

Research Week 2022

Early Phospho-Signaling Shifts in Smart Buffer[™]-Preserved Peripheral Blood Specimens in Response to FLT3 Inhibitor Therapy

Matthew T. Newman, Kristina Baker, Sunil K. Joshi, Janet Pittsenbarger, Elie Traer, Evan F. Lind, Brian J. Druker newmmat@ohsu.edu School of Medicine, Oregon Health & Science University, Portland, OR

Keywords

AML, BeatAML, gilteritinib, CyTOF, phospho-signaling

Abstract

Introduction

Identification of druggable mutations in Acute Myeloid Leukemia (AML), such as FLT3-ITD, has led to the development of targeted therapies capable of out-performing cytotoxic chemotherapy. Despite early survival benefits, most patients with FLT3-ITD AML on trial with the FLT3 inhibitor (FLT3i) gilteritinib still develop treatment resistance. Critical readout of response to FLT3i as measured by phospho-signaling is missing for the majority of these patients. Here, we validated an innovative approach to obtaining these signatures by leveraging the Smart Buffer[™] preservation system for peripheral blood (PB) specimens integrated with phospho-mass cytometry as part of the ongoing BeatAML Trial.

Methods

PB isolates were collected at five sites and preserved in Smart BufferTM, an intracellular signaling stabilizer, prior to freezing and shipping to OHSU. Matched Day 1 and Day 4 samples (N=14) from seven patients recently initiated on gilteritinib were thawed and barcoded with palladium isotopes prior to staining with the Maxpar Human AML Phenotyping Panel (Fluidigm) and phospho-specific antibodies to targets in the FLT3 signaling cascade (pERK, pSTAT5, pAKT, pS6, and pFLT3). Samples were run on a Helios mass cytometer with downstream debarcoding, compensation, and data visualization achieved with the CATALYST R package.

Results

Evolution in aggregated phospho-signaling profiles occurred in all paired isolates. FlowSOM clustering and tSNE analysis showed that the highest levels of phospho-signaling were captured within CD45^{low}CD34^{high} blast populations. Median expression of each phospho-protein was heterogeneous at a baseline in patients, but largely reflected decreases in Day 4 profiles relative to Day 1. Statistically significant decreases in blast signaling were found in pSTAT5, pFLT3, and pERK.

Conclusions

In paired unstimulated PB samples stabilized in Smart BufferTM, detectable changes in phospho-signaling can be obtained through mass cytometry. These metrics may offer an easily obtainable orthogonal readout of treatment responses to targeted therapies such as FLT3i in patients with AML.