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Abstract 
Acute Myeloid Leukemia (AML) is a genetically and phenotypically heterogeneous white 

blood cell cancer with a poor prognosis and limited therapeutic options. For many 

decades the current standard of care has been an intensive chemotherapy regimen, to 

which only a fraction of patients respond and are physically able to withstand. However, 

the advent of deep genetic sequencing has led to the discovery of a number of 

mutational lesions targetable by small-molecule inhibitors, which more patients can 

tolerate. Even so, the combination of extreme genetic variability and acquired/intrinsic 

drug resistance has caused many targeted therapies to fail clinically. It is therefore 

imperative that we more deeply characterize underlying molecular features of intrinsic 

drug resistance/refractoriness to targeted therapies as well as extrinsic factors which 

facilitate these responses, particularly the role of the tumor microenvironment. One class 

of inhibitors targeting bromodomain and extra-terminal (BET) family proteins (BETi) has 

become of interest in hematological settings due to their potent in vitro and in vivo 

activity, but it is still understudied. This dissertation has two main foci, 1.) Determination 

of tumor intrinsic mechanisms of resistance/sensitivity to inhibitors targeting BET family 

proteins (BETi) in AML and 2.) Extrinsic mechanisms of BETi activity on the tumor 

microenvironment of AML. Accordingly, this dissertation demonstrates that BETi 

response is tethered to leukemic differentiation state. We utilized patient RNA-seq, drug 

profiling, and differentiation state data from ~600 AML patient samples within the Beat 

AML biorepository, and multiple whole-genome CRISPR screens to identify regulators of 

monocytic differentiation as predictors of BETi response. Monocytic AML subtypes were 

intrinsically sensitive to BET inhibition, whereas undifferentiated AML subtypes were 

intrinsically resistant. This also revealed multiple targetable vulnerabilities to overcome 

BETi resistance via combinations with small-molecule inhibitors (SMIs), such as BCL2 

inhibitors, which are more effective in undifferentiated AMLs as rational combination 
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treatment strategy to prevent drug resistance driven by tumor maturation state changes.  

Further, I identify a novel role for BET family proteins in regulating T cell differentiation in 

the AML microenvironment. This dissertation demonstrates that AML drives in vivo T cell 

exhaustion, which is coordinated by multiple T cell receptor (TCR) activated transcription 

factors and BET proteins. Additionally, I demonstrate that BET inhibition reinvigorates 

AML-induced exhausted T cells to a more functional subtype that expands with immune 

checkpoint therapy. Finally, I utilized cell type proportion data derived from deconvoluted 

bulk RNA-seq patient data to describe the functional immune landscape of AML -- 

immune cell type correlations with a number of clinical correlates (ELN2017, outcome, 

etc.), drug responses, immune exhaustion, and immune checkpoint blockade (ICB) 

responses. Taken together, this body of work identifies a novel mechanism of non-

genetic drug resistance to BETi, extrinsic control of T cell differentiation regulated by 

BET proteins, the pre-clinical efficacy and mechanistic basis of combined BETi + anti-

PD1, and globally characterizes the functional/genomic landscape of immune cells in 

AML.
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Chapter 1 
 

Introduction  

The Hematopoietic System 
The hematopoietic system is the combined processes in the body which generates all 

cells residing in the blood. The hematopoietic system is created early in developing 

embryos and begins as blood cells form in the yolk sac. Later in development, blood 

cells are formed in secondary lymphoid tissues such as lymph nodes, spleen, and liver. 

Lastly, the bone marrow niche develops and assumes the role of forming the majority of 

blood cells with the secondary lymphoid organs now primarily serving as a hub for 

maturation and proliferation for lymphoid cells(1,2). The process by which the blood cells 

of the hematopoietic system are generated is called hematopoiesis.  

Hematopoiesis and Differentiation 

Hematopoiesis is the highly coordinated process by which all blood cells are formed as a 

result of selective differentiation of self-renewing hematopoietic stem cells (HSCs), which 

starts during embryogenesis and continues throughout our lives(3-6). An average adult 

will produce approximately 1011 – 1012 new blood cells daily to maintain blood 

homeostasis. HSCs are driven by extrinsic cues, such as cytokines and chemokines, to 

differentiate along two main branches, myeloid and lymphoid, to generate over a dozen 

unique blood cells which constitute our innate and adaptive immune system (Figure 

1(7))(8,9). These cues regulate expression of a multitude of hematopoietic transcription 

factors which determine the identity of the derivative blood cell into which the HSC 

differentiates. While there are numerous hematopoietic transcription factors that 
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contribute to HSC differentiation, the E twenty-six (ETS) family proteins play the most 

essential role. ETS transcription factors are a large evolutionarily conserved gene family 

which all share significant sequence homology in their DNA binding domain(10). These 

transcription factors are made up of 12 subfamilies(11) and, for myeloid cell 

differentiation, the most important transcription factor is SPI1 (encoding PU.1). PU.1 is 

considered the master regulator of myeloid differentiation and interacts with a number of 

epigenetic modifying machinery to promote cell fate-specifying gene programs(12-15).   

HSCs have a near unlimited self-renewal capacity, which wanes naturally with age(16), 

but self-renewing capacity and overall plasticity decrease as they differentiate into 

subsequent progenitor cells. Thus hematopoiesis, and the controlled differentiation of 

HSCs, must be tightly regulated to maintain homeostasis. This chapter will provide an 

introduction to acute myeloid leukemia, a cancer which is driven by the acquisition of 

mutations in a variety of early progenitor myeloid cells, leading to dysregulated 

differentiation and expansion of malignant myeloid cells. 
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Figure 1 – Overview of the cytokines which promote differentiation of HSCs into all other blood cells. Adapted 
and created from Biorender hematopoiesis template. Cytokines derived from Metcalf et al. 2008.   
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Acute Myeloid Leukemia – Epidemiology, Treatments, 
and Subtypes 

Epidemiology 
Acute Myeloid Leukemia (AML) is a myeloid lineage white-blood cell cancer with a poor 

prognosis and limited therapeutic options(17,18). AML is characterized by an 

uncontrolled expansion of abnormal myeloid cells, commonly referred to as blasts, which 

ultimately causes global dysregulation of hematopoiesis and death as a result of the 

disease directly or from secondary issues such as infection and bleeding(17-21). AML 

has an exceptionally poor prognosis among the elderly, with an average 5 year survival 

of only ~25%(22) (Figure 2).  

 The only potential curative option is bone marrow transplantation post-chemotherapy – 

a procedure fraught with risks such as graft vs. host disease and bone marrow 

failure(17,18,23). In 2020 there were 60,530 new cases of leukemia and 23,100 

leukemia deaths in the United States. AML accounted for only ~1/3 of new cases 

(19,940), but disproportionately made up approximately 50% of the new deaths (11,180). 

In total, AML encompasses approximately 1% of all new cancer diagnoses and 2% of 

cancer-related mortalities (SEER Cancer Stat Facts). AML is an extremely genetically 

heterogeneous cancer, with the most common mutations, FLT3-ITD, NPM1, and 

DNMT3a, only encompassing approximately ~30% of all AML patients(20). Broadly, 

AML can be characterized by acquisition of mutations targeting 4 main classes 1.) 

Proliferation Enhancers – FLT3-ITD, N/KRAS 2.) Differentiation Blocks – RUNX1, 

CEBPA, GATA1 3.) Epigenetic Dysregulation – DNMT3A, TET2, ASXL1 and 4.) 

Splicing/DNA Repair mutations – TP53, FANC, SF3B1(20).  

 

 

 



P a g e  | 5 
 

 

Figure 2 – SEER Cancer statistics describing the cumulative survival rates for AML patients stratified by age 
from 2000-2017 
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Treatment 
The standard of care for de novo AML, chemotherapy, remains largely unchanged even 

after ~40 years since its introduction. Commonly referred to “induction chemotherapy” or 

“7 + 3,” this intensive chemotherapy regimen is composed of 7 days of continuous 

infusion of cytarabine (ara-c) followed by 3 days of short infusions of anthracyclines (e.g 

daunorubicin, idarubicin)(17,21,24). For patients with an adverse prognosis the goal of 

this treatment regimen is to get patients tumor burden low enough so that they can 

undergo a bone marrow transplantation from a suitable match, which essentially creates 

a graft vs. tumor response. Unfortunately, many patients cannot withstand such a 

difficult chemotherapy regimen and many will eventually relapse(25). Recent 

advancements in sequencing technologies have allowed for better characterization of 

genetic lesions which drive leukemogenesis as previously discussed. This has led to the 

development and FDA approval of a few therapies that specifically target these genetic 

lesions such as adaptation of combined BCL2 inhibitor + DNMT3a inhibitorsin 

chemotherapy ineligible or relapsed/refractory AML patients(26,27), as well as 

FLT3/FLT3-ITD inhibitors such as gilteritinib(28). However, drug resistance for targeted 

therapies is a recurring multi-faceted issue (Figure 3) and mechanistic understanding of 

these resistance drivers are needed to help discover more durable treatments.  As it 

stands now, small-molecule inhibitors, either as monotherapies or combined with other 

targeted therapies, extend survival and are generally more tolerable than chemotherapy 

but they do not cure disease in patients.  
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Figure 3- Cartoon schematic detailing the many described mechanisms of drug resistance that has been can 
occur in AML patients 
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Subtypes 
Not only is AML genetically heterogeneous, it is also composed of multiple different 

subtypes based on differentiation state and/or cytogenetics. Several clinical 

classifications exist to subtype AML based on cytogenetic patterns, morphology, and 

genetics. One of the oldest designations systems is referred to as “French-American-

British” (FAB) subtyping system, which was described in the 1970s and heavily relied on 

morphological features(29). While less popular now, the FAB classifications are still used 

clinically, usually in parallel with the newer WHO Classifications of AML(30). FAB 

subtypes range from M0 to M7 in order of least to most differentiated. M0-M2 resemble 

HSCs with increasing differentiation, M3 is a unique Promyelocytic leukemia discussed 

further in a later section, M4-M5 are monocytic, M6 are erythrocytic, and M7 are 

megakaryocytic. (Figure 4). WHO Classifications are much more specific and includes 

designations based on cytogenetic patterns, but includes designations based on 

morphology that are analogous to FAB subtyping supported by immunophenotyping 

(Figure 5). While these subtyping systems have been a standard diagnostic tool in 

characterizing AMLs, there are still very few targeted therapies which are designed 

around the patient’s leukemic differentiation stage. The only FDA therapy which is 

tailored to a leukemia subtype based on their differentiation state is arsenic trioxide 

(ATO)(31) and all-trans retinoic acid (ATRA)(32,33) in Acute Promyelocytic Leukemias 

(APLs), which is an M3 FAB. This leukemia is specifically characterized by the fusion 

protein PML-RARa which consists of the PML protein, a tumor suppressor that regulates 

TP53 and differentiation, and the retinoic acid receptor alpha (RARa) subunit. This 

fusion protein prevents normal PML signaling and leaves the cells in a trapped state of 

dedifferentiation where they are resistant to apoptosis but are rescuable via treatment 

with ATRA, the ligand of the RARa subunit. This derepresses proper PML signaling and 

leads to terminal granulocytic differentiation and death of the malignant cells. However, 
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as just described, there are many other mechanisms of leukemogenesis driven by 

underlying deficiencies in differentiation that may reveal novel synthetic vulnerabilities, 

like ATRA and ATO.  
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Figure 4 – Table describes the FAB subtyping system with the classification, cell type affected, and the 
clinical description 
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Figure 5 – Describes the recently updated WHO 2016 Classifications of Acute leukemias (does not include 
MPN/MDS/related neoplasms) with the clinical annotations, incidence, and closest FAB equivalent where 
possible. 

  

 

 

WHO myeloid neoplasm and acute leukemia classification FAB Equivalent
Acute myeloid leukemia (AML) and related neoplasms

AML with recurrent genetic abnormalities
AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1 M2

AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22);CBFB-MYH11 M4eo
APL with PML-RARA M3

AML with t(9;11)(p21.3;q23.3);MLLT3-KMT2A
AML with t(6;9)(p23;q34.1);DEK-NUP214

AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM
AML (megakaryoblastic) with t(1;22)(p13.3;q13.3);RBM15-MKL1

Provisional entity: AML with BCR-ABL1
AML with mutated NPM1

AML with biallelic mutations of CEBPA
Provisional entity: AML with mutated RUNX1

AML with myelodysplasia-related changes
Therapy-related myeloid neoplasms

AML, NOS
AML with minimal differentiation M1

AML without maturation M0
AML with maturation M2

Acute myelomonocytic leukemia M4
Acute monoblastic/monocytic leukemia M5

Pure erythroid leukemia M6
Acute megakaryoblastic leukemia M7

Acute basophilic leukemia
Acute panmyelosis with myelofibrosis

Myeloid sarcoma
Myeloid proliferations related to Down syndrome

Transient abnormal myelopoiesis (TAM)
Myeloid leukemia associated with Down syndrome

Acute leukemias of ambiguous lineage
Acute undifferentiated leukemia

Mixed phenotype acute leukemia (MPAL) with t(9;22)(q34.1;q11.2); BCR-ABL1
MPAL with t(v;11q23.3); KMT2A rearranged

MPAL, B/myeloid, NOS
MPAL, T/myeloid, NOS
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BET Family Proteins 

Structures and Domains 
BET proteins (Bromodomain and Extra Terminal domain), which include BRD2, BRD3, 

BRD4, and BRDT (testis specific), consist of a family of chromatin reading proteins 

which share similar binding domains. Each BRD protein has distinct expression patterns 

across different tissue types – BRD2 and BRD3 are expressed in the pancreas, testis, 

ovaries, brain, liver, spleen, lung, and kidney, whereas BRD4 is expressed ubiquitously 

(importantly, this includes the bone marrow and lymphoid cells)(34-36). The most well 

studied protein within the BET family is BRD4, due to its described role in regulating 

transcription and oncogenic potential. BRD4 is unique in that it contains an n- and c- 

terminal phosphorylation site (NPS/ CPS), a basic residue enriched interaction domain 

(BID), a pTEFb interaction domain (PID) and a c-terminal motif (CTM, unique to the 

BRD4L isoform). Like the other BET proteins, BRD4 consists of two bromodomains 

(BD1 and BD2), which serve to bind acetylated lysine residues, but is unique in that it 

recruits the transcription elongation factor pTEFb via its conserved PID and RNA 

polymerase II to promote gene transcription(37-39) (Figure 6). RNA Pol II remains 

transcriptionally paused until BRD4 proteins directly stimulates the pTEFb to 

phosphorylate the c-terminal domain (CTD) of RNA Pol II at its Serine 2, which further 

mediates the activation of Topoisomerase I and transcription(40). The NPS and CPS 

domains, which can be phosphorylated by casein kinase 2, regulate BRD4 activity 

during cell cycling. Additionally, all BRD proteins contain an extra terminal (ET) domain, 

which acts as recruiters for transcription regulator proteins(41).  

BRD4 canonical and non-canonical functions 
BRD4 was originally identified as a regulator of cell cycle control as it associates with 

chromosomes to promote transcription of genes critical in progressing from G1(42-44). 

In this context, BRD4 is critical during embryogenesis via the maintenance of embryonic 
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stem cells self-renewal and cooperation with cell state determining transcription factors 

such as Nanog(45) and OCT4(46). Thus BRD4-null embryos die shortly after 

implantation. As a chromatin regulator, it is perhaps not surprising that BRD4 has also 

been implicated in many other critical cellular processes such as osteoblast 

differentiation (47), adipogenesis, and myogenesis(48). BRD4 has a specific role in 

promoting recruitment of transcription machinery to super-enhancer regions, which are 

large clusters of enhancers that regulate expression of critical genes, such as those 

which determine cell fate(49), senescence(50), and many other critical biological 

processes(51). BRD4 has also been shown to directly bind and interact with a number of 

transcription factors as well, such as JMJD6(52), GATA1(53), and multiple replication 

factor proteins(54). BRD4 is thought to have increased affinity for super-enhancers via 

its increased binding affinity for multi-acetylated or acetylation-dense histones(55,56) but 

the exact mechanism is still relatively unclear. Most recent findings have pointed towards 

differences in acetylation affinity between BD1 and BD2 domains of BET proteins. Most 

notably, BD1 favors binding to acetylated residues on histone H4, whereas BD2 

accommodates a wider range of acetylation markers(43,55,57). Further, it is established 

that BD1 is the primary domain required for binding to chromatin(58). Interestingly, 

BRD4 also has several non-canonical functions including interaction with splicing 

machinery(59), acting as a direct histone acetyltransferase(60), and acting as an atypical 

kinase that directly phosphorylates the CTD tail of RNA pol II, which is normally 

accomplished by the pTEFb complex(61). However, these mechanisms are still largely 

understudied and their impact or contributions to malignancies is unknown. The 

important point is that BRD4 is a chromatin reader and binds to acetylated histone 

residues to recruit the RNA transcribing machinery to super enhancer regions and 

promote their gene expression; however, it can also perform atypical functions.  
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Figure 6 – A.) Details the location of the Bromodomain 1 (BD1), Bromodomain 2 (BD2), extra terminal (ET), 
and c-terminal domain (CTD) on BET family proteins. B.) Cartoon schematic details BRD4s interaction with 
acetylated histone residues and the RNA transcription machinery utilizing its different domains. Used with 
permission from Biomedicines.  
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Oncogenic Potential and Therapeutic Targeting 
BRD4 itself is rarely mutated in cancer, with the exception of NUT midline carcinoma 

(NMC), which is driven by translocation of BRD4 with NUT genes(62,63). This 

translocation drives an incredibly aggressive cancer with a median survival of only 7 

months. It is believed that the main mechanism of oncogenesis in NMC is via aberrant 

activation of MYC and SOX2, preventing differentiation and increasing proliferative 

capacity(64). Other fusions have been described, such as BRD4-NOTCH3(65) but are 

exceedingly rare and only described on a case-by-case basis. The role of BRD4 in 

promoting leukemia is more nuanced and is thought to be primarily due its regulation of 

myc, a well-described master-regulator of many oncogenes(66)(67). In addition, BRD4 

has been shown to regulate the transcription of many hematopoietic transcription factors 

that determine cell differentiation state and are often dysregulated in AML, supporting 

previous data regarding BRD4 regulating super-enhancer regions(68) (Figure 7).  
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Figure 7 – Cartoon schematic detailing the mechanisms of action for BRD4. BRD4 binds to acetylated 
histone residues and recruits RNA transcribing machinery such as the mediator and pTEFb Complex to 
facilitate RNA pol II elongation. This is accomplished via phosphorylation of the RNA pol II tail by pTEFb 
Complex. BRD4 regulates many oncogenic genes in hematological malignancies. Created in biorender.  
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In summary, the exact role of BRD4 in promoting leukemia remains relatively unclear but 

is likely due to regulation of many pro-leukemia survival and differentiation programs.  

What is known, however, is that selective inhibition of BRD4 and other BET proteins is a 

potent inhibitor of leukemic growth in vitro and in vivo(69-73). Early RNAi dropout 

screens identified BRD4 loss as an inhibitor of leukemic growth(74). In addition, BETi 

treatment in leukemia cells has been shown to dramatically reduce transcription of the 

aforementioned oncogenes and induce cell death(70,75,76). Several BETi have been 

developed to date, the majority of which function by specifically blocking the acetyl-lysine 

binding pocket of BRD4 from interacting with acetylated histones. This dissertation will 

focus on three BETi -- JQ1, OTX-015, and CPI-0610, which all act mechanistically in this 

fashion(70,71,76,77). Newer generation of BETi exist which are composed of the 

recognition features of previously described BETi (e.g JQ1, etc.) conjugated to E3 

Ubiquitin Ligase, which tags and ubiquitinates BRD4 for degradation. These inhibitors 

are commonly referred to as Proteolysis-Targeting Chimera (PROTACs). However, 

these inhibitors have had issues transitioning to the clinic due to their overt toxicity(78-

80). Growing interest is garnering around selective inhibition of the BD1 and BD2 

domains, rather than pan-BD targeting that is accomplished by older generation BETi, 

and have recently been described, but are too new to gauge their impact in 

hematological malignancies(81). As mentioned previously, the BD1 and BD2 domains 

have unique binding preferences and selective inhibition of one or the other may affect 

clinical activity. Clinically, BETi OTX-015 achieved complete remissions in a small 

subset of patients who failed alternative therapies, which is rarely achieved in 

monotherapy SMIs. However, many patients were unresponsive to OTX-015(82), 

prompting the investigation of potential intrinsic resistance mechanisms to BETi, which is 

the subject of the first body of work in this thesis. 
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T cell Exhaustion 

Introduction 
The second body of work in this thesis describes a role for BRD4 in regulating T cell 

exhaustion justifying synergistic combinations of BETi and anti-PD1 therapy in AML. 

This introductory section will describe the characteristics of immune exhaustion and the 

interplay with immune checkpoint blockade therapy.  

Characteristics of T cell Exhaustion  
T cells are lymphoid cells that develop in the thymus and differentiate into either CD4+ T 

cells or CD8+ T cells, which are the focus of this section(83). T cells protect the host in 

conjunction with antigen-presenting cells, which display antigens bound to major-

histocompatibility complexes I (MHC) and are recognized by CD8+ T cells, and on MHC 

II which are recognized by CD4+ T cells. CD8+ T cells engage with antigen-bound MHC I 

via their T Cell Receptors (TCRs) and undergo clonal expansion and differentiation into 

a wide variety of memory and effector subtypes(84). Effector CD8+ T cells act primarily 

through generation of cytolytic molecules, such as granzyme B and perforin, and 

inflammatory cytokines. These short-lived T cells contract after approximately 10-14 

days before undergoing programmed cell death, whereas memory T cells persist and 

provide immunological memory of the bacterial/viral/parasitic infections(85).   

Broadly, T cell exhaustion is a phenomenon originally described during chronic viral 

infections in which T cells continuously exposed to antigens terminally differentiate into 

dysfunctional T cells. It was found that Armstrong LCMV infections, which generate 

acute infections that are quickly cleared by the animal, preferentially generate terminal 

effector T cells. Conversely, Clone 13 or Docile LCMV infections, which generate chronic 

infections, preferentially generate terminally exhausted T cells after an extended period 

of time(86,87). In this context “dysfunctional” refers to a multitude of changes, most 

notably decreases in effector molecule secretion (granzyme B, perforin, etc.), loss of 
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proliferative capacity, loss of transcriptional plasticity, and resistance to ICB therapy re-

invigoration(88,89). Differentiation down a terminal exhaustion (TEx) lineage vs. terminal 

effector lineage is determined by antigen exposure type, acute vs chronic, and is 

regulated by large changes in the epigenetic landscape (Figure 8(88)). A set of TCR-

activated transcription factors -- namely BATF, IRF4, NFATc1, and TOX, promote 

terminal exhaustion whereas transcription factors in the HMG-box family, such as TCF1 

and SLAMF6, promote stemness and maintain what are referred to as progenitor 

exhausted T cells (TPEx)(86,87,90-95) (Figure 9(96)). These T cells are considered 

precursors to terminally exhausted T cells and retain many of their effector functions, 

described in detail in the following section. As described in Figure 9, TPEX are 

maintained and demarcated by the transcription factor TCF1. TCF1 is a key transcription 

factor in the canonical WNT signaling pathway and is considered a master regulator of T 

cell function and differentiation (reviewed(97)). In the context of TPEX cells, it is believed 

that TCF1 maintains the stemness of these cells via enhancing expression of Eomes, 

Bcl6, and Bcl2 while inhibiting Prmd1 (encodes BLIMP1). BLIMP1 has been well 

described as a negative regulator of a number of stemness programs in T cells, such as 

Sell, Il7ra, Cxcr5, and Ccr7(98-100). Interestingly, TCF1 is also believed to be critical in 

the initiation of exhaustion differentiation and is considered a fate-decision transcription 

factor(91). Chen et al. demonstrate that TCF1, while maintaining memory programs, also 

promotes differentiation away from effector programs towards exhaustion via the TCF1-

EOMES-BCL2 axis. 

Epigenetic Regulation of T cell Exhaustion 
 The development of T cell exhaustion is driven by large epigenomic changes. Many 

studies have described the changes in chromatin architecture during CD8+ T cell 

exhaustion differentiation(101-105). Additionally, several have demonstrated that PD1 

blockade does not fully restore TCR signaling due to the altered epigenomes of CD8+ T 
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cell (supporting my hypothesis of using epigenetic targeted inhibitors in parallel with 

aPD1 therapy)(101,106,107). It is believed that the primary players coordinating T cell 

exhaustion via epigenetic landscape alterations are NFAT, TOX, and NR4a which 

coordinate with DNA methylators like DNMT3a and histone acetylation machinery to 

alter chromatin accessibility at critical fate determining genes such as Pdcd1, Ctla-4, 

Tcf7, Tbx21, and Ifng(87,93,94,108). Deletion of any of these key players significantly 

disrupts Tex formation. In total, commitment away from effector programs towards 

exhaustion is driven by many coordinating TCR-activated transcription factors and is 

accompanied by large transcriptional and epigenetic changes.  
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Figure 8 – Cartoon schematic (with permission from JEM.) detailing the opposing fates of CD8+ T cells upon 
exposure to chronic or acute antigens. Acute infections generate short-lived effector T cells which undergo 
programmed cell death during contraction. Chronic antigen exposure instead drives generation of progenitor 
exhausted T cells which give rise to terminally exhausted T cells 
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Figure 9 – Cartoon schematic (with permission from Frontiers in Immunology) detailing the transcription 
factors which regulate differentiation of naïve CD8+ T cells into progenitor exhausted and finally terminally 
exhausted T cells. In addition, the recently identified surface markers expressed on progenitor exhausted T 
cells (B/C) and terminally exhausted T cells (E) are shown.  
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T cell exhaustion and Immune Checkpoint Blockade Response 
Not surprisingly, cancers of many types, which can be thought of as promoting a chronic 

antigenic environment, have been shown to preferentially generate terminally exhausted 

T cells in the same fashion as chronic LCMV infections (reviewed(89,96)). Immune 

checkpoint blockade has revolutionized how we think about cancer therapies and its 

discovery by James Allison and Tasuku Honjo awarded them the 2018 Novel Prize in 

Physiology and Medicine. Seminal work from both labs discovered that, upon activation, 

T cells rapidly upregulate several receptors, now referred to as “checkpoint” or 

“inhibitory” receptors, which engage with ligands to suppress T cell function (reviewed 

in(109-111)). It has been hypothesized that these receptors, which include PD1, TIM3, 

LAG3, TIGIT, VISTA, and others, are an evolutionary adaptation to chronic antigen 

exposures to prevent the development of auto-immunity after chronic infection. One of 

the most well studied checkpoint receptors is PD-1, which is engaged by its ligands PD-

L1 and PD-L2(112). These ligands are highly expressed on antigen-presenting cells, as 

well as on several tumors, and are rapidly upregulated in response to IFNy produced by 

activated T cells(113,114). PD-1 is thought to suppress TCR signaling and thus, T cell 

activity, through several direct and indirect pathways upon engagement by its ligands 

PD-L1 and PD-L2(111): 1.) Dephosphorylation of ZAP70 and PI3K via recruitment of 

phosphatases SHP1 and SHP2 to PD-1s ITIM and ITSM domains(115) 2.) Regulation of 

CD28 co-stimulation via SHP1/SHP2 mediated dephosphorylation of CK2 which 

increases activity of PTEN and subsequently reduces PIP3 and PI3K activity(116) 3.) 

Cell cycle arrest at G0-G1 via accumulation of CDK inhibitor p27Kip1 (117-119) 4.) CBL-b 

mediated internalization of the TCR complex, thus reducing TCR signaling(120-122) 

(Figure 10(111)). 
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Figure 10 – Cartoon schematic detailing the 4 main mechanisms of PD-1 signaling regulation of T cell 
activation. Used with permission from Oncotarget.  
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Immune checkpoint blockade refers to the usage of blocking antibodies against the 

checkpoint receptor (e.g. PD-1), or the ligands (e.g. PD-L1/PD-L2 individually or 

combined). These therapies have increased survival across many tumor types, but of 

particular note is in the metastatic melanoma setting (reviewed (123,124)) where anti-

PD1 therapy is now an FDA approved first-line therapy for this once considered 

“impossible to treat” cancer. Currently, there are over 100 clinical trials evaluating the 

efficacy of immune checkpoint blockade (ICB) therapy alone or in combination with 

targeted drugs/chemotherapies across dozens of different cancers. 

The importance of understanding mechanisms of T cell exhaustion regulation in cancer 

has come to the forefront, particularly in areas studying mechanisms governing ICB 

responses as it has now been shown in several settings that the specific T cell 

subpopulations which are re-invigorated with ICB therapy and maintain the strongest 

anti-tumor responses are the TCF1+ TPEx T cells discussed 

previously(100,106,125,126). Some of the earliest clinical trial data post-analyses by 

Sade-Feldman et al. in metastatic melanoma found that, while both TEX and TPEX 

could be identified in all patients, ICB responders had higher frequencies of intratumoral 

TCF1-expressing CD8+ T cells(127). Higher proportions TEx is associated with worse 

clinical outcomes in multiple tumor types, including AML and other hematological 

malignancies(106,128-130). Thus, one potential approach to improving ICB therapies is 

to identify potential combinatorial or sequential treatment strategies that employ other 

small-molecule inhibitors which promote expansion of these TPEx cells and rescue ICB 

refractoriness, the topic of the second main body of work described in this thesis. Given 

the known epigenetic regulation of exhaustion differentiation, epigenetic targeting 

inhibitors are of particular interest.  
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Chapter 2 
 

Monocytic Differentiation and AHR signaling as 
Primary Nodes of BET Inhibitor Response in 
Acute Myeloid Leukemia 
 

Adapted from Romine et al. Blood Cancer Discovery. DOI: 10.1158/2643-3230.BCD-21-
0012 

Abstract 
To understand mechanisms of response to BET inhibitors (BETi), we mined the Beat 

AML functional genomic dataset and performed genome-wide CRISPR screens on 

BETi- sensitive and BETi- resistant AML cells. Both strategies revealed regulators of 

monocytic differentiation, SPI1, JUNB, FOS, and aryl-hydrocarbon receptor signaling 

(AHR/ARNT), as determinants of BETi response. AHR activation synergized with BETi 

while inhibition antagonized BETi-mediated cytotoxicity. Consistent with BETi sensitivity 

dependence on monocytic differentiation, ex vivo sensitivity to BETi in primary AML 

patient samples correlated with higher expression of monocytic markers CSF1R, LILRs, 

and VCAN. In addition, HL-60 cell line differentiation enhanced its sensitivity to BETi. 

Further, screens to rescue BETi sensitivity identified BCL2 and CDK6 as druggable 

vulnerabilities. Finally, monocytic AML patient samples refractory to venetoclax ex vivo 

were significantly more sensitive to combined BETi + venetoclax. Together, our work 

highlights mechanisms that could predict BETi response and identifies combination 

strategies to overcome resistance. 

Statement of Significance: 

Drug resistance remains a challenge for AML and new therapies, such as BET inhibitors, 

will require combination approaches to boost single-agent responses. We conducted 
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genome-wide CRISPR screens and functional genomics on AML patient samples to 

identify leukemic differentiation state and AHR signaling as primary mediators of BETi 

response.  

Introduction 

Acute myeloid leukemia is an aggressive hematologic malignancy, diagnosed primarily 

in elderly patients. Many patients cannot tolerate the intensive 7 plus 3 chemotherapy 

regimen (cytarabine plus anthracycline), which has been a standard of care for >40 

years(17). These patients rely on alternative treatment strategies, such as targeted 

small-molecule inhibitors. Recently, combinations of BCL2 inhibitor, venetoclax, with 

hypomethylating agents was approved for treatment of patients unfit for chemotherapy, 

but not all patients respond to this therapeutic regimen(27). Most patients, particularly 

those treated with monotherapy regimens, will develop resistance and relapse. 

Therefore, understanding molecular mechanisms driving drug resistance is critical for 

the development of drug combinations that yield durable remissions and extend survival. 

AML is a heterogeneous cancer that is primarily driven by four classes of mutations: 1) 

activation of proliferative and anti-apoptotic genes, 2) block of differentiation, 3) 

epigenetic regulators, and 4) splicing machinery(19,20,131). As such, we have seen the 

implementation of many small-molecule inhibitors targeting these pathways(132).  

The Bromodomain and Extra-Terminal domain (BET) protein family consists of 

bromodomain containing proteins BRD2, BRD3, BRD4, and BRDT, which interact with 

acetylated histone tails to facilitate many downstream functions such as chromatin 

remodeling and transcriptional regulation. Epigenetic inhibitors targeting BET family 

proteins, (BETi) have recently come to the forefront of development due to evident 

cytotoxicity in hematological settings(69-73). BRD4 binds acetylated histone tail and 
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recruits Positive Transcription Elongation Factor b (P-TEFb) to enhancer regions to 

mediate the phosphorylation of the c-terminal domain of RNA pol II, required for 

elongation of the nascent mRNA(133,134).  BRD4 also acts as a histone 

acetyltransferase (HAT) (60), an atypical kinase(61), and interacts with splicing 

machinery(59). Previous RNAi studies identified BRD4 loss as a potent inhibitor of 

leukemic growth(74). BET proteins have also been linked to driving leukemia disease by 

recruiting transcription machinery to MYC and BCL2 promoters(68,75). BETi treatment 

in leukemia cells has been shown to dramatically reduce transcription of these 

oncogenes and induce cell death(70,75,76). Clinically, BETi OTX-015 achieved 

complete remissions in a small subset of patients who failed alternative therapies. 

However, many patients were unresponsive to OTX-015, prompting the investigation of 

potential intrinsic resistance mechanisms to BETi(82). 

Several studies have reported on a wide scope of genetic resistance mechanisms to 

BETi involving autophagy(135), WNT signaling driven by leukemia stem cells and 

transcriptional plasticity(136,137), and PP2A(138). Further, Bell et al. have shown that 

non-genetic resistance can arise upon BETi exposure(139). These studies prompted us 

to mine the Beat AML functional genomic dataset and also utilize genome-wide CRISPR 

screens to further understand drivers of resistance to BETi in AML and identify 

therapeutically druggable dependencies.  

Results 

Monocytic markers correlate with BETi sensitivity in AML patient samples  
To identify potential genetically driven BETi resistance mechanisms, we correlated ex 

vivo drug sensitivity data for three BETi (JQ1, OTX-015, and CPI-610) against recurrent 

genetic mutations using the Beat AML cohort, an integrative dataset containing ex vivo 

drug sensitivity, exome-, and RNA-sequencing for over 500 primary AML patient 
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specimens(20). Of the entire database, we were able to obtain BETi ex vivo data for 173 

unique patient samples. Interestingly, we found no genetic mutations or cytogenetic 

patterns that significantly correlated with resistance or sensitivity to any of the three BETi 

(Figure 11a-f). In recent work by our lab and others, similar explorations of response to 

venetoclax identified leukemic differentiation state as a primary determinant of sensitivity 

and resistance(140-143). Accordingly, since no mutations correlated with BETi 

response, we next asked whether BETi sensitivity and resistance correlated with 

expression of cell surface markers that are known indicators of cell differentiation state. 

Indeed, within the Beat AML database, ex vivo responses to JQ1, OTX-015, and CPI-

0610 in 173 primary human patient samples were significantly correlated with expression 

of monocytic markers such as CSF1R, VCAN, CD33, ITGAL, and LILRA1(Figure 12a,b). 

In addition, we found high congruence of drug sensitivity versus surface marker 

expression correlations across all three BETi (Figure 12c). Historically, AML cases have 

been classified based on the French-American-British (FAB) M0 to M7 classification 

system, where M0, M1, and M2 represent tumors comprised of minimally or 

undifferentiated cells, and  
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Figure 11 – a-c.) Volcano plots correlating BETi (JQ1 left, OTX-015 middle, and CPI-0610 right) ex vivo sensitivity of 
173 AML patient samples, as determined by MTS viability assay, with genetic mutations in the Beat AML database, 
as previously described and publically available at http://www.vizome.org (no significance). Corresponding recurring 
genetic mutations vs individual AUCs are below the corresponding volcano plot (X-axis denotes a recurring genetic 
mutation, Y-axis the corresponding AUC, with each point representing a unique patient sample). In brief, recurring 
mutations (found in at least 5 patients) and inhibitor area-under-curves (AUC), as determined by MTS assay, were 
compared using a linear model and compared linear contrast (two-sided students T-test) of mutation/mutation sets to 
appropriate negatives (WT gene comparison). FDR was computed using the Benjamini-Hochberg method over all 
the drugs. d-f.) Ex vivo MTS assay sensitivities in AML patient samples to JQ1, OTX-015, and CPI-0610 were 
stratified by WHO-FUSION status (common fusion protein alterations known to occur in AML) within the beat AML 
biorepository. Significance was determined by one-way ANOVA. No WHO-FUSIONS correlated with any BETi 
sensitivity or resistance. 
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M4-M5 represent tumors of a myelomonocytic or monocytic cell state. As expected, we 

also found that CSF1R, VCAN, LILRA1, and LILRB1 were highly expressed in monocytic 

leukemia FAB subtypes (M4-M5) compared to undifferentiated cases (M0-M2) (Figure 

12d-g). Together these findings indicate that BETi may be more efficacious in 

differentiated leukemias and highlights a novel vulnerability for these leukemias.  
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Figure 12 - a.) Correlations between ex vivo sensitivity to JQ1 in 173 patient samples and expression of 
monocytic differentiation markers with Beat AML dataset. Each dot represents a unique patient sample ex 
vivo response to a BETi (area under the curve, determined by MTS viability assay) plotted against mRNA 
level of the surface marker denoted (CSF1R, TMPRSS5, eg.). A simple linear regression model was fit 
separately for each inhibitor and gene with the inhibitor AUC values as the outcome. The T-statistic and P-
value tests whether the slope is non-zero and corrected for multiple comparisons. Corresponding correlation 
coefficients were computed using the relationship to the linear model: slope*(sd(expr)/sd(auc)) where sd 
indicates standard deviation. b) Pearson correlation coefficients and significance, corrected for multiple 
comparisons, are calculated for each surface marker mRNA expression and ex vivo sensitivity to a BETi in 
173 Beat AML patient sample dataset. Each dot represents a correlation coefficient and corresponding p-
value for individual surface marker mRNA vs. BETi AUC (as shown in Fig a, extended to all known surface 
markers). Points of interest are highlighted in red. c) Pearson correlations for sensitivity to each individual 
BETi (JQ1, OTX015, CPI0610) vs surface marker expression calculated previously in 1b, plotted against 
each other with a line of best fit highlighting their congruence. Each point thus represents the XY coordinate 
location of correlations for a surface marker between two different BET inhibitors, for example a single point 
will be X =JQ1 vs CSF1R correlation, Y = OTX vs CSF1R correlation, or X = OTX vs ITGAL correlation vs Y 
= CPI ITGAL correlation, etc.  Dark purple dots represent comparisons between JQ1 and OTX, orange 
represents comparisons between JQ1 and CPI, green represents comparisons between JQ1 against itself, 
and light purple represents comparisons between OTX and CPI. Corresponding lines of best fit match the 
above comparisons. d-g.) Comparison of RNA expression levels (RPKM) of d.) CSF1R, e.) VCAN, f.) 
LILRA1, and g.) across FAB groups (French-American-British subtyping;  M0-M2 (29 samples), 
undifferentiated AML; M4-M5 (34 samples), myelomonocytic-monocytic AML (83)) within the Beat AML 
patient dataset (ref. 3. )). P-values determined by Mann-Whitney t-tests. X-axis denotes FAB subtype, Y- 
axis denotes RPKM expression of a given gene. 
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Genome-Wide CRISPR screen identifies monocytic differentiation regulators of 
BETi resistance 
To further study mechanisms of resistance to BETi in AML, we performed a genome-

wide CRISPR resistance screen in OCI-AML2 cells under selection of the BETi, CPI-

0610. Distribution of sgRNAs in deep-sequenced libraries from drug-treated cells were 

compared to DMSO-treated controls using edgeR(144). To prioritize hits, we used a 

tiering structure that we previously developed for CRISPR screens(145). This scheme 

organizes top candidates into three tiers based on evidence (determined by the number 

of sgRNA guide hits per gene), concordance (indicated by the agreement across the set 

of guides for a given gene), and discovery (based on expanding effect size threshold). 

Using this prioritization scheme and focusing on tiered genes with a mid-log fold change 

of > 1.5, CPI-0610 (Figure 13a) selected cells showed enrichment for guides targeting 

hematopoietic transcription factors (e.g. FOSL2, JUNB) (Figure 13b) and aryl-

hydrocarbon signaling (e.g. AHR, ARNT) (Figure 13c) compared with DMSO. We ran a 

parallel screen using overlay of a related BETi, JQ1, instead of CPI-0610. While the 

results of this screen did not yield hits that were as statistically significant as the CPI-

0610 screen with no genes assigned to a Tier, we focused attention to genes with a mid-

log fold change > 2. Using this threshold, we also identified resistance-enriched guides 

that targeted genes in the same category of transcription factors known to regulate 

myelopoiesis (SPI1, FOS, CREB1; Figure 14a, b). To prioritize hits for follow-up 

analysis, we assessed enrichment of hits from the two screens in a pathway context. We 

took the combined list of gene hits from both screens, and seeded a STRING(146) 

network to investigate associations between this union of candidate genes from both 

screens (Figure 13d, Figure 14c). 
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Figure 13 - Cas9 expressing OCI-AML2 were lentivirally transduced with a genome-wide CRISPR library 
containing an average of 5 guides per gene, collectively targeting 18,010 human genes (31) (32). Cells were 
treated with 500nM CPI-0610 or vehicle (DMSO) for 21 days followed by DNA harvest and PCR-
amplification of sgRNA guide sequences.  (a.) Volcano plot comparing enrichment of sgRNAs relative to 
DMSO control in CPI-0610 treated OCI-AML2 cells versus –log10 transformed median p-value after 21 days 
with corresponding significance tiers. Each dot represents a combined sgRNA KO enrichment score 
(combining ~5-6 unique sgRNAs targeting same gene) relative to control vs. corresponding p-value. 
Significance of each sgRNA was determined via edgeR (RRID: SCR_012802) after TMM(78) normalization. 
Briefly, considering only significant sgRNAs (FDR < .05), genes were classified into 5 ordered groups.  Tier 
1 genes had more than one significant sgRNA, a minimum log 2-fold change >= 2, 75% of sgRNAs per gene 
present and concordance among sgRNAs per gene >= 75%; Tier 2 hits had log 2-fold change >= 2 and 100 
% concordance among sgRNAs per gene Tier 3 hits had log 2-fold change >= 1 and 100% concordance 
among sgRNAs per gene. Singleton hits represent significantly enriched genes with log 2 -fold change >= 2 
but only a single significant sgRNA. Enriched hits not satisfying these criteria were classified into the 
Unassigned group. X – axis corresponds to median log fold change (CPI treated/Control treated) sgRNA 
counts. Y axis corresponds to –log10 median p-value. b.) Enrichment of cells containing the relative sgRNA 
KO relative to DMSO control (roughly ~5-6 unique sgRNAs per gene KO for Yusa library) targeting 
hematopoietic transcription factors JUNB (left) and FOSL2 (right) in CPI-0610 treated OCI-AML2. Each line 
represents the guide counts of the relevant unique sgRNA KOs in control or CPI0610 treated cells. c.) 
Enrichment of cells containing the relative sgRNA KO targeting aryl-hydrocarbon receptor signaling 
components AHR (left) and ARNT (right) in CPI-0610 treated OCI-AML2. Each line represents the guide 
counts of the relevant sgRNA KOs in control or CPI0610 treated cells. d.) A STRING(34) network, which is 
used to model known or predicted protein-protein interactions from custom gene lists, was seeded with 
significant hits from both the CPI0610 and JQ1 CRISPR screen, and identifies a concordant network of 
enriched hits of interest across both JQ1 and CPI-0610 CRISPR screens centered on hematopoietic 
transcription factors, AHR, and histone modifying machinery. Size of node denotes tier (largest = tier 1, 
smallest = unassigned), color denotes gene screen of origin. 
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 In addition, we took these same hits and analyzed them via GO Cellular Components 

Ontology and found high concordance between genes from both screens under shared 

ontological components (Figure 14d). Using both methods, a core set of gene hits—

SPI1, FOS, JUNB, AHR, and ARNT—were mapped in close proximity across multiple 

pathway annotations, and these genes were chosen for downstream validation. 
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Figure 14 – a.) Volcano plot comparing enrichment of sgRNAs relative to DMSO control in JQ1 treated OCI-
AML2 cells versus -log10 transformed median p-value after 14 days with corresponding significance tiers. 
Enrichment and associates p-values calculated as described in the methods and for the CPI-0610 screen. Y 
axis corresponds to –log10 median p-value, X – axis corresponds to median log fold change (JQ1 
treated/Control treated) sgRNA counts. b.) Enrichment of cells containing the relative sgRNA KO targeting 
hematopoietic transcription factors SPI1 (Top), FOS (middle), and histone modifying machinery CREB1 
(bottom) in JQ1 treated OCI-AML2. Each line represents the guide counts of the relevant unique sgRNA 
KOs in control or JQ1 treated cells. c.) Full string network plot incorporating hits from both JQ1 and CPI-
0610 resistance screens. Size of node denotes tier (largest = tier 1, smallest = unassigned), color denotes 
gene screen of origin. d.) A GO Cellular Components Ontology, which identifies enriched ontological 
pathways from a gene list, was performed on the the combined JQ1 and CPI-0610 resistance screen hits 
and identifies RNA pol II transcription factor complex components as the most enriched ontological term. 
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Screen Validation 
Since both the JQ1 and CPI screens pointed to the same pathways, but yielded less 

agreement at the level of individual genes, we wanted to determine whether these 

specific gene knockout events were truly causing differential resistance to the two drugs 

or whether targeting of these genes yields more of a pan-BETi resistance phenotype. 

Accordingly, we designed 2 sgRNAs per gene to target SPI1, FOS, JUNB, or non-

targeting. Knockouts were validated by TIDE analysis or western blot (Table 1-3). 

Sensitivity to BETi (JQ1 and CPI-0610) was determined by MTS assay after selection of 

OCI-AML2 cells with control or gene-targeting sgRNAs. With this approach, we found 

that loss of SPI1, FOS, and JUNB resulted in pan-BETi resistance (Figure 15a-c). Small-

molecule AHR inhibitors and activators are readily available and, thus, to investigate 

altered AHR signaling in mediating BETi resistance, we tested the combination of CPI-

0610 with either AHR inhibitor (AHRi), CH-223191, or an AHR agonist, FICZ. As 

expected, the AHRi antagonized CPI-0610 cytotoxicity in OCI-AML2s (Figure 15d), with 

a ZIP synergy score of -3.493, while FICZ enhanced these affects, with a ZIP synergy 

score of 4.425 (Figure 15e). We validated these findings further by knocking out AHR 

and ARNT with single sgRNAs and observed multi-BETi resistance (Table 3). 

Convergent lines of evidence suggest that hematopoietic transcription factors 

(TFs)(147,148) and AHR(149,150) recruit histone modifying machinery to active 

transcription sites and interact with the P-TEFb complex(151,152). The subsequent 

hyperacetylation at these regions increases dependency on BRD4 and induces 

monocytic differentiation. Therefore, we hypothesized that monocytic leukemias, which 

characteristically have high expression of these genes, may exhibit greater sensitivity to 

BETi, and that undifferentiated blasts will be intrinsically resistant to BETi due to 

decreased expression of these genes. 
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Table 1-3 - Table 1: sgRNA sequences used to generate single sgRNA mediated KOs for target genes and 
corresponding TIDE efficiencies. sgRNA sequences designed using synthego sgRNA design tool 
(https://design.synthego.com/#/) and corresponding TIDE KO Efficiency as determined by TIDE tool 
(https://tide.nki.nl/). Table 2: DNA primers used to amplify regions of DNA in OCI-AML2 cells to assess TIDE 
KO efficiency. Table 3: OCI-AML2 Parental cells, AHR KO, and ARNT KO cells were assessed for response 
to JQ1, OTX-015, CPI-0610, Venetoclax, and palbociclib by MTS assay. Here we represent the fold change 
in IC50 for corresponding inhibitor compared to parental cells. 

 

 

 

 

 

 

 

 

 

https://tide.nki.nl/


P a g e  | 39 
 

 

Figure 15 - a-c.) OCI-AML2 cells were transduced with lentiviruses carrying custom designed single 
sgRNA/Cas9 constructs (2 different sgRNAs/gene) targeting SPI1, FOS, JUNB, or non-targeting. After 
puromycin selection and 10 days of transduction, sensitivity to JQ1 (top row) and CPI-0610 (bottom row) 
was measured in replicates of 6 via colorimetric MTS-based viability assay. Plots represent sensitivity to 
BETi in a.) SPI1 KO (left), b.) FOS KO (middle), and c.) JUNB KO (right) in single sgRNA knockouts 
(colored) vs. non-targeting control (black) in OCI-AML2 cells. Error bars represent the standard error margin 
between the 6 replicates. Drug curve consists of 8 concentrations ranging from 0uM, and .0137uM-10 uM in 
log increments. P-values for individual sgRNAs vs non-targeting were calculated using a two-stage linear 
step-up procedure of Benjamini-Krieger-Yekutieli. X axis represents BETi-concentration, Y-axis represents 
OCI-AML2 viability. d,e.) OCI-AML2 cells were subjected to dilutions of CPI-0610 in combination with 
titrations of either d.) AHR inhibitor CH-232191 or e.) AHR ligand FICZ and evaluated for viability via 
colorimetric MTS-based assay. ZIP synergy score was calculated at each drug combination dose pair as 
previously described(81,82). The ZIP score average was computed across the dose matrix to provide an 
overall index of drug interaction. A positive average ZIP score indicates the combination was synergistic 
(red) whereas a negative average ZIP score indicates antagonism (green). ZIP Scores were -3.493 and 
4.425 for CH-22191 and FICZ, respectively. Significance of synergy determined by One-Sample Wilcoxon 
signed rank test comparing individual dose-pair combinations across the entire 7x7 matrix.  X axis 
represents increasing concentrations of AHRi CH22193 (left) or AHRa FICZ (right). Y axis represents 
increasing concentrations of CPI0610. 
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BETi-R cells exhibit decreased markers of leukemic differentiation and forced 
myeloid differentiation increases sensitivity to BETi 
Given our proposed mechanism, which posited that BETi sensitivity is driven by 

monocytic differentiation, we asked whether acquired BETi-resistant (BETi-R) cells had 

reduced marks of myeloid differentiation. We generated JQ1 and CPI-0610 resistant 

OCI-AML2 cell models by serially passaging them under increasing selective pressure of 

BETi and reached IC50s five-fold higher than parental OCI-AML2 cells (JQ1 - 52nM 

parental, 1.8uM resistant, CPI0610 – 170nM parental, 1.1uM resistant) (Figure 16a). 

Immunophenotyping of OCI-AML2 parental and BETi-resistant cells revealed a 

significant reduction in myeloid differentiation marker CD33 expression in BETi-R cells at 

baseline (Figure 16b). To test whether BETi treatment selects for less differentiated 

clones, we treated both BETi-naïve and BETi-R OCI-AML2 and observed decreased 

CD33 expression in both BETi-naïve and BETi-R cells in a dose dependent manner, 

further suggesting that BETi may select for less differentiated clones (Figure 16c). HL-

60s are an undifferentiated M2 FAB leukemia cell line which has been used as a model 

of myeloid differentiation due to their ability to differentiate in response to all-trans 

retinoic acid (ATRA), marked by a dramatic increase in expression of CD38. Upon 

exposure to ATRA HL-60s rapidly upregulate myeloid differentiation programs and 

dramatically increase expression of many genes such as SPI1, CDKN1A, AHR, FOS, 

JUN, CD38, and others(153). Given our previous findings which showed that BETi-R 

cells exhibit decreased marks of differentiation, and that loss of these differentiation 

regulators drive resistance, we directly asked whether inducing myeloid differentiation 

increases BETi sensitivity. Indeed, HL-60s, differentiated with 1uM ATRA for 72 hours 

prior to exposing to BETi, showed dramatically enhanced sensitivity to BETi as 

compared to undifferentiated HL-60s (Figure 16d, e). In addition, doxycycline inducible 

PU.1 overexpression in HL-60s sensitized to multiple BETi (Figure 16f). Lastly, to 

answer whether BETi directly target differentiation programs and, thus, support the 
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notion that BETi may modulate the process of differentiation, we added BETi 

concomitantly with ATRA in HL-60s and found that differentiation was significantly 

attenuated, as seen by a significant reduction in CD38 expression and morphological 

changes consistent with myeloid differentiation after 72 hours (Figure 16g). Taken 

together these findings validate that BETi treatment selects for less-differentiated clones 

and that forced differentiation can enhance sensitivity to BETi.   
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Figure 16 - a-c.) BETi resistant OCI-AML2 cells were generated via incubation with serially increasing 
concentration of JQ1 or CPI0610 over a several month period. a.) MTS viability assay after 72 hours was 
used to assay BETi dose response in the JQ1 resistant OCI-AML2 JQ1 (left) or CPI-0610 resistant OCI-
AML2 (right) . Error bars represent the standard error margin between the 6 replicates. P-values were 
calculated using a two-stage linear step-up procedure of Benjamini-Krieger-Yekutieli comparing Parental to 
BETi-R OCI-AML2 cells. X axis represents BETi-concentration, Y-axis represents OCI-AML2 percent 
viability. b.) Median Fluorescence Intensity (MFI) of myeloid differentiation marker CD33, as determined by 
flow cytometry, on untreated BETi naïve OCI-AM2 cells and BETi-R OCI-AML2 cells withdrawn from drug for 
1 week. Significance determined by ordinary one-way anova with multiple comparisons corrections from 
three replicates. c.) CD33 MFI, as determined by flow cytometry, of BETi naïve or BETi-R OCI-AML2 cells 
treated with vehicle, 300nM, or 600nM JQ1 for 72 hours. Significance determined by 2-way anova with 
multiple comparisons corrections from three replicates. d.) HL-60 cells were differentiated with 1uM ATRA 
for 72 hours or left undifferentiated in vehicle for 72 hours. The cells were then washed in PBS and viability 
assessed (>95%) by guava easycyte. Drug dose response curves, as determined by MTS viability assay, 
were then assessed for JQ1 (Top) and CPI-0610 (bottom) comparing undifferentiated (vehicle) and ATRA-
differentiated HL-60 cells. Error bars represent the standard error margin between the 6 replicates. P-values 
were calculated using a two-stage linear step-up procedure of Benjamini-Krieger-Yekutieli comparing 
undifferentiated (vehicle treated cells) to differentiated (ATRA treated cells). X axis represents BETi-
concentration, Y-axis represents HL-60 viability. e.) Fold change IC50 values for JQ1 and CPI-0610 in 
undifferentiated HL-60s vs ATRA-differentiated HL-60s from Fig d. f.) (Top) Flow cytometry measurement of 
CD38 MFI, which marks HL-60 differentiation state, in naïve HL-60s treated for 72 hours with vehicle 
(undifferentiated), BETi, ATRA (differentiated), or simultaneously added BETi and ATRA. Significance 
determined by One-way ANOVA from three replicates. (Bottom) Giemsa stain of HL-60 cells which were 
previously subjected to vehicle, BETi, ATRA, or BETi + ATRA for 72 hours. g.) HEK293T cells were used to 
generate inducible PU.1 virus (pINDUCER21-SPI1) with packaging vectors psPAX2 and VSVG . HL-60 cells 
were then lentivirally infected with the inducible virus or empty vector and GFP sorted. HL-60cells were then 
induced with doxycycline for 5 days and JQ1 and CPI-0610 IC50s determined by MTS assay. 
Corresponding western blot validating PU.1 overexpression in HL-60 cells at day 5 below. X axis denotes 
control vs pINDUCER21-SPI1 cells, Y-axis denotes IC50 to JQ1 or CPI-0610. 
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Genome-Wide CRISPR screening in BETi-R cells identifies BCL2 and CDK2/6 as 
re-sensitizing to BETi 
To determine acquired vulnerabilities in BETi-R cells, we performed a genome-wide 

CRISPR dropout screen on JQ1-resistant OCI-AML2 cells, to generate knockout events 

that re-sensitize JQ1-R cells to BETi. Hits were identified by comparing depleted 

sgRNAs from JQ1-treated cells to DMSO. Using STRING analyses we identified a 

subnetwork consisting of cell cycle genes (CDK2 & CDK6) and anti-apoptotic genes 

(BCL2, ROCK1, & BIRC2) (Figure 17a, b). Independently derived sgRNA guides 

targeting BCL2 re-sensitized both JQ1-R and CPI-0610-R OCI-AML2 cells to BETi 

(Figure 17c). Data collected from the Beat AML biorepository, bloodspot.eu, and data 

deposited by Pei et al(142) show that SPI1, FOS, FOSL2, JUNB, and AHR are highly 

expressed in monocytic leukemias, whereas BCL2 and CDK2/4/6 are enriched in 

undifferentiated blasts (Figure 18a-f). Collectively these data further support our 

hypothesis that BETi sensitivity and resistance is tethered to differentiation state and 

identifies potentially targetable vulnerabilities BCL2 and CDK2/6.  
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Figure 17 - Cas9-expressing BETI-R OCI-AML2 cells were generated using Cas9Blst. Loss-of-function 
screens were performed as described, using a human genome-wide sgRNA library. 100e6 cells were used 
for viral transduction at MOI 0.3, selected with puromycin and then subjected to DMSO or 200nM JQ1 for 14 
days. a.) Volcano plot comparing enrichment of sgRNAs relative to DMSO control in JQ1 treated JQ1-
resistant OCI-AML2 cells (generated in figure 14a) vs. –log10 transformed median p-value. Hits of interest 
are highlighted and identified. Significance and prioritization of hits performed as previously performed on 
JQ1 and CPI0610 screens (Fig 12 and Fig 14). X-axis denotes median log fold change of guides (Treated-
control). Y-axis denotes –log10 p-val. b.) String analysis performed as previously in figure 12d from hits 
(defined as P<.05, median log fold change < -1.5x) identified in the JQ1 resistant OCI-AML2 CRISPR screen 
identifies a network of targetable genes BCL2, CDK2, and CDK6. c.) JQ1 resistant and CPI-0610 resistant 
OCI-AML2 cells were infected with either non-targeting or BCL2 targeting lentiviruses and selected for 
puromycin. (Top) MTS viability assay was then used to compare JQ1 sensitivity in single sgRNA KO of 
BCL2 or non-targeting in JQ1 resistant or CPI-0610 resistant OCI-AML2 cells. (Bottom) Whole cell extracts 
from JQ1-R, CPI-R, and non-targeting cells were evaluated by western blot showing BCL2 KO. Error bars 
represent the standard error margin between the 6 replicates. P-values were calculated using a two-stage 
linear step-up procedure of Benjamini-Krieger-Yekutieli comparing non-targeting BETi-R cells to BCL2 KO 
BETi-R OCI-AML2 cells. X axis represents BETi-concentration, Y-axis represents BETi-R OCI-AML2 
viability. 
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Figure 18 - a-d.) Beat AML RNA expression data (3) comparing RNA expression of identified CRISPR hits 
(SPI1, JUNB, FOS, ARNT) vs FAB subtype (M0-M2 undifferentiated – 29 AML patients, M4-M5 monocytic – 
34 AML patients) e.) Bloodspot.eu data comparing RNA expression of CRISPR hits and surface markers 
against differentiation state. f.) RNA-seq data deposited by Pei et al. 2020 comparing expression of CRISPR 
hits and surface markers against primitive and monocytic leukemia patient samples. 
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BETi-R AML cells are sensitive to BCL-2i and the combination of BETi + BCL2i 
specifically rescues intrinsically BCL2i-resistant monocytic AMLs   
 

We and others have shown that BCL2i are more effective in undifferentiated blasts and 

monocytic differentiation is a driver of BCL2i resistance in AML(140-143)—the inverse 

correlation that we have seen here where BETi are more effective on AML cells of 

monocytic differentiation state and an undifferentiated state promotes BETi resistance. 

Thus, we tested the efficacy of BCL2i venetoclax in BETi-naïve and BETi-R cells and 

found increased sensitivity in BETi-R cells (Figure 19a). This correlated with increased 

expression of BCL2, MCL1, and BCL2L1 (BCLXL) in the BETi-R cells (Figure 19b). In 

addition, the combination of venetoclax and BETi significantly increased cytotoxicity in 

undifferentiated c-kit+ cells in BETi-naïve and more so in BETi-R cells (Figure 19c). 

Finally, AML patient samples treated ex vivo with JQ1 showed enhanced sensitivity in 

M4/M5 FABs but were intrinsically resistant to venetoclax, as previously published(141-

143). However, the combination of JQ1 + venetoclax showed significantly enhanced 

sensitivity compared to venetoclax alone, specifically in matched monocytic leukemias, 

rescuing intrinsic BCL2i resistance due to monocytic differentiation (Figure 19d, e).   
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Figure 19 - a.) BETi-naïve and BETi-R OCI-AML2 cells were subjected to titrations of BCL2i Venetoclax for 
72 hours and then assessed for viability by MTS assay. Error bars represent the standard error margin 
between the 6 replicates. P-values were calculated using a two-stage linear step-up procedure of Benjamini-
Krieger-Yekutieli comparing Parental to BETi-R OCI-AML2 cells. b.) Whole cell extracts from naïve or BETi 
resistant OCI-AML2 cells were subjected to immunoblot analysis using antibodies specific for BCL2L1 (BCL-
XL), MCL1, and BCL2. c.) Flow cytometric analysis of treatment of BETi naïve or BETi-R OCI-AML2 cells 
with vehicle, 600nM JQ1 48 hours, or 600nM JQ1 + 100nM Venetoclax 48hr vs viability by Zombie Aqua. 
Significance determined by 2-way anova with multiple comparisons corrections from three replicates. d.) ex 
vivo drug sensitivities, as determined by MTS assay, in Beat AML patient samples derived from the Beat 
AML biorepository(3), comparing responses to JQ1, Venetoclax, or JQ1 + Venetoclax combined and 
stratified by FAB subtype (M0-M2, undifferentiated AML; M4-M5, myelomonocytic-monocytic AML). 
Significance determined by two-way ANOVA. N= 11 JQ1 M0-M2, 23 M4-M5 ; N = 13 Venetoclax M0-M2, 22 
M4-M5 ; N= 7 JQ1 + Venetoclax M0-M2, 15 M4-M5. e.) Sensitivity to venetoclax alone and, separately, JQ1 
in combination with venetoclax, as determined by MTS assay in matched Beat AML patient samples 
stratified by FAB subtype.  Lines connect individual patient samples response to single agent venetoclax 
(red) compared to their response to JQ1 + venetoclax (green). N= 7 M0-M2, 14 M4-M5. Significance 
determined by 2 way ANOVA. 
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As discussed previously, our data indicates that BETi selects for less differentiated 

clones, which correlates with increased CDK2/6 expression and was resensitized by 

sgRNAs targeted these genes. Thus, we tested the combination of CDK4/6i, palbociclib 

or abemaciclib, with JQ1, OTX-015, or CPI-203 in BETi-naïve OCI-AML2 and OCI-AML3 

cells and observed strong synergy (Figure 20a). In concordance with our proposed 

mechanism, we found that palbociclib resistance correlates with increased monocytic 

markers, inverse of BETi (Figure 20b), and that forced myeloid differentiation of HL-60s 

drove strong resistance to palbociclib (59.45nM IC50 undifferentiated, 3766nM IC50 

differentiated) (Figure 20c). In addition, AML patient samples treated with palbociclib or 

JQ1 + palbociclib recapitulated our findings with venetoclax, with M4/M5 FAB patient 

samples exhibiting resistance to single agent palbociclib treatment but enhanced 

sensitivity with BETi combination treatment (Figure 20d, e). Collectively, these data 

suggest that the synergy shown here and by others previously between BCL2i or 

CDK4/6i with BETi is driven by differentiation state, and that myeloid differentiation can 

drive resistance to CDK4/6i and BCL2i.  
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Figure 20 - a.) ZIP Synergy plots for drug combinations, tested over a 72 hour incubation, involving a BETi 
(JQ1, OTX-015, or CPI-203) and a CDK4/6i (palbociclib or abemaciclib) in OCI-AML2 and OCI-AML3 cells. 
Summary tables of all ZIP scores given to the right. The ZIP score average was computed across the dose 
matrix to provide an overall index of drug interaction. A positive average ZIP score indicates the combination 
was synergistic (red) whereas a negative average ZIP score indicates antagonism (green). b.) Correlations 
derived from RNA expression of surface markers vs. ex vivo sensitivity to palbociclib collected in the Beat 
AML dataset as performed previously with BETi, figure 10a-b. Pearson correlation coefficients and 
associated p-values were derived from comparisons of inhibitor AUC to gene expression and corrected for 
multiple comparisons. Y-axis plots –log10 p-val vs X-axis Pearson correlation between palbociclib and a 
given surface marker’s RNA expression. c.) Drug dose response curve, as determined by MTS-assay, for 
CDK4/6i palbociclib in HL-60 cells with vehicle or differentiated with ATRA for 72 hours prior to dosing with 
palbociclib. X-axis plots Palbociclib concentration (nM) vs Y-axis MTS-percent viability of HL-60 cells. d.) ex 
vivo drug sensitivities in Beat AML patient samples, as determined by MTS assay, comparing responses to 
JQ1, Palbociclib, or JQ1 + Palbociclib combined and stratified by FAB subtype. Significance determined by 
two-way ANOVA as performed previously with venetoclax, figure 17d. 
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H3K27Ac ChIP-seq stratified by FAB subtype reveal enrichment of AHR signaling 
and HTFs in monocytic leukemias 
 

Finally, to determine whether undifferentiated blasts (FAB subtype: M0-M2) have 

differentially acetylated histone residue profiles in comparison to monocytic leukemias 

(FAB subtype: M4-M5), as a consequence of differential expression of the monocytic 

differentiation regulators (SPI1, FOS, AHR, eg.) which recruit histone modifying 

machinery, we analyzed H3K27Ac ChIP-seq data deposited by McKeown and Corces et 

al.(154) and called differentially acetylated regions by FAB subtype. The undifferentiated 

M0-M2 FAB subtype samples separated distinctly by PCA from the differentiated M4-M5 

subtypes (Figure 21a). 6,076 differential affinity peaks were identified between M0-M2 

and M4-M5 samples. As expected, we observed increased acetylation at monocytic 

surface markers such as VCAN/LILRs and most significantly increased acetylation at the 

canonical AHR transcriptional target CYP1B1(155,156) and its repressor AHRR, which 

is induced during constitutive AHR signaling(157,158) (Figure 21b). This suggests 

increased AHR signaling in monocytic AMLs. To further validate that enhanced AHR 

signaling is found in monocytic leukemias, we asked whether M4-M5 patient samples 

had increased expression of canonical AHR regulated genes, CYP1B1 and CDKN1A. 

Indeed, both were found to be significantly increased in M4-M5 AML (Figure 21c). In 

addition, we evaluated genes co-expressed with CYP1B1 and AHR within AML patient 

samples in the Beat AML database and found significant positive correlations with 

monocytic surface markers, hematopoietic transcription factors previously identified 

within the Beat AML database, and BETi-naïve whole-genome CRISPR screens as well 

as negative correlations with CDKs and BCL2 (Figure 22a, b).  In conclusion, these data 

show that monocytic AML patient samples have increased binding at BRD4 targets as 

well as AHR. Further, we show that AHR signaling is enhanced in monocytic leukemias, 
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validating our findings in the initial whole-genome CRISPR screens and subsequent 

validation with AHR agonists and antagonists.  
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Figure 21 - a, b.) Analysis of H3K27Ac ChIP-Seq AML samples with known FAB designations (n=8 M0-M2 
FAB, 17 M4-M5). a.) Principal component analysis (PCA). b.) Volcano plots representing the 6,076 
differentially H3K27-acetylated genes between the undifferentiated M0-M2 FAB subtype and M4-M5 FAB 
monocytic subtype. Each point represents a single gene enrichment vs –log10 p-val. c.) Relative expression 
levels (RPKM) of canonical AHR genes across FAB groups within Beat AML patient RNA-seq dataset (all 
samples with both RNA-seq data and FAB subtype data, 29 M0-M2 samples and 34 M4-M5 samples) d.) 
Cartoon schematic detailing findings and hypothesis. In brief, we hypothesize that BETi sensitivity and 
resistance is governed by leukemic differentiation state. Monocytic AMLs have higher expression of 
transcription factors (SPI1, FOS, JUNB, etc.) and increased AHR signaling which recruit histone acetylation 
machinery to acetylate histone residues which BRD4 binds to mediate downstream affects. Thus monocytic 
AMLs have more targetable sites for BETi, and increased sensitivity. Conversely, BCL2i/CDK4/6i are more 
efficacious in undifferentiated leukemias, which characteristically have higher expression of these genes, 
and the combination with BETi may help overcome drug resistance development as a consequence of 
altered maturation state. 
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Figure 22 - a,b.) Volcano plot showing spearman correlations of genes co-expressed with AHR (left) and 
CYP1B1 (right) in AML patient samples within the Beat AML biorepository. Spearman correlations and 
corresponding p-values derived from cBioPortal analyses of the Beat AML biorepository 
(https://www.cbioportal.org/). 
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Discussion 

BETi have shown clinical promise in a small subset of patients but most are intrinsically 

resistant to BET inhibition as a monotherapy(77), which is consistent with Beat AML 

biorepository data, with 48 of 287 (17%) patients exhibiting ex vivo sensitivity (<100 nM 

IC50, average 886nM) to BETi JQ1(20). While we found no association of BETi 

sensitivity with known mutations, our data correlates dependency of intrinsic resistance 

to BETi on leukemic differentiation state. Our study indicates that primary patient 

samples with higher expression of genes associated with a more differentiated, 

monocytic phenotype exhibit enhanced sensitivity to BETi, and reveals a potential 

therapeutic strategy for monocytic leukemias.  

Consistent with primary patient sample BETi sensitivities, our CRISPR BETi resistance 

screen for identified SPI1, FOS, JUNB, and AHR – genes with high expression in 

monocytic leukemias and play a critical role in transcribing monocyte/macrophage-

differentiation genes(159-162). Our CRISPR resensitization screen of BETi-R cells 

revealed CDK4/6, BCL2 and NPM1, as top hits in re-sensitizing to BETi. Thus, our study 

identified both resistance and re-sensitization components of BETi sensitivities, tethered 

to blast differentiation state. Loss of function of genes, expression-enriched in monocytic 

AML, such as hematopoietic TFs SPI1, FOS, and JUNB, as well AHR signaling is 

revealed as a primary driver of resistance to BET inhibition, while inactivation of genes 

that are expression-enriched in primitive AML, such as CDK6, NPM1, and BCL2 re-

sensitizes resistant cells to BETi inhibitors. 

Dysregulation of Hematopoietic Transcription Factors in AML 
Hematopoietic TFs such as SPI1 and JUNB suppress myeloid leukemias by enabling 

proper differentiation(163-165). Not surprisingly, mutations that cause reduced function 

in these TFs are frequently found in AML and generally associate with a poor 
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prognosis(20,166-168). Despite the large body of evidence surrounding the biology of 

TFs in hematological malignancies, the manner by which they can impact drug 

sensitivity is largely unknown.  

In normal hematopoiesis, SPI1 drives monocytic differentiation by positively regulating 

the AP-1 TFs, JUN/FOS, and, as such, their expression highly correlates with AML-M4 

and M5 subtypes(163). Interestingly, SPI1 expression in AML has demonstrated the 

ability to bi-directionally transition between differentiated and undifferentiated 

states(169), which supports the notion that leukemia cells could acquire BETi resistance 

by selecting for cells in a repressed SPI1 state without acquiring de novo mutations. 

Both the AP-1 complex, and AHR signaling regulates cellular proliferation by directly 

(indirectly for AHR, via upregulation of CDKN1A/p21) repressing Cyclin D1 and 

regulating expression of CDK2 and CDK4(164,170). Together these data may explain 

our findings that CDK4/6i and BETi synergize. We also noted increased sensitivity to 

BCL2i and re-sensitization to genetic knockdown in acquired BETi-resistant cells that 

overexpressed BCL family member proteins. Previous work has shown that sustained 

expression of NFkB-regulated anti-apoptotic genes occurs in SPI1 depleted AML cells 

(171).  

Monocytic surface markers as correlates of BETi efficacy  
We identified monocytic markers CSF1R, VCAN, LILRA1, as strongly correlating with 

BETi sensitivity in AML patient samples. Of particular interest is CSF1R, as there are 

highly-specific flow cytometry antibodies, which could be integrated into clinical 

immunophenotyping panels. CSF1R is a surface receptor that binds CSF1 or IL34 to 

promote proliferation, survival, and differentiation of monocytes and macrophages. Upon 

activation, CSF1R activates proliferation and survival pathways which upregulates the 

SPI1(172). VCAN is an extracellular matrix proteoglycan expressed across many human 
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tissues. It increases activation and adhesion of monocytes through interactions with 

CD44. Interestingly, monocytes highly upregulate VCAN, allowing a stronger self-

promoting response to inflammation(173-175). LILRs are highly expressed in 

monocytes/macrophages, neutrophils, and B-cells and interact with HLA class I 

molecules with have both activating or inhibitory functions(176). Together, our findings 

suggest a possibility of predicting BETi sensitivity based on CSF1R/VCAN/LILR 

expression and further suggest the impetus for investigating efficacy of combining 

CSF1R and BET inhibitors in monocytic leukemias. 

Combined BETi resistant and BETi naïve genome-wide screening to identify novel 
combinatorial treatment strategies to overcome BETi resistance 
Our study highlights the power of performing genome-wide CRISPR drug screens on 

both treatment naïve and treatment resistant AML cells to identify rational combinatorial 

treatment strategies to overcome resistance. We identified in both settings that targeting 

BCL2 or CDK4/6 may sensitize BETi-resistant AML cells. Several groups have published 

in vitro and in vivo efficacy of targeting BCL2 in combination with BETi, lending credence 

to these approaches(148,177-180). However, we believe we are first to rationally 

describe this phenomenon in the context of differentiation state and highlight a novel 

therapeutic vulnerability in differentiated AMLs. In addition, we describe a novel role for 

AHR signaling in mediating BETi response in AML and as a measure of leukemic 

differentiation state, a topic of which we will be exploring further.  Further, in silico 

predictions based on the Beat AML dataset identified BETi and CDK4/6i as a synergistic 

combination strategy, indicating a potentially viable combination strategy for both 

treatment-naïve and BETi resistant settings(181,182).  Future studies will investigate 

unreported combination strategies identified in the screens, such as AHR agonists with 

BETi. 
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BETi vulnerability as a consequence of leukemic differentiation state 
Hematopoietic differentiation is accompanied by large changes to the chromatin 

landscape and requires histone acetyltransferases (HATs), methyltransferases, and 

others(4,183). Monocytic differentiation in particular is associated with stark increases in 

histone acetylation and chromatin accessibility at hematopoietic TF binding sites(184). 

Hematopoietic TFs recruit BRD4 by directly stimulating activity of HATs, such as EP300, 

which is corroborated by studies demonstrating that EP300 inhibition phenocopies BRD4 

inhibition(51,69,134,147). In this context BRD4 acts as a cofactor for hematopoietic TFs, 

offering a likely explanation of increased sensitivity to BETi in hematological 

malignancies.  

Our findings suggest that BETi resistance is driven by differentiation state as a 

consequence of evolving histone acetylation status. This is consistent with studies 

demonstrating WNT-driven transcriptional plasticity as a driver for BETi resistance in 

AML(136,139). Further, Sheng et al. have recently described a mechanism for WNT 

signaling blocking monocytic differentiation through inhibition of SPI1(185). Intriguingly, 

studies also have shown that AHR activation induces SPI1 production and monocytic 

markers in human AML(153,186). Thus, we propose a unified mechanism of resistance 

involving decreased expression of hematopoietic TFs as a consequence of 

differentiation state, which can be driven by loss of WNT signaling, that consequently 

decreases BRD4 dependence and BETi sensitivity. Differentiated leukemia cells 

upregulate hematopoietic TFs, which recruit histone modifying machinery and serve to 

attract BRD4 to target sites, resulting in increased BETi sensitivity (Figure 19d). 

Conversely, less differentiated cells have lower expression of these TFs, thus, having 

reduced BRD4 recruitment and, subsequently, reduced sensitivity to a BETi. Further 

complexity to the proposed mechanisms could result from transient and often 

unpredictable nature of differentiation/epigenetic dysregulation in leukemia, driven by 
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differences in patient specific mutations. These are important topics for investigation 

moving forward. However, we believe these data support more targeted clinical 

exploration of BETi in AML, such as an emphasis on recruiting M4-M5 FAB subtypes or 

patients with high expression of CSF1R. In addition, our findings provide further 

mechanistic rationale to a potentially effective drug combination strategies bridging 

compounds targeting more undifferentiated AML cells (e.g. BCL2i or CDK4/6i) with 

therapies that are more effective against AML cells further differentiated along the 

monocytic lineage (e.g. BETi). This strategy may mitigate relapse due to changed 

maturation state of the tumor. 

Methods 

Cell Lines 
OCI-AML2 (DSMZ Cat# AC-99, RRID: CVCL_1619), OCI-AML3 (DSMZ Cat# AC-582, 

RRID: CVCL_1844), and HL-60 (CLS Cat# 300209/p671_HL-60, RRID: CVCL_0002) 

were obtained from ATCC. Cell lines were authenticated using the Oregon Health & 

Science DNA Serviced Core Facility and tested bi-weekly for Mycoplasma. All cell lines 

were maintained in RPMI, 20% FBS, L-Glutamine, penicillin/streptomycin, amphotericin-

B, and normocin. BETi-R cells were generated by incubating OCI-AML2s at respective 

JQ1 IC90 or CPI-0610 IC90 concentration twice weekly and viability monitored 3 times 

per week by guava easyCyte. Once viability returned to ~80% their sensitivity was re-

measured and incubated at their increased IC90 concentration. This was repeated until 

a 5x IC50 increase was achieved. Cells were maintained resistant by treating with 

800nM JQ1 or 800nM CPI-0610 weekly. 

CRISPR/Cas9 library screen and CRISPR/Cas9 gene inactivation by individual 
sgRNA  
Cas9-expressing cells were generated using Cas9Blst (Addgene, #52962). Loss-of-

function screens were performed as described9, using a human genome-wide sgRNA 
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library(187), purchased form Addgene (#67989). High titer lentivirus was generated 

using calcium phosphate precipitation procedures in HEK293T cells (NCBI Cat# C498, 

RRID: CVCL_0063). Viral supernatant was concentrated and tittered using viral titration 

kit (ABMgood, Canada). 100e6 cells were used for viral transduction at MOI 0.3, selected 

with puromycin for 5-7 days. Cells were screened with 200nM JQ1, or 500nM CPI-0610, 

or DMSO. DNA was harvested after puromycin selection day 14 (JQ1) and day 21(CPI-

0610). PCR-amplified barcode libraries were generated as previously described(187), 

and deep sequenced using Illumina platform. 

Single sgRNA knockouts 
Single sgRNA sequences were designed using Synthego design tool 

(https://design.synthego.com/#/) and converted into DNA sequences (Supplementary 

Table 2). Individual sgRNAs were cloned into plentiCRISPRV2 (Addgene, #52961, 

RRID: Addgene_127644). Phosphorylated complementary oligonucleotides were 

annealed and ligated into BsmbI-digested pLentiCRISPRV2 backbone which contains 

sequences for Cas9 and puromycin resistance, then validated by Sanger sequencing. 

Lipofectamine-2000 (Invitrogen, #11668019) was used to transfect HEK 293T cells with 

single transfer vectors with packaging plasmids, psPax2 (Addgene, #12260, RRID: 

Addgene_12260) and VSVG (Invitrogen) to generate virus. Viral supernatants were 

collected, filtered through 0.45 uM filters and used for transduction of AML cells using 

spinoculation method as described(187). Cells were selected with 2 ug/mL of puromycin 

for 5-7 days and outgrown for 14 days in culture before testing for BETi resistance. 

Biostatistical Analysis of CRISPR Screens 
Pipeline for executing analyses of CRISPR libraries sequences were performed using 

modified Mageck analyses. Adaptor sequences were removed using cutadapt and reads 

were aligned to the K.Yusa library using bowtie2 (RRID: SCR_016368). Sequences that 

aligned to more than 1 region were discarded. An overall alignment rate of 92% was 

https://design.synthego.com/#/
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achieved. The overall set of sgRNAs were first filtered to remove any that had zero 

reads in all samples or in the plasmid.  For each contrast, sgRNAs that did not achieve 

100 reads (adjusting for library size) in at least half the samples were also removed.  

Significance of each sgRNA was determined via edgeR (RRID: SCR_012802) after 

TMM(188) normalization for the following contrasts: JQ1 screen at day 14 to DMSO 

screen at day 14, and CPI-0610 screen at day 21 to DMSO screen day 21. Sequencing 

data is deposited at GEO (GSE159689). Hits were prioritized according to previously 

described tiering structure(145). Briefly, considering only significant sgRNAs (FDR < 

.05), genes were classified into 5 ordered groups.  Tier 1 genes had more than one 

significant sgRNA, a minimum log 2-fold change >= 2, 75% of sgRNAs per gene present 

and concordance among sgRNAs per gene >= 75%; Tier 2 hits had log 2-fold change >= 

2 and 100 % concordance among sgRNAs per gene Tier 3 hits had log 2-fold change >= 

1 and 100% concordance among sgRNAs per gene. Singleton hits represent 

significantly enriched genes with log 2 -fold change >= 2 but only a single significant 

sgRNA. Enriched hits not satisfying these criteria were classified into the Unassigned 

group. 

Biostatistical Analysis of H3K27Ac ChIP-seq dataset 
Processing was performed using ENCODE’s protocol for unreplicated H3K27Ac ChIP-

seq experiments. Differential binding was determined using DIffBind (RRID: 

SCR_012918) from Bioconductor (RRID: SCR_006442)(189). The Annotatr Package 

from Bioconductor (RRID: SCR_006442) was then used to annotate regions 1-5kb from 

gene(190). Volcano plots were generated by plotting -log10 transformed p-val and log2 

transformed fold changes (M0-M2 – M4-M5).    

Drug Viability Testing and ZIP Synergy Scores 
Drug viability testing was performed as previously described(20,181) using MTS based 

assays. Absorbance values were normalized to a kill control (10uM FSV) and 
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media/cells only. AML cells were plated for 72hr in replicates of 6 at 1250 cells/well in 

R20 and titrated using a log scale (0 – 10uM) against JQ1 and CPI-0610. Viability of the 

cells was measured using a Guava easyCyte prior to plating to ensure >90% viability. P-

values for individual sgRNAs vs non-targeting were calculated using a two-stage linear 

step-up procedure of Benjamini-Krieger-Yekutieli. Combinations of CPI-0610 with CH-

223191 or FICZ were tested for efficacy using the MTS assay and a matrix dose layout 

wherein each drug/ligand in the combination was titrated over 8 concentrations. Dose-

specific normalized cell viability percentages were averaged across replicates and ZIP 

(Zero Interaction Potency) synergy scores were calculated as previously 

described(191,192) using the ‘synergyfinder’ R package. 

Beat AML Patient Sample Surface Marker Analyses 
A simple linear regression model was fit separately for each inhibitor and gene with the 

inhibitor AUC values as the outcome. The T-statistic and P-value tests whether the slope 

is non-zero and corrected for multiple comparisons. Corresponding correlation 

coefficients were computed using the relationship to the linear model: 

slope*(sd(expr)/sd(auc)) where sd indicates standard deviation. Log2 RPKM values are 

available in Tyner et al. 2018(20). 

HL-60 Differentiation Assays and Drug Sensitivity 
In triplicate, 250,000 HL-60 cells (>95% Viability) were plated in a 6 well dish in 3 mL 

R20 and treated with either vehicle (100% EtOH) 300nM JQ1, 1 uM ATRA (Sigma, 

#R2625) suspended in 100% EtOH, or 1uM ATRA and 300nM BETi. After 72 hours cells 

were resuspended in fresh R20.A portion of the vehicle and and ATRA alone treated 

cells were taken and assessed for BETi sensitivity by MTS as previously described. The 

rest of the vehicle, BETi alone, ATRA alone, or BETi + ATRA cells were stained for 

viability and differentiation marker CD38 as described below.  
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HL-60 Morphological Assessment 
HL-60 cells were subjected to vehicle, 300nM JQ1, 1uM ATRA, or 300nM JQ1 + 1uM 

ATRA for 72 hours as described previously for flow cytometric assessment. Cells were 

then spun onto glass slides via Cytospin (800rpm/3min), fixed in methanol, and stained 

with 1:20 Giemsa (Sigma-Aldrich) for 20 minutes prior to brightfield imaging (Leica).  

Doxycycline-inducible SPI1 expressing HL-60s 
 Lipofectamine 2000 was used to transfect HEK 293T cells with pINDUCER21-SPI1 

(Addgene #97039), packaging plasmids, psPax2 (Addgene, #12260, RRID: 

Addgene_12260) and VSVG (Invitrogen) to generate virus. Viral supernatants were 

collected, filtered through 0.45 uM filters and used for transduction of AML cells using 

spinoculation method as described(187). GFP+ HL-60 cells were then sorted via 

FACSARIAIII.  

HL-60s were then induced with vehicle control or 1ug/mL doxycycline for 5 days, 

washed with media, and then tested for BETi sensitivity using MTS assay as previously 

described. A portion of cells were taken for western blotting prior to plating for MTS.  

Flow Cytometry Staining 
500K OCI-AML2 parental, JQ1-R, or CPI-R cells were treated with BETi, BETi combined 

with Venetoclax, or left untreated and washed in PBS and resuspended in 100 uL PBS. 

1 uL ZombieAqua (Biolegend, #423101) was added to the cells and incubated for 15 

minutes at room temperature, in the dark. Cells were then washed with FACS buffer 

(PBS, 2% bovine calf serum 0.005% sodium azide) and resuspended in 20uL/sample 

1:50 Human Fc block (Biolegend, #422302) in FACS buffer and incubated for 5 minutes 

on ice. Without washing, a 20 uL/ sample cocktail in FACS buffer of 1:20 human 

antibodies, which include anti-CD33 BV711 (Biolegend, #303424, RRID: AB_2565775), 

1:20 human anti-c-kit (Biolegend, #313228, RRID: AB_2566215), and 1:20 anti-CD38 

A647 (Biolegend, #303514, RRID: AB_493090) for a final staining concentration of 1:100 
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Fc block and 1:40 antibodies, was added. The cells were then incubated in the dark, on 

ice, for 30 minutes, at which point they were washed, fixed for 20 minutes in PFA, and 

resuspended in FACS buffer prior to running on a BD Fortessa. Data were analyzed 

using FloJo Software. 

Western Blotting 
Briefly, lysates were generated using Cell Lysis Buffer (CST #9803S), 1mM complete 

mini protease inhibitor (Roche), 1mM Phosphatase Inhibitor (Sigma) and 1mM PMSF. 

Protein concentration was quantified and normalized via BCA. Lysates were given a 

solution of 6% SDS, 150mM Tris (pH 6.8), 30% Glycerol, .1% bromophenol Blue, and 

BME were added to the samples and boiled at 950 C for 5 minutes before gel separation. 

Proteins were transferred to a PVDF membrane using an iblot2 dry transfer system, 

blocked with BSA, and incubated with 1:1000 in TBST primary antibody overnight at 4C. 

The membrane was then washed with TBST before incubation in appropriate HRP-

conjugated secondary for 3 hours and activated for imaging. Antibodies used: BCL2 

(CST #4223S), JUNB( CST #3746S), Tubulin(CST #2146S), PU.1(CST #2258S), MCL-1 

(CST# 94269S), BCL-XL (CST# 2764S).   

Statistical Analyses 
Specific statistical analyses described in figure legends. In all figures, “ns” denotes not 

significant (P>.05), and *, **, ***, **** correspond to P<.05, P<.01, P<.001, P<.0001, 

respectively. 
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Chapter 3 
 

BET inhibitors synergize with anti-PD1 by 
rescuing TCF1+ progenitor exhausted CD8+ T cells 
in Acute Myeloid Leukemia 
 

Adapted from Romine et al. 2021. bioRxiv. DOI: 10.1101/2021.08.04.455147 

Abstract 

Many acute myeloid leukemia (AML) patients exhibit hallmarks of immune exhaustion, 

such as increased myeloid derived suppressor cells (MDSCs), suppressive regulatory T 

cells (Tregs) and dysfunctional T cells. Similarly, our mouse model of AML driven by 

Flt3-ITD and Tet2 deficiency displays these immune-related features, including CD8+ T 

cells exhibiting a terminally exhausted phenotype (TEx). This T cell subset has been 

shown to be refractory to immune checkpoint blockade (ICB) monotherapy. Here we 

show that small molecule inhibitors which target bromodomain and extra-

terminal domain (BET) proteins affect both tumor-intrinsic factors but also rescue T cell 

exhaustion and ICB resistance. Ex vivo treatment of cells from AML mice and AML 

patients with BET inhibitors (BETi) reversed CD8+ T cell exhaustion by restoring 

proliferative capacity and expansion of the more functional precursor exhausted T cells 

(TPEx). This reversal is enhanced by combined BETi and anti-PD1 treatment. We show 

that BETi synergizes with anti-PD1 in vivo, resulting in the reduction of circulating 

leukemia cells, enrichment of CD8+ T cells in the bone marrow, and increased 

expression of Tcf7, Slamf6, and Cxcr5 in CD8+ T cells. Finally, we profiled the 

epigenomes of in vivo JQ1 treated AML-derived CD8+ T cells by single-cell ATAC seq 

and find that JQ1 increases Tcf7 accessibility specifically in Tex cells, suggesting that 
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BETi likely mechanistically acts by reprogramming Tex cells to a more functional TCF1 

expressing subtype.  

Introduction 

Acute myeloid leukemia (AML) is a genetically heterogeneous myeloid lineage cancer 

with a 5-year survival of 29% and with limited therapeutic options for those who cannot 

withstand current frontline therapies(17,19,131). The most common mutation, which 

encompasses 30% of AML patients and is associated with an exceptionally poor 

prognosis, is an internal tandem duplication in the FLT3 receptor (FLT3-ITD), which 

leads to ligand-independent signaling to many proliferation pathways. FLT3-ITD is 

commonly mutated with epigenetic regulators such as those involved in DNA 

methylation like DNMT3a and TET2(20). For other difficult-to-treat cancers, such as 

metastatic melanoma, therapy with immune checkpoint blockade (ICB) has made 

meaningful increases in life expectancy(123,124). ICB functions to reinvigorate cancer-

specific T cells via blockade of inhibitory immune checkpoint (IC) receptors which 

suppress T cell activity and function. Expression of IC receptors, which include CTLA-4, 

PD1, TIM3, LAG3, TIGIT, VISTA and others, increases after initial antigen exposure and 

regulates T cell function through various signaling pathways. It has been hypothesized 

that these receptors are an evolutionary adaptation to chronic antigen exposure to 

prevent the development of autoimmunity after infection. Recent work has identified 

unique subsets of CD8+ T cells that are generated specifically during chronic antigen 

exposure. Terminally exhausted T cells (TEx) have been shown to express high levels of 

IC receptors such as PD1 and TIM3 and low TCF1, while progenitor exhausted T cells 

(TPEx) are PD1+, TIM3- and display high expression of TCF1 and SLAMF6. Importantly, 

the TPEx population has specifically been shown to expand in response to anti-PD1 

therapy and retain anti-tumor capacity(86,87,90,125,126). In contrast, TEx are 
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significantly more dysfunctional with a lack of proliferative capacity and dramatically 

reduced secretion of effector molecules, such as granzyme B and perforin(87,89-

92,95,125). Our lab and others have recently shown that a proportion of blood and bone 

marrow specimens from AML patients have an immunosuppressive microenvironment 

and have hallmarks of immune exhaustion: increased frequencies of regulatory T cells 

(Tregs)(193) and myeloid-derived suppressor cells (MDSCs)(194), decreased T-cell 

proliferation(195), elevated expression of immune checkpoint molecules(196-198) and 

increased TEx vs. TPEx(128,198) populations. Importantly, a subset of these patient 

samples containing dysfunctional T cells can be rescued by ICB(195). This prompted us 

to further investigate potential combination treatment regimens by which immune 

exhaustion could be reduced in AML.   

The Bromodomain and Extra-Terminal domain (BET) protein family is made up of 

bromodomain-containing proteins BRD2, BRD3, BRD4, and BRDT(69,74,133,134,199). 

BET proteins are epigenetic readers which bind acetylated histone residues via 

conserved BD1 and BD2 domains and mediate downstream functions, such as histone 

acetylation recognition, chromatin remodeling, and transcription regulation. BRD4 binds 

acetylated histone tails and recruits Positive Transcription Elongation Factor b (P-TEFb) 

to enhancer regions to mediate the phosphorylation of the c-terminal domain of RNA 

polymerase II, required for elongation of the mRNA strand(133,200). Loss of function 

RNAi screening studies identified BRD4 loss as a potent and selective inhibitor of 

leukemic growth, and treatment with BET inhibitor (BETi) induced leukemia cell death in 

vitro and in vivo(69,71,74,76,134,201,202). Clinically, however, BETi therapy was able to 

elicit some complete remissions but only in a small subset of patients(82). Interestingly, 

BETi have also been shown to positively affect CD8+ T cells, directly or indirectly, via 

reduction of PD-L1 expression on myeloid cells(203,204) and inhibition of chronic TCR 

activation genes, such as basic leucine zipper transcription factor, ATF-like (Batf), which 
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increased the persistence of stem-cell like memory CD8+ T cells(205). Therefore, we 

hypothesized that BETi may synergize with anti-PD1 therapy in AML through targeting of 

tumor-intrinsic factors, such as myc, and tumor-extrinsic factors, such as promoting T 

cell stemness. Accordingly, we showed that a Flt3-ITD/Tet2 AML mouse model, similar 

to the previously described Vav-Cre Flt3-ITD/Tet2 model(206), phenocopies the immune 

exhaustion and PD-1 refractoriness found in many patients with AML. We found that 

these mice have a dramatically increased ratio of TEx:TPEx compared to wild-type (WT) 

mice and that BETi can rescue immune exhaustion by promoting proliferation of TPEx 

CD8+ T cells and reprogramming Tex cells. BETi treatment was found to have a 

synergistic effect with anti-PD1 in vivo and ex vivo by reducing leukemic tumor burden 

and increased RNA expression of TPEx gene programs while decreasing that of TEx. In 

addition to the mouse model, we observed that BETi rescued T cell exhaustion in a 

subset of primary AML patient samples. Finally, we characterized the chromatin 

landscape of T cells treated in vivo with BETi by S3-ATAC-seq and found that BETi-

treated Tex had greater Tcf7 accessibility compared to vehicle treated throughout TPEx 

to TEx differentiation.   

Results 

Flt3-ITD/Tet2 Mice Exhibit hallmarks of immune exhaustion. 
We previously showed that a genetically-engineered mouse model, Flt3-ITD+/- Tet2flox/+ 

LysM-Cre+/- displays a profound defect in T cell proliferative capacity(207). To further 

characterize the tumor microenvironment and functional capacity of T cells in these 

mice, we assessed changes in myeloid and lymphoid populations at multiple organ sites. 

We found dramatically increased levels of CD11b+ myeloid cells in the spleens and 

blood of AML mice compared to WT mice (Figure 23a, b). In addition, we observed 

significant evidence of myeloid infiltration in the spleen causing splenic follicle disruption, 
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and infiltration in liver portal veins and bone marrow (Figure 23c). Furthermore, we found 

increased levels of GR1+ MDSCs and CD4+FOXP3+ Tregs, a frequent occurrence in 

AML patients(193-195,197,208)(Figure 24a, b), but no difference in T cell frequency 

(Figure 24c). We also identified significant increases in multiple exhaustion markers in 

both the CD4+ and CD8+ T cell populations but most notably a significant decrease in T 

cell stem-like maintenance transcription factor TCF1 (Figure 23d,e). Taken together, we 

concluded that these AML mice exhibited a tumor microenvironment characterized by 

severe immune exhaustion.  
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Figure 23- a.) Left: Splenocytes isolated from C57BL/6 (WT, black) or Flt3-ITD +/-, Tet2 +/-, Lys-Cre +/- 
(AML, red) mice were stained for live CD11b+ cells and evaluated by flow cytometry. Significance 
determined by Mann-Whitney T-test. Right: Whole spleens isolated from 15 WT (black) and 24 AML (red) 
mice were weighed. Median weights for each group are displayed on the right side of plot. Significance 
determined by Mann-Whitney T-test. b.) Blood isolated from 24 WT (black) and 20 AML (red) mice were 
stained for live CD11b+ cells and evaluated by flow cytometry. Significance determined by Mann-Whitney T-
test. c.) Representative H&E staining of WT and AML mice-derived spleen (Top row, 500 µm scale), liver 
(middle row, 200 µm scale), and bone marrow (bottom row, 100 µm scale).  
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Figure 23 – d.) Splenocytes from untreated WT (black) and AML (red) mice were assessed for expression 
(median fluorescence intensity) of markers of immune exhaustion on CD4+ T cells (Live, CD11b-, CD3+, 
CD4+). Top row, left to right: CTLA-4, TBET, CD44, PD-1). Bottom Row, left to right: EOMES, LAG3, TIGIT, 
TCF1). Significance determined by multiple Mann-Whitney T-tests. CD44, PD-1, LAG3 are significantly 
increased in AML mice. CTLA-4, EOMES, and TCF1 are significantly decreased in AML mice. e.) 
Splenocytes from untreated WT (black) and AML (red) mice were assessed for expression (median 
fluorescence intensity) of markers of immune exhaustion on CD8+ T cells, as in (d). Significance determined 
by multiple Mann-Whitney T-tests. CD44, EOMES, and TIGIT are significantly increased in AML mice. TCF1 
is significantly decreased in AML mice.  
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Figure 24 - Splenocytes isolated from Flt3-ITD +/-, Tet2 +/-, LysCre +/- (AML, red) or C57BL/6 (WT, black) 
mice were isolated and stained for 22a.) Treg cells (CD4+, FOXP3+), 22b.) MDSCs (CD11b+, GR1+) and 
22c.) all T cells (CD3+) and evaluated by flow cytometry. Significances determined by Mann-Whitney t-tests. 
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T cells derived from AML mice are phenotypically and functionally exhausted. 
We previously showed that T cells from the AML mice are dysfunctional and 

unresponsive to TCR stimulation (207). We assessed the proliferative potential of CD4+ 

and CD8+ T cells derived from AML or WT mice by culturing whole splenocytes on anti-

CD3 coated plates for 3 days, thus relying on naturally occurring antigen-presenting cells 

for co-stimulation. As shown previously, both CD4+ and CD8+ T cells derived from AML 

mice exhibited significantly reduced proliferation compared to WT mice in response to 

TCR stimulation (Figure 25a, b). We next asked whether the T cells were intrinsically 

dysfunctional or if the effect on proliferation occurred only when the T cells were in 

proximity to tumor cells. We isolated CD3+ T cells by negative selection magnetic bead 

sorting and assessed proliferation with both anti-CD3 and anti-CD28 co-stimulation. The 

purified T cells from AML mice still lacked proliferative capacity compared to WT, 

indicating that the T cells are intrinsically dysfunctional (Figure 25c). Finally, we asked 

whether the AML-derived CD8+ T cells were phenotypically terminally exhausted (TEx; 

PD1+, TIM3+, TCF1-) or TPEx (PD1+, TCF1+, TIM3-), the latter having been shown to 

retain anti-tumor activity, predict clinical outcome, and expand with ICB(106,125-

127,129,209). Flow cytometric analysis of PD1+ CD8+ T cells derived from AML mice 

were primarily consistent with a TEx phenotype, in contrast to WT mice, which were 

primarily TPEx (Figure 25d, 25e, 26a). Thus, the AML mice generate an 

immunosuppressive microenvironment which supports CD8+ and CD4+ T cell 

exhaustion.   
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Figure 25 – a,b.) WT (black) and AML (red) splenocytes were isolated, stained with proliferation dye 
(CFSE), and cultured for 72 hours with anti-CD3. Proliferation of a.) CD8+ T cells and b.) CD4+ T cells was 
then assessed by flow cytometry, staining with viability and markers to identify T cells. Proliferation 
displayed is percent CFSE diluted relative to unstimulated (HIgG) control for each cell type. Significance 
determined by Mann-Whitney T-tests. c.) WT (black) and AML (red) T cells were isolated from splenocytes 
via CD3 negative isolation magnetic beads. The T cells were then stained with CFSE and plated for 72 
hours with anti-CD3 and anti-CD28 stimulation. The cells were then harvested and assessed by flow 
cytometry. Significance determined by Mann-Whitney T-test. Splenocytes derived from WT (black) and AML 
(red) mice were stained for surface and intracellular markers of T cells exhaustion and evaluated by flow 
cytometry. d.) Terminally Exhausted CD8 T cells (TEx) are represented as %TIM3+/TCF1- of the CD8+/PD1+ 
T cells. e.) Progenitor Exhausted CD8 T cells (TPEx) are represented as %TCF1+/TIM3- of the CD8+/PD1+ T 
cells. Significance determined by Mann-Whitney T-tests. 
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Ex vivo treatment of splenocytes from AML mice with BETi rescues T cell 
dysfunction  
To identify rationally-derived combination treatment strategies which target tumor-

intrinsic and extrinsic factors, we performed high-capacity drug screening as previously 

described(20) on tumor cells cultured from the AML mice. Interestingly, we found that 

three of the top six most efficacious small molecule inhibitors (SMIs) targeted BET 

proteins (JQ1, OTX-015, CPI-0610) (Figure 27a). Given previous works by Kagoya et 

al., Zhu et al., and Hogg et al. which established the role for BETi in maintaining 

stemness of CD8+ T cells via inhibition of TCR-activated transcription factor BATF(205) 

and that BETi reduce immunosuppressive ligand PD-L1(203,204) expression, we asked 

whether BETi + anti-PD1 could impact the exhausted phenotype found in T cells from 

our AML mice. To test whether BETi could rescue T cell dysfunction and rescue ICB 

therapy resistance, we performed proliferation assays as previously described with 

whole splenocytes and anti-CD3 stimulation but also in the presence of 60nM BETi JQ1, 

120nM JQ1, 60nM JQ1 + 10ug/mL anti-PD1, 120nM JQ1 + anti-PD1, or anti-PD1 alone. 

As expected, treatment with anti-PD1 alone had no effect on proliferation, as the T cells 

were shown to be primarily terminally exhausted (Figure 25d-g). However, treatment 

with JQ1 at 60nM, and more so with 120nM, significantly increased proliferation of AML-

derived CD8+ T cells, whereas WT T cells were unaffected. Moreover, the combination 

of 120nM JQ1 and anti-PD1 had the largest effect, with a median three-fold increase in 

CD8+ T cell proliferation compared to anti-CD3 stimulation alone (Figure 27b, c). The 

benefit of adding BETi with anti-PD1 was also observed in CD4+ T cells, but was more 

variable between individual mice, with some mice only marginally benefitting from 

combined treatment while others were dramatically enhanced (Figure 26b). We next 

asked what phenotype characterized these newly proliferating CD8+ T cells from the 

AML mice and found that they expressed high levels of TCF1 and low levels of TIM3, 

indicating that BETi mechanistically act by increasing TPEx:TEx ratios (Figure 27d-g). 
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Moreover, we tested the efficacy of combining BETi + anti-PD1 in five primary AML 

patient samples with an array of mutational backgrounds. All patient samples were 

displayed T cell dysfunction. Interestingly, 3/5 samples were at least partially responsive, 

with one sample dramatically so, to treatment with BETi or BETi + anti-PD1 in both the 

CD8+ and CD4+ T cell subsets (Figure 27h, 26c). 
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Figure 26 – a.) Plots below are a representative example from an AML mouse demonstrating the gating 
scheme used to assess T cell phenotype and proliferation. b.) Splenocytes were isolated from 6 AML mice 
were cultured for 72 hours without TCR stimulation (HIgG), anti-CD3 alone, anti-CD3 with anti-PD1 and 
titrations of anti-CD3 with JQ1 or anti-CD3 with both JQ1 and anti-PD1. Cells were stained for assessment 
by flow cytometry. Plots represent the fold-change in proliferation in CD4+ T cells, as measured by percent 
CFSE diluted relative to anti-CD3 stimulated alone. Significance determined by Kruskal-Wallis multiple 
comparisons t-tests. c.) Fresh mononuclear cells from bone marrow aspirates or peripheral blood obtained 
from 5 AML patients were stained with CTV and cultured for 5 days without TCR stimulation (mIgG), anti-
CD3, anti-CD3 with anti-PD1, anti-CD3 with 120 nM JQ1, or anti-CD3 with 120 nM JQ1 plus anti-PD1. Cells 
were then stained for assessment by flow cytometry. Plots represent CD4+ T cell proliferation for each 
patient sample. Corresponding patient sample mutations listed in table below. 
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Figure 27 – a.) Cells from AML mice passaged for ~ 1 month were subjected to an inhibitor library panel, as 
previously described. Cells were seeded into multiple 384 well plates containing titrations of 188 inhibitors, 
incubated for 72 hours, and viability assessed by MTS assay. Plot represents each Areas Under the Curve 
(AUC) for every inhibitor on the panel. BET inhibitors JQ1, OTX-015, and CPI-0610 are highlighted in red. 
b,c.) Splenocytes were isolated from 7 AML (b) or 6 WT mice (c), stained with CFSE, and cultured for 72 
hours without TCR stimulation (HIgG), anti-CD3 alone, anti-CD3 with anti-PD1 or titrations of anti-CD3 with 
JQ1 or anti-CD3 with both JQ1 and anti-PD1. Cells were stained and analyzed by flow cytometry. Plots 
represent the fold-change in proliferation in CD8+ T cells, as measured by percent CFSE diluted relative to 
anti-CD3 stimulated alone. Significance determined by Kruskal-Wallis multiple comparisons T-tests. d,e.) 
Effect of BETi, anti-PD1, or BETi + anti-PD1 treatment on the percent of TPEx CD8+ T cells (d) and TEx 
CD8+ T cells (e) after culturing for 72 hours as previously in b-c. Significance determined by Kruskal-Wallis 
multiple comparisons T-tests. f.) Representative dot plots of CD8+ T cells from an AML mouse treated as 
described in 3b,c comparing TCF1 expression vs. CFSE. g.) Splenocytes from 4 AML mice were stained 
with CFSE and plated for 72 hours without TCR stimulation (HIgG), anti-CD3 alone, anti-CD3 with anti-PD1 
and titrations of anti-CD3 with JQ1 or anti-CD3 with both JQ1 and anti-PD1. Proliferation of TPEx (black) 
and TEx (red) CD8+ T cells from AML mice was assessed by flow cytometry. Significance determined by 
Kruskal-Wallis multiple comparisons t-tests. h.) Fresh mononuclear cells from bone marrow aspirates or 
peripheral blood obtained from 5 patients with AML were stained with CTV and cultured for 5 days without 
TCR stimulation (mIgG), anti-CD3, anti-CD3 with anti-PD1, anti-CD3 with 120 nM JQ1 or anti-CD3 with 120 
nM JQ1 and anti-PD1. Cells were stained and analyzed by flow cytometry. Plots represent CD8+ T cell 
proliferation for each patient sample. 
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In vivo-treated AML mice have reduced tumor burden and increased T cell TPEx 
gene program expression 
Given the results showing the effect of BETi on T cells from the AML mice in vitro, we 

sought to determine the in vivo therapeutic efficacy of BETi in combination with anti-PD1 

and whether they also modulate the tumor immune microenvironment. AML or WT mice 

were treated with RIgG (8mg/kg), JQ1 (50mg/kg), anti-PD1 (8mg/kg), or combined JQ1 

and anti-PD1 (50mg/kg and 8mg/kg, respectively) for 14 days. We monitored white 

blood cell (WBC) count in blood pre-treatment, mid-treatment, and at endpoint and 

characterized the tumor microenvironment (Figure 28a). Measurement of WBC counts 

over time by hematology analyzer found that only the combination of JQ1 + anti-PD1 

significantly reduced tumor burden and, as expected from the ex vivo proliferation 

assays, anti-PD1 alone had no effect (Figure 28b). Characterization of the tumor 

microenvironment by flow cytometry showed no significant changes to the frequency of 

Treg cells, MDSCs, or splenic CD3+ T cells (Figure 29a,b, 28c). However, we observed 

a significant increase in CD8+ T cells in the bone marrow of mice in the JQ1 + anti-PD1 

treatment group, suggesting that the combination has a greater impact on CD8+ T cells 

specifically and not on other immunosuppressive cell types (Figure 28d). Finally, 

evaluation of RNA-transcripts in isolated CD8+ T cells derived from JQ1-treated AML 

mice identified significantly increased expression of TPEx genes such as Tcf7, Slamf6, 

and Cxcr5 (Figure 28e). Together, these results highlight the potential of combining BETi 

and anti-PD1 to treat immunosuppressed T cells in AML, particularly in ICB-refractory 

cases.   
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Figure 28 - a.) Schematic detailing in vivo BETi + anti-PD1 treatment strategy and functional readouts of 
efficacy. b.) Mice treated with RIgG, JQ1, JQ1 with anti-PD1, or anti-PD1 alone were bled periodically over a 
two-week period and assessed for WBC. Data displays fold-change WBC (k/µL) normalized per mouse in 
comparison to pre-treatment bleed WBC. Significance determined by one-way ANOVA. Timepoints are Pre-
Bleed, Mid-bleed (day 7), Endpoint (day 14). c,d.) Bone marrow cells were isolated from treated AML and 
WT mice and assessed by flow cytometry. Graph denotes %CD3+ T cells in the bone marrow (c) and 
%CD8+ T cells in the bone marrow as a percent of all T cells (d). Significance derived from combining two 
experimental replicates and determined by one-way ANOVA. e.) CD8+ T cells were isolated from JQ1-
treated and RIgG-treated AML mice and RNA harvested and analyzed by Nanostring. Volcano plot shows 
the fold-change in normalized transcript levels of JQ1-treated mice vs RIgG treated AML mice vs. –log10 P-
value as determined by multiple t-tests. Hits of interest are highlighted in red. Dashed red line denotes 
significance threshold (0.05). 
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Figure 29 – a,b.) Splenocytes derived from AML mice treated with RIgG, JQ1, JQ1 + aPD1, or anti-PD1 
were assessed by flow cytometry to determine a.) %MDSCs (CD11b+GR1+) and b.) %Tregs 
(CD4+FOXP3+). No significance was observed between treatments in AML or WT mice independently. 
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S3-ATAC-seq identifies in vivo JQ1 treated T cells have increased chromatin 
accessibility at the TCF7 promoter specifically in Tex cells 
To ask whether BETi reprogram Tex directly or block TPex differentiation we evaluated 

the chromatin landscape of 5 in vivo JQ1 and 5 vehicle treated AML mouse T cells at a 

single-cell level by S3-ATAC-seq. S3-ATAC-seq is an optimized single-cell ATAC 

platform which provides vastly increased numbers of viable fragments via utilization of a 

uracil-intolerant polymerase and template oligos containing blocking uracil 

residues(210). We treated AML mice with vehicle or 50mg/kg JQ1 daily for 5 days before 

enriching spleen-derived CD8+ T cells by magnetic bead sorting and sequencing via S3-

ATAC. This resulted in exceptional TSS enrichment with an average TSS of 39.31 and 

~4000 cells passing QC (Figure 30a-c). Using the R package ArchR we performed 

iterative clustering and identified 14 unique clusters of cells distributed between JQ1 and 

Vehicle treated splenocytes (Figure 31a-d). We next called ATAC-peaks using MACS2 

and calculated gene scores for all cells and were able to easily distinguish between our 

cell types of interest. Cluster 4 identified Tregs as denoted by high CD4, FOXP3, and 

IL2RA gene scores. Clusters 5-8 were CD8+ T cells with Cluster 5 making up Tex with 

high Pdcd1, Tox, Lag3, and Havcr2 accessibility. Cluster 6 we denoted as naïve or 

related CD8+ T cells due to their high accessibility at Sell and Tcf7 with low expression of 

any canonical exhaustion or activation markers. Clusters 7 and 8 were assigned as 

TPex due to their high accessibility at Cxcr3, Tcf7, and intermediate accessibility at 

Pdcd1 and Sell (Figure 32). Given our in vivo and ex vivo data demonstrating that JQ1 

induces TCF1 expression in CD8+ T cells, we investigated Tcf7 accessibility through 

pseudotime trajectory as Naïve/Stem (C6) differentiate into TPEx (C7/C8) and finally Tex 

(C5). Here, we found that JQ1 treated T cells specifically enhances Tcf7 chromatin 

accessibility in Tex, suggesting that BETi mechanistically act by reprogramming Tex 

cells (Figure 33a-e).  
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Figure 30 – a.) Represents the batched TSS enrichment score which was calculated using the ENCODE 
method. b.) TSS enrichment scores vs. Unique fragments for the batched dataset. A minimum threshold of 8 
median TSS was used for downstream analysis. c.) Fragment size vs percent fragments for the batched 
dataset. Plots were generated with the ArchR package.  
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Figure 31 – a.) UMAP clustering using the iterative LSI dimensionality reduction method to predict cell type 
identities in the batched S3-ATAC data set. The legend below denotes the cluster identity. b-d.) UMAP plots 
with overlaid b.) JQ1 and vehicle treated cells c.) JQ1 only cells and d.) Vehicle cells only. All plots created 
using the ArchR package. 
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Figure 32 – a.) A Gene Score Matrix was calculated using the ArchR package. UMAP plots were then 
generated with the respective normalized gene score counts for the following genes (beginning at the top left 
corner): (row 1) Cd3d, Cd4, Cd8a, CD14, (row 2) Foxp3, Havcr2, Tcf7, Tox, (row 3) Pdcd1, Lag3, Sell, and 
Cxcr3.  
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Figure 33 – a.) Tex differentiation trajectory plotted as pseudotime. Trajectory is fit to traverse from 
previously described Cluster 6 Cluster 8  Cluster 7  Cluster 5. Plot represents both vehicle and JQ1 
treated CD8 T cells. b.) Tcf7 gene score throughout Tex differentiation trajectory. c,d.) Linearized 
pseudotime trajectory representing Tcf7 gene scores throughout Tex differentiation separated by treatment 
with c.) Vehicle or d.) JQ1 treated. Red vertical line denotes the start of the third quartile where the most 
exhausted T cells reside and the horizontal dashed line marks the lowest TCF7 point. e.) Quantification of 
TCF7 gene scores from cells derived from the T cell exhaustion pseudotime trajectory. Significance 
calculated by mann-whitney.  
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Discussion 

Immune checkpoint blockade in hematological malignancies 
ICB therapy in the blood cancer setting is relatively new and although dozens of clinical 

trials are ongoing and actively recruiting (211), no large-scale study has been completed 

evaluating the efficacy of anti-PD1 therapies in AML. Our lab previously described the 

functional immune microenvironment of 50 newly-diagnosed AML patient bone marrow 

samples(211) and found that only 41% showed CD8+ T cell proliferative capacity that 

was comparable to healthy donor. Further, we found that the AML patient samples with 

the most profound proliferative defect (37% of those tested) had severely dysfunctional T 

cells with significantly decreased production of effector cytokines such as IFN-γ, IL-2, 

and TNF-α, and increased expression of inhibitory checkpoint markers such as CTLA-4. 

Of these non-proliferating AML samples, 6 of 18 samples were not rescued with ICB 

treatment in vitro, maintaining the defects in proliferation and effector molecules 

upregulation seen without ICB. However, 12 of 18 samples did respond, at least 

partially, to ICB indicating that suppressive mechanisms may be overcome by altering 

the capacity of T cells to receive inhibitory signals through IC in the tumor environment. 

Combination treatment regimens that target both the tumor and immune environment to 

rescue terminally exhausted T cells may be the key to greater success with ICB therapy 

clinically. Smaller clinical trials have evaluated the efficacy of anti-PD1 + 

hypomethylating agents (HMA) but only a small subset, approximately 33%, responded 

to therapy(212), which is consistent with our ex vivo findings(211). Phenotypic profiling 

of these responsive patients before and after anti-PD1 +/- HMA identified pre-therapy 

bone marrow and peripheral blood CD3+ and CD8+ levels as predictive of response. In 

addition, we previously described the synergistic effects of combining MEKi and anti-

PD1(207). We found that MEKi acted directly on both tumor cells and immune cells 

globally by reducing PD-L1 expression on patient samples and, at low doses, restored 
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some proliferative function of AML-derived T cells. These data provide evidence that 

treatment strategies that target both tumor-intrinsic factors as well as T cell suppression 

will be more effective.  

Epigenetic regulation of T cell exhaustion 
T cell exhaustion is driven by chronic antigen exposure and is accompanied by vast 

changes in the epigenetic landscape(91-94,104). This T cell state is identifiable by three 

main traits: 1) increased expression of inhibitory receptors such as PD1, LAG3, TIGIT, 

and CTLA-4, 2) decreased secretion of effector cytokines such as IL-2, IFN-γ, TNF-α 

and 3) loss of proliferative capacity(92,102,213-215). Epigenetic changes are largely 

driven by a pool of coordinating T cell receptor (TCR)-responsive transcription factors, 

such as BATF, IRF4, TOX, and NFAT(87,102,214,215), chromatin remodeling 

complexes such as EZH2, and other polycomb repressive complex 2 proteins(216-219). 

Generation of TPEx cells relies on the de-repression of many critical pro-memory 

transcription factors such as TCF1, FOX01, and others as a consequence of targeted 

DNA methylation deposition acquired during early effector differentiation. Interestingly, 

the pro-exhaustion transcription factor TOX was found to also directly modulate histone 

acetylation via direct binding to histone acetyltransferase KAT7(92,104,220). This critical 

role for epigenetic regulation of T cell exhaustion has garnered much interest in 

investigating the potential of several epigenetic targeting SMI, whose original design was 

directed towards targeting tumor-intrinsic epigenetic dysregulation(89). Very recently, 

Milner et al. showed that BRD4 regulates T cell differentiation by promoting super-

enhancer activity at regions regulating key pro-exhaustion/differentiation genes such as 

Id2, Cx3cr1, and Runx1(221). Using our unique mouse model of AML, we find that BET 

inhibition in combination with ICB therapy can lead to a shift from predominantly non-

responsive T cells with a TEx phenotype to TPEx and the production of functional CD8+ 

T cells. These results form the basis for further study of such combination therapies in 
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AML. Additionally, our s3-ATAC-seq data suggests that BETi act directly on Tex cells 

and enhance their functionality by affecting Tcf7 accessibility. Further studies will focus 

on understanding the heterogeneity in AML patient responses to BETi + anti-PD1 and 

deeper characterization of the cell specificity of BETi.  

Methods 

AML murine model 
Mice expressing FLT3-ITD under the endogenous Flt3 promotor (strain B6.129-

Flt3tm1Dgg/J, The Jackson Laboratory, stock no. 011112) were crossed to mice with the 

Tet2 gene flanked by LoxP sites (strain B6;129S-Tet2tm1.1Iaai/J, The Jackson 

Laboratory, stock no. 017573). The Flt3-ITD/Tet2 flox mice were then crossed to mice 

expressing Cre recombinase under the Lysm promotor (strain B6.129P2-

Lyz2tm1(cre)Ifo/J, The Jackson Laboratory, stock no. 004781). All breeding animals 

were purchased from The Jackson Laboratory. All mice used in these experiments were 

bred as heterozygous for FLT3-ITD, TET2, and LysCre. All mouse experiments were 

performed in accordance with the OHSU Institutional Animal Care and Use Committee 

protocol IP00000907. 

Flow Cytometry Staining 
Bone marrow, blood, or splenocytes were processed and subjected to red blood cell 

(RBC) lysis by ACK before counting via hemacytometer. Five million cells were 

resuspended in PBS and stained with Zombie Aqua viability dye (BioLegend, Cat# 

423102) for 15 minutes at room temperature, covered from light. The cells were then 

washed with FACS buffer (PBS, 2% calf serum, 0.02% sodium azide) and resuspended 

in 25 µL 1:50 mouse FC block (TruStain FcX, BioLegend Cat# 101320), and left on ice 

for 5 minutes. 25 µL of a 2x cell surface staining antibody cocktail was added directly on 

top of the cells (final FC block 1:100, 1x Ab concentration) and stained on ice for 30 

minutes. For intracellular staining, the cells were then washed with FACS buffer, 
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permeabilized and stained for intracellular targets according to manufacturer’s protocol 

(eBioscience FOXP3 Transcription Factor Staining Buffer Set, Cat# 00-5523-00), then 

resuspended in FACS buffer before analyzing on either a BD Fortessa or Cytek Aurora 

flow cytometer. Data was analyzed using FlowJo software.  

H&E Histology 
Liver, spleen, and bone marrow snips were fixed and cut into paraffin blocks for H&E 

staining. The slides were then scanned using an Aperio AT2 scanner and analyzed with 

ImageScope.  

Long-term culture of AML mouse-derived bone marrow cells and Inhibitor Library 
Screen 
Bone marrow aspirates from three AML mice were combined, isolated, and cultured in 

RPMI containing 20% fetal bovine serum (FBS), streptomycin/penicillin, 50 µM 2-

mercaptoethanol (RPMI-20), and supplemented with murine SCF (10 ng/ml) and IL-3 (10 

ng/ml) (Peprotech or BioLegend). The cells were serially passaged for ~1 month. 

Inhibitor library screening to evaluate drug sensitivity was performed as previously 

described(20). Briefly, cultured AML mouse-derived cells were counted and seeded into 

four 384-well plates at a concentration of 2000 cells/well. The cells were then subjected 

to titrations of 188 unique small-molecule inhibitors in culture for 72 hours. MTS reagent 

(CellTiter96 AQueous One; Promega) was added and the optical density was read at 

490 nm to assess viability. 

Mouse ex vivo proliferation assays 
96-well round-bottom plates were coated with either 2.5 µg/mL anti-CD3 (Biolegend, 

clone 145-2C11,Cat# 100359) or HIgG (Biolegend, clone HTK888, Cat#400959), at 4o C 

overnight, then washed with PBS. Splenocytes were harvested from AML or WT mice 

and stained with 2 µM CFSE (Life Technologies, Thermo Fisher) at 5x106/mL at 37o C in 

the dark. After 15 minutes, the CFSE was quenched with 10 mL calf serum and washed 

with PBS. Cells were then plated at 5x105/well in RPMI with 10% FBS with BME 
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supplementation and penicillin/streptomycin (RPMI-10). After a 72-hour incubation at 37o 

C the cells were stained for flow cytometric analysis with antibodies listed below and 

analyzed as previously described. Anti-PD1 (Clone RMP1-14) and RIgG (2A3) were 

purchased from BioXCell. JQ1 was purchased from Cayman Chemical (#11187). 

Marker Clone Vendor 
Tbet 4B10 BioLegend 

LAG-3 C9B7W BioLegend 
TIM3 RMT3-23 BioLegend 
CD44 IM7 BioLegend 

CD62L MEL-14 BioLegend 
PD-L1 10F.9G2 BioLegend 
CD11b M1/70 BioLegend 
CD8a 53-6.7 BioLegend 
GR1 RB6-8C5 BioLegend 
PD-1 29F.1A12 BioLegend 
BATF S39-1060 BioLegend 
CD34 HM34 BioLegend 
CD3e 400A2 BioLegend 
TCF1 C63D9 Cell Signaling Technologies 
CD4 GK1.5 BioLegend 

FOXP3 FJK-16S BioLegend 
 

Human ex vivo proliferation assays 
Bone marrow aspirates and peripheral blood samples were separated by Ficoll density 

gradient centrifugation. All experiments were performed using freshly isolated cells. Cells 

were labeled with CellTrace Violet (CTV, ThermoFisher) and cultured in 96-well plates 

coated with 1µg/ml anti-CD3 (BioLegend, Clone UCHT1) or control mIgG (BioLegend, 

Clone MOPC-21). Groups of wells were then treated with either 10µg/ml control mIgG, 

10µg/ml anti-PD-1 (EH12.2H7), 60nM JQ1, or 60nM JQ1 + 10µg/ml anti-PD-1. After 5 

days, cells were stained for flow cytometry. Viability was determined by Zombie Aqua 

staining and doublets were gated out of analysis by FSC-A vs FSC-H. Flow cytometry 

data was acquired on a BD LSRFortessa or Cytek Aurora and analyzed using FlowJo v10 

software.  

Marker Clone Vendor 
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CD19 HIB19 BioLegend 
CD45 HI30 BioLegend 
CD8 RPA-T8 BioLegend 

CTLA4 BNI3 BioLegend 
PDL1 29E.2A3 BioLegend 
CD33 WM53 BioLegend 
CD4 RPA-T4 BioLegend 
PDL2 24F.10C12 BioLegend 
CD56 HCD56 BioLegend 
TIGIT MBSA43 ThermoFisher 
TIM3 7D3 BD 
PD1 EH12.2H7 BioLegend 
CD3 HIT3a BioLegend 

 

BETi + anti-PD1 treatment in vivo 
Age range of AML mice used in in vivo experiments was 25 to 54 weeks. WT and AML 

mice were given seven doses of 8 mg/kg RIgG, 50 mg/kg JQ1, 200 8 mg/kg anti-PD1 or 

50 mg/kg JQ1 + 8 mg/kg anti-PD1 via i.p injection over two weeks (3 times per week, 

harvesting 1 day after 7th/final injection). For S3-ATAC daily 50mg/kg JQ1 or 10% 

cyclodextrin for 5 days was given. Drug solutions were prepared in a solvent of 10% 

cyclodextrin in PBS from a stock solution of JQ1 (50 mg/mL) in DMSO, followed by 

sonication/heat bath to dissolve the JQ1. Assessment of tumor burden in the blood, as 

determined by WBC measurements from Hemavet (950FS, Drew Scientific), was 

monitored weekly pre-, mid-, and post-treatment. At endpoint, single cell suspensions of 

bone marrow, blood, and spleen tissues were stained for flow staining as previously 

described.  

Evaluation of CD8+ T cell transcripts via Nanostring 
AML mice were given 7 doses of vehicle (10% cyclodextrin) n = 5 or 50 mg/kg JQ1, n = 

5, via i.p injection over two weeks (3 times per week, harvesting 1 day after 7th/final 

injection) as previously. CD8+ T cells were isolated by magnetic bead isolation 

(Biolegend #480136) and RNA extracted according to manufacturer’s protocol (PureLink 
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RNA kit, ThermoFisher). Samples were hybridized and loaded onto the Nanostring 

Chipset according to manufacturer’s instructions (Nanostring Panel 

NS_MM_CANCERIMM_C3400) and analyzed using the nSOLVER4.0 tool.  

S3-ATAC-seq 
AML mouse CD8+ T cells were enriched with one round of mojosort magnetic bead sort 

as described previously. Cells were then prepared as described in Mulqueen et al. 

2021(210) before sequencing. Data was analyzed using the ArchR package 

(https://www.archrproject.com/index.html)  

Chapter 4 
 

Functional Immune Landscape of AML 

Abstract 

The implementation of small-molecule and immunotherapies in Acute Myeloid Leukemia 

(AML) has been met with many challenges due to widespread genetic and epigenetic 

variability amongst patients. Many mechanisms of response to therapies have been 

reported which are driven by underlying genetic and non-genetic mechanisms. There are 

many potential mechanisms by which immune cells can influence small-molecule or 

immunotherapy responses but is an area still largely understudied. Here we utilized the 

xCell webtool to perform cell type enrichment analysis from over 600 AML patient bone 

marrow and peripheral blood samples deposited in the Beat AML biorepository to 

describe the functional immune landscape. We identify multiple cell types which 

significantly correlate with mutational statuses, drug responses, differentiation state, 

clinical correlates, and ex vivo immunotherapy responses. Additionally, we generated a 

signature of terminally exhausted T cells (Tex) and identified monocytes/monocytic AMLs 

as strongly correlating with increased proportions of these immunosuppressive T cells. 

https://www.archrproject.com/index.html
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Our work, which is accessible through the Beat AML data viewer (Vizome), can be 

leveraged to investigate potential contributions of different immune cells on many facets 

of the biology of AML. 

Introduction 

AML is a devastating blood cancer with an average 5 year survival of approximately 

29%(22) and is characterized by an uncontrolled expansion of abnormal myeloid-lineage 

cells commonly referred to as “blasts”. In the United States for the year 2020 there were 

60,530 new cases of leukemia of which AML encompassed roughly 1/3 (19,940), but 

disproportionately accounted for nearly half of the deaths (11,180 of 23,100 all leukemia) 

(SEER). AML is an extremely genetically heterogeneous cancer, with the most common 

mutations, FLT3-ITD, NPM1, and DNMT3a, only encompassing approximately ~30% of 

all AML patients(20). While targeted therapy discoveries have expanded greatly in the 

past decade, there are still many confounding variables which dampen responses in 

patients. Understanding these underlying variables affecting drug responses are critical 

to achieving durable remissions by treating patients with tailor-made regimens.  

As a blood cancer, AML cells are uniquely situated to interact with a plethora of immune 

cells either in the bone marrow or in the periphery. Many have reported on a number of 

different mechanisms by which AML cells interact with immune cells to disrupt 

homeostasis via secretion of and/or increased responsiveness to pro-inflammatory 

cytokines(222-224), promotion of T cell exhaustion(195,208,225), and more. Further, 

groups have begun investigating the connection between certain somatic mutations and 

expansion of immunosuppressive cell types, such as TP53 mutations increasing 

Tregs(226) and DNMT3a mutations attenuating TH1 macrophage polarization(227). 

However, these studies are limited by small patient cohorts or restricted to murine 

models. This prompted us to describe the functional immune landscape of AML via 
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deconvolution of bulk RNA-seq from ~600 AML patient samples and mapping to a 

myriad of clinical annotations and drug responses.   

Results 

Immune landscape of AML  
To assess the immune landscape of AML we deconvoluted bulk RNA-seq data using the 

xCell webtool(228) in 600 AML patients within the Beat AML registry and annotated 

multiple clinical correlates (Figure 34a, 35a). We found significant differences in immune 

cell repertoire based on specimen type -- bone marrow aspirates or peripheral blood. As 

expected, we found bone marrow aspirate samples had significantly decreased 

proportions of lymphoid populations as compared to the peripheral blood samples 

(Figure 35b-e). We validated the accuracy of the xCell proportion estimates by 

leveraging available clinical flow data, and found accurate predictions for all cell types 

with corresponding clinical flow annotations (Figure 34b-e).  
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Figure 34 – a.) Heatmap representing log2 normalized immune cell proportion estimations calculated by 
xCell for 309 AML patient sample peripheral blood aspirates. Cell types are grouped by Euclidean distance 
and patient samples by correlation. Where possible, Relapse vs De novo status, ELN2017, and Specific 
Diagnosis denoted on left axis. b-e.) Comparison of real cell type proportions as determined by clinical flow 
cytometry at specimen acquisition vs xCell estimations for b.) monocytes, c.) neutrophils, d.) eosinophils, 
and e.) CD8+ T cells vs lymphocytes. Significance determined by spearman correlation. Solid black line 
represents the linear line of best fit and the dotted lines on either side represent the 95% clearance.  
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Figure 35 – a.) Heatmap representing log2 normalized immune cell proportion estimations calculated by 
xCell for 362 AML patient sample bone marrow aspirates. b-e.) Comparisons of the xCell determined cell 
type proportions between peripheral blood and bone marrow aspirates against b.) CD8+ T cells, c.) CD4+ T 
cells, d.) Tregs, and e.) B cells. Significance determined by Mann-Whitney T test.  
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To investigate potential connections with patient features, we performed hierarchical 

clustering of patients and cell types identified 2 clusters of AML patients with significantly 

increased proportions of T cell subtypes of multiple lineages (Figure 36a). Further 

characterization of the clinical and mutational background of these patients (clusters 5 

and 8) found that these were enriched in de novo or transformed AMLs and absent in 

relapsed samples (Figure 36b) and had increased IDH2, RUNX1, and TP53 mutations 

(Figure 36c). Interestingly cluster 11, which clusters with group 5 and 8, also has strong 

T cell signatures but almost exclusively in CD8 lineages and is characterized by 

significantly enriched for DNMT3a mutations. Further, cluster 9, which had the highest 

proportion of neutrophils and eosinophils were significantly enriched in transformed 

AMLs and almost exclusively TP53 mutated. Finally, we looked at WBC count at 

specimen acquisition between the different clusters and found that T cell high clusters 5, 

8, and 11 and significantly decreased WBC counts (Figure 36d). 
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Figure 36 – a.) Peripheral blood cell type proportions calculated in Fig 30a were clustered into 12 groups 
using K means. Right axis denotes cluster ID and the number of patient samples which make up the cluster. 
b.) Breakdown of disease status (De novo, relapsed, or transformed) vs. cluster ID. Patient sample counts 
were normalized to a respective percent. c.)  Relative frequency of mutations vs cohort frequency of 
mutations for each cluster. Heatmap denotes intensity of the difference (Blue = increased frequency in 
cluster, white = no change, red = decreased frequency relative to entire cohort). d.) White blood cell counts 
at specimen acquisition for each sample vs cluster ID.  
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Immune cell co-occurrence identifies leukemic differentiation state as potential 
marker of immune activation 
We next asked which cell types co-occurred together most frequently to investigate any 

potential contributing cell types to immune suppressive regulatory T cells (Tregs), which 

have been shown to be correlated with a worse prognosis in AML(193,208). We 

calculated spearman correlation matrices for all cell types in AML patient peripheral 

blood (Figure 37a) and bone marrow (Figure 37b) specimens. As expected, cell types 

from similar lineages (e.g central memory CD8+ T cells and effector CD8+ T cells) 

correlated very highly. Interestingly, we observed significant positive correlations 

between Tregs and basophils or monocytes but significant negative correlations 

between multiple progenitor cell types (CMP, GMP, HSC) in both bone marrow and 

peripheral blood specimens (Figure 37c). Next, we correlated patient outcomes by cell 

type proportions, stratified by specimen type, to ask whether any cell types associated 

with worse survival. We found significant differences in cell types which correlated with 

survival by specimen type. We find that Treg signatures significantly correlate with worse 

survival in bone marrow aspirates whereas TH2 T cell and macrophage signatures 

correlate with worse survival in peripheral blood specimens (Figure 37d, e).  
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Figure 37 – a-b.) Spearman correlation matrices were generated between all cell type estimations 
determined by xCell from a.) Peripheral blood and b.) Bone marrow aspirates. Color scaling denotes the 
magnitude of significance with red indicating that the cell type pair very negatively associate whereas blue 
indicates very strong positive associations. Significance of the spearman correlations is denoted in each 
square with asterisks 
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Immune cell signatures predictive of small-molecule and immunotherapy 
responses 
We next determined cell types correlations with small-molecule responses ex vivo in 

AML patient samples. We restricted correlations to only include inhibitors with greater 

than 20 unique patient responses. This cutoff yielded 314 unique inhibitor monotherapy 

or combination therapies (Figure 38a). We and others previously described BETi and 

venetoclax or palbociclib as having opposing responses in monocytic AMLs, whereby 

BETi sensitivity is highest in monocytic AMLs(229) whereas venetoclax(142,143) and 

palbociclib(229) are most sensitive in undifferentiated AMLs. We were able to again find 

these patterns of response as both venetoclax and palbociclib positively correlated (ie 

had the highest AUC and was more resistant) with monocytes whereas the BETi OTX-

015 strongly negatively correlated with monocytes, thus validating this approach. We 

identified many novel correlations between inhibitor responses and different cell types. 

Here, we can focus on responses tethered to a single cell type. As proof of principle, we 

focused on inhibitors which are more efficacious in samples with high proportions of 

Tregs. The top three inhibitors with increased effectiveness in Treg high samples– 

NVPAEW-541, BMS-754807, and metformin, target insulin signaling pathways via 

inhibition or downregulation of the IGF-1 receptor (Figure 38b).  Several studies have 

demonstrated that activation of IGF-1R induces Tregs(230) and that insulin resistance 

correlates with decreased Tregs(231). Our in silico data suggests that this is a targetable 

axis in AML patients and that its enhanced efficacy may be driven by targeting Tregs. 

Additionally, we can instead focus on the responses of a single drug globally. In this 

case, we focused on the FDA approved hypomethylating agent (HMA) azacytidine 

(Figure 38c). Here we find that azayctidine resistance correlates with increased 

proportions of adipocytes, monocytes, and neutrophils whereas Th1 cells and MPP cells 

correlate with sensitivity.  
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Figure 38 – a.) Scatter plot showing all inhibitor correlations vs all cell types. Inhibitor correlations were 
calculated using ex vivo area under the curve values derived from Tyner et al. 2018 and restricted to 
inhibitors with at least 20 unique patient samples. Red triangles denote BETi OTX-015 responses and 
highlight monocyte and cDC correlations. Black triangles denote BCL2i venetoclax and highlights monocytes 
and HSCs. Blue triangles denote palbociclib correlations and highlights monocytes. Green triangles denote 
Treg correlations and highlight IGF-1Ri NVP-AEW541, BMS-754807, and metformin. b.) Focused plot of all 
inhibitor AUC correlations vs. Tregs only. c.) Focused plot of all cell types vs HMA azacytidine, highlighting 
strongly positive correlations in red and negative correlations in blue.   
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Monocyte high patient samples have decreased ex vivo responses to ICB therapy 
and higher Tex signatures 
We next asked whether any cell type signatures predicted ex vivo immune checkpoint 

response. Lamble and Kosaka et al.(195) recently evaluated the efficacy of ICB therapy 

in 49 bone marrow aspirate samples within the Beat AML database. Of those, 18 had 

dysfunctional T cells – as determined by reduced proliferative capacity and cytokine 

secretions. Of these samples with dysfunctional T cells, 9 were rescuable with ex vivo 

treatment with anti-PD1 blockade, and 6 were refractory. We first asked whether any 

xCell predicted cell types significantly differed between these two groups and found that 

monocytes were significantly higher in aPD1 refractory samples (Figure 39a). We found 

this particularly interesting as Van Galen et al.(232) had previously noted that monocytic 

AMLs had immunosuppressive features. ICB therapy is thought to specifically re-

invigorate progenitor exhausted T cells (TPEx) and retain the highest anti-tumor 

activity(100,125). Conversely, exhausted CD8 T cells (Tex), which terminally 

differentiate from TPEx, have reduced effector function and anti-tumor activity. 

Additionally, patients with higher TEx/TPex ratios are resistant to ICB therapy(233,234). 

Thus, given our previous data suggesting that monocytes/monocytic AMLs correlate with 

ex vivo anti-PD1 resistance and that anti-PD1 resistance has been linked to increased 

proportions of exhausted CD8+ T cells, we utilized Kallisto, a program for quantifying 

abundances of transcripts from bulk RNA-seq data, and generated a custom T cell 

exhaustion signature using previously deposited sequencing data(86,87,93) to 

investigate whether Tex signature correlate with higher proportions of monocytes or 

monocytic differentiation programs (Figure 39b). We next asked which cell types 

correlated with our Tex score, excluding CD8+ T cells, and indeed found that monocytes 

significantly positively correlated whereas undifferentiated myeloid cells such as HSCs, 

GMPs, and CMPS negatively correlated (Figure 39c).  
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Figure 39 – a.) Heatmap which displays the aggregate cell proportion estimate vs. aPD1 ex vivo response 
for samples described by Lamble and Kosaka et al. 2019. Significance was calculated for all cell types via 2-
way anova (n = 9 PD-1 Responder, n = 6 PD-1 refractory). b.) Distribution of Tex scores from peripheral 
blood samples within the Beat AML database. Briefly, the Tex score was generated by creating a signature 
based on previous sequencing data on exhausted T cells from Jadhav et al. and Man et al. c.) Volcano plot 
showing the spearman correlations between the generated Tex score and all other cell types from xCell.  
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Discussion 

The contributions of non-leukemia cells towards drug responses and survival is an 

actively growing field but has many remaining questions. Here we attempt to address 

and describe the immune microenvironment of AML to better understand underlying 

mechanisms driven by the leukemia microenvironment. Utilizing in silico approaches we 

describe the microenvironment of ~600 AML patient bone marrow and peripheral blood 

aspirates. We validated these approaches using available clinical flow cytometry where 

available and found that, on average, xCell deconvolution accurately predicted cell type 

proportion. Our data identified TP53 and IDH2 mutated AMLs as potentially being more 

immunologically active with dramatically increased proportions of naïve and effector 

CD8+ T cells. Additionally, we find that these clusters of CD8+ T cell high patients are 

only present in de novo and transformed AMLs and lost during relapse which warrants 

further investigation. We further correlated 314 small-molecule inhibitors with cell type 

proportions and identified numerous novel interactions. As proof of principle, we focused 

on responses potentially tethered to Tregs and find that insulin growth factor receptor 

signaling as a potentially rationale therapeutic strategy in patients with high Tregs. 

Additionally, we were able to validate these approaches by investigating correlations 

between BETi, venetoclax, and palbociclib with monocytes, whose responses have been 

described by us and others as tethered to monocytic differentiation(142,143,229).  

Finally, we described the potential connection between monocytes/monocytic 

differentiated AMLs in predicting ex vivo ICB response. We show that monocyte 

signatures are significantly increased in AML samples with dysfunctional T cells that are 

refractory to ICB therapy. We further test this connection by generating a signature of 

exhausted T cells, which are known to drive ICB therapy resistance, and find that they 

indeed correlate significantly with monocyte signatures. Further studies will focus on 
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biological validation of novel inhibitor cell type correlations, as well as incorporation of 

deposited CyTOF data from Lamble and Kosaka et al. to further validate the accuracy of 

xCell predictions.    

Methods 

Deconvolution of RNA-seq data 
Cell type deconvolution was performed using the “raw enrichment analyses” from xCell 

webtool on previously deposited raw data(20). Inhibitor responses and other related 

patient data is publicly available in the Beat AML database (http://www.vizome.org/). 

Clinical flow calls used to compare xCell proportions were also derived from the Beat 

AML registry.  

Heatmaps 
Heatmaps were generated by log2 normalizing cell proportion estimations for 309 AML 

patient sample peripheral blood aspirates. Cell types are grouped by Euclidean distance 

and patient samples by correlation. The R package “Pheatmap” was used to generate all 

heatmaps. Clustering of cell types vs specimen or cell types vs mutations was performed 

using the kmeans method and designating 12 unique clusters.  

Correlation Matrices 
Spearman correlation matrices and associated p values were calculated using the R 

package “corrplot” and correlated all cell type proportions against each other. Matrices 

were separated based on specimen type (bone marrow or peripheral blood).  

Inhibitor Correlations with cell types 
Inhibitor-cell type correlations were generated for all inhibitors in the Beat AML database 

with at least 20 unique patient samples. Details on the drug viability assay can be found 

in Tyner et al. 2018(20). This resulted in 314 unique inhibitor monotherapies or 

combination therapies. Spearman correlations were then generated for all samples 

comparing inhibitor area’s under the curve (AUCs) vs xCell cell type proportions.  

http://www.vizome.org/
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Anti-PD1 therapy vs cell type proportions 
Ex vivo aPD1 responses were determined based on Lamble and Kosaka et al.(195), 

which identified 6 aPD1 resistant and 9 aPD1 responding samples. Significance for all 

cell types between aPD1 refractory and responder was calculated using 2-way anova 

and denoted on the corresponding heatmap.  

Terminally exhausted T cell score 
The terminally exhausted T cell score was determined using Kallisto to generate 

transcripts per million. An enrichment signature was then generated using deposited 

sequencing data from Jadhav et al.(125) and Man et al.(87) and calculated for all AML 

peripheral blood samples.  
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Chapter 5 
 

Summary and Future Directions 

Summary of BETi resistance project 

In total, I found that BET inhibitor resistance is determined by leukemic differentiation 

state wherein undifferentiated AMLs are intrinsically resistant while monocytic AMLs are 

intrinsically sensitive. This is due to increased histone acetylation at BETi target sites 

which is promoted by hematopoietic transcription factors and aryl hydrocarbon receptor 

signaling that are naturally highly expressed in more differentiated leukemias. These 

pathways both act by recruiting the histone acetylating machinery to BRD4 binding sites 

and are preferentially upregulated in monocytic AMLs. Further, I showed that BETi-

mediated inhibition of leukemic differentiation programs selects for less differentiated 

subclones which supports the notion that BETi resistance can develop as a 

consequence changed tumor maturation state.  

BRD4 dependence along the hematopoietic differentiation lineage 

One remaining question, besides the discovery of other inhibitors that may be paired 

with BETi to combat tumor maturation-driven resistance as we discovered with BCL2i 

and CDK4/6i, is whether BRD4 dependence changes during hematopoiesis. It stands to 

reason that, if the function of these hematopoietic transcription factors relies on BRD4-

mediated transcription, that BRD4 dependence increases the further differentiated the 

cell is. Understanding these basic biological mechanisms may provide further insight into 

the epigenetic changes which occur during the highly coordinated process of both 

normal and malignant myelopoiesis. Additionally, this may reveal novel therapeutic 

vulnerabilities. Testing this experimentally would be difficult as BRD4 null embryos are 
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not viable as are any BRD4 KOs during early development. However, I believe there are 

a few different approaches one could take to address this. The first that comes to mind is 

to do conditional KOs of BRD4 restricted to either the common myeloid progenitor 

(CMP) cells or hematopoietic stem cells (HSCs). The myxovirus resistance-1 (MX1)-Cre 

system is polyinosinic:polycytidylic acid (polyIC) inducible and has been well established 

in studies of clonal hematopoiesis of HSCs and other early myeloid progenitor 

cells(235), transplantation models(236), and more (lineage tracing models 

reviewed(237)). One could cross this mouse with an established BRD4flox/flox(48) and 

transplant the resulting post-polyIC induced c-kit/CD34+ HSCs into wild-type mice 

(containing a reporter of some kind – as an example the BRD4 KO could be CD45.1+ 

and the WT CD45.2+) to differentiate from transplanted cells) and evaluate 

hematopoietic differentiation skewing. To further investigate this axis, I could make 

mixed transplantation models where I isolate different MX-1Cre/BRD4flox hematopoietic 

cells (HSCs, CMPs, MPPs, monocytes, etc.) and mix with WT cells before re-implanting. 

As an example, I could sort out CMPs from WT bone marrow aspirates and re-implant 

with BRD4 KO CMPs and evaluate the impact of individual cell types of hematopoietic 

differentiation. I could also implant BRD4 KO CMPs without removing non-BRD4 KO 

CMPs which would allow me to evaluate the competitiveness of BRD4 KO cells vs WT 

cells both in the cells themselves but also generation of their differentiated progeny.  In 

this particular scenario, I would expect that deletion of BRD4 would significantly reduce 

the generation of monocytic lineages, as determined by reduced CD45.1+/CD11b+/Ly-

6c+/Ly-6g- cells relative to CD45.2+ monocytes, but have limited impact on other 

differentiated myeloid cells (basophils, eosinophils, etc.).  

A BET-ter way to target BRD4 to prevent unwanted toxicity 
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Clinically, BETi are still understudied. As of writing, only a single Phase I clinical trial is 

currently recruiting to investigate the efficacy of a new BET inhibitor, PLX51107, in 

combination with FDA approved hypomethylating agent Azacitidine. However, there are 

no criteria for selection based on specific diagnosis/differentiation state, which I show 

predicts BETi response ex vivo and in AML patients. Based on these findings, I would 

propose a more focused clinical trial which recruits patients refractory to venetoclax and 

other lines of therapy as a consequence of monocytic differentiation as candidates for 

BETi therapy. This could be easily incorporated with current immunophenotyping 

diagnostics.   

An additional avenue of exploration could be into the development of more targeted 

BETi therapies. Clinically, BETi, like many other targeted therapies, have had issues 

with side effects and overt toxicity(77,82), no doubt due to BRD4 being a required 

transcriptional regulator for many normal processes, as previously described. I do not 

believe that the PROTAC degraders will overcome unwanted toxicity as the issue at 

hand, in my mind, is inhibiting BRD4 in the right cells, not degrading (ARV-825) vs 

blocking binding (JQ1, OTX-015, CPI-0610, PLX51107). One potential approach to 

circumvent these issues would be to create an antibody drug conjugate to target specific 

monocytic leukemia cells. In figure 11, I identify numerous suitable candidate surface 

markers which mark malignant and BETi sensitive cells – such as CSF1R, VCAN, and 

LILRs. These antibody-drug conjugate approaches are actually already used in the 

treatment of certain AMLs. Gemtuzumab ozogamicin (Mylotarg) is an FDA approved 

CD33 recognizing antibody conjugated to a cytotoxic agent from the calichemicin family 

and is used in some cases of CD33+ AMLs(238-241). Conjugation of any of the blocking 

BETi (JQ1, OTX-015, CPI-0610) already described or the newer generation of BD1 vs 

BD2 specific BETi with antibodies recognizing specific monocytic AML surface markers 

may allow for lower effective doses, leading to less off-target activity. These would then 
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of course be combined with inhibitors more efficacious in undifferentiated AMLs such as 

BCL2i and CDK4/6i. These focused combinatorial approaches may be more effective in 

preventing tumor maturation escape and have increased tolerability in patients. 

Experimentally these novel inhibitors could be validated using the NSG-SGM3 mice 

(Jackson labs:  #013062), which have been established as the optimal humanized 

mouse model for AML patient xenografts due to their superior engraftment in the bone 

marrow and reduced rejection rates(242,243). To start, I would generate xenograft 

models from patient bone marrow aspirates which were determined to have high 

expression of CSF1R or VCAN by RNA-seq within the Beat AML biorepository. I would 

then compare the efficacy of the novel agents vs classical BETi at low and high doses. I 

would assess tumor burden reduction in bulk via white blood cell counts throughout 

treatment, but also evaluate the phenotype of the circulating tumor cells in the blood via 

flow cytometry. I would expect that the targeted therapies would be more efficacious at 

lower doses and have lower mortality over older generation BETi (JQ1, etc.). Another 

route one could take with this model is to create xenografts of venetoclax 

refractory/acquired resistant patients and evaluate the efficacy of BETi, VCAN or 

CSF1R-BETi conjugate, or either combined with venetoclax. I would expect that, should 

the model be successful in mimicking venetoclax resistance post-transplantation, the 

targeted BETi would be superior in rescuing venetoclax resistance. I would also expect 

that combined inhibition would more effectively eliminate both monocytic AML cells 

(VCAN/CSF1R-BETi) and primitive AMLs (venetoclax).    

Summary of T cell exhaustion project 

In a novel spontaneous GEMM mouse model of AML, I showed the pre-clinical efficacy 

of BETi in combination with anti-PD1 in reducing tumor burden and priming immune 

responses. In vivo treatment with BETi generated CD8+ T cells with a more stem-like 
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state that subsequently proliferated in response to ICB therapy. We further showed that 

AML patient samples with dysfunctional T cells were able to be rescued with ex vivo 

treatment with BETi. Further studies will seek to understand the complexities of 

mutational background on responsiveness to BETi + anti-PD1 in patient samples. We 

were able to rescue 3/5 AML patient samples, all with unique mutational backgrounds, 

who were refractory to anti-PD1 and TCR stimulation. We concluded with an analysis of 

the chromatin landscape of in vivo JQ1 treated CD8+ T cells via s3-ATAC-seq which 

preliminary analyses point towards potentially reprogramming TEx cells.  

The role of BET inhibition in T cell differentiation – Differentiation 
block or epigenetic reprogramming?  

It is unclear how these mutational backgrounds influence T cell exhaustion and 

responses to BETi therapy in the context of T cell rescue. These works also suggest a 

novel role for BRD4 in regulation of T cell differentiation in response to different types of 

antigen exposure. It is unsurprising that BRD4 acts as a co-factor to regulate T cell 

differentiation, as has also been shown to be the case of myeloid differentiation, but it is 

unclear how this potentially changes in response to chronic vs. acute antigen exposures. 

Mechanistic understanding of how this occurs may provide valuable insights into basic 

immunological responses that govern memory formation.  

One particular aspect of this proposed mechanism of BRD4 regulation of T cell 

differentiation that remains unanswered is whether BET inhibition directly reprograms 

exhausted T cells (i.e converts TEx back into functional TPEx T cells or related cell 

state) or prevents terminally differentiation from occurring (ie prevents transition from 

TPEx into TEx). It is possible that BET inhibition decreases activity of TCR-activated 

transcription factors which promote T cell exhaustion (e.g Batf, Tox, Irf4, etc.), thus 

preventing further differentiation of TPEx into TEx, and that the increased pool of TPEx T 
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cells arises entirely from new clones generated in response to ICB therapy. Alternatively, 

it is also possible that inhibition of the TCR-activated transcription factors reverses the 

exhaustion programs directly and allows for dedifferentiation of TEx back into functional 

TPEx T cells. It has been proposed recently that TEx cells are unable to be rescued, but 

these studies have largely focused on the ability of the T cells to regain function after 

serially transplanting or removing antigen, rather than attempting to reprogram the cells 

directly via epigenetic perturbation(101-103).  Additionally, recent data has also pointed 

to polyclonality even within the TPEx cell populations. Burger et al. demonstrated that 

tumors generate many neoantigens that lead to T cell activation and, via a competitive 

mechanism, the suboptimally priming antigens drive a novel TPEx subpopulation 

denoted by expression of CCR6 that is, paradoxically, refractory to immunotherapy(244). 

To address the question of whether BETi reprogram or block Tex differentiation requires 

either a model system which controls for antigen exposure and BETi treatment or 

extremely deep single-cell ATAC/RNA-seq strategies. For the former, an OT-1 system 

could be utilized. OT-1 mice are genetically engineered to generate CD8+ T cells with 

TCRs that are selective for MHC I loaded with OVA peptides(245). Recent work has 

demonstrated the ability to generate exhausted T cells in vitro using OT-1/chicken 

ovalbumin antigen (OVA) strategies(246). In this system, exhausted OT-1 T cells are 

generated by serially pulsing with SIINFEKL (an OVA peptide). Thus I could potentially 

ask whether BETi reprogram or block differentiation (or both) by subjecting these cells to 

BETi in addition to SIINFEKL. In one condition I would add BETi at the same time as the 

first SIINFEKL stimulation. If this condition does not generate exhausted T cells than that 

would suggest that BETi block differentiation. Additionally, I would have a condition 

where I add BETi after the T cells have been exhausted via SIINFEKL stimulation. If 

these cells have less exhausted T cells after culturing than a control with SIINFEKL 

stimulation but no BETi, then that would suggest that BETi reprogram exhausted T cells. 
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Another, potentially more complicated, method would be to utilize the chronic LCMV 

models (Clone 13 or Docile strain) previously discussed(86,87) which generate 

exhausted T cells. In the same line of thinking as for the OT-1/OVA experiment I could 

take mice and treat with BETi before LCMV infection (blocking differentiation) and after 

LCMV induced exhaustion (reprogramming). The timelines are very well established as 

to when exhaustion should begin but, given my data demonstrating how myeloid cell 

differentiation is affected by BETi, I would optimally validate in vitro first. The 

aforementioned sequencing strategy I attempted and described the initial results of in 

chapter 3 but have not been able to adequately answer this question thus far but may 

with more thorough analyses. In this case I would expect to see a subpopulation of cells 

which originates from the TEx population and is re-expressing stem programs such as 

TCF1, EOMES, etc. My early analyses seems to point towards reprogramming Tex 

directly as evidenced by the increase in Tcf7 accessibility specifically in Tex cells but 

more analyses need to be completed before I am confident in saying it is reprogramming 

and not blocking (or both). However, I do not believe this question needs to be answered 

to be convinced of the clinical potential of combining BETi and anti-PD1 therapies in 

AML. 

It is clear that there are many facets of the proposed mechanism of BETi-mediated 

rescue of T cell exhaustion that need to be further investigated, but my data provides a 

starting point to begin to ask these questions and provides rationale for investigating the 

potential of other epigenetic modifying small-molecule inhibitors in rescuing ICB therapy 

refractoriness.   

Summary of Functional Immune Landscape Project 

This project is still in development, and is designed to be a hypothesis generating tool to 

be incorporated into the Beat AML database for public use. The goal of this project was 
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to utilize computational tools which can deconvolute bulk RNA-seq data to estimate 

cellular composition. Towards this end, we utilized the xCell webtool to estimate cellular 

proportions of bone marrow and peripheral blood samples within the Beat AML registry 

and demonstrated how they can be utilized to understand novel AML biologies. First, we 

described cellular compositions differentiated by specimen type and found that both 

accurately called cell types compared to available flow phenotyping. Additionally, we 

identified clusters of patients which had higher proportions of T cells, which may be 

associated with TP53 and IDH2 mutations. Additionally, these T cell high patients were 

exclusively in de novo and transformed samples. We further identified cell types which 

frequently co-occurred together and found that Tregs associate with monocytes and B 

cells and negatively associate with progenitor cells (CMP, GMP, etc.). We called cell 

types vs ex vivo drug responses and were able to validate previous works by me and 

others with monocytes correlating negatively (i.e higher monocytes meant higer 

effectiveness) with BETi and positively with Venetoclax and palbociclib (i.e higher 

monocytes meant decreased effectiveness). As a proof of principle, we utilized this 

approach to identify novel inhibitors with enhanced sensitivity in samples with higher 

proportions of Tregs and found multiple inhibitors of insulin growth factor signaling as a 

potential targetable axis. Finally, we utilized these same approaches to identify potential 

cellular contributions to ex vivo anti-PD1 therapy resistance based on data generated by 

Lamble and Kosaka et al.(195) and found that monocytes significantly correlated with 

aPD1 resistance.  

Validation of in silico findings 

The future directions of this project are clear: Biological validation. While the ultimate 

goal of this project is to incorporate the data into the publicly available Beat AML 

database (http://www.vizome.org/) as an exploratory tool, additional biological validation 



P a g e  | 116 
 

is needed. In my initial analyses I was able to recapitulate my findings with monocytes 

correlating with BETi response but what remains is validation of any lymphoid cell type 

correlation. Lymphoid cells make up a much smaller fraction of the bone marrow and 

peripheral blood biopsies and are thus subject to much higher noise in terms of making 

proportion estimations. Thus, I would propose validation of the identified Treg biologies. 

One potential route would be to validate the responses of the IGF-1R inhibitors in 

confirmed Treg high samples. The inferences I am hoping these data can make are in 

the identification of inhibitors which may directly influence non-tumor cells, such as my 

work describing BETi in T cell differentiation. The inference based on these Treg data is 

that IGF-1R inhibitors may act directly on this cell type in addition to tumor cells. Thus, 

one pilot study I propose is to culture bone marrow/peripheral blood aspirate samples 

with and without the IGF-1R inhibitors and evaluate the responses in both tumor and 

Tregs via flow cytometry. Tregs are known to influence blast behavior via many 

mechanisms, such as cytokine secretions(247,248), so I would additionally evaluate the 

cytokines secreted via LegendPlex assays, in these culture experiments. For example, I 

could focus on known tumor-supportive Treg cytokines such as TNFa and IL-10 and 

assess whether IGF-1R inhibitors increased or decreased secretion. I would predict that 

IGF-1R inhibitors would decrease production of IL-10 and TNFa based on previous 

works discussed in chapter 4.  
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