

4.4 Many-to-Many Mapping

The disadvantage of the previous many-to-one mapping (Section 4.3) is that speaker characteristics

cannot be preserved. In this section, I investigate a many-to-many mapping that aims to learn

solely the style differences, while preserving the linguistic message and speaker characteristics.

This task is the hardest among my three experiments because not all speakers’ spectral changes
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condition
speaker

CSM7 PDF7 PDM6

vocoded HAB 36.8 10 28.8
GAN 39.6 15.6 26.8
hybrid 62 22.8 57.6

vocoded CLR 66.8 22.4 48

Table 4.2: Average keyword accuracy

across styles have been shown to benefit speech intelligibility. I used the same data as the previous

experiments. I aligned each habitual utterance to its parallel clear utterance of the same speaker

using DTW on 32nd-order log filter-bank features. Then I trained all one-to-one mappings from

habitual VAE-12 to clear VAE-12 simultaneously.

4.4.1 Objective Evaluation

The average LSD between the cGAN mapping and clear spectrum for the three test speakers, with

the LSD between habitual and clear spectrum in parentheses, are: 16.36 (17.0) dB for CSM7,

16.66 (17.53) dB for PDF7, and 16.42 (18.06) dB for PDM6, confirming that the mapped speech

is closer to clear speech than the input habitual speech.

4.4.2 Subjective Evaluation

I designed a test consisting of 25 sentences × 3 speakers (CSM7, PDF7, PDM6) × 4 conditions

(vocoded HAB, GAN, hybrid, vocoded CLR) = 300 unique trials. I conducted the experiment

similarly to the previous ones, except the number of listeners was 24. Table 4.2 shows average

keyword recall accuracy. The cGAN resulted in improvements for two speakers: CSM7 and PDF7.

However, the results were not statistically significant using a two-tailed t-test (p > 0.05).

4.5 Conclusion

I explored a cGAN architecture for speaker dependent and independent style conversion. In the

speaker-dependent one-to-one mapping case, I showed that the cGAN outperformed a DNN in

terms of average keyword recall accuracy in all cases. Moreover, the cGAN significantly improved

speech intelligibility of two of three speakers, compared to one speaker when using the DNN. In

the speaker-independent many-to-one mapping case, I significantly improved speech intelligibility

of one of three speakers, with average keyword recall accuracy increasing from 17.6% to 34.4%.

In the speaker-independent many-to-many mapping case, the cGAN can improve average keyword
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accuracy over that of vocoded habitual speech for two speakers: CSM7 and PDF7, but without

statistical significance.



Chapter 5

Voice Conversion and F0 Synthesis of

Alaryngeal Speech

The main focus of Chapter 3 and 4 is to improve the intelligibility of people who have typical

speech or mildly dysarthric speech using style conversion, where I learn how to map one speaking

style to another, such as habitual to clear. In this chapter, I address the alaryngeal speech spoken

by people who underwent laryngectomy, which is more difficult to understand.1 The goal of this

chapter is to convert alaryngeal speech (LAR) into intelligibility speech (INT), which relates to

style conversion. Specifically, I propose an approach that has two parts. The first part predicts

voicing/unvoicing and the degree of voicing using feed-forward networks. The second part is for

LAR-to-INT spectral mappings using a cGANs. Figure 5.1 shows a flowchart of the approach; the

first part is in the boxes labelled ‘VUV model’ and ‘AP model’ and the second part is in the box

‘MCEP model’.2

In the rest of this chapter, I do the following. In Section 5.1, I provide the motivation for the

research in this chapter. In Section 5.2, I review the related works for increasing intelligibility

and naturalness of alaryngeal speech. In Section 5.3, I discuss my data, including how to create

my target data of intelligible speech, which is different from the clear speech of Chapter 3 and

Chapter 4. In Section 5.4, I predict voicing/unvoicing and the degree of voicing. In Section 5.5,

I predict the spectrum of intelligible speech from that of alaryngeal speech. In Section 5.6, I

create a synthetic fundamental frequency trajectory with an intonation model consisting of phrase

and accent curves to address the unusable fundamental frequency (F0) information of alaryngeal

speech. In Section 5.7, I evaluate the LAR-to-INT conversion methods on data.

1This chapter is based on a paper published in Interspeech [43], Increasing the Intelligibility and Naturalness
of Alaryngeal Speech Using Voice Conversion and Synthetic Fundamental Frequency, Tuan Dinh, Alexander Kain,
Robin Samlan, Beiming Cao, Jun Wang. This chapter gives more details.

2In this chapter, I do not use manifold features. The features are extracted using a VAE that is trained on a
TIMIT database of normal speakers. I suspect that the VAE might not work well on alaryngeal speech
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Figure 5.1: Flowchart of approach during prediction

5.1 Alaryngeal Speech

Speech is probably the most important biosignal for human communication. Pressure from the

lungs drive typical laryngeal voice and speech. The pharynx, tongue, and lips shape exhaled air

to produce voiceless sounds, and quasiperiodic vocal fold vibration creates the sound wave that

vocal tract constrictions shape into vowels and voiced consonants. Individuals who undergo total

laryngectomy lose their ability to produce speech sounds normally because their vocal folds and

lungs are disconnected from the vocal tract. Laryngectomy is performed as surgical treatment

for advanced laryngeal and hypopharyngeal cancers. These patients experience a lower quality

of life because of their atypical speech (I term this as LAR speech) during social interactions, as

they believe that other people perceive them as abnormal, or they directly experience symbolic

violence [142]. In 2020, an estimated 12,370 new cases of laryngeal cancers are expected in the

U. S. [1]. Although the incidence of these cancers is decreasing due to the decreasing number of

smokers, there is still a large projected number in the next decades because the rate of decrease is

only 2–3% [1].

There are currently a limited number of alternative communication options for people who have

Laryngectomy. Typing-based alternative and augmentative communication (AAC) devices are slow

and limited by the speed of typing. The main speech options for individuals after laryngectomy are

(1) esophageal speech (pushing air from the mouth to the pharyngo-esophageal segment (PES) and

using the PES for vibration), (2) tracheo-esophageal puncture (TEP) speech wherein speakers use

lung air to power PES vibration for voiced speech where an one-way valve was surgically placed

between the esophagus and trachea to provide airflow from lungs, and (3) use of an artificial

larynx, in the form of either external electrolarynx (ELX) placed on the neck or with an intraoral
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Figure 5.2: From left to right, esophageal, tracheo-esophageal, and electrolarynx speech [17]

tube, resulting in always-voiced speech at a constant pitch (see Figure 5.2). The ELX generates an

electronic sound source that is shaped by the lips and tongue into always-voiced speech at a constant

pitch [132]. These options are suboptimal because they are either invasive (requiring additional

surgery) or are difficult to use: esophageal speech requires extensive training and practice and is

difficult to learn [15], TEP is a surgical operation and requires talkers to place their thumb over

their stoma during the speech act, which is not hands-free and poses certain risks, and the artificial

larynx produces a very robotic-like sounding voice. All options produce unnatural sounding and

difficult to understand speech for several reasons, including poor voice quality, voiced/voiceless

differentiation, and articulatory precision [18, 112].

5.2 Related Work: Increasing Intelligibility of Alaryngeal

Speech

For two decades, researchers have attempted to create natural-sounding speech for people who

have had a laryngectomy. Using rule-based spectral voice conversion approaches, some differences

between alaryngeal speech and normal speech can be compensated for by modifying the proper-

ties of speech formants. For example, in an early work, researchers made esophageal speech more

intelligible by expanding the formant bandwidths [6]. Another approach is to decrease formants’

frequencies using formant shifting methods [135, 179], since it was found that speakers who un-

derwent partial laryngectomy shift their formants to higher frequencies due to the shortened vocal

tract length [108]. Similarly, TEP speech is reported to have a spectral tilt which favors the high

frequency band; thus, del Pozo used a 6 dB/octave roll-off filter to de-emphasize the high frequency
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band [40]. These approaches led to limited improvement in intelligibility or naturalness.

For statistical voice conversion, previous approaches included the use of Gaussian mixture

models [110, 111] and deep neural networks [109, 16] for mapping spectral features. These models

are limited because of over-smoothing of the converted spectra, leading to muffled speech [207,

103]. Recently, the generative adversarial network (GAN) [70] has been shown to be effective in

addressing the over-smoothing problem in voice conversion [103] and speech synthesis [104]. The

LAR-to-INT spectral mapping can be viewed as an image-to-image translation task, in which the

image is a window of the time-frequency representation of speech. In image-to-image translation,

a conditional GAN (cGAN) [93] is probably effective in generating less blurry images by combining

a traditional adversarial loss and a mean absolute reconstruction loss (or L1 loss). In this chapter,

I leverage the cGAN architecture for mapping LAR speech to INT speech.

Generally, LAR speech lacks reliable voicing and fundamental frequency (F0) information, as

well as meaningful F0 variability. One approach used to produce a more natural sounding speech

signal is therefore to create converted or synthetic voicing and F0 trajectories. In related work on

reconstructing normal speech from whispered speech, F0 values were estimated from filtered gain

parameters [155] or using the first formant frequency and its magnitude [141].

For F0 conversion or synthesis, a variety of approaches have been proposed. The introduction of

jitter (small pitch perturbations) was found to reduce the artificiality of ELX speech [35]. Another

approach created an artificial pitch contour by means of filtering, scaling and offsetting the energy

envelope [135]. Alternatively, the F0 trajectory can be generated using formant frequencies as well

as gains from a linear prediction model [182]. In a third approach, TEP speech is first converted to

whispered speech, and then an F0 trajectory was synthesized by adding a normalized short-term

energy contour of the whispered speech to an average pitch when the energy value is greater than

a threshold [158]. In this dissertation, I directly use the normalized short-term energy contour of

LAR speech in combination with a simple intonation model to synthesize the final F0 trajectory.

5.3 Data

For the source LAR speech, I use a database of 4 male speakers consisting of 3 LAR-TEP speakers

(L001, L002, L006) and 1 LAR-ELX speaker (L004); the average age was 61.75±8.77.3 The

speakers underwent total laryngectomy. The pitch of the LAR-TEP speech is low and highly

variable, and voicing depends largely on energy. Speech analysis using standard voicing and

fundamental frequency (F0) analysis algorithms fail for this type of speech the majority of the

3This data was provided by Dr. Jun Wang, who is one of the authors of the paper that the chapter is based on.
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Figure 5.3: INT, LAR-TEP, and LAR-ELX spectrogram

time. The LAR-ELX speech is always voiced with a constant F0, which was about 80 Hz for L004.

All speakers read all 132 sentences in the AAC132 list [30]. Figure 5.3 shows an example of INT,

LAR-TEP, and LAR-ELX spectrogram.

For the target INT speech, the ideal option is natural voice, such as habitual speech or clear

speech (Chapter 3 and Chapter 4). Although natural speech is preferred, I use a synthetic male

voice due to expediency. Moreover, the advantage of using a synthetic voice is the capability

of creating a lot of data and arbitrary voices. Specifically, I create a synthetic male voice using

Tacotron 2 [183] with the Waveglow vocoder [176]. I create audio for all sentences in the AAC132

list. This database was then divided into 100/16/16 sentences for training/validation/testing. All

waveforms are re-sampled from 22.05 kHz to 16 kHz.

I also use a multi-speaker TIMIT database [41] for pre-training. To simulate the characteristics

of LAR-TEP speech, I create a fully unvoiced version of TIMIT (FU-TIMIT); and for LAR-ELX

speech, I create a fully voiced version of TIMIT (FV-TIMIT). I use a process of first analyzing

TIMIT using the WORLD vocoder [153, 151], then setting all frames to either unvoiced, or voiced

with all F0 values set at a constant value of 80 Hz to create FU-TIMIT and FV-TIMIT, respectively.

Of the 630 available speakers I use all 462/144/24 speakers designated for training, validation, and
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testing, respectively. By convention, I eliminate the spoken dialect samples (SA sentences) for all

speakers.

5.4 Predicting Voicing and Degree of Voicing

In this section, I propose a method for predicting when speech should be voiced and the degree

of voicing from a spectrogram. Specifically, I predict a binary voicing value (VUV) and con-

tinuous 2-band aperiodicity (AP) [151] values from mel-cepstral coefficients (MCEP), using deep

neural networks (DNN). This prediction will be used in re-synthesizing speech so that speech is

voiced/unvoiced in appropriate places.

Due to limited amount of LAR training data, I use pre-training to leverage the general rela-

tionship between spectral characteristics and voicing. Given that FU-TIMIT should be similar to

the unvoiced nature of LAR-TEP speech, and FV-TIMIT should be similar to the always voiced

LAR-ELX speech, I compare three types of pre-trained models based on TIMIT, FU-TIMIT, and

FV-TIMIT.4 The second factor I investigate is the amount of context.

5.4.1 Pre-training

I pre-train three kinds of speaker-independent DNNs using either TIMIT, FU-TIMIT, or FV-

TIMIT as input. For each utterance in the input database, I use VUV and AP from corresponding

utterances in TIMIT as the target. Obviously, using TIMIT to predict voicing in TIMIT is easier

than using FU-TIMIT or FV-TIMIT to predict voicing in TIMIT. But the latter two should do

better when tested on LAR speech without adaptation.

I use the WORLD vocoder to obtain the spectrogram for each utterance in the input database.

I further extract MCEP-32 from the spectrogram. I exclude the zeroth coefficient (representing

energy), and I use MCEP coefficients 1–31 as input for training. I normalize inputs of the network

with standard scaling. I add context by concatenating the current frame with the preceding and

following frames. I consider context lengths of 5, 11 and 25 frames, which are 25, 55, and 105 ms,

respectively.

For the target, I use the WORLD vocoder to extract voicing and 2-band aperiodicity parameters

for each utterance in TIMIT. The voicing is a binary voiced/unvoiced flag (VUV). The 2-band

aperiodicity (AP) is a single scalar representing the degree of voicing at 3000 Hz, which is the

boundary frequency of the two frequency bands: [0, 3000] and [3000, 8000] Hz. I use the VUV and

AP as targets for training.

4I use the terms voiced and unvoiced from a signal analysis point of view, not a production point of view.



67

The DNN has three hidden layers with 256 nodes each. The activation function is parametric

ReLU. Each hidden layer is preceded by batch normalization (except the first layer), and followed

by dropout with a dropout rate of 0.2 (except the last layer). I train using the Adam optimizer,

a mini-batch size of 256, and early stopping. The binary cross entropy and mean-squared error

loss functions are used for voicing classification and 2-band aperiodicity regression, respectively.

In total, there are 9 pairs of pre-trained models: 3 pre-training datasets × 3 context sizes and 2

output types (VUV and AP).

I objectively evaluate the performance of each pair of models using balanced accuracy (BAC,

defined as average recall) for VUV classification (since the classes were imbalanced), and r2 for

AP regression. For both of the measures, the closer to one the better. On average, I obtained a

BAC/r2 of 0.94/0.75, as shown in column TIMIT in Table 5.1. For each of the three training sets,

the different context lengths did not result in noticeable differences in BAC and r2. This might

be because I use the same model architecture for the different context lengths. For the rest of the

discussion, I just focus on the 55ms results.

The results showed that it is possible to predict voicing and the degree of voicing from spectral

shape alone. As expected, the model that uses TIMIT as input (rows 5) works the best because

the training data contains the voicing and degree of voicing that we want to predict. The model

obtained a BAC/r2 of 0.99/0.87. The other models based on FU-TIMIT and FV-TIMIT are not

far behind. FU-TIMIT models obtained a BAC/r2 of 0.89/0.72, and FV-TIMIT models obtained

a BAC/r2 of 0.93/0.84.

I then tested the pre-trained networks, without any adaptation, to predict target VUV or

AP from LAR-TEP and LAR-ELX speech with 16 test sentences. I found that the BAC and r2

drastically decrease across all three pairs of models. I have an approximate BAC/r2 of 0.60/−0.44

for L001, 0.58/−0.68 for L002, 0.49/−0.4 for L004, 0.48/−0.6 for L006 as shown in columns labelled

Pretrain in Table 5.1. Our expectation is that using FU-TIMIT would work best for LAR-TEP

(L001, L002, and L006), and using FV-TIMIT would work best for LAR-ELX (L004). For L001,

the three databases do not result in a noticeable difference in BAC. For L002, using FU-TIMIT

works best in BAC as expected. For L004, normal TIMIT works best in BAC. For L006, FV-

TIMIT unexpectedly works slightly better than FU-TIMIT. Although the results do not match

our expectation entirely, we still need to adapt our models with LAR speech.

5.4.2 Adaptation

The previous section shows that pre-trained models using no LAR speech do not do that well, as

expected. Hence, I adapt the pre-trained models with LAR-TEP and LAR-ELX speech. I use
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source → TIMIT FU-TIMIT FV-TIMIT L001 (TEP) L002 (TEP) L004 (ELX) L006 (TEP)

pre-training set ↓ context size ↓ measure ↓ Pretrain Adapt Pretrain Adapt Pretrain Adapt Pretrain Adapt

TIMIT

25ms
r2 0.88 -0.55 0.26 -0.72 0.41 -0.41 0.29 -0.87 0.04

BAC 0.99 0.62 0.69 0.45 0.73 0.63 0.70 0.52 0.64

55ms
r2 0.87 -0.51 0.22 -0.70 0.43 –0.44 0.29 -0.84 0.04

BAC 0.99 0.64 0.70 0.56 0.73 0.63 0.72 0.53 0.65

105ms
r2 0.86 -0.57 0.24 -0.64 0.45 -0.38 0.29 -0.86 0.05

BAC 0.99 0.62 0.70 0.55 0.73 0.62 0.70 0.52 0.66

FU-TIMIT

25ms
r2 0.70 -0.27 0.26 0.06 0.42 -0.30 0.24 -0.37 0.05

BAC 0.89 0.58 0.69 0.64 0.74 0.49 0.72 0.43 0.64

55ms
r2 0.72 -0.17 0.21 0.017 0.43 -1.00 0.27 -0.5 0.05

BAC 0.89 0.60 0.67 0.67 0.75 0.49 0.71 0.48 0.67

105ms
r2 0.72 -0.2 0.24 0.00 0.43 -1.18 0.29 -0.57 0.05

BAC 0.87 0.62 0.74 0.69 0.74 0.49 0.71 0.49 0.66

FV-TIMIT

25ms
r2 0.83 -0.62 0.25 -0.75 0.41 -0.30 0.30 -0.84 0.04

BAC 0.94 0.60 0.71 0.54 0.73 0.40 0.70 0.54 0.64

55ms
r2 0.84 -0.58 0.23 -0.7 0.43 -0.28 0.29 -0.84 0.05

BAC 0.93 0.58 0.72 0.55 0.73 0.48 0.70 0.55 0.64

105ms
r2 0.83 -0.53 0.23 -0.62 0.45 -0.25 0.29 -0.81 0.06

BAC 0.92 0.61 0.72 0.54 0.74 0.47 0.69 0.52 0.67

Table 5.1: r2and balanced accuracy (BAC), gray color indicates mismatch between source speaker
and pre-training set

speaker specific adaptation due to the limited number of speakers.

I align each LAR utterance to its corresponding target intelligible synthetic utterance using

dynamic time warping on 32nd-order log filter bank features. There are 36 pairs of adapted models:

9 pairs of pre-trained models (3 pre-training datasets and 3 context sizes) × 4 speakers. All training

settings for the DNNs are the same as those of pre-training. For adaptation, I first tried to only

adapt the first one or two hidden layers. Those layers are expected to extract meaningful low-

level features coming from the input data. But the results are not as good as adapting the whole

models. Because there are many more voiced frames than unvoiced frames, I over-sample the

unvoiced frames to balance the classes.

Columns labeled “Adapt” in Table 5.1 show the results. The average BAC of VUV and r2

of AP are 0.69/0.22 for L001, 0.73/0.43 for L002, 0.71/0.28 for L004, and 0.65/0.05 for L006; it

appears that some speakers’ AP is much easier to predict than others’, whereas VUV prediction

performance is similar. As expected, adaptation always improved performance of pre-trained

models. Varying context size resulted in a relatively narrow BAC range from 0.65 to 0.73, and

thus I use 55 ms from this point forward. Surprisingly, pre-training with FU and FV-TIMIT as

opposed to TIMIT did not show improved performance. Figure 5.4 shows predicted VUV and AP

of a LAR test sentence with and without adaptation.
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Figure 5.4: Example predictions (VUV in top panel, AP in bottom panel)
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Figure 5.5: cGAN framework for style conversion for predicting INT spectrum from LAR spectrum

5.5 Predicting Spectrum

In this section, I propose a method for predicting normal spectral features from distorted spectral

features using conditional Generative Adversarial Network. This is a parallel step to predicting

voicing (see Section 5.4).

5.5.1 Conditional Generative Adversarial Network

Traditional GANs have a generative model or a generator (G) and a discriminative model or a

discriminator (D), that together play a min-max game. Component G tries to fool component D

by generating outputs similar to the real data, while component D is trained to distinguish the



70

output of component G from real data. Component G is a mapping function from random noise z

to y, G : {z} → y [70]. In contrast, a cGAN model learns a mapping from an input x and random

noise z to y, G : {x, z} → y. The cGAN model has both G and D conditioned on input x [93],

trained with the objective function L(D,G):

min
G

max
D
L(D,G) = Ex,y [logD(x, y)] + Ex,z [log(1−D(x,G(x, z)))] (5.1)

Similar to Section 4.2, I do not use random noise z; and my generator maps LAR speech

features to aligned intelligible speech features as shown in Figure 5.5. For the input vector of G,

I add context by concatenating the current LAR MCEP-32 frame with five preceding and five

following frames, which is the same as the 55ms context in Section 5.4. I normalize the inputs and

outputs of the network via standard scaling. The input of D consists of a single frame of either

the output of G or an aligned target feature frame, combined with the current LAR feature frame

(what I wanted the output to be conditioned on). Thus, both G and D are conditioned on the

current LAR feature frame. In addition to the adversarial loss function L(D,G) in Equation 5.1,

I also minimize the L1 loss between the output of G and the ground truth; this addition was

demonstrated to generate less blurry output compared to a root-mean-squared reconstruction loss

in an image task [93]. I add the L1 loss with a weighting factor of 100 to L(D,G).

The structure of the generator G, shown in Figure 5.6, is similar to my previous work (see

Chapter 4); however, there is no skip connection that adds the input of G to the output of its final

dense layer, because performance worsened when using the skip connection. The discriminator D is

a DNN with two hidden layers with 256 nodes each, and a single-node output layer with sigmoidal

activation function. To help stabilize the training process, I use (1) a leaky ReLU activation

function with a slope of 0.2 for negative inputs for both G and D, (2) a dropout layer following

each hidden layer of D with a dropout rate of 0.5, (3) the Adam optimizer with a batch size of

128, and (4) weights initialized from a zero-centered normal distribution with standard deviation

0.02 [37]. I use a momentum of 0.5, a learning rate decay of 10−5, and learning rate of 10−4 for

D, and 2 · 10−4 for G.

5.5.2 Predicting Spectrum

I first pre-train the cGAN with the methods described in Section 5.5.1 to convert FU-TIMIT

and FV-TIMIT MCEPs to TIMIT MCEPs, excluding the zeroth (energy) coefficient (similar to

Section 5.4.1).5 This is a data-rich proxy for the eventual mapping of LAR to INT speech. There

5Unlike in Section 5.4, I do not pre-train a TIMIT MCEP to TIMIT MCEP model.
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Figure 5.6: Generator architecture

are two pre-trained models, one for each pre-training database. I pass the source energy unmodified

to the target features. I then calculate the predicted spectra and compared them to target spectra

in terms of log spectral distortion (LSD). Table 5.2 shows the LSD between estimated spectra and

target spectra. On average, the LSDs were 7.64 and 6.46 dB for FU and FV-TIMIT, respectively

(TIMIT row). The values in parentheses: 11.33 and 11 dB show the LSDs before modification.

I then tested the pre-trained models on LAR speech, obtaining 60 dB for L001, 45 dB for L002,

51 dB for L004, and 62 dB for L006 (rows labelled Pretrain). I expected that FU-TIMIT would

work best for LAR-TEP (L001, L002, and L006), and FV-TIMIT would work best for LAR-ELX

(L004). As expected, the LSDs of FU-TIMIT are smaller than FV-TIMIT for L001, L002, and

L006. The LSD of FU-TIMIT is unexpectedly smaller than FV-TIMIT for L004. Furthermore,

by comparing the LSD before modification (the numbers in parentheses) and after modification,

the pre-trained models do not help reduce the LSDs. For example, the LSD is 60.6 dB before

modification, and it is 60 dB after modification with a pre-trained model for L001. The lack

of improvement is disappointing but it is not entirely unexpected because the FU-TIMIT and

FV-TIMIT models do not know about LAR speech.

I then adapt these pre-trained models to convert LAR MCEP to INT MCEP (similar to Sec-

tion 5.4.2). There are eight adapted models (2 pre-trained models × 4 speakers). I adapt them

in two ways: adapting only the generator or adapting both the generator and the discriminator.

I observed that the latter yields lower LSD scores. The average LSD was 32 dB for L001, 33 dB

for L002, 31.6 dB for L004, and 37.4 dB for L006 (rows labelled Adapt). As expected, the adapta-

tion always improved performance. Pre-training with FU-TIMIT versus FV-TIMIT does not have

noticeable effect on adaptation. This shows that our results can be improved by better modelling

the differences between TEP and ELX in pre-training.
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mapping (↓) pre-train set (→) FU-TIMIT FV-TIMIT

FU-TIMIT → TIMIT 7.64 (11.33)
FV-TIMIT → TIMIT 6.46 (11.00)

L001 (TEP) → INT
Pretrain 60 (60.6) 61.9 (60.6)
Adapt 32 (60.6) 32 (60.6)

L002 (TEP) → INT
Pretrain 45 (46) 46.5 (46)
Adapt 33 (46) 33 (46)

L004 (ELX) → INT
Pretrain 51.1 (51.5) 52.8 (51.5)
Adapt 31.5 (51.5) 32 (51.5)

L006 (TEP) → INT
Pretrain 61.6 (61.2) 63 (61.2)
Adapt 37.8 (61.2) 37 (61.2)

Table 5.2: LSD of predicted spectrum in dB (LSD of source spectrum in parentheses) with (or
without) adaptation. ‘FU-TIMIT → TIMIT’ indicates predicting TIMIT voicing from FU-TIMIT
spectrum. ‘L001 (TEP)→ INT’ indicates predicting INT voicing from L001 spectrum. Gray color
indicates a mismatch between pre-train set and source speaker (e.g., FV-TIMIT and L001 (TEP)).

5.6 Synthesizing Pitch

In this section, I present a method to synthesize an INT F0 from a LAR energy. A LAR F0 is

unusable; therefore, I replace the LAR F0 with the INT F0. This is a parallel step to predicting

voicing (see Section 5.4) and predicting spectrum (see Section 5.5).

There has been a lot of work on modelling pitch. Van Santen utilized the principle of superposi-

tional prosody transplant to generate natural prosody contours and superimpose these contours on

recorded speech for text-to-speech synthesis [220]. Langarani proposed a data-driven foot-based

method for generating intonation contours for text-to-speech synthesis using a phrase curve for the

entire utterance and accent curve for each foot in the utterance [126]. These methods, however,

require text as well as phoneme labels as input.

In contrast, I want to generate pitch directly from LAR speech without any text and the focus

of this dissertation is spectral conversion. Therefore, I use a phrase curve and a single accent curve

to model intonation for each utterance. The phrase curve p is defined as

p(t) = pmin + (pmax − pmin)

(
1− t

T

)b
(5.2)

where I empirically set pmax=140, pmin=60, and b=0.5; t is a time index between 0 and T . The

accent curve relates to LAR energy. To set accent curve α, I use

a(t) = A · e(t) (5.3)

where I empirically set A=40, and e is the max-normalized energy. Specifically, I analyze LAR

speech into spectrogram using WORLD. I then derive MCEP-32 from the spectrogram. The zeroth
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Figure 5.7: Example synthetic F0 trajectory

coefficient of MCEP-32 is energy e(t), which is used to calculate accent curve in Equation 5.3. The

final F0 trajectory is calculated as

f0(t) = p(t) + a(t) (5.4)

Figure 5.7 shows an example of the synthetic F0 trajectory. Informal perceptual experiments

confirmed that replacing a natural F0 trajectory with a synthetic one did not reduce the naturalness

of normal speech.

5.7 Experiment

In this section, I evaluate the efficacy of using predicted VUV, AP (Section 5.4), spectrum (Sec-

tion 5.5), and F0 (Section 5.6) to transform LAR speech. I use two comparative mean opinion

score (CMOS) tests: one for naturalness and one for intelligibility. To better understanding the

efficacy of our approaches, I have three types of INT speech. The INT-spectrum denotes LAR

speech with predicted MCEPs. The INT-intonation denotes LAR speech with predicted VUV, AP

and F0. The INT-all denotes predicting all vocoder parameters except energy. I compare LAR to

the three conditions: INT-spectrum, INT-intonation, and INT-all. Note: I compare INT speech

to vocoded LAR speech: I use the WORLD vocoder to extract the F0 and spectrogram from LAR

speech, then I re-synthesize LAR speech from F0 and spectrogram using the WORLD vocoder.
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Speakers
Systems

INT-spectrum INT-intonation INT-all

L001 (TEP) −0.0 −0.3* 0.4 *
L002 (TEP) −0.1 −0.0 0.1
L004 (ELX) −0.56* −0.25 0.22
L006 (TEP) −0.3* −0.2* 0.7 *

Table 5.3: Perceptual naturalness CMOS comparing modified conditions against the vocoded
LAR speech condition. INT-spectrum, INT-intonation, INT-all denote predicting INT spectrum,
INT VUV/AP/F0, or a combination of these, respectively. Scores marked with an asterisk are
significantly different.

Speakers
Systems

INT-spectrum INT-intonation INT-all

L001 (TEP) −0.1 −0.1 0.1
L002 (TEP) 0.1 0.2 −0.3*
L004 (ELX) −0.34* 0.34 * −0.2
L006 (TEP) 0.2 −0.1 −0.0

Table 5.4: Perceptual intelligibility CMOS comparing modified conditions against the vocoded
LAR speech condition. INT-spectrum, INT-intonation, INT-all denote predicting INT spectrum,
INT VUV/AP/F0, or a combination of these, respectively. Scores marked with an asterisk are
significantly different.

I am aware that vocoded LAR speech is probably inferior compared to the original LAR speech,

because LAR speech is difficult to analyze; however for a fair comparison of my method I used it

as a baseline. Informal listening tests have shown that vocoded LAR speech is indistinguishable

from the original LAR speech in terms of intelligibility and naturalness.

Each of the two CMOS consisted of 16 sentences × 4 speakers × 3 pairs of conditions =

192 unique trials.6 I limit each listener to hear each unique sentence once (presentation order was

randomized); therefore I need blocks of 192 ÷ 16 = 12 listeners to cover all trials. Both experiments

were conducted on Amazon Mechanical Turk (AMT); I required listeners to have an approval rate

≥ 90% and to live in the U. S. Each test had 48 listeners, for a total of 96 listeners. In each trial,

participants listen to samples A and B in sequence and were then asked: “Is A more natural than

B?” or “Is A more intelligible than B?” for the naturalness and intelligibility tests, respectively.

Responses are selected from a 5-point scale that consisted of “definitely better” (+2), “better”

(+1), “same” (0), “worse” (−1), and “definitely worse” (−2).

Table 5.3 shows the naturalness preference scores between modified speech and LAR speech.

6Samples for the two experiments are available at: https://tuanad121.github.io/samples/2020-10-25-Alaryngeal/
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Positive scores with asterisk show an statistically significant improvement over LAR speech. INT-

all (VUV, AP, F0 and MCEPs) significantly improved the naturalness of LAR speech for L001 and

L006 (p < 0.01 in a one-sample t-test).

Table 5.4 shows the intelligibility preference scores between modified speech and LAR speech.

The INT-intonation (VUV, AP, and using a synthetic F0) significantly improved intelligibility

(p < 0.01 in a one-sample t-test) only for L004 (LAR-ELX speech). This is probably because

there was no sufficient voicing information in TEP speech. Further studies with a larger number

of patients should be conducted to verify these preliminary findings.

According to the results of naturalness CMOS, modifying an individual factor (spectrum or

intonation) is not as effective as modifying all factors. For example, INT-all significantly improve

the naturalness of LAR speech; INT-spectrum and INT-intonation, however, significantly reduce

the naturalness for speaker L006. This is probably because modifying one factor might cause

mismatch between the factor and other factors of LAR speech, which decreases the naturalness. In

contrast, I significantly improve the intelligibility of L004 by modifying the intonation alone. This

is probably because replacing a robotic F0 with a more natural synthetic F0 as well as modifying

voicing and degree of voicing improve intelligibility of L004.

5.8 Conclusion

I proposed an approach that has two parts to improve naturalness and intelligibility of LAR

speech: 1) predicting INT voicing/unvoicing and degree of voicing from LAR spectrum using a

DNN, and 2) predicting INT MCEPs from LAR spectrum using cGANs. I also created a synthetic

F0 trajectory with an intonation model consisting of phrase and accent curves. For predicting

INT voicing/unvoicing and INT degree of voicing, using different context lengths did not have

a noticeable impact. Additionally, pre-training the prediction networks on FU-TIMIT, and FV-

TIMIT as opposed to TIMIT did not have improved performance. Similarly, pre-training with

FU-TIMIT, and FV-TIMIT did not have improved performance for predicting MCEP of INT

speech.

Adaptation always improved performance. In my subjective tests with four LAR speakers, I

significantly improved the naturalness of two speakers, and I significantly improved the intelligi-

bility of one speaker. The results are promising for a challenging task with a lot of individual

variability among four LAR speakers.



Chapter 6

Towards Duration Style Conversion

In this chapter, I report preliminary results of improving speech intelligibility using duration conver-

sion.1 In previous chapters, I conducted spectral style conversion to improve speech intelligibility

(see Chapter 3 and Chapter 4). In addition to spectral features, phoneme duration is thought to

be important for improving intelligibility during style conversion (see Section 2.1.2). Therefore,

my goal is to improve intelligibility using duration style conversion. To do so, I first analyze the

phoneme duration changes between five speaking styles (habitual, slow, fast, clear, loud) to confirm

that all phonemes in a sentence are not changed uniformly. For this preliminary work, I focus on

converting from fast speech and habitual speech to slow speech.

In the rest of this chapter, I present the motivation for non-uniform duration conversion (Sec-

tion 6.1). I present my work on predicting target duration information (Section 6.2); and I review

time-scale modification procedures (Section 6.3). I present the speech data that I use for training

and testing (Section 6.4). I analyze how different speaking styles affect sentence and phoneme

durations (Section 6.5). Then I present a preliminary attempt to predict phoneme-level scaling

factors (Section 6.6). Finally, I evaluate the performance of uniform and non-uniform duration

conversion in terms of intelligibility using oracle scaling factors (Section 6.7).

6.1 Motivation for Non-uniform Duration Conversion

Changing sentence duration is necessary when desiring to change the overall speaking rate of an

utterance. It is also required as part of the needed prosodic changes during voice conversion

(Section 2.3).

The simplest approach to duration conversion is to apply a scaling factor to all phoneme

segments equally, which is known as uniform duration conversion. However, it is well-known that

1The results in this chapter have not been published in any paper.
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a change in speaking rate affects different phonemes differently [131, 64, 65, 125, 105]. Thus,

duration conversion based on sentence-level (or uniform) scaling is likely to result in unnatural-

sounding, and possibly less intelligible speech. Moreover, it has been observed that phoneme

duration differ somewhat arbitrarily between source and target speakers [10]. Consequently, a

simple sentence-level scaling is also likely to not mimic the target speaker’s individual duration

characteristics very well.

To address the issues of uniform scaling, researchers have started using phoneme-level ap-

proaches, which is known as non-uniform duration conversion. Covell proposed a non-uniform

speech compression, which utilized local energy to determine the amount of compression [38]. In

another approach, Kupryjanow classified speech signal into vowel, consonant, and silence regions

with a phoneme classifier; then he applied different scaling factors on the three regions [123]. The

study showed that non-uniform duration conversion outperformed uniform conversion in terms of

naturalness. However, it is unclear that non-uniform conversion is better than uniform conversion

in improving intelligibility in noise.

6.2 Predicting Target Durations

An automatic duration conversion consists of two steps: 1) predicting target duration information

(e.g sentence duration, scaling factor), and 2) time-scale modification. In this section, I present my

work on the first step, and Section 6.3 addresses the second step. I present three different methods

for predicting target durations: sentence level, phoneme level, and frame level.

For sentence-level duration conversion, I predict a scaling factor for each sentence. The scaling

factors are used by time-scale modification to alter the duration of a source sentence. In the

sentence-level duration conversion, all phonemes in the source sentence are uniformly modified.

This duration conversion is also known as uniform duration conversion.

For phoneme-level (or segmental) duration conversion, I predict a phoneme-level scaling factor

for each phoneme in a sentence. The scaling factors in combination with source phoneme durations

are used by time-scale modification to alter the duration of a source sentence. In the phoneme-level

duration conversion, phonemes are non-uniformly modified. This duration conversion is known as

non-uniform duration conversion. However, source phoneme labels are not available in real-life

applications. During testing, I should use a phoneme predictor to obtain the phoneme identities

(Section 6.6). Finally, the predicted scaling factor show how to shift source frames to obtain the

target sentence duration. As a result, the additional phoneme prediction adds extra processing to

the approach as well as longer delay.
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The finest-grained duration conversion is frame-level (or sub-segmental) duration conversion. In

this approach, I predict frame-level scaling factors for each sentence. The frame-level scaling factor

are used by time-scale modification to alter the duration of a source sentence. The advantage of the

frame-level approach over phoneme-level approach is that phonetic segmentation is not necessary;

thus, there is less processing and the delay is shorter. However, frame-level duration conversion is

outside of the scope of this dissertation.

For each of the three methods, one needs to predict the scaling factors from acoustic features

(e.g., spectrum) using supervised training methods. One can use a corpus that has many speakers

who read sentences in multiple speaking styles (see Section 6.4). One can compute scaling factors

between sentences in two speaking styles (such as fast as the source and slow as the target) at

the sentence, phoneme or frame level. One can use supervised training to map the acoustics of

the source to the desired scaling factors. During testing, the scaling factors can be predicted from

the acoustic features of the source sentence, and then applied to the source sentence giving the

modified sentence.

In this preliminary work, rather than predicting the scaling factors, I use an oracle that should

give us the optimal scaling factors. This will allow me to determine whether non-uniform duration

conversion is better than uniform conversion without dealing with errors in prediction. During

testing (Section 6.7), for an individual sentence I know how the speaker changes the duration

between fast speech and slow speech. I calculate the oracle scaling factors for the sentence between

its fast speech and slow speech. Then, I apply the oracle scaling factor on the fast speech to obtain

a modified speech, using the time-scale modification that I describe next.

6.3 Time-scale Modification

A time-scale modification is a procedure for stretching or compressing the duration of an input

audio signal. The basic steps of a time-scale modification procedure are presented in Figure 6.1.

The first step is to decompose the original signal into short overlapping analysis frames with an

analysis hopsize of Ha. In the second step, the frames are relocated on the time axis according to

a synthesis hopsize of Hs. The frames are then adapted to address the artifacts introduced by the

frame relocation. Finally, the adapted frames, also known as synthesis frames, are superimposed

to obtain an output signal. In other words, the input signal is altered in length by a scaling factor

of α = Hs
Ha

to obtain the output signal. The main differences between the procedures are how the

analysis frames are selected and how they are adapted. In this section, I review several procedures

for time-scale modification.



79

Figure 6.1: Time-scale modification procedure [49]

6.3.1 Overlap-Add

In the overlap-add procedure, the synthesis frames are obtained by windowing the analysis frames

without any further processing. Although the procedure is efficient, superimposing the unmodified

synthesis frames usually produces phase discontinuities in the output signal [48]. As a result,

periodic or harmonic structures in the input signal are not preserved. This causes strong harmonic

artifacts in the output signal, which is specially harmful for vowels. In contrast, with a very short

length of analysis frames, this procedure is successful in preserving percussive sounds, which is

helpful for stop consonants.

6.3.2 Waveform Similarity Overlap-Add

The performance of overlap-add procedure is limited by phase discontinuities. To address the

issue, Verhelst selected the frames such that successive synthesis frames better fit together when

superimposing them [221]. Specifically, he introduced a frame position tolerance ∆max in his

Waveform Similarity Overlap-Add algorithm. After relocating the frames according to a synthesis

hopsize of Hs, he maximized the similarity of two overlapping frames in the overlapping regions

by shifting the frames on the time-axis by an amount of ∆ ∈ [−∆max; ∆max]. Note that, the

waveform similarity overlap-add procedure becomes the overlap-add procedure when ∆max = 0.

The introduced tolerance is successful in reducing the phase discontinuity artifacts. However, the

procedure introduces perceivable stuttering artifacts, because the shifted frame positions tend to

cluster around transients (e.g., p and b), which duplicate the transients several times.
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6.3.3 Phase Vocoder

While Verhelst addressed the phase discontinuities in time domain [221], phase vocoder targeted

the problem in frequency domain [62, 175]. The researchers considered each analysis frame as a

weighted sum of sinusoids with given frequency and phase. Then, they computed the synthesis

frames by adapting the phases of the sinusoids to avoid phase discontinuities due to adding up the

synthesis frames.

First, Fourier transform is applied to analysis frames to obtain speech spectrum. Each fre-

quency bin of the spectrum represents a sinusoid contributing to the original signal. Second, the

instantaneous frequencies of the frequency bins are obtained from the differences of successive

spectra [46]. Third, the phases of spectra are adapted using the instantaneous frequencies and the

synthesis hopsize Hs [175]. Finally, inverse Fourier transform is applied to the speech spectrum to

obtain synthesis frames.

The advantage of the procedure is to ensure the phase continuity of all sinusoidal contributing

to output signal, which is known as horizontal phase coherence. However, the phase continuity

of sinusoidal within one frame, known as vertical phase coherence, tends to be destroyed during

the phase adaptation. As a result, transients, which are highly dependent on maintaining the

vertical phase coherence, are smeared in output signal [48]. Moreover, the loss of vertical phase

coherence causes a distinct sound coloration of phase vocoder modification, which is known as

phasiness [127].

6.3.4 Phase Vocoder with Identity Phase Locking

Laroche reduced the loss of vertical phase coherence using identity phase locking [128]. In the

procedure, they grouped the frequency bins; then, they updated the phases of the frequency bins

in the same group, simultaneously. Specifically, frequency bins surrounding a peak of magnitude

spectrum are grouped. In phase adaptation, the frequency bins that contain spectral peaks are

updated in the usual phase vocoder fashion. The phases of the remaining frequency bins are locked

to the phases of the nearest spectral peak, which ensures vertical phase coherence.

6.3.5 Combination of Time-Scale Modification procedures

Previous sections showed that different time-scale modification procedures are well-suited for par-

ticular types of input signal. Overlap-add works particularly well for percussive signals (see Sec-

tion 6.3.1 and Section 6.3.2); while, phase vocoder works particularly well for signals with harmonic
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content (see Section 6.3.3 and Section 6.3.4). Driedger proposed a combined time-scale modifi-

cation approach using harmonic-percussive source separation techniques [50]. After decomposing

the input signal, he applied the phase vocoder with identity phase locking to harmonic component

and OLA to percussive component.

For this chapter, I decided to use the phase vocoder with identity phase locking procedure for my

experiments. The procedure achieved the best quality of modified speech in an informal listening

test that I conducted.

6.4 Data

Our speech corpus consists of 32 speakers × 24 identical Harvard sentences (Appendix A) × 5

speaking styles (conditions): habitual (H, synonymous with conversational), clear (C), loud (L),

slow (S), and fast (F), for a total of 3,840 utterances recorded at 22,050 Hz [204, 205]. The

slow speech is obtained by instructing speakers to speak slowly. The fast speech is obtained by

instructing speakers to speak fast. These speaking styles are relevant to intelligibility study and

clinical management of dysarthria.

For the purposes of phonetic labeling, a phonetic expert did phoneme transcription for 25

sentences of on arbitrary speaker in clear style (since labeling in this condition is likely to be the

most accurate). The speaker is known as “template speaker”. I then find the phoneme boundary

for the unlabelled utterance in the remaining conditions of the template speaker using dynamic

time warping (DTW). Specifically, the acoustic stream of an unlabelled (query) utterance is aligned

with the template utterance with the same linguistic content. I transfer the phoneme boundary

and phoneme labels from the template utterance to the query utterance.2 I then manually edit

the automatically-generated phoneme boundary of the query utterance, as well as inserting and

deleting phonemes (e.g., pause), but not substituting phonemes. I choose not to modify phoneme

identities to allow for a direct comparison, even though these types of changes are typical when

changing speaking rates (e. g. a plosive may become flapped, or a vowel may become centralized).

After obtaining verified label files for one speaker, I align the unlabelled speakers’ sentence in all

conditions, and then edit these in the same manner as previously. Example spectrum are shown

in Figures 6.2 and 6.3.

2One can use Montreal Forced Aligner [139] as a better way to obtain the phoneme boundary.
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Habitual speech

0 1 2 3 4 5
0

5000

10000

Fr
eq

ue
nc

y 
(H

z)

.pau
D

i
tc

t
aI

n
i
gc

g
3r

l
tc

t
U

kc
>

f
h

3r
h

@
tc

t
.pau

Fast speech
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Slow speech
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Loud speech

Figure 6.2: Spectrum and phonetic labels of one sentence in different conditions for the template
speaker.
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Figure 6.3: Spectrum and phonetic labels of one sentence in the habitual condition produced by
five speakers.
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6.5 Duration Analysis

In this section, I investigate how consistent speakers are when varying sentence and phoneme

durations in different speaking styles (Section 6.5.1). I also explore the duration variation between

speaking style pairs at sentence and phoneme level (Section 6.5.2). Finally, I determine whether a

linear relation between phoneme and sentence-level scaling factors is sufficient (Section 6.5.3).

6.5.1 Consistency of Duration of Speakers in Each Speaking Style

The goal of the experiment is to learn if speakers have a common understanding of each speaking

style. I examine how consistent speakers are in their sentence and phoneme durations in each

speaking style. I do this by examining the standard deviation of the scaling factors.

Sentence-level

I calculate the scaling factors of identical sentences between two different speakers in an identical

speaking style. For each speaking style (condition) c ∈ [H,C,L,S,F] and sentence u, I calculate

the log-transformed scaling factor going from speaker si to speaker sj as

f csi→sj ,u = log2

dcsj ,u

dcsi,u
(6.1)

where d denotes the duration of the sentence u without initial and final pauses.3 Each speaker

pair (si, sj) only appears once in the calculation. Additionally, I arbitrarily named a speaker with

lower speaker-id as si, and a speaker with higher speaker-id as sj . For each speaking style and

each speaker pair, I calculate the average of log-transformed scaling factors f csi→sj by averaging

over all available sentences.4 Due to my limited data, I assume the distribution of f csi→sj is a

normal distribution.5 I estimate the distribution using kernel density estimation. Figure 6.4 shows

the distribution of these terms for each speaking style; the standard deviations are σH = 0.25,

σC = 0.4, σL = 0.3, σS = 0.5, σF = 0.22. By comparing kurtosis (a measure of the tailedness

of a distribution), I realize that the duration is most consistent between speakers in fast style,

while the the duration is less consistent between speakers in slow style. There appears to be

a common speaking rate when speaking fast. In contrast, people have different speaking rates

3Calculating the average of the log-transformed scaling factors is equivalent to calculating the log of the geographic
mean.

4Note that, instead of using Equation 6.1, I can obtain the same values of fcsi→sj
using log2 d

c
sj

− log2 d
c
si

where

log2 d
c
si

and log2 d
c
sj

are average of log-transformed sentence durations d, in speaking style c, of speakers si and sj ,

respectively.
5I realize that for each speaker pair (si, sj), one could order them randomly or also include (sj , si). All three

approaches should result in the same standard deviation.
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Figure 6.4: Kernel-density-estimate of the average of log-transformed scaling factors f csi→sj be-
tween speakers, averaged over all sentences, for each matched condition.

when speaking slowly. As a result, predicting scaling factors of a speaker-independent fast-to-slow

duration conversion might be challenging due to the inconsistency in speakers.

Phoneme-level

To calculate the phoneme-level scaling factors, I perform a DTW-alignment of the phoneme labels

to handle the potential differences in phoneme sequences when comparing speakers. Specifically,

two phoneme sequences of the same sentence from two speakers are matched up using a simple

edit distance. I do not consider pause labels in the phoneme alignment. For each speaking style

c, and sentence u, I calculate the log-transformed scaling factor for the nth phoneme token from

speaker si to sj as

f csi→sj ,u(n) = log2

dcsj ,u(n)

dcsi,u(n)
(6.2)

where d(n) represents the nth phoneme’s duration, with n = 1, . . . , N c
si→sj ,p, the number of avail-

able phonemes p for a particular condition c, sentence, and source and target speakers. Finally, I

calculate the average scaling factor for each type of phoneme p via

fsi→sj ,p =
1

Nsi→sj ,p

∑
c∈[H,C,L,S,F]

24∑
u=1

∑
n∈P csi→sj,u

f csi→sj ,s(n) (6.3)
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Figure 6.5: Distribution of average phoneme-level scaling factors

where P csi→sj ,u are the set of indices where p occurs, and Nsi→sj ,p is the number of total occurrences

of the phoneme over all conditions and all sentences, given particular source and target speakers.6

Because the durations of closure phonemes following pauses are ambiguous, I did not considered

those phonemes. Figure 6.5 shows distribution of average phoneme scaling factors in different

phoneme categories. We see that diphthong and monophthong have more variation than fricative

and nasal. Since we pooled all the speaking styles and we know that slow has the most variation,

so the variation in fricative and nasal is probably in the slow speech condition. In future work, it

may be helpful to examine the phoneme variation in each speaking style.

6.5.2 Duration Variation between Speaking Styles

The goal of the experiment is to learn how different speakers understand speaking styles. I examine

how speakers vary sentence-level and phoneme-level durations in multiple speaking styles.

6Note that (instead of using Equation 6.3) we can obtain the same values of fsi→sj ,p using log2 dsj ,p− log2 dsi,p

where log2 dsj ,p and log2 dsi,p are average of log-transformed sentence durations d of phoneme p, of speakers sj
and si, respectively.
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from
to

(C)lear (L)oud (S)low (F)ast

(H)abitual 0.86 (0.32)
[0.22, 1.46]

0.19 (0.2)
[−0.24, 0.67]

1.09 (.36)
[0.52, 2.10]

−0.45 (0.14)
[−0.67, −0.13]

(C)lear −0.68 (0.33)
[−1.50, −0.15]

0.23 (0.29)
[−0.55, 0.92]

−1.31 (0.3)
[−1.94, −0.74]

(L)oud 0.9 (0.37)
[0.30, 1.89]

−0.64 (0.23)
[−1.19, −0.20]

(S)low −1.54 (0.38)
[−2.44, −0.86]

Table 6.1: Log-transformed scaling factor f from→to
s means, standard deviations, minima, and max-

ima between conditions. Positive values show slowing down, negative values show speeding up.
Numbers change sign when reversing “to” and “from”.

Sentence-level

I calculate the scaling factors of identical sentences between two different speaking style condi-

tions. Specifically, for each speaker s = 1, . . . , 32 and utterance u = 1, . . . , 24, I calculate the

log-transformed scaling factor going from a “from” to a “to” condition

f from→to
s,u = log2

dtos,u
dfroms,u

(6.4)

where d represents the duration of the sentence (to improve accuracy, I discard the initial and

final pauses). For each speaker, I calculate the mean scaling factor f from→to
s by averaging over

all available sentences.7 Table 6.1 gives us the statistics of this terms over all speakers. The

pairs of (fast, slow), (loud, slow), and (habitual, slow) have standard deviations of 0.38, 0.37,

and 0.36, respectively, which is the highest standard deviations. The high standard deviations

can be attributed to the fact that people have different speaking rates when speaking slowly

(see Section 6.5.1). For visualization purposes, I also show a graph of the average f from→to in

Figure 6.6.8 These last scaling factors represent the values that can be used in a simple linear

scaling approach of duration conversion, i. e. all phoneme durations are scaled by the same factor,

likely resulting in unnatural-sounding speech.

I observe that the greatest change took place between the slow and the fast speaking style

conditions, as expected. I also observe that the loud condition was nearly of the same duration

as the habitual condition. In terms of duration variation between speakers, the greatest variance

7Note that (instead of using Equation 6.4) we can obtain the same values of f from→to
s using log2 d

to
s − log2 d

from
s

where log2 d
from
s and log2 d

to
s are average of log-transformed sentence durations d, of speaker s, of speaking styles

from and to, respectively.
8As a result of using logarithm, the average log-transformed scaling factors are additive. For example, The

H-to-C value (0.86) equals to the sum of H-to-L (0.19) value and L-to-C value (0.68).
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Figure 6.6: Average log-transformed scaling factors f from→to between conditions, averaged over all
speakers. Arrow direction is the direction of slowing down speech. Note that arrows are additive
and numbers change sign when reversing.

was found when going from slow to fast; the minimum scaling factor was 2−2.44 = 0.18 and the

maximum was 2−0.86 = 0.55. Thus, I select the pair of fast and slow for duration conversion

(Section 6.7). I also select the pair of habitual and slow for duration conversion because habitual

speech is commonly used in real-life applications. As a result, slow speech is selected as target

speaking style instead of clear speech as in previous chapters (see Chapter 3 and Chapter 4).

Phoneme-level

I consider the phoneme-level effects of different speaking styles on duration. To handle the potential

differences in phoneme sequences when comparing speaking styles, I perform the same phoneme

alignment as in Section 6.5.1, phoneme-level. Then, for each speaker t, and for each sentence s, I

calculate the log-transformed scaling factors for the nth phoneme token

f from→to
s,u (n) = log2

dtos,u(n)

dfroms,u (n)
(6.5)

where d(n) represents the nth phoneme’s duration, with n = 1, . . . , N from→to
t,s , the number of

available phonemes for a particular speaker, sentence, and source and target conditions. Finally, I
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Phone p dSp dFp dFp − dSp fS→F
p (↑) dFp − dSp · 2f

S→F

monophthong 255 81 -174.0 -1.6 -7.0
approximant 161 58 -104.0 -1.5 2.0
fricative 178 67 -112.0 -1.5 5.0
nasal 162 59 -104.0 -1.5 3.0
stop 85 29 -56.0 -1.3 0.0
diphthong 356 132 -225.0 -1.3 9.0

Table 6.2: Average phoneme-level durations of slow (dSp) and fast (dFp ) speaking styles, their

difference dFp − dSp and the associated scaling factor fS→F
p (the table is sorted on this)

calculate the average scaling factor for each type of phoneme p via

f from→to
p =

1

N from→to
p

32∑
s=1

24∑
u=1

∑
n∈P from→to

s,u

f from→to
s,u (n) (6.6)

where P from→to
s,u are the set of indices where p occurs, and N from→to

p is the number of total oc-

currences of the phoneme over all speakers and all sentences, given particular source and target

conditions.9

I report on the most extreme case, namely when going from the slow to the fast condition

(or vice versa). The results are shown in Table 6.2. Note that I ignore stop closures that follow

pauses, as their duration is ambiguous. I observe that vowels have the most variation when

changing speaking rate. Moreover, a linear and uniform scaling approach has significant errors

compared to real phoneme duration. Therefore, a non-uniform scaling approach should be used

for changing speaking rate.

6.5.3 Sentence and Phoneme-level Scaling Factors

In this section, I determine whether duration variation is phoneme specific. I examine the linear

relationship between sentence-level scaling factors and phoneme-level scaling factors.

A sentence-level scaling factor is defined as a ratio between a source sentence’s duration and a

target sentence’s duration. To calculate the duration of each sentence, I first align the phoneme

sequence of the sentence in habitual speaking style to its corresponding phoneme sequences in the

other four styles (clear, slow, fast, loud) to determine the common phonemes across all styles same

as in Section 6.5.1. I then add up the durations of the common phonemes to obtain the sentence

durations in the five styles. Finally, I calculate the sentence-level scaling factors from habitual to

9Note that (instead of using Equation 6.6) we can obtain the same values of f from→to
p using log2 d

to
p − log2 d

from
p

where log2 d
to
p and log2 d

from
p are average of log-transformed sentence durations d of phoneme p, of speaking styles

to and from, respectively.
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Figure 6.7: least squared regression between sentence (global) and phoneme-level (local) scaling
factors of monophthong

the other styles by dividing the sentence duration in target style to that in habitual. Moreover, I

calculate the phoneme-level scaling factor from habitual to the other four styles on the common

phonemes by dividing the target phoneme durations to the aligned habitual phonemes’ durations.

I examine the linear relationship between sentence-level scaling factors and phoneme-level scal-

ing factors in log-transformed scaling factors. Figure 6.7 shows a least squared regression between

sentence and sentence-level scaling factors with the intercept at zero. Table 6.3 shows the slope of

the linear regression lines. The stops g, b, d has a slope less than this of stops p, t, k because these

stops p, t, k includes burst and aspiration, and the aspiration has a lot of temporal flexibility. A

slope of 1.00 reports that an uniform time-modification is sufficient for the phoneme category. The

slope less than 1.00 of some phoneme categories such as stops: g, b, d confirm my hypothesis that

uniform time scaling is not sufficient for some phoneme categories.

6.6 Predict phoneme-level scaling factor

In this section, I present my preliminary method to predict phoneme-level scaling factors from

a sentence-level scaling factor and phoneme-level slopes (Table 6.3). My goal is to build a non-

uniform duration conversion procedure that takes as input a source sentence and a sentence-level
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Category c Slope #datapoints (%)

closures 0.96 18.6
monophthong 1.09 24.2

diphthong 0.86 6.4
stops:g,b,d 0.63 6.3
stops:p,t,k 0.95 9.8
fricative 1.00 16.8

nasal 1.02 5.8
approximant 1.12 9.3

other 0.84 2.8

Table 6.3: Slope of regression lines between sentence and phoneme-level scaling factors for each
phoneme category

scaling factor.

In order to utilize the phoneme-level slopes (Table 6.3), the method requires phoneme labels

and phoneme boundaries of the source sentence. For a given phoneme p with duration dp in the

source sentence, the phoneme duration d′p is determined as follows

d′p = fc × dp (6.7)

where fc denotes a phoneme-level scaling factor for phoneme category c, c is phoneme category of

phoneme p (e.g., monophthong). The phoneme-level scaling factor is defined as follows

fc = (α− 1)× sc + 1 (6.8)

where α denotes the sentence-level scaling factor, and sc denotes phoneme-level slope for phoneme

category c (as in Table 6.3).10 Note that α = 1, which means no change, results in d′p = dp as

should be the case.

Using this approach, one can obtain a piece-wise phoneme-level scaling factor trajectory over

time using phoneme labels and phoneme boundaries. Within a phoneme segment, the phoneme-

level scaling factor fc is a constant number.

In real applications, however, phoneme labels are not available. Instead, one can use a pre-

trained phoneme classifier to obtain the likelihoods of each phoneme p. One can calculate the

phoneme-level scaling factor trajectory as follows

fc(t) = (α− 1)×
∑
p

sc × Prob(p, t) + 1 (6.9)

10According to Equation 6.8, these phoneme-level slopes are different from those in Table 6.3. One can use a
similar procedure as in Section 6.6 to obtain phoneme-level scaling factors fc and sentence-level scaling factors α.
However, these slopes sc are linear coefficients of linear regression lines that satisfy Equation 6.8. Note that those
slopes sc in Table 6.3 satisfy log2 fc = sc × log2 α. As we can see, those slopes in Table 6.3 are in logarithm. but it
is not clear that we can use those slopes here
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Figure 6.8: Piece-wise vs smooth scaling factor trajectory on a TIMIT sentence. The piece-wise
trajectory requires phoneme labels and phoneme boundaries; While, the smooth trajectory requires
a pre-trained phoneme classification.

where fc(t) denotes phoneme-level scaling factor at time t, c is the phoneme category of phoneme

p, α denotes the sentence-level scaling factor, sc denotes phone-level slope, and Prob(p, t) denotes

the probability of seeing phoneme p at time t. The probability is calculated using the pre-trained

phoneme classifier. Because of the probability of phoneme labels (e.g. at the transition area of

two phonemes), the phoneme-level scaling factor trajectory becomes a smooth trajectory. Specifi-

cally, at the transition area of two phonemes, the probability of past phonemes gradually reduces;

while, the probability of current phoneme gradually increases. Thus, the phoneme-level slope

of past phoneme also reduces; while, the slope of current phoneme increases. The fading-out of

past phoneme’s slope and the fading-in of current phoneme’s slope create a smooth transition of

phoneme-level slopes.

Note that the scaling factors in Figure 6.8 are not calculated using equations than Equation 6.8

and Equation 6.9. Instead, for piece-wise, I calculated the scaling factor as log2 fc = sc × log2 α.

For smooth case, I calculated the scaling factor as log2 fc(t) = log2 α ×
∑
p sc × Prob(p, t). By

looking at the smooth trajectory of phoneme-level scaling factors, I determined that 85% of the

time the error is less than 0.01.
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6.7 Duration Conversion with Oracle Scaling Factors

In Section 6.6, I ran some preliminary tests for predicting scaling factors, now I only focus on

time-scale modification; thus, I use oracle scaling factors. In this section, I compare the perfor-

mance of uniform (sentence-level) and non-uniform (phoneme-level) duration conversion in terms

of intelligibility and naturalness. Recall that duration conversion consists of two main steps: 1)

predicting target scaling factors (see Section 6.2), and 2) time-scale modification (see Section 6.3).

As discussed in Section 6.2, I only focus on the second task of time-scale modification. For target

scaling factors, I use an oracle instead of predicting them. Specifically, for an individual sentence,

I know how the speaker changes the sentence between its fast style and slow style. I calculate the

oracle scaling factors for the sentence between the two speaking styles. Then I apply the oracle

scaling factor on the fast speech to obtain the modified speech, using the time-scale modification

procedure. In this way, the final intelligibility and naturalness of the modified speech is only af-

fected by the interaction between time-scale modifications and oracle phoneme and sentence-level

scaling factors.

I explore two different style conversions: habitual-to-slow and fast-to-slow. I include habitual-

to-slow conversion because habitual speech is commonly used in real-life applications. I evaluate the

naturalness and intelligibility of the modified speech. I include fast-to-slow conversion because the

duration differences between fast speech and slow speech are greater than those between habitual

speech and slow speech (see Section 6.5). For fast-to-slow conversion, I evaluate the intelligibility

of the modified speech but not naturalness.

6.7.1 Habitual-to-Slow Duration Conversion

In this section, I convert habitual speech to slow speech using a time-scale modification procedure,

phase vocoder with identity phase lock, given oracle sentence or phoneme-level scaling factors.

For an individual habitual sentence, we create two sentences. For the first, we apply an oracle

sentence-level scaling factor to uniformly convert sentence duration. For the second, we apply oracle

phoneme-level scaling factors and habitual phoneme labels to non-uniformly convert phoneme

durations.

I selected 14 speakers to manually correct the phoneme labels of habitual speech and slow

speech. I selected 10 out of 25 Harvard sentences with the highest difference in sentence duration.

In total, I obtained 14 (speakers) × 10 (sentences) × 2 (speaking styles) = 280 label files. Because

of the variation of phoneme sequences between habitual speech and target slow speech, I first align

the phoneme sequences of habitual speech and target slow speech. Then I only kept the common
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Speaker ID
Preference test

Naturalness Intelligibility

1 -0.3 -0.45*
4 0.125 -0.1
6 -0.25 -0.325
12 0.475 * 0.425 *
19 -0.25 -0.375*
20 -0.75* -0.56*
22 -0.2 -0.125
24 0 -0.375*
25 -0.525* -0.525*
26 -0.375 -0.175
28 0.225 0.1
30 0.45 * 0.225
31 -0.075 -0.45*
33 0.15 -0.175

Table 6.4: Naturalness and intelligibility preference test for habitual-to-slow duration conversion.
Positive scores means non-uniform (phoneme-level) is better. Asterisk shows significant difference
from zeros in a two-tailed t-test

phonemes for each pair of habitual speech and target slow speech. I modify the aligned habitual

speech using phase vocoder to achieve the duration of aligned slow speech.

There are 10 (sentences) × 14 (speakers) = 140 trials. Each trial consists of uniformly modified

speech and non-uniformly modified one. In total, there are 280 stimuli.11 I mixed the stimuli with

babble noise at 0dB SNR. I recruited participants on Amazon Mechanical Turk. All participants

are living in the U. S., and they are required to have an acceptance rate of 95% on Amazon

Mechanical Turk. I needed 14 participants to cover all 140 trials.

I conduct the first preference test to compare the intelligibility between uniformly modified

speech and non-uniformly modified speech. For each trial, a participant listened to a pair of

stimuli; then, they answer “if the second one is more intelligible than the first one?” with a five-

point scale: “much worse” (-2), “worse” (-1), “same” (0), “better” (1), “much better” (2). There

were 56 participants. Thus, each pair was listened to four times. Table 6.4 showed the result of this

intelligibility test. There is no case in which non-uniform modification significantly outperforms

uniform modification in terms of intelligibility.

I did the second preference test to the evaluate naturalness of time-scale modification. The

configuration of this test is similar to that of the intelligibility preference test. For each trial of

the naturalness preference test, a participant listen to a pair of stimuli; then, they answer “if the

second one is more natural than the first one?” with a five-point scale: “much worse” (-2), “worse”

11Samples for the experiment are available at https://tuanad121.github.io/samples/2021-07-10-Duration/
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Speaker ID
Preference test

Intelligibility

1 -0.15
4 0.125
6 -0.375*
12 0.325
19 0.1
20 -0.6*
22 -0.4*
24 -0.2
25 -0.55*
26 -0.475*
28 -0.275
30 0.05
31 -1
33 -0.125

Table 6.5: Intelligibility preference test for fast-to-slow duration conversion. Positive scores means
non-uniform (phoneme-level) is better. Asterisk means significantly different from zeros in a two-
tailed t-test

(-1), “same” (0), “better” (1), “much better” (2). There were 56 participants. Table 6.4 showed

the results of this naturalness test. There are two speakers (12, 30) with a significantly better

performance of non-uniform modification; while, there are two speakers (20, 25) with significantly

better performance of uniform modification.

6.7.2 Fast-to-Slow Duration Conversion

In this section, I convert fast speech to slow speech using a time-scale modification procedure, phase

vocoder, given oracle sentence or phoneme-level scaling factors. I conduct the third preference test

to evaluate the intelligibility of the time-scale modification. The configuration of this intelligibility

preference test is the same as previous intelligibility preference test (Section 6.7.1). For each trial,

a participant listen to a pair of stimuli; then, they answer “if the second one is more intelligible

than the first one?” with a five-point scale: “much worse” (-2), “worse” (-1), “same” (0), “better”

(1), “much better” (2). There were 56 participants. Table 6.5 showed the results of this test.

There is no case in which non-uniform modification significantly outperforms uniform modification

in terms of intelligibility.
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6.8 Conclusion

In my naturalness preference test for habitual-to-slow conversion, non-uniform conversion sig-

nificantly outperformed uniform conversion for two speakers; however, the uniform conversion

significantly outperformed the non-uniform conversion for other two speakers. My remaining ex-

periments on intelligibility did not show that non-uniform conversion was significantly better than

uniform conversion. I attribute the under-performance of non-uniform conversion to artifacts in

the output signal. I discovered that the output signals of non-uniform conversion had more arti-

facts than those of uniform conversion, probably because non-uniform conversion is more complex

than uniform conversion. I suggest improving the quality of the time-scale modification procedure

before conducting further studies on non-uniform duration conversion.



Chapter 7

Conclusion

In this dissertation, I explored different approaches to improve the intelligibility of habitual speech,

(mild) dysarthric speech and alaryngeal speech on the speaker side using well-established machine

learning methods. To make intelligibility of habitual and dysarthric speech become more resilient

to noise, I converted the speech into a special clear speaking style. To increase the quality and in-

telligibility of alaryngeal speech, which is harder to understand than dysarthric speech, I converted

the alaryngeal speech into intelligible speech. In Section 7.1, I summarize my main contributions.

In Section 7.2, I discuss future directions of the research.

7.1 Contributions

As outlined in Chapter 1, this dissertation has four objectives:

1. To determine effective spectral features for spectral voice and style conversion.

2. To develop effective HAB-to-CLR spectral mappings using well-established machine learning

algorithms.

3. To develop effective conversion methods from alaryngeal speech to intelligible speech, using

well-established machine learning algorithms.

4. To investigate the performance of uniform and non-uniform duration style conversion.

The first objective was to determine effective spectral features for spectral voice and style

conversion (Chapter 3). I contrasted two new sets of spectral mapping features: 1) probabilis-

tic peak tracking features (PPT), which are formant-like hand-crafted features, and 2) manifold

features (VAE), which are machine learnable by a Variational Autoencoder. The two sets of fea-

tures are integrated into a high quality vocoder, WORLD. I extensively evaluated the two sets

of features by comparing them to each other and to baselines, which are two commonly-used

96
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spectral representations: line spectral frequency (LSF) and mel-cepstrum coefficients (MCEP) in

speech reconstruction, voice conversion, and style conversion. For each of the four types of features

(VAE, PPT, LSF, MCEP), I specified the number of features (e.g., VAE-12 denotes VAE with 12

features).

In a speech reconstruction experiment, I showed that using VAE-12 achieved significantly better

perceived speech quality compared to MCEP-12. VAE-12 also outperformed PPT-20 in terms

of perceived speech quality. In a voice conversion experiment, I showed that mapping VAE-

12 resulted in significantly better perceived speech quality compared to MCEP-40, with similar

speaker accuracy, thus demonstrating the efficiency of mapping in a low-dimensional latent feature

space. I also showed that VAE-12 outperformed LSF-20 in terms of similar speaker accuracy. In

a habitual to clear style conversion experiment, I showed that VAE-12 together with a custom

skip-connection deep neural network significantly improved the speech intelligibility of one of three

speakers, with the average keyword recall accuracy increasing from 24% to 46%. The results was

reported in Tuan Dinh, Alexander Kain, Kris Tjaden, Using a Manifold Vocoder for Spectral Voice

and Style Conversion, Interspeech, 2019.

The second objective was to develop effective HAB-to-CLR spectral mappings using well-

established machine learning algorithms (Chapter 4). I proposed a cGAN-based style conversion

for mapping the manifold features of habitual speech to those of clear speech. I gave an overview

of cGANs, I described the application of cGANs for mapping speaking styles, and I presented

my configuration for the following experiments. Specifically, conditional Generative Adversarial

nets (cGANs) were investigated with three mappings: one-to-one mappings, many-to-one map-

pings, and many-to-many mappings. For one-to-one mappings, I compared the performance of

cGANs-based one-to-one mappings to my manifold model. For each of the three mappings, I ex-

tensively evaluated the performance of the cGANs on both typical speakers and speakers with mild

dysarthria secondary to Parkinson’s disease for intelligibility improvement in a noisy environment.

In the speaker-dependent one-to-one mapping case, I showed that the cGAN outperformed a

DNN in terms of average keyword recall accuracy in all cases. Moreover, the cGAN significantly

improved speech intelligibility of two of three speakers, compared to one speaker when using the

DNN. In the speaker-independent many-to-one mapping case, I could significantly improve speech

intelligibility of one of three speakers, with average keyword recall accuracy increasing from 17.6%

to 34.4%. In the speaker-independent many-to-many mapping case, the cGAN improved average

keyword accuracy over that of vocoded habitual speech for two speakers: CSM7 and PDF7, but

without statistical significance. The result was reported in Tuan Dinh, Alexander Kain, Kris

Tjaden, Improving Speech Intelligibility through Speaker Dependent and Independent Spectral Style
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Conversion, Interspeech, 2020.

The third objective was to develop effective conversion methods from alaryngeal speech to

intelligible speech, using well-established machine learning algorithms (see Chapter 5). I proposed

an approach that has two parts and a F0 synthesis method for transforming alaryngeal speech

(LAR speech) to intelligible speech (INT speech). The first part predicts voicing/unvoicing and

the degree of voicing using feed-forward networks. The second part is for LAR-to-INT spectral

mappings using a cGANs.

I provided the motivation for the research; and I reviewed the related works for increasing

intelligibility and naturalness of alaryngeal speech. I discussed my data, including how to create

my target data of intelligible speech, which is different from the clear speech of Chapter 3 and

Chapter 4. I predicted voicing/unvoicing and the degree of voicing. I predicted the spectrum

of intelligible speech from that of alaryngeal speech. I created a synthetic fundamental frequency

trajectory with an intonation model consisting of phrase and accent curves to address the unusable

fundamental frequency (F0) information of alaryngeal speech. We evaluated the LAR-to-INT

conversion methods on data.

For predicting INT voicing/unvoicing and degree of voicing, using different context lengths did

not have a noticeable impact. Moreover, pre-training the prediction networks on FU-, and FV-

TIMIT as opposed to TIMIT did not have improved performance. Similarly, pre-training with FU-,

and FV-TIMIT did not have improved performance for predicting MCEP of intelligible speech.

Adaptation always improved performance. In my subjective tests with four LAR speakers, I sig-

nificantly improved the naturalness of two speakers, and I significantly improved the intelligibility

of one speaker. The results are promising for a challenging task with a lot of individual variabil-

ity among four LAR speakers. This is reported in Tuan Dinh, Alexander Kain, Robin Samlan,

Beiming Cao, Jun Wang, Increasing the Intelligibility and Naturalness of Alaryngeal Speech Using

Voice Conversion and Synthetic Fundamental Frequency, Interspeech, 2020.

The fourth objective was to investigate the performance of uniform and non-uniform duration

style conversion (Chapter 6). I showed preliminary results of improving speech intelligibility us-

ing duration conversion. In previous objectives, I conducted spectral style conversion to improve

speech intelligibility. In addition to spectral features, phoneme duration also proved to be im-

portant in improving intelligibility during style conversion. Therefore, my goal was to improve

intelligibility using duration style conversion. Specifically, I explored the non-uniform duration

style conversion. My intuition is that a non-uniform duration conversion is better than a uniform

one. However, my effort of conducting non-uniform style duration conversion did not outperform

the uniform style duration conversion. I attribute the failure to the artifacts created by duration
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conversion algorithms. Further work should be done to reduce the artifacts in order to examine

the performance of duration conversion on speech intelligibility.

I presented an overview of duration conversion for improving speech intelligibility. I presented

my duration conversion method; and I reviewed time-scale modification procedures. I presented

the experimental data. Then, I analyzed how changing speaking style affect sentence and phoneme

duration. Finally, we evaluated the performance of uniform and non-uniform duration conversion

in terms of intelligibility in an ideal case when (oracle) sentence- and phoneme-level scaling factors

were given.

My experiments did not show that non-uniform time-scale modification was significantly better

than uniform one in terms of naturalness and intelligibility. The under-performance of non-uniform

modifications can be attributed to artifacts in output signal. I discovered that the output signals

of non-uniform modification had more artifacts than those of uniform modification. I suggest to

improve the quality of time-scale modification procedure, phase vocoder, before conducting further

study on non-uniform duration conversion.

7.2 Future Direction

One area to improve is the HAB-to-CLR style conversion. Brenk showed that phoneme duration

of slow speech is not a contributing factor to the intelligibility of slow speech [27]. However,

the combination of phoneme duration and spectrum of slow speech is a contributing factor to

intelligibility of slow speech. Therefore, combining spectral conversion and duration conversion

in style conversion is a future direction for improving intelligibility of habitual and dysarthric

speech. One approach is to use unified models for modelling both spectral mappings and duration

conversion simultaneously. My intuition is that people change duration and spectrum at the

same time when changing their speaking style. By jointly modelling the changes of duration and

spectrum, I can create better models for both duration and spectrum. Currently, the sequence-

to-sequence and transformer models show their potential for modelling spectrum and duration

simultaneously in voice conversion [101, 99]. Thus, future studies should investigate the efficacy of

these models in style conversion for improving speech intelligibility.

Another area to improve is a thorough evaluation of HAB-to-CLR style conversion. When

evaluating my HAB-to-CLR style conversion methods, I considered a challenging noise condition,

babble noise at 0dB SNR. However, the intelligibility of CLR speech depends on noise conditions

and listeners’ hearing ability [173, 60, 25, 121]. Thus, there is a need for further evaluation of

the method with different noise conditions to understand more about the efficacy of my mapping.
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Moreover, all listeners in my evaluation have normal hearing ability. There remains a question

about the relationship between the efficacy of my mappings and listeners’ hearing ability. A future

direction is to investigate the efficacy of my style conversion methods with different noise conditions

and listeners’ hearing ability.

Another area to improve is the LAR-to-INT conversion. The small amount of LAR speech

probably limits the performance of DNNs models. Thus, one approach is to pre-train the models

on synthetic data that simulates LAR speech. In Section 5.4 and 5.5, pre-training did not show

noticeable effect, which suggests that our pre-trained dataset did not properly simulate LAR

speech. I suspect that LAR speech is different from INT speech in many aspects other than voicing.

There should be further investigation on the properties of LAR speech in order to generate a better

pre-trained dataset.



Appendix A

List of Speech Stimuli

The 25 Harvard sentences with keywords in bold were used in keyword recall accuracy test to

evaluate sentence-level intelligibility.

1. Glue the sheet to the dark blue background

2. The box was thrown beside the parked truck

3. Four hours of steady work faced us

4. The hogs were fed chopped corn and garbage

5. The soft cushion broke the man’s fall

6. The girl at the booth sold fifty bonds

7. She blushed when he gave her a white orchid

8. Note closely the size of the gas tank

9. The square wooden crate was packed to be shipped

10. He sent the figs, but kept the ripe cherries

11. A cup of sugar makes sweet fudge

12. Place a rosebush near the porch steps

13. A saw is a tool used for making boards

14. The dune rose from the edge of the water

15. The ink stain dried on the finished page

16. The harder he tried the less he got done
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17. Paste can cleanse the most dirty brass

18. The ancient coin was quite dull and worn

19. The tiny girl took off her hat

20. The pot boiled, but the contents failed to jell

21. The sofa cushion is red and of light weight

22. An abrupt start does not win the prize

23. These coins will be needed to pay his debt

24. Hoist the load to your left shoulder

25. Burn peat after the logs give out
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