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Abstract 

Unobtrusive Detection of Breathing using Load Cells and the 

Application to Sleep Apnea Detection 

 

Zachary T. Beattie 

 

Department of Biomedical Engineering 

School of Medicine 

Oregon Health & Science University 

 

September 2013 

Thesis Advisor: Tamara L. Hayes, Ph.D. 

 

The Institute of Medicine reports that “50 to 70 million Americans chronically 

suffer from a disorder of sleep and wakefulness.”  Many of these individuals have sleep 

apnea which is thought to occur in 24% of middle aged men and 9% of middle aged 

women.  It has been estimated that approximately 80% of individuals with moderate to 

severe sleep apnea syndrome have not been diagnosed.  Unfortunately, even those 

suspected to have this sleep disorder can expect on average to wait several months for 

diagnosis and treatment due to the inadequate prevalence of overnight polysomnography 

(PSG).   

Polysomnography is the gold standard for detecting sleep disorders.  However, an 

overnight PSG is expensive and obtrusive.  Patients admitted for PSG are wired up to 

several devices.  Typically, electrodes are placed on both legs, on the chest, by the eyes, 

on the chin, and on the scalp.  Respiratory induced plethysmography belts are placed 

around the chest and abdomen.  A pulse oximeter is attached to one finger.  A nasal 

pressure cannula and a thermistor are inserted into the nose with the tubing wrapped 

behind the ears and taped to the face in order to stay in place.  Then the patient, who is 
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already having a difficult time sleeping, is asked to sleep normally in a strange bed while 

being recorded with both video and audio. 

I am interested in being able to unobtrusively monitor sleep, either during PSG or 

in patients’ own homes outside of PSG.  Over the years, several devices have been 

developed to ‘unobtrusively’ detect respiration while an individual is lying in bed.  

However, the majority of these devices are either placed on top of or just under the 

mattress.  I theorize that these devices would either disrupt the sleep of the patient or be 

disrupted by the patient during routine bed sheet changes.  Load cells, however, can be 

placed completely under the bed in a manner that they would rarely, if ever, come in 

contact with the patient.   

In this dissertation, I report the work that I have done to characterize the 

frequency of response and damping characteristics of the bed/mattress system for several 

different mattress types.  I also describe a novel method for detecting and monitoring the 

breathing of an individual lying on the bed using a center of pressure signal derived from 

the load cell data.  Finally, I present results showing the ability of the load cell system to 

be used in the detection and diagnosis of sleep apnea.  The load cell system has potential 

to replace obtrusive breathing sensors in the sleep lab and to be used as a prescreening 

tool for patients suspected of having sleep apnea.  This technology is currently patent 

pending.      
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Chapter 1: Introduction 

Problem Statement:  

Sleep apnea 

Sleep is a vital part of living.  It consumes, ideally, about one third of everyone’s 

life.  While many are able to enjoy the restorative effects of a ‘good night sleep’, there 

are a significant number of others who, plagued by various sleep disorders, cannot.  The 

Institute of Medicine reports that 50 to 70 million Americans suffer from what they refer 

to as a “disorder of sleep and wakefulness” [1].  One of the most common sleep disorders 

is sleep apnea.  Sleep apnea is defined as the cessation of breathing during sleep and is 

categorized as ‘obstructive’ when coupled with upper airway obstruction or as ‘central’ 

when the pause in breathing coincides with a lack of respiratory effort [2].  When 

breathing during sleep is only attenuated but associated with a decrease in blood-oxygen 

saturation, the respiratory event is considered a hypopnea [3]. 

Sleep apnea is prevalent, associated with several serious medical conditions, and 

severely under-diagnosed.  Sleep apnea is commonly quantified by the number of apnea 

and hypopnea events that occur per hour otherwise known as the apnea-hypopnea index 

(AHI).  It is estimated that 9% of middle aged women and 24% of middle aged men have 

an AHI of 5 or more and that 2% of middle aged women and 4% of middle aged men 

have sleep apnea syndrome (SAS) defined as an AHI of 5 or more associated with 
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daytime hypersomnolence (i.e. sleepiness) [4].  The overall impact from the prevalence 

of sleep apnea is compounded by the various health issues that it has been linked to.  

After a thorough investigation of the literature, Redline et al. concluded that sleep apnea 

is associated with hypertension, myocardial dysfunction, coronary artery disease, and 

cardiac arrhythmias [5].  They also pointed out evidence for possible relationships 

between sleep apnea and a patient’s neurocognitive condition, health related quality of 

life, and mood [5].  Despite the widespread nature of sleep apnea and its negative effects 

on an individual’s health and life, sleep apnea is under-diagnosed.  It has been estimated 

that 80% of middle aged men and women with moderate to severe SAS (AHI ≥ 15 with 

daytime hypersomnolence) have not been diagnosed [6].  All of these results indicate that 

there is a large population of underserved individuals with a serious health condition. 

Clinical assessment of sleep apnea 

The accepted gold standard for clinically detecting and diagnosing sleep apnea is 

polysomnography (PSG).  During PSG several electrodes and wires are attached to the 

patient.  Patient brainwaves are monitored using 12 electrodes placed on the head.  Eye, 

chin, and leg movements are tracked using electrodes attached to the patient’s face and 

legs.  A nasal cannula placed in each nostril and two respiratory inductance 

plethysmography (RIP) belts placed around the chest and abdomen are utilized to observe 

patient respiration.  Finally, blood-oxygen saturation is obtained using a pulse oximeter 

attached to the finger.  During an overnight PSG sleep test, a patient who is already 

having difficulties with their sleep is ‘wired up’ to all these different devices and then 

asked to sleep normally in a strange bed in a strange environment while being recorded 
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with both video and audio.  Patients typically sleep differently their first night in the sleep 

lab [7, 8] likely due in some degree to the sensors that the patient is required to wear [9].  

Along with being obtrusive and inconvenient, PSG is also expensive and is not 

always readily available.  Flemons et al. estimate that the number of PSGs performed in 

the United States each year is too low to sufficiently address sleep apnea [10].  They also 

found that in the United States the wait time for an individual with sleep apnea to be 

diagnosed and treated with continuous positive airway pressure (CPAP) can range from 2 

to 10 months.  The prevalence of SAS and limited access to PSG necessitates 

supplemental methods for monitoring patients with suspected sleep apnea.   

Alternative methods of assessing respiration and sleep apnea 

To date many methods have been implemented and several devices have been 

developed in an attempt to unobtrusively monitor respiration.  The design and 

methodology of these devices have been highly variable.  Sensors have been developed to 

be placed under the patient’s pillow [11-16].  Various designs involve monitoring the air 

pressure in an air mattress or an air bladder [17-22].  Conductive textiles have been 

placed between the bed sheet and the mattress [23].  Pressure sensors have been 

integrated into sheets that go on the bed [24, 25].  A couple of groups have placed arrays 

of several sensors under the mattress to detect the pressure applied to the mattress at 

various locations [26, 27].  A foam pad sandwiched between two plastic plates that 

utilizes an array of optical sensors to detect pressure at several points has been positioned 

between the bed sheet and mattress [28, 29].  Piezoelectric sensors [30-33] and electret 

foils [34] have been utilized by placing these sensors under the subject’s back either just 

below the bed sheet or beneath a small pad placed on the mattress.   Video [35, 36] and 
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radar [37, 38] have been placed above the bed to track rhythmic movements of the torso 

due to respiration.  The static charge sensitive bed (SCSB), which measures potential 

differences between two metal plates separated by an insulator and is placed under the 

mattress, has also been applied to detect respiration [39].   

The SCSB has obtained clinical use in Scandinavia with well over a hundred 

papers reporting its use and effectiveness.  However, the SCSB is typically used under a 

foam mattress and may not work effectively under typical US mattresses.  This would 

necessitate a foam mattress being added to the top of the subject’s bed which would alter 

their normal sleeping arrangement.  The SCSB placed under a foam mattress in this 

manner also has the risk of being moved or altered by the subject during their normal 

bedding changing procedures.  This complication would also be present even if the SCSB 

could be placed under the subject’s normal mattress.   

The validation of the remaining devices’ ability to detect respiration has 

significantly varied in depth and quality, and only a few of the devices have been 

meticulously tested and validated.  However, all of them have at least one shortcoming.  

Any kind of video [35, 36] in the bedroom would be considered obtrusive and 

unacceptable by many, and some subjects may also object to attaching a radar device [37, 

38] to their ceiling or hanging it over their bed in plain view.  It is also likely that 

anything such as bedding that blocks the radio waves from the radar device or the view of 

the video recorder would affect the use of these devices.  The majority of the other 

devices must be placed between the subject and their mattress [11-19, 21, 23-25, 28-34] 

which interferes with the normal sleeping arrangement of the subject, runs the risk of the 

device setup being altered by the subject, and are dependent on the patient lying correctly 
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over the sensors.  The remaining devices that are placed under the mattress [20, 22, 26, 

27] also run the risk of subject interference during routine bedding changes. 

Unobtrusive Monitoring of Sleep with Load Cells 

In recent years several groups including our own lab have begun investigating the 

use of pressure sensitive load cells placed under the bed to monitor various aspects of 

sleep.  Load cells can be placed under a subject’s bed where they will not come in contact 

with the subject or affect the subject’s normal sleep or living routines. They are also very 

versatile in their applications.  Load cells have been used to monitor sleep hygiene [40], 

detect lying position [41], and distinguish between when an individual is in-bed or out-of-

bed [42].  They have also been implemented to detect [43-46] and classify movement 

[47-49].  Our lab and other groups have shown that load cells can classify a subject’s 

sleep and wake state [50-52] and possibly detect slow-wave sleep [53].  Load cells are 

also sensitive enough to detect heart rate [44, 52-57] and respiration [44, 58].  However, a 

load cell system including algorithms that can unobtrusively detect sleep apnea has not 

been developed.  

Contributions to Unobtrusive Breathing and Sleep Apnea Detection  

I have developed a system where load cells are placed under the supports of the 

bed in order to detect the breathing of an individual lying on the bed.  While developing 

this system, I used the load cells to characterize the frequency and damping response of 

the bed/mattress system which has never been done.  In this dissertation I will introduce a 

new method for using center of pressure (CoP) calculations from the load cell data to 

detect and monitor the breathing of an individual lying on the bed.  I am the first to 
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demonstrate the utility of using load cells placed under the supports of a bed in order to 

detect sleep apnea.  I have shown that load cells are a valid replacement for traditional 

obtrusive breathing sensors when an overnight PSG sleep study is visually scored by a 

registered polysomnography technologist for sleep apnea.  I have also developed a 

system to automatically detect sleep apnea only using overnight load cell signals.  This is 

the first time that load cells have been utilized in this manner, the developed techniques 

are patent pending, and my approach and algorithms could also be applicable to other 

types of unobtrusive sensors for detecting breathing signals. 

This dissertation outlines the development of this load cell system and highlights 

my contributions to the unobtrusive breathing and sleep apnea detection field.  Chapter 2 

describes the development and calibration of the load cell system.  Chapter 3 presents a 

mathematical discussion about the theory behind how the load cells can be used to detect 

the breathing signal of an individual lying on the bed using the CoP signal.  Chapter 4 

contains the experiments and results used to characterize the bed/mattress system.  In 

chapter 5 the ability of the load cell CoP signal to accurately detect the breathing of 

individuals lying on the bed/mattress system independent of lying position and mattress 

type is demonstrated.  A detection algorithm used to detect and remove large movement 

artifacts when analyzing entire nights of load cell data is outlined in chapter 6.  Chapter 7 

is comprised of the experiments and results showing how the load cell system can be 

utilized to detect sleep apnea.  Lastly, the summary and conclusions of my dissertation 

are presented in chapter 8.   
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Chapter 2: Device Development 

Introduction 

An important part of this work was to develop a load cell system that could be 

used to collect data in the Point of Care Lab (POCL) here at Oregon Health & Science 

University (OHSU), at the sleep center, and in patients’ homes.  The load cell system can 

be divided into two parts: the electronics and the connection between the load cells and 

the bed.  

Load Cell Electronics 

Several sets of load cells were developed in order to collect data.  An initial set of 

load cells (version 1 or V1) was used to collect data at the OHSU sleep lab and initially at 

POCL.  A second set of load cells (version 2 or V2) was constructed to collect data at the 

Pacific Sleep Program (PSP) sleep lab.  Finally, four sets of load cells (version 3 or V3) 

were developed to collect additional data at POCL and in study participant’s homes.  All 

of the load cell sets are similarly designed, and the slight variations between the three 

versions are noted in the following description.  

The load cell design consists of five to seven single point load cells (AG 

100C3SH5eU, SCAIME, Annemasse, France) with 100 kg capacities.  Each load cell is 

connected to a signal conditioning box via DB9M serial connectors.  The signal condition  
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box contains circuitry assembled in house and a commercially available 16-bit A/D 

converter (USB-1608FS, Measurement Computing, Norton, MA).  Figure 2-1 contains a 

close-up image of the circuitry from the V1 load cells.  The signals from the load cells are 

first passed through an RF filter that attenuates any radio frequencies.  The signals are 

then amplified with a gain of 265 by an LT1167 instrumentation amplifier.  A -4V offset 

is applied to each signal so that the expected range of the load cells is from -4V at a 0kg 

load to +3.95V at a 100kg load.  Each load cell signal is then filtered using a 4 pole 

Butterworth filter before being sent to the 16-bit A/D converter.  The cutoff frequency for 

the V1 load cells is set at 150 Hz while the cutoff frequency for the V2 and V3 load cells 

is set at 50 Hz.  Finally, in order to avoid aliasing, the 16-bit A/D converter digitizes each 

load cell signal at a specified sampling rate (V1 = 2000 Hz and V2/V3 = 500 Hz), and the 

load cell data is saved on a computer that is connected to the A/D converter via a USB 

 
Figure 2-1. Signal conditioning box circuitry.  Signal flow is from left to right.  (1) Signal from 

load cell. (2) RF filter.  (3) Signal amplification.  (4) Four pole Butterworth filter.  (5) Sixteen-bit 

A/D converter.  (6) Signal sent to laptop via USB connector. 
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connection.  With the exception of a commercial A/D converter, the electronics used for 

conditioning the load cell signals were designed and assembled in-house with the 

assistance of John Hunt M.S.E.E.     

Due to observed drift in the time clocks that was different for the computer used 

to collect PSG data and the laptop used to collected load cell data, a unique 

synchronization feature was added to the V2 load cells used to collect data at the PSP 

sleep lab.  A synchronization signal consisting of packets that contained five square 

waves with amplitudes ranging from 1 volt to 5 volts was continuously generated (see 

figure 2-2).  The synchronization signal was recorded by both the PSP PSG computer and 

 
Figure 2-2.  The same synchronization signal as recorded by the load cell computer (upper) and 

the PSG computer (lower).  The differing locations of the synchronization signal at the same 

computer time stamps, as exemplified by the vertical black dashed lines, illustrates the time 

difference between the computers’ clocks used to record the load cell data and PSG data.  By 

aligning the synchronization signal as recorded by both computers using a method such as cross-

correlation, the time difference between the two computer clocks can be estimated, and the load 

cell signal time points can be adjusted to temporally match those of other PSG signals recorded 

by the PSG computer.    
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the load cell computer allowing for the offset between the two computer clocks to be 

estimated.  Time alignment between the PSG signals and the load cell signals could then 

be achieved, post-hoc, by adjusting the timestamps for the load cell data in order to match 

the timestamps from the PSG data. 

Load Cell Bed Supports 

An important aspect of the load cell systems was the mode in which the load cells 

were placed under the supports of the bed.  Determining the method to attach the load 

cells to the bed supports was difficult because the load cell/bed connection needed to be 

safe, secure, and sturdy while still being simple to install; generalizable across different 

bed frames; and not too altering of the original bed setup.  An example of the first bed / 

load cell attachments is shown in figure 2-3.  A small block of cedar with a hole bored 

Figure 2-3. Resistive load cell design (V1).  Six single point load cells shown on the right are 

connected to a signal conditioning box shown in the upper left via serial connectors.  The upper 

most load cell is attached to the cedar bed attachments.  The cedar block attached to the top of the 

upper most load cell is designed to support and contain the foot of the bed support.  The base of 

the load cell rests in another cedar block.  Not shown in the image are the 1.27cm thick steel 

plates bolted to the bottom of the load cells or the bolt and washer system used to securely clamp 

the load cells into the bottom cedar support. 
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partially through one side was bolted to the top of the load cell.  A 1.27cm thick steel bar 

is bolted to the bottom of the load cell and this entire setup is placed in a 20 cm long 

cedar block that has had the centered hollowed out.  The load cells were clamped 

securely to this cedar block using bolts and washers.  With this system, the supports of 

the bed simply rested inside the hole bored out of the cedar block.  These bed connections 

were simple to install and fairly generalizable.  However, I discovered that the design did 

not support the bed in a completely stable manner.   

In order to improve how safe, secure, and sturdy the bed connections were, a new 

design was developed.  This new design was still easy to install and did not significantly 

alter the original setup.  However, the new load cell bed connections were specifically 

designed to be used with a standard metal frame leading to a loss of some 

generalizability, but the connections should be functional with most brands and sizes of 

metal bed frames.  A metal piece was fabricated that could be bolted to the load cell on 

one end and securely attached to the leg of the metal bed frame on the other end.  This 

metal piece was bolted to a 2.3 cm by 2.5 cm by 5 cm metal block that is attached to the 

load cell.  A 12.7 cm by 25.7 cm by 1.2 cm metal slab was bolted to the bottom of the 

load cell.  A protective aluminum casing was placed over the load cell and secured to the 

aluminum slab.  The aluminum slab corners were rounded to match the shape of the 

protective casing, and two holes were cut out of the casing for the metal bed connector 

and the load cell cord.  An example of the load cell system actually set up under a bed 

with the new bed attachments is shown in figure 2-4.   



12 

 

 

 

 
Figure 2-4.  (A) Load cell setup at the Pacific Sleep Program sleep lab.  Five load cells were 

attached to the supports of the metal bed frame (mattress and box spring have been removed).  

Each load cell was connected to the signal conditioning box in the upper left corner.  The A/D 

converter (inside the signal conditioning box) exported the load cell data to a laptop via a USB 

connection.  The two load cells attached to the bed supports at the foot of the bed were wrapped 

with padding in case a patient inadvertently bumped into the load cell with their foot.  Two load 

cells (without aluminum casings) are shown but were not attached to the bedframe or utilized.  

(B)  Close up of the signal conditioning box and a load cell attached to a support of the bed.  (C) 

Image of a load cell without its aluminum casing.  The image illustrates how the load cell is 

attached to the aluminum base and shows the metal  piece that is bolted to the top of the load cell 

allowing for a secure attachment to a metal bedframe.   

A 

B C 
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Load Cell Calibration 

The raw output of each load cell is a digitized voltage signal ranging from 

approximately -4 V to 4 V.  In order to be able to interpret the load cell data using 

meaningful units, the load cells were calibrated to ascertain the relationship between the 

voltage output of each load cell and the corresponding force applied to the load cell.   

A small plate of 14.2 N was attached to the load cell that was being calibrated. 

Data was collected for 10 seconds, and then an approximately 107 N weight was placed 

on the platform.  Data was again collected for 10 seconds.  This process of adding an 

additional approximately 107 N weight and collecting 10 seconds of load cell data was 

repeated until the load cell was loaded with eight 107 N weights.  Data was collected 

with the load cell loaded with eight weights for two 10 second periods and then 10 

seconds of data was collected again as each weight was sequentially removed.  This 

process of loading and unloading the load cell was repeated two times resulting in four 10 

second periods of data being collected for each loading of the load cell from no weights 

on the platform  to  a total of eight weights on the platform.  This calibration was 

repeated for each load cell. 

The means were calculated for each 10 second period of data collected from the 

load cells.  The calibration for each load cell was found by determining the relationship 

between the known force applied to the load cell and the recorded output of the load cell.  

Assuming that the load cell output was linearly related to the applied force, this 

relationship was defined using a least squares regression line fit to the load cell output 

and applied force data pairs.  The coefficients for a (slope) and b (intercept) from the 

least squares regression line y ax b  , where x  is the load cell output and y  is the 
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predicted load on the load cell, are found by minimizing the error  
2

i i

i

Y y where Y  is 

the actual weight applied to the load cell.  The calibrations for four load cells (V3) are 

shown in figure 2-5.  The calibrations for the remaining load cells (V1 & V2) used to 

collect data for the experiments presented herein are contained in tables 2-1 thru 2-3. 

  

 
Figure 2-5.  Calibration for four load cells (V3) showing the resulting slopes (a) and intercepts 

(b) for converting the load cell output in voltage (V) to the known applied force (N).  The 

averaged output for each 10 second load cell data collection is shown as a blue circle.  Error bars 

calculated as ± one standard deviation for each 10 second segment are plotted but are too small to 

be visible.  The results of the linear regression for all 36 data segments (4 ten-second load cell 

data segments for each of the 9 loading conditions) is represented using a black line.  These load 

cells were placed under the four supports of various bed/mattress systems at the POCL, and were 

used to collect data during the “Bed/Mattress System Characterization” experiment in chapter 4, 

the “Bed/Mattress System Response to Low Speed Mass Movement” experiment also in chapter 

4, and the “Breathing Detection Validation Experiment 2: Different Mattress Types” experiment 

in chapter 5.     
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Table 2-1 

Calibration for the six load cells (V1) placed under the supports of the bed at the OHSU 

sleep lab.  These load cells were used to collect part of the data used during the “Sleep 

Apnea Detection: Automatic Scoring” experiment in chapter 7. 

Load Cell Slope (a) Intercept (b) 

1 125.3 512.0 

2 124.7 504.6 

3 124.7 498.2 

4 125.8 510.3 

5 122.9 488.6 

6 123.9 498.6 

 

Table 2-2 

Calibration for the 4 load cells (V1) used to collect data for some experiments at the 

POCL.  These load cells were used to collect the data used for the “Movement Detection 

and Removal” experiment in chapter 6 and the “Breathing Detecting Validation 

Experiment 1: Different Lying Positions” in chapter 5. 

Load Cell Slope (a) Intercept (b) 

131 125.3 511.0 

132 124.7 503.4 

133 124.6 497.1 

135 125.5 508.6 

 

Table 2-3 

Calibration for the five load cells (V2) placed under the supports of the bed at the PSP 

sleep lab.  At one point the fittings on these load cells were re-tightened and the 

calibration process was repeated.  These load cells (using calibration #1) were used to 

collect the data used during the “Sleep Apnea Detection: Visual Scoring” experiment in 

chapter 7 and for part of the data (using a mixture of calibration #1 and calibration #2) 

used during the “Sleep Apnea Detection: Automatic Scoring” experiment in chapter 7. 

Load Cell Slope (a) #1/#2 Intercept (b) #1/#2 

121 124.2/124.7 509.3/511.8 

123 125.1/125.1 513.6/513.5 

124 123.9/123.8 507.6/507.3 

125 125.4/125.6 510.8/511.7 

127 125.3/125.3 515.7/515.6 
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Chapter 3: Load Cell Breathing Signal Origin 

Introduction 

 The load cell system is comprised of force sensors (i.e. load cells) that are placed 

under each support of a bedframe (figure 2-4).  The load cells are transducers that convert 

the amount of weight (or force) supported by each bed leg into an electrical signal 

measured in volts.  The electrical signal is amplified, filtered, and digitized using the 

electronics described in chapter 2 and then logged using a laptop or other computer.  The 

calibration procedure also described in chapter 2 is used to convert the voltage signal 

from the load cells into units of force (Newton).  In this chapter, I describe how the force 

readings from each load cell under the supports of the bed can be used to detect small 

movements of mass that represent the breathing of a person lying on the bed.   

How the Breathing Signal is captured by Load Cells 

As an individual lies on the bed, the load cells detect the forces supported by each 

bed leg.  When the individual breathes in, their diaphragm displaces several visceral 

organs towards the foot of the bed.  Hence, the load cells at the foot of the bed see a 

relative increase in force, and the load cells at the head of the bed see a relative decrease 

in force.  Conversely, when the individual breathes out, the mass of the visceral organs 

are displaced towards the head of the bed leading to a relative increase in forces 
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measured at the head of the bed and a relative decrease to forces measured at the foot of 

the bed.  These quasi-periodic changes in the relative forces detected by the load cells 

represent the breathing signal of the individual lying on the bed (see figure 3-1 (A & B) 

[59]).  

 

 

Figure 3-1.  (A-B) Illustration of how the load cells detect breathing via small mass (M) 

displacements.  As an individual lies on the bed, the load cells detect the forces supported by each 

bed leg.  (A) During inspiration mass is displaced towards the foot of the bed.  (B) During 

expiration mass is displaced towards the head of the bed.  (C) An example of a load cell 

breathing signal collected from an individual lying on the bed is shown.  Periods of inspiration 

are marked in red and periods of expiration are marked in black.   
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With the load cells placed under each support of a bed effectively supporting its 

entire weight, the load cells can theoretically be utilized to track the changes in the center 

of mass caused by an individual breathing while lying on top of the bed/mattress system.  

A generic bed/mattress system with four supports is shown in figure 3-2.  The weight of 

the bed, mattress, and individual lying on the bed are represented as the force mg which 

is located at the center of mass (CM) for the entire system.  The ground reaction forces 

that support the bed and everything else are represented as F1, F2, F3, and F4 and they act 

in the z-direction opposite to mg.  The locations of each force in the 3 dimensional 

Cartesian coordinate are represented as r1-4, and rCM is the location of the overall CM for 

the bed, mattress, and individual.  If we assume that the system is in mechanical 

equilibrium, then the sum of the moments (M) about an arbitrary point p must be 0  [60].   

1 1 2 2 3 3 4 40 +p          
CM

r F r F r F r F r mg                      (3.1) 

The cross product for each force (F) and moment arm (r) can be solved using the 

following determinants [61]: 

 

 

Figure 3-2.  A generic bed/mattress system 

with four supports.  The force of the bed, 

mattress, and individual lying on the bed is 

shown as mg.  The reaction forces that support 

the system are represented as F1, F2, F3, and 

F4.     
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where ,  , and i j k represent unit vectors in the respective x, y and z axes, and the force 

vectors (F) and moment arms (r) have been broken down into their x, y, and z 

components.  Each individual determinant can be expanded. 

1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4 4

0 + + - -
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z y x z y x x y y z z x

z

C

F r F r F r F r F r F r

F r F r F r F r F r F r

F r F r F r F r F r F r

F r F r F r F r F r F r

mg r

i j k k i + j -

i j k k i + j -

i j k k i + j -

i j k k i + j +

- -y x z y x x y y z z x

M CM CM CM CM CM+mg r +mg r mg r mg r mg ri j k k i - j

            (3.3) 

Equation 3.3 can be simplified by assuming that the forces (F) supporting the bed and mg 

act only in the z-direction and are 0 in the x and y-directions.   

                         
1 1 1 1 2 2 2 2 3 3 3 3

4 4 4 4

0   z y z x z y z x z y z x

z y z x z y z x

CM CM

F r F r F r F r F r F r

F r F r mg r mg r

i + j - i + j - i + j -

i + j + i - j
                          (3.4) 

Separating the equation into its i and j components 

1 1 2 2 3 3 4 40   z y z y z y z y z y

CMF r F r F r F r mg ri - i - i - i + i                                       (3.5) 

1 1 2 2 3 3 4 40  z x z x z x z x z x

CMF r F r F r F r mg rj + j + j + j - j                                     (3.6) 

and then solving for rCM leaves  

 1 1 2 2 3 3 4 4+ + +z y z y z y z y

y

CM z

F r F r F r F r
r

mg
                                             (3.7) 

 1 1 2 2 3 3 4 4+ + +z x z x z x z x

x

CM z

F r F r F r F r
r

mg
                                             (3.8) 
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showing that the forces detected by the load cells supporting the bed can be used to 

estimate the CM of the entire bed/mattress system with an individual lying on the 

mattress.  Assuming that mg
z
 is equivalent to the sum of the output from all the load cells, 

this relationship is represented by 

                                                 
 

1

1

,








N

i i ii

N

ii

LC x y

LC
CM =                                            (3.9) 

where CM is the xy coordinates of the center of mass , LCi is the force measurement 

recorded by the i
th

 load cell, N is the number of load cells, and xi and yi are the coordinate 

locations of the i
th

 load cell.  However, when an individual is lying even quiescent on the 

bed/mattress system, movements of mass caused by respiration are likely to generate 

forces that were not accounted for in the model represented in equation (3.1).  Therefore, 

some error will be introduced when using the load cells to estimate the mass movement 

resulting from the individual’s breathing.  Consequently, CM estimates acquired using 

the load cell data will be referred to as center of pressure (CoP) measurements:  

 
1

1

( ) ,
( )

( )

N

i i ii

N

ii

LC t x y
CoP t

LC t









                                           (3.10) 

where ( )iLC t is the force measurement recorded by the i
th

 load cell at time t.  

The load cell CoP signal was utilized to validate the assumption that the load cells 

detect the breathing of an individual on the bed by tracking the displacement of the 

organs towards the foot of the bed during inspiration and conversely towards the head of 

the bed during expiration.  Ten minutes of load cell data were collected while an 

individual lay quiescently on their back on the bed/mattress system.  At approximately 

the 0.5, 1.5 2.5, 3.5, and 4.5 minute marks, the subject was instructed to hold their breath 
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for about 15 seconds at the end of expiration.  Then, at approximately the 5.5, 6.5, 7.5 

8.5, and 9.5 minute marks, the subject was instructed to hold their breath for about 15 

seconds at the end of inspiration.  Figure 3-3 contains the 10 minute filtered CoP signal 

calculated using the load cell data and equation 3.10 in the y-direction (i.e. the long axis 

of the bed).  

 

Figure 3-3.  (A) Ten minutes of the CoPy signal calculated from load cell data collected while a 

subject was lying on their back on the bed/mattress system.  The subject held their breath 5 times 

at the end of expiration (marked in blue) and 5 times at the end of inspiration (marked in green).  

The CoPy signal was low-pass filtered using a 4
th
 order Chebyshev Type II filter that was 

monotonic in the pass-band, had a stop-band edge frequency of 1.6 Hz, and attenuated the stop 

band by 40 dB.  (B) Close up view of the subject holding their breath after expiration.  The CoPy 

signal shows the mass holding near the lower values y indicating that the mass has been displaced 

towards the head of the bed as y = 0 was defined to be at the head of the bed when calculating 

CoPy.  (C)  Close up view of the subject holding their breath after inspiration.  The mass appears 

to remain around the higher values of y indicating that the mass was displaced towards the foot of 

the bed during inspiration. 

 

 

A 

B C 
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 When calculating the CoPy signal, the Cartesian coordinate system was designed 

to have the origin at the upper right (UR) corner of the bed (in reference to the subject’s 

right while lying on the bed/mattress system on their back) with the positive y axis 

extending towards the foot of the bed.  This particular coordinate axis system was chosen 

so that inspiration would be represented as a positive deflection in the CoPy signal (i.e. 

increasing values in the y-direction) and expiration would be seen as a negative 

deflection (i.e. decreasing values in the y-direction).  The periods when the subject was 

holding their breath as seen in the CoPy signal in figure 3-3 verify the model that during 

inspiration mass from the visceral organs is displaced towards the foot of the bed (i.e. 

increasing values in the y-direction), and that this mass is displaced towards the head of 

the bed (i.e. decreasing values in the y-direction) during expiration.  Another example of 

the CoPy load cell breathing signal collected from an individual lying on the bed is shown 

in figure 3-1 (C).        
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Chapter 4: Bed/Mattress System Characterization and Testing 

Bed/Mattress System Characterization 

Motivation 

Empirical evidence suggests that the bed/mattress system has an effect on the load 

cell signals recorded when an individual lies on the bed.  In particular, frequency analysis 

of the load cell signals reveals a significant amount of power in the respiration 

frequencies (i.e. < 1 Hz) and in the 2-5 Hz range (suspected to be the resonance response 

of the bed/mattress system to the heart beating) when an individual lies on the bed (see 

figure 4-1).  Therefore, in order to better understand how the bed/mattress system may 

affect the ability of the load cell system to detect the breathing of an individual lying on 

the bed, I experimentally estimated the impulse response of the entire structure for 

several different mattress types.  I specifically analyzed the mass dependent frequency of 

response and damping characteristic for each mattress’s response to an impulse. 

 

Figure 4-1.  Power spectral density from one 

minute of data collected from a single load cell 

when an individual is lying on the bed.    

 



24 

 

 

Setup 

Load cells were placed under the supports of a standard metal full sized bed frame 

in the Point of Care Laboratory.  A 1.8 cm piece of plywood with similar dimensions to 

the mattresses was placed on top of the metal frame and was used to support one of the 

four different mattresses used for the experiment.  Four different mattress types were 

used for this experiment: 1.) a mattress with an air-filled bladder with adjustable air 

pressure encased in foam (similar to a Sleep Number® mattress), 2.) a mattress made of 

memory foam (similar to a Tempur-Pedic® mattress), 3.) a spring coil mattress with 

independent springs (i.e. springs that are not connected), and 4.) a coiled mattress with 

dependent springs (i.e. all the springs are connected).  During the experiments, a wooden 

platform (91.4 cm x 40.3 cm x 1.9 cm) that was specially manufactured to be loaded with 

several masses was placed on top of the mattress.  A round hole was cut out of the center 

of the platform (diameter ≈ 26 cm) allowing a small mass (0.77 kg) to be dropped onto 

the respective mattress acting as the applied impulse (see figure 4-2).  The wooden 

platform was placed on each respective mattress so that the hole cut out for the impulse 

was approximately in the location of an individual’s chest if they were to be lying on the 

mattress.   

 

 

 

 

 

 

 

 

 

Figure 4-2.  Illustration of the setup used to 

characterize the effect of an impulse being 

applied to the bed/mattress system.  The 

wooden platform is placed one the mattress in 

the approximate location of an individual lying 

in the middle of the bed.  The platform has two 

locations for mass to be incrementally loaded 

onto the bed.  The center of the platform has 

also been removed for the application of the 

impulse. 
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Methods 

One minute of load cell data was collected for each mattress before they were 

loaded with the wooden platform and masses.  The wooden platform was then placed on 

the bed and incrementally loaded with 8 various amounts of mass ranging from 0 kg to 

approximately 132 kg.  At each loading of the wooden platform, one minute of load cell 

data was collected using a sampling rate of 500 Hz for each individual load cell.  At 

about the 25 second mark during each data collection, an impulse was applied to the 

mattress by dropping an ‘impulse’ weight (0.77 kg) onto the mattress in the approximate 

center of the hole cut out of the wooden platform from a height of about 30 cm.  The 

impulse mass was allowed to “bounce” only once on the mattress before being caught 

and removed. The exception being the experiments performed using the foam mattress 

where the impulse mass did not physically “bounce” off the mattress and was therefore 

simply dropped and left.  Load cell data with the corresponding impulse was collected 4 

separate times for each of the various mass loadings on the bed.  This protocol was 

followed for each mattress.  For a more detailed explanation of the experiment protocol, 

please refer to Appendix A.   

Analysis 

I theorized the bed/mattress system would respond to an impulse with decaying 

oscillations due to results from preliminary testing.  Therefore, in order to analyze the 

response of the bed/mattress to an impulse, I modeled the response of each load cell 

independently as a damped sine wave,  

 ( ) sin 2   tz t Ae ft                                           (4.1) 
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where A is the amplitude, λ represents the rate of decay, f is the frequency of oscillation 

in Hz, and φ is the initial phase of the sinusoid. 

The amount of damping (i.e. λ) and the frequency of response (i.e. f) for each 

mattress at each loading condition was ascertained by fitting the load cell data resulting 

from each applied impulse to equation 4.1
1
.  The data from each individual load cell was 

fit separately.  Figure 4-3 shows an example of load cell data collected after an applied 

impulse and the corresponding results after the data has been fit to the model described in 

equation 4.1.  In order to gain some insight into the relationship between the damping and 

frequency of response for each bed/mattress system and the amount of mass loaded on 

                                                 
1
 A and φ were also determined during the fitting process but are not reported herein.  

 
Figure 4-3.  Load cell data collected from the UR load cell for each different mattress type after 

an impulse was applied with approximately 90 kg loaded on the bed/mattress system.  The raw 

load cell signal is shown in black, and the results of fitting the load cell data to the damped spring 

model is shown in green.  When fitting the load cell data to the model: the median was 

subtracted, t = 0 was chosen as the point of minimum value in the load cell signal, and the 

following 5 seconds of load cell data was used for the model.  The amount of damping (λ) and 

frequency of response (f) are also displayed.   
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the mattress, the average λ and f were estimated along with the corresponding mass 

loaded on the mattress for each loading condition.  The averaged sum of data from all the 

load cells, collected for 10 seconds before each impulse was applied, minus the weight of 

the overall bed/mattress system was used to estimate the amount of mass on the mattress 

for each loading condition. This averaged sum was divided by the acceleration due to 

gravity (g = 9.80665 m/s
2
) so the mass would be in units of kg.   

Fitting the impulse response collected by the load cell data to the previously 

described damped sinusoid should accurately represent the prevailing response of the bed 

immediately after the impulse.  However, there also may be some residual effects of the 

impulse that are not as evident.  In order to ascertain other possible responses to the 

impulse, the spectral content of the load cell signals was calculated.  Specifically, 

Welch’s method [62] was used to estimate the power spectral density for 30 seconds of 

load cell data (decimated to a sampling rate of 25 Hz) beginning 5 seconds after each 

impulse.  

Results 

Figure 4-4 contains 4 individual plots showing the mass dependent frequency of 

responses found for each load cell across all four mattress types.  The load cells are 

designated as upper right (UR), upper left (UL), lower right (LR), and lower left (LL), 

where upper refers to the head of the bed, lower refers to the foot of the bed, and left-

right is determined in reference to an individual lying on their back on the bed.  The plots 

show that while each mattress type exhibits slightly different response frequencies, there 

is a similar trend of decreasing frequency of response across all mattress types as mass 

loading on the bed increases.  It should be mentioned that when fitting the model to the 
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load cell data there were no constraints set for the model parameters which led to a few 

results with negative frequencies (f).  All the results with negative frequencies had similar 

absolute values to the other non-negative frequencies estimated from the other trials with 

the same setup.  Therefore, it may have been that the negative frequencies were a result 

of the final value chosen during the fitting process for φ.  When calculating the mean 

frequency of response, shown in figure 4-4, any negative frequencies were simply 

ignored. 

Figure 4-4.  Mass dependent frequency response for each load cell across all mattress types.  The 

different colors represent the different mattress types.  The air-filled mattress results are shown in 

blue, the foam mattress results are shown in black, the independently coiled mattress results are 

shown in red, and the dependently coiled mattress results are shown in green.  The squares 

represent the mean frequency response across the four trials, and the error bars signify one 

standard deviation.  It should be noted that many of the error bars are not visible due to the 

relatively small nature of the represented standard deviations.    
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The mass dependent damping characteristic estimated for each load cell and 

mattress are shown in figure 4-5.  Similar to the frequency of the responses for the 

different mattresses, the amount of damping for each mattress generally decreases with 

an increasing amount of mass on the bed.  Interestingly, during the first few mass 

loadings on the bed mattress system, there are many instances where the amount of 

damping actually increases with more mass.  This is especially evident for the air-filled 

 
Figure 4-5.  Mass dependent damping characteristic for each load cell across all mattress types.  

The different colors represent the different mattress types.  The air-filled mattress results are 

shown in blue, the foam mattress results are shown in black, the independently coiled mattress 

results are shown in red, and the dependently coiled mattress results are shown in green.  The 

squares represent the mean damping across the four trials, and the error bars signify one standard 

deviation.  It should be noted that many of the error bars are not visible due to the relatively small 

nature of the represented standard deviations.    
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mattress (blue).  Also noteworthy is the overall low amount of damping for the 

dependently coiled spring mattress (green).   

The frequency components contained in the residual effects after an applied 

impulse for each mattress type are shown in figure 4-6.  The power spectral densities 

between 0.1 Hz and 11 Hz are shown in the figure.  The upper limit of 11 Hz was 

selected based on the results shown in figure 4-4, and the lower limit of 0.1 Hz was 

chosen to eliminate any power resulting from possible baseline shifts of the data from 0.  

The majority of the power for each mattress appears to reside in the range of frequencies 

Figure 4-6.  Power spectral density (PSD) for the 30 seconds of load cell data beginning 5 

seconds after each application of the corresponding impulse.  Each plot for the different mattress 

types contains the PSD for all trials across all mass loadings.  PSD results for specific load cells 

are represented with different colors: UR results are in blue, UL results are in black, LR results 

are in red, and LL results are in green. 
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that were present immediately after the application of the impulses (see figure 4-4).  

However, there also seems to be some power below 1 Hz that is especially noticeable in 

the air-filled, foam, and independently coiled mattresses.   

Discussion/Conclusion 

Preliminary, unreported data collected using the spring coil mattress where the 

springs are all connected  suggest that the bed/mattress system would ‘resonate’ at 

different frequencies depending on the amount of mass loaded on the bed.  Results from 

the experiments described in this section indicate that the four mattress types tested 

herein exhibit similar overall trends in frequency of response and damping characteristics 

(see figures 4-4 and 4-5).  The frequency of oscillation is dependent upon the mattress, 

but tends to decrease as the mass on the bed increases.  While the amount of damping 

appears to be mattress dependent, for each mattress the damping decreased with mass 

loading on the bed suggesting that the effects (i.e. oscillations) caused by quick, 

impulsive movements on the bed will be longer for individuals of larger masses that are 

being monitored with the bed/mass system.   

While the overall results from these experiments offer insight into the behavior of 

the bed/mattress system, some care must be used when interpreting the results.  The 

response of the bed/mattress system to an applied impulse was assessed by fitting the 

damped sinusoid model (see equation 4.1) to each load cell separately.  However, the 

load cells are all connected to the same bed/mattress system which will likely cause some 

interdependence between the data collected by each load cell.  Also, the damped sinusoid 

model only accounted for a single frequency of oscillation.  While this is an 

oversimplification of what is actually happening, there is a dominant frequency response 
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of each mattress to an impulse that the model is able to detect as seen in figure 4-3.  

However, spectral analysis of the load cell data collected from the 5 second mark to 35 

second mark after the impulse was applied (see figure 4-6) indicates that there are some 

low frequency components (i.e. < 1 Hz) in the bed mattress system despite the majority 

of the spectral power residing in the 2-11 Hz ranges as predicted by the model.  These 

lower frequency of responses are concerning since they correspond to normal range of 

respiration.   

The range of breathing rates expected from individuals lying on the bed is 

between 8 and 24 breaths per minute, which corresponds to a range of frequency 

components in the load cell breathing signal (i.e. CoPy) of about 0.13 to 0.4 Hz.  The 

experiments outlined in the next section are designed to verify that the possible low 

frequency components seen in some of the impulse tests do not affect the load cell CoP 

signal’s ability to track mass movement similar to that expected while an individual is 

lying on the bed.  The higher frequency of responses (i.e. 2-11 Hz) for the bed/mattress 

systems can be removed using low pass filtering.  Therefore, throughout this dissertation, 

analysis of the load cell CoP signals generally includes low pass filtering to attenuate any 

‘resonance’ of the bed and leave behind only frequency components expected to be 

associated with breathing.  
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Bed/Mattress System Response to Low Speed Mass Movement 

Motivation 

According to the load cell breathing model outlined in chapter 3, the load cells 

should be able to detect respiration by tracking the time dependent CoP signal resulting 

from mass movements caused by breathing.  In this experiment a mass is placed on the 

bed/mattress system and rotated in a known circular path in order to validate how well 

the load cell CoP signal (see equation 3.10) is able to recreate center of mass changes 

occurring on top of the bed/mattress system.  In addition this experiment was designed to 

explore the effects of the bed/mattress system, as characterized in the previous section, 

when a mass is rotating on the bed at rates similar to respiration.   This experiment is an 

effort to substantiate the use of the load cell CoP signal to recreate the breathing signal of 

an individual lying on the bed/mattress system by tracking the mass movements resulting 

from respiration.      

Setup 

Load cells were placed under the supports of a standard metal full sized bed frame 

in the Point of Care Laboratory (POCL).  A box spring was placed on top of the metal 

frame that supported one of the four different mattresses used for the experiment.  Four 

different mattress types were used for this experiment: 1.) a mattress with an air-filled 

bladder with adjustable air pressure encased in foam (similar to a Sleep Number® 

mattress), 2.) a mattress made of memory foam (similar to a Tempur-Pedic® mattress), 

3.) a coil mattress with independent springs (i.e. springs that are not connected), and 4.) a 

coiled mattress with dependent springs (i.e. all the springs are connected).  A 1.8 cm 
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piece of plywood with similar dimensions to the mattresses was placed on top of each 

mattress during the testing.  The plywood was utilized to eliminate back and forth 

rocking noticed during preliminary tests of the device used to rotate the mass when 

placed directly on the mattress. 

A wooden platform was placed on top of the plywood that was specially 

manufactured to be loaded with several masses of approximately 11 kg each
2
.  A device 

used to rotate a 2.27 kg mass was placed on the plywood near the center and 

perpendicular to the wooden platform.  The 2.27 kg mass represents the mass of the 

organs displaced during breathing.  A 15V, 5A power supply (Heath Schlumberger, 

Model SP-2720) was used to regulate the speed of the motor used to rotate the mass, and 

a METEX
®
 ME-22T digital multimeter (METEX Corporation, Seoul, Korea) was utilized 

to verify voltage supplied to the motor from the power supply.   

In order to acquire independent confirmation of the frequency of rotation, video 

data was collected continuously during the entire experiment for each different mattress 

setup.  A Flip MinoHD video camera (Cisco, Irvine, CA) was positioned over the bed 

using a microphone boom so that the device used to rotate the mass was in the video 

frame.  A bubble level was used to verify that the video camera was level.  A green dot 

with a diameter of 5 cm was positioned at the approximate center of the mass being 

rotated to allow for automatic tracking of the rotating mass in the video data.  An 

example of the setup is shown in figure 4-7.  

                                                 
2
 When discussing the actual masses that are approximately 11 kg each, they are referred to as the ≈11 kg 

masses. 
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Methods 

Experiment 1 

The following protocol was used two times for each different mattress, one time 

with the center of the rotating mass placed approximately 6 cm from the center of the 

rotating platform and once with the center of the rotating mass placed at approximately 

12 cm.  The 6 cm and 12 cm tests for each different mattress were performed without 

altering the position of the video camera.  With the camera at the same height, the 

absolute magnitudes of the mass’ rotation for the 6 cm and 12 cm tests could be 

compared for each particular mattress.  The video data was recorded at 30 frames per 

 
Figure 4-7.  Image showing an example of the setup for the experiment.  (A) Varying amounts of 

mass can be loaded on the bed/mattress system using a wooden platform.  The wooden platform 

has two places where various masses can be loaded.  One is visible in the image and the other is 

hidden by the device used to spin the 2.27 kg mass.  (B) A 2.27 kg mass is rotated in a circular 

motion.  A green dot is placed at the approximate center of the mass being rotated.  (C) Video 

camera used to track the motion of the spinning 2.27 kg mass.  

B A 

C 
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second and load cell data was collected at 500 samples per second for each individual 

load cell. 

The wooden platform and the mass rotation device were placed on the 

bed/mattress system.  The DC power supply was either set at 0 V, 6 V, 9 V, or 12 V  

which corresponded to the 2.27 kg mass rotating at approximately 0, 9.3, 14.3, an 19.3 

rotations per minute (rpm) respectively.  These rotation speeds were chosen as they 

spanned the normal range of breathing.  One minute of load cell data was collected for 

various amounts of mass loaded on the bed/mattress system for each of these rotation 

speeds (see table 4-1).   

Experiment 2 

The same setup was then utilized to explore the load cell system’s ability to track 

a mass rotating at increasingly smaller diameters.  This experiment was conducted only 

with the foam mattress setup.  The 2.27 kg mass was placed on the rotation device at 

several different radii of approximately 12 cm, 6 cm, 3 cm, 1 cm, and 0.5 cm leading to 

displacement diameters of approximately 24 cm, 12 cm, 6 cm, 2 cm, and 1 cm 

respectively.  Load cell data was collected while the mass rotated at each diameter (DC 

power supply set to 9 V) when two different amounts of mass were loaded on the 

Table 4-1. 

Table illustrating the setup for each individual one minute data collection.   

For each rotation speed, between 0 and 10 masses of approximately 11 kg each were 

loaded on the bed/mattress system.     

 Trials 

RPM 1 2 3 4 5 6 

0 0*11 kg 2*11 kg 4*11 kg 6*11 kg 8*11 kg 10*11 kg 

9.3 0*11 kg 2*11 kg 4*11 kg 6*11 kg 8*11 kg 10*11 kg 

14.3 0*11 kg 2*11 kg 4*11 kg 6*11 kg 8*11 kg 10*11 kg 

19.3 0*11 kg 2*11 kg 4*11 kg 6*11 kg 8*11 kg 10*11 kg 
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bed/mattress system using the weight platform.  One minute of load cell data was 

collected for each displacement diameter with approximately 21.6 kg loaded on the bed, 

and one minute of data was collected for each diameter while about 109.3 kg was loaded 

on the bed/mattress system.   

Analysis 

In chapter 3 it is hypothesized that the load cells can track the breathing of an 

individual lying on the bed/mattress system by using the CoP signal estimated using the 

load cells placed under the bed.  The load cell data collected during these experiments 

were used to calculate the CoP signals for each specific data collection (see equation 

3.10).  To aid in the comparison of video and load cell data, the load cell CoP signals 

calculated in the experiments contained in this chapter were estimated using a Cartesian 

coordinate system that matched the axes of the camera.  The load cell CoP signals used 

for qualitative analysis or visual inspection only (see figures 4-8, 4-9, 4-16 through 4-18, 

and 4-20 through 4-22) were low pass filtered in order to minimize the resonance of the 

bed using a 3
rd

 order Chebyshev Type II filter that was monotonic in the pass-band, had a 

stop-band edge frequency of 3 Hz, and attenuated the stop band by 30 dB.  Ground truth 

evidence of the rotating mass was extracted from the video data using a software program 

that was developed to isolate the green dot in the video files and calculate the xy location 

of its centroid on a frame by frame basis.   

Experiment 1 

Quantitative analysis of the results from the first experiment consisted of two 

parts.  First, the amplitudes of CoP displacement for the 2.27 kg mass were calculated 
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from the load cell signals for each 1 minute segment of data.  These estimated amplitudes 

were then compared to the expected amplitudes of CoP displacement.  Second, the 

frequencies of rotations for the 2.27 kg mass were calculated using the load cell data.  

These estimated rates were then compared to the frequencies of rotation estimated using 

the ground truth video data. 

CoP Displacement Amplitude Comparisons 

It was assumed during the testing and data collection that, in reference to the 

entire bed/mattress system, the small 2.27 kg mass was the only non-symmetrical mass 

experiencing any movement over time.  The calculation for estimating the CM can be 

expanded to show that when only a small portion of the overall mass of the bed/mattress 

system is changing its xy location, the general magnitude of the change to the CM is 

dependent upon size of the mass that is moving in relation to the overall mass of the 

system.  This relationship is illustrated by: 
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where Mj is the j
th

 mass representing the bed, mattress, or individual masses on the bed, 

and rj(t) is the time dependent location of the j
th

 mass.  Mj and r(t) were expanded with 

MΔ representing the small mass that is rotating, Ms representing the combined mass of 

everything else supported by the load cells (i.e. bed/mattress system etc. minus MΔ), 
0

r  

representing the center of mass location of MΔ at t=0, rΔ(t) representing the time 

dependent displacements of MΔ from 
0

r , 
0

Sr representing the center of mass location of 
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Ms at t=0, and rs(t) representing the time dependent displacements of Ms from 
0

Sr .  By 

expanding equation 4.2 
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then combining the time dependent terms 
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and finally assuming that the overall center of mass location of Ms does not change with 

time  
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we see that CM(t) has a constant offset of 
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r
, we see that the effect of any rΔ(t) on the magnitude of change in CM(t) is less 

with increasing Ms (i.e. loading more mass on the bed/mattress system).   

Equation 4.5 suggests that the amplitudes of CoP displacement that is detected for 

the 2.27 kg mass by load cell system should decrease as more ≈11 kg masses are placed 

on the bed.  To verify this relationship, the amplitudes of CoP displacement for the x and 

y components of the load cell CoP signals for each data segment were calculated.  The 

CoPx and CoPy signals were first decimated
3
 to a sampling rate of 10 Hz and then low 

pass filtered using an  8
th

 order Chebyshev Type II filter that was monotonic in the pass-

band, had a stop-band edge frequency of 0.75 Hz, and attenuated the stop band by 40 dB.  

                                                 
3
 References to decimation in this dissertation were implemented using the Matlab® routine “decimate”.  

This routine uses a low pass filter before down sampling in order to avoid aliasing.   
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The local minimum and maximum values were then located in the filtered CoPx and CoPy 

signals.  These peaks and troughs represented the minimum and maximum displacements 

of the respective CoPx and CoPy signals.  Finally, the load cell estimated amplitudes of 

CoP displacement for each segment in both x and y directions were estimated by 

subtracting the median trough values for each data segment from the median peak values 

for the same segments.       

For comparison, the expected amplitude of CoP displacement for each data 

segment was calculated mathematically using 
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where CM represents the center of mass and r is the location of the respective masses 

(either the x or y direction due to symmetry) at tmax and tmin.  tmax is the time point when 

MΔ is at its maximum displacement and tmin is the time when MΔ is at its minimum 

displacements in either the x or y direction.  Equation 4.6 can be simplified to 
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Ms + MΔ was calculated for each loading condition by summing the mean output of each 

load cell during the data collection when the MΔ was not spinning.  Since the load cell 

output had been converted to Newtons, this sum was divided by the acceleration due to 

gravity (i.e. 9.80665 m/s
2
).  MΔ was expected to be 2.27 kg, and rΔ(tmax)-rΔ(tmin) was either 

set to 120 mm when MΔ was placed at a radius of 6 cm or 240 mm when MΔ was placed 

at a radius of 12 cm. 
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Rotation Frequency Comparisons 

The frequency of rotation of the mass was estimated from the xy components of 

the CoP signals (CoPx and CoPy) and compared to the rotation frequencies calculated 

from the xy components of the green dot in the respective video files (VIDx and VIDy).  

The frequency content for each signal was calculated by first decimating each particular 

CoPx,y or VIDx,y to a sampling rate of 10 Hz and then estimating the power spectral 

density using Welch’s method for each one minute segment of data.  The rotation 

frequency for each 1 minute segment for both load cell and video data was then 

determined to be the maximum frequency in the 0 Hz to 0.5 Hz band of the estimated 

power spectral density.   

Bland-Altman plots [63] were used to visually compare the frequencies estimated 

for CoPx to those calculated for VIDx and similarly to compare the frequencies estimated 

for CoPy to the frequencies of rotation calculated for VIDy.  Paired t-tests were used to 

test whether or not there was a significant difference between the rotation frequencies 

estimated using the load cells compared to those calculated using the video data.  When 

calculating the paired t-tests, the data was combined across all experimental conditions 

(i.e. mattress type, displacement diameter, amount of mass loaded on the bed, and 

rotation speed).  N-way analysis of variance was also utilized to explore the effects of 

mattress type, the location of the rotating mass (i.e. r = 6 cm or r = 12 cm), the amount of 

mass loaded onto the wooden platform, and the speed of rotation on the difference 

between the frequencies measured by the load cells and those measured using the video 

data.  The four grouping variables were modeled as having fixed effects, and for analysis, 
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the main and two-factor interactions were used.  The data segments collected when the 

mass was not rotating were not used for comparing rotation frequencies. 

Experiment 2 

Quantitative analysis was performed using the load cell data from experiment 2 to 

explore how well the load cell system could be used to discern different amplitudes of 

displacement for the 2.27 kg mass.  In particular, the purpose of experiment 2 was to 

show that decreases in the displacement amplitudes of a mass on the bed were detected as 

decreases in amplitudes in the corresponding load cell CoP signal.  The amplitudes of 

CoP displacement for each 1 minute data segment were estimated using the same method 

as described in experiment 1.  The expected CoP displacement amplitudes were also 

calculated as previously described using equation 4.7.  The rΔ(tmax)-rΔ(tmin) values were 

set at 240 mm, 120 mm, 60 mm, 20 mm, and 10 mm when the mass displacement 

diameters were 24 cm, 12 cm, 6 cm, 2 cm, and 1 cm respectively.   

Results 

Experiment 1 

Figure 4-8 shows and example of the load cell CoP signal for a single one minute 

data segment.  The load cell data for the segment was collected using the coiled mattress 

where the springs are all connected, with the 2.27 kg mass placed at a radius of 12 cm 

from the center of the rotation platform, while the wooden weight platform was loaded 

with 6 masses of ≈11 kg each, and the platform was spinning at the highest setting used 

for the experiment (i.e. 19.3 rpm).  The power seen in the 0-1 Hz is a result of the 

spinning 2.27 kg mass.  Per the results of the previous section (i.e. Bed/Mattress System 
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Characterization), the power in the 1-10 Hz range is attributed to the residual ‘resonant’ 

response of the bed/mattress system to disturbances caused during the loading or 

unloading of the ≈11 kg masses on the mattress in between each data collection.   

Figure 4-9 contains the low pass filtered load cell CoP signals collected during 

the first experiment using the memory foam mattress for each 2.27 kg mass location on 

the spinning platform, each rotation speed, and each number of ≈11 kg masses loaded 

onto the wooden platform.  The subfigures show the low pass filtered CoP signals for 

each loading condition of the bed/mattress system (i.e. number of ≈11 kg masses loaded 

on the wooden platform).  The results for both placements of the 2.27 kg mass (i.e. 6 cm 

or 12 cm from the center of the rotation platform) are shown in each subfigure.  Low pass 

filtered CoP signals representing data collected when the 2.27 kg mass was not spinning 

are cyan, and those signals collected while the mass was spinning at “low” (9.3 rpm), 

“medium” (14.3 rpm), and “high” (19.3 rpm) speeds are plotted in green, red, and blue 

respectively.  The black traces represent the expected amplitudes of CoP displacement 

calculated using equation 4.7.  The x and y axes limits for all subplots were set to 10 mm 

Figure 4-8.  Example of the load cell CoP signal for a single one minute data segment.  The raw 

CoP (blue) and low pass filtered CoP (black) is plotted in the left most image.  The power 

spectral density for the CoPx (blue) and CoPy (black) are shown in the right two images for 

frequency ranges of 0-1 Hz and 1–10 Hz respectively.   
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in order to allow comparison of CoP displacement amplitude across the different loading 

conditions of the bed/mattress system.   

A similar figure that shows the ground truth movement of the 2.27 kg mass using 

the tracking results of the green dot in the video data is contained in figure 4-10.  The 

main differences in this image is that the xy locations of the estimated centroid of the 

green dot are represented as pixels within the viewing frame of the video data, and the 

video data shown has not been low pass filtered.  It is also evident that for the most part 

only the results from highest speed setting (shown in blue) are visible due to the almost 

identical results seen in the video data for each speed setting, loading condition, and 

placement of the 2.27 kg mass.   

Figures showing low pass filtered load cell CoP signals and the corresponding 

video tracking results have been omitted for the remaining three mattress types as there is 

no significant difference between them and figures 4-9 and 4-10. 

The CoP displacement amplitudes for CoPx and CoPy calculated across all 

iterations of the initial experiment are shown in figures 4-11 through 4-14.  Each figure 

represents the results found for each different mattress.  The amplitudes calculated while 

the 2.27 kg mass was spinning at “low” (9.3 rpm), “medium” (14.3 rpm), and “high” 

(19.3 rpm) speeds are plotted in green, red, and blue respectively.  Results from data 

when the 2.27 kg mass was placed at 6 cm from the center of the rotation platform are 

plotted using ‘squares’ while ‘circles’ were used to represent results when the mass was 

placed at a radius of 12 cm.  The black lines mark the expected amplitudes for each data 

collection as specified by equation 4.7.   
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Figure 4-9.  Load cell CoP signals calculated during experiments using the memory foam 

mattress.  Each subfigure represents when the bed/mattress system was loaded with between 0 

and 10 different masses of ≈11 kg each. 
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Figure 4-10.  Video tracking results calculated during experiments using the memory foam 

mattress.  Each subfigure represents when the bed/mattress system was loaded with between 0 

and 10 different masses of ≈11 kg each. 
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Figure 4-11.  CoP displacement amplitudes (y-axis) estimated for CoPx (left) and CoPy (right) 

from experiments using the memory foam mattress.  The solid black lines with black circles and 

squares designate expected amplitudes calculated using equation 4.7.  The x-axis represents the 

number of ≈11 kg masses loaded on the bed/mattress system.   

     6 cm 
     12 cm 

     6 cm 
     12 cm 

Figure 4-12.  CoP displacement amplitudes (y-axis) estimated for CoPx (left) and CoPy (right) 

from experiments using the coiled mattress where the springs are all connected.  The solid black 

lines with black circles and squares designate expected amplitudes calculated using equation 4.7.  

The x-axis represents the number of ≈11 kg masses loaded on the bed/mattress system.   
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     12 cm 

     6 cm 
     12 cm 
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Figure 4-13.  CoP displacement amplitudes (y-axis) estimated for CoPx (left) and CoPy (right) 

from experiments using the coiled mattress with independent springs (i.e. springs that are not 

connected).  The solid black lines with black circles and squares designate expected amplitudes 

calculated using equation 4.7.  The x-axis represents the number of ≈11 kg masses loaded on the 

bed/mattress system.   

   

     6 cm 
     12 cm 

     6 cm 
     12 cm 

Figure 4-14.  CoP displacement amplitudes (y-axis) estimated for CoPx (left) and CoPy (right) 

from experiments using the mattress with an air-filled bladder.  The solid black lines with black 

circles and squares designate expected amplitudes calculated using equation 4.7.  The x-axis 

represents the number of ≈11 kg masses loaded on the bed/mattress system.   
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     6 cm 
     12 cm 
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The comparison of the rotation frequencies calculated for each separate data 

segment using the video data (VIDx and VIDy) to the frequencies of rotation calculated 

using the load cell data (CoPx and CoPy) are shown in the Bland-Altman plots in figure 4-

15.  The differences between frequencies calculated for each 1 minute segment from the 

video data and the load cell data are plotted on the y-axis, and the average of the 

calculated frequencies from both video and load cell estimates for each segment are 

plotted on the x-axis.  Comparisons between results calculated in the x-direction are 

shown in the left plot and comparisons between results estimated in the y-direction are 

shown in the right plot.  Results from the paired t-tests showed no significant difference 

between rotation frequencies estimated using load cell CoP signals and frequencies 

Figure 4-15.  Bland-Altman plots showing the comparison of the rotation frequencies calculated 

using video and load cell data in the x-direction (left) and y-direction (right).  Results for the four 

different mattress types are labeled using different colors.  Green is used for the mattress with an 

air-filled bladder, blue is used for mattress made of memory foam, red is used for the coil 

mattress with independent springs, and black is used for the coiled mattress where the springs are 

all connected.  The discrete nature of the difference between Video and CoP in the y-axis is due 

to the resolution of the power spectral density estimations (i.e. 3.0518 x 10
-4

 Hz per point).  The 

discrete nature of the average results in the x-axis is due to the 3 different speeds of rotation.   
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estimated using the video data either in the x-direction (t143 = -1.38, p = 0.17) or in the y-

direction (t143 = -1.91, p = 0.06). 

Experiment 2 

Overall results for the second experiment where a mass was rotated at 

increasingly smaller diameters are shown in figure 4-16.  Results for when the mass was 

displaced at a 24 cm diameter are plotted in cyan, 12 cm diameter are plotted in black, 6 

cm diameter are shown in red, 2 cm diameter results are plotted in green, and the 1 cm 

diameter results are blue.  The x and y axes for the load cell CoP signals were kept at a 

constant 6 mm limit for both data collection setups (i.e. when approximately 21.6 kg was 

loaded on the bed and when about 109.3 kg was loaded on the bed/mattress system).  In 

figures 4-17 and 4-18, the low pass filtered load cell CoPx and CoPy signals are plotted 

separately for both data collection setups.  The overall offset for each data trace was 

arbitrarily set in order to easily visualize the decreasing amplitudes of the load cell 

signals.  For ease of comparison, the plotting colors representing the data collection for 

each different diameter of CoPx and CoPy signal are the same as in figure 4-16.  Finally, 

figure 4-19 contains data showing the expected diameter calculated for each 1 minute 

data segment using equation 4.7 as compared to the amplitudes calculated using the load 

cell CoP signals.  
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Figure 4-16.  Load cell CoP signals (left column) and video tracking results (right column) 

calculated during the second experiment where the 2.27 kg mass was rotated at increasingly 

smaller diameters.  Data collected when approximately 21.6 kg was loaded on the bed/mattress 

system are designated as “Low”, and data collected when about 109.3 kg was loaded on the 

bed/mattress system are designated as “High”.  In the figures, the load cell data has been low 

passed filtered; however, the video data has not been low passed filtered.   



52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-17.  Low pass filtered load cell CoPx (left) and CoPy (right) signals calculated when 

approximately 21.6 kg was loaded on the bed/mattress system.  Load cell signals calculated when 

the mass was displaced at a 24 cm diameter are plotted in cyan, results for a 12 cm diameter are 

plotted in black, results for the 6 cm diameter are shown in red, the 2 cm diameter results are 

plotted in green, and the 1 cm diameter results are blue.     
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Figure 4-18.  Low pass filtered load cell CoPx (left) and CoPy (right) signals calculated when 

approximately 109.3 kg was loaded on the bed/mattress system.  Load cell signals calculated 

when the mass was displaced at a 24 cm diameter are plotted in cyan, results for a 12 cm diameter 

are plotted in black, results for the 6 cm diameter are shown in red, the 2 cm diameter results are 

plotted in green, and the 1 cm diameter results are blue.      
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Figure 4-19.  CoP displacement amplitudes calculated for CoPx (black squares) and CoPy (green 

circles) from data collected when approximately 21.6 kg was loaded on the bed/mattress system 

(left) and from data collected when about 109.3 kg was loaded on the bed/mattress system (right).  

The solid black lines with black circles designate expected amplitudes calculated using equation 

4.7.       
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Discussion/Conclusion 

Experiment 1 

The load cell CoP signals (see figure 4-9 for an example) were able to generally 

recreate the circular motion of the 2.27 kg mass that was rotated on the bed/mattress 

system. However, the almost perfectly overlapping results seen in the video data (see 

figure 4-10) for each rotation speed were not recreated with the load cell CoP signal.  

This is likely due to the omission of centripetal forces that were not accounted for in the 

model described in equation 3.10.  The load cells are obviously affected by reaction 

forces that are needed to keep the device used to rotate the 2.27 kg mass stationary.  The 

overall sum of these forces (Fc) can be described using [64]: 

2

cF m r                                                         (4.8) 

where mΔ is the 2.27 kg mass, r is the distance of the mass from the center point that it is 

rotating about, and ω
2
 is the angular speed.  From equation 4.8 we see that with higher 

angular speeds (i.e. higher frequencies of rotation) the reaction forces would increase.  

This is consistent with the larger circular rotation paths predicted from the load cell CoP 

signals at higher angular speeds due to the increased forces detected by the load cells.  

While the load cell CoP signals were mostly circular in nature as expected, there 

were a few instances when the detected motion was somewhat oval (i.e. results seen in 

the “Load 0” subfigure of figure 4-9).  Since the corresponding video data does not 

exhibit a similar deviation, confirming the circular motion, it is assumed that either the 

angular speed that the 2.27 kg was rotating at was inconsistent during a single revolution, 

or that the bed/mattress system transferred the loading of the 2.27 kg mass to the load 

cells with different time delays for different load cells.   
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Two other specific irregularities in the load cell CoP signals were also found.  

Abnormalities were noticed in one data collection during the experiments with the coiled 

mattress where the springs are all connected (see figure 4-20 (A)) and in one iteration 

during the experiments using the mattress with an air-filled bladder (see figure 4-20 (C)). 

 
Figure 4-20. (A) Low pass filtered load cell CoP signal collected from the “low” speed 

experiment using the coiled mattress where the springs are all connected when the 2.27 kg mass 

was placed 12 cm from the center of the rotation platform and four ≈11 kg masses were placed on 

the bed/mattress system.  (B) Individual load cell data collected during the same experiment 

shown in (A).  The upper right (UR) load cell (in reference to an individual’s right while lying on 

the bed/mattress system on their back) is shown in blue, the upper left (UL) load cell is shown in 

black, the lower right (LR) load cell is shown in red, and the lower left (LL) load cell is shown in 

green.  (C) Low pass filtered load cell CoP signal collected from the “high” speed experiment 

using the mattress with an air-filled bladder when the 2.27 kg mass was placed 6 cm from the 

center of the rotation platform and ten ≈11 kg masses were placed on the bed/mattress system.  

(D)  Individual load cell data collected during the same experiment shown in (C).  The load cell 

traces are the same colors as mentioned in (B).    

A B 

C D 
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The individual load cell data used to calculate the load cell CoP signal for each of these 

cases are shown in figure 4-20 (B) and 4-20 (D) respectively.  In the case of the first 

anomaly (i.e. figure 4-20 (A-B)), there is a significant amount of high frequency “noise” 

seen for about 30 seconds in the data from the upper right load cell.  During data 

collection this load cell was adjacent to a wall that separates our lab from a community 

walkway through several wet labs.  It is possible that during data collection some kind of 

commotion on the other side of this wall could have led to high frequency vibrations 

transmitted to the upper right load cell.  The second anomaly (i.e. figure 4-20 (C-D)) 

appears to be caused by a single erroneous data point with a significant larger absolute 

magnitude than the rest of the points which seems to have negatively affected the CoP 

signal calculation especially after the signal was low pass filtered.  

 Several of the low passed CoP signals appear to have small “tails” that do not fit 

the overall circular motion.  It is suspected that these “tails” are the results of filter 

artifacts (see figure 4-21).  When reversing the load cell data from the individual load 

Figure 4-21.  (A) Load cell CoP signal that has been low pass filtered.  The first second worth of 

data is colored green and the last second worth of data is colored cyan.  (B)  The same load cell 

data as seen in (A); however, before estimating the CoP signal and low pass filtering, the load 

cell data was reversed (i.e. the first data point became the last and the last data point became the 

first).  The data that now represents the first second is colored green and the data that now 

represents the last second is colored cyan.   

A B 
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cells and recalculating the CoP signal (figure 4-21 (B)), the “tail” appears once again at 

the beginning of the new CoP signal despite the fact that this same data was previously at 

the end of the CoP signal (figure 4-21 (A)) and was initially unaffected (i.e. fit the overall 

circular motion).   

Amplitude calculations from the load cell CoP signals, while not the exact same 

as the expected amplitudes, exhibited similar decreasing trends with increasing loading 

on the bed mattress system (figures 4-11 through 4-14).  Also, consistent with equation 

4.8, increasingly larger amplitudes were estimated for increasing rotation speed.  In fact, 

the amplitude estimations for the lowest rotation speed were typically very similar to 

those predicted by equation 4.7.  It should be noted that when using equation 4.7 to 

predict the expected amplitudes, it was assumed that only the 2.27 kg mass was rotating 

(i.e. the only mass in the entire bed/mattress system that was changing its physical 

location).  In fact, several different parts of the device used to spin the 2.27 kg mass were 

moving during the experiment such as the circular plate that the mass was attached to and 

the belt used to connect this plate to the motor.  There were also two accelerometers 

attached to the plate during the experiment with unknown masses that were not accounted 

for.  It is assumed that the plate and belt are of homogenous makeup (despite a groove in 

the plate used to attach the 2.27 kg mass); therefore, leading to negligible net changes in 

overall mass displacement due to their rotations.  The mass of the two accelerometers are 

also assumed to be negligible compared to the 2.27 kg mass.  These factors contribute to 

the discrepancies between the predicted and actual trajectories.   

There was no significant difference detected between video data calculations and 

load cell calculations of the rotation frequencies in either the x or y direction.  When 
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looking at the differences between load cell and video estimated rotation speeds, there 

was a small effect (F10 = 1.98, p = 0.04) found in the y-direction for the interaction 

between the number of ≈11 kg masses placed on the bed/mattress system and the speed 

of rotation.  However, the overall accuracy of the load cell CoP signal’s ability to 

estimate rotation speed of the 2.27 kg mass (as compared to video ground truth) did not 

appear to be affected by mattress type, rotation speed, diameter of displacement, or the 

amount of mass loaded on the bed/mattress system.   

Experiment 2 

In the second experimental setup where the 2.27 kg mass was placed at differing 

diameters, the load cell CoP signal performed very well at detecting and distinguishing 

between the different diameters of displacement when the mattress and speed of rotation 

were held constant.  In particular, the amplitudes of CoP displacement calculated using 

the load cell CoP signals followed the expected amplitudes (see figure 4-19).  The 

difference between load cell CoP estimated amplitudes and the expected amplitudes 

decreased when the 2.27 kg mass was rotated at smaller diameters.  Per equation 4.8, 

extraneous forces - not accounted for in the load cell CoP signal calculations - should 

decrease with decreasing radial locations of the mass (r).  Therefore, the load cell CoP 

representation of the 2.27 kg’s rotation should become more accurate at smaller radii.  

The much lower diameters calculated when the bed/mattress system was loaded with the 

higher amount of mass (i.e. 109.3 kg) as compared to when the bed/mattress system was 

loaded with 21.6 kg are also consistent with equation 4.7.   

One area of concern, however, is illustrated in figure 4-22.  When 109.3 kg of 

mass is loaded on the bed/mattress system, the CoP signal in both the x and y direction 
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calculated for an actual diameter of 1 cm (bottom row) appears to have a less consistent 

amplitude of CoP displacement than those seen when only 21.6 kg was loaded on the 

bed/mattress system (top row).  This could possibly limit the ability of load cells to detect 

apneas in larger individuals (i.e. looking for decreased amplitudes of breathing in the load 

cell CoP signal).  

Another observation of note is the slight migration that is noticeable in the load 

cell CoP signals shown in figure 4-16.  As the amplitude of CoP displacement decreases, 

the centroid of the CoP signal appears to move mostly in the positive y direction but also 

Figure 4-22.  Load cell CoPx (left column) and CoPy (right column) signals collected when the 

2.27 kg mass was placed at a 1 cm diameter on the rotation platform.  The upper row contains 

data collected when approximately 21.6 kg was loaded on the bed/mattress system and the lower 

row contains data collected when about 109.3 kg was loaded on the bed/mattress system. 
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slightly in the negative x direction.  Data collection during the experiment started with the 

largest amplitude of displacement and proceeded to the smallest amplitude of 

displacement.  Therefore, it is theorized that there was some settling of the mass loaded 

on the memory foam mattress over the time course of the entire data collection for the 

experiment.  The migration of the CoP signals is mostly in the y-direction towards the 

location of the ≈11 kg masses loaded on the bed/mattress system indicating that the 

settling may have led to the load cells nearer the ≈11 kg masses supporting slightly more 

of the weight loaded on the system.  This would lead to an absolute change in the location 

of the load cell CoP signal that changes slightly over the time course of the entire 

experiment while not being evident during the considerably short 1 minute data 

collections. 

It is difficult to estimate the actual magnitude of displacement for the mass that is 

moved while an individual breathes.  The results presented in this section show that the 

load cell CoP signal is able to recreate the motion of a mass comparable to the amount of 

mass that is expected to be displaced during respiration [65] when the bed/mattress 

system is loaded with several differing amounts of mass comparable to the mass of an 

individual lying on the bed.  The amplitudes of CoP displacement estimated from the 

load cell CoP signals, especially those recorded in figure 4-22, are comparable to the 

respiration amplitudes found in the load cell CoP signals collected when actual 

individuals are lying on the bed mattress system (see figure 3-1 (C) and figure 3-3 (A-

C)).  Ultimately, these results suggest that the load cells could be utilized to track the 

mass displaced as an individual lying on the bed breathes and also used to detect changes 

in respiration amplitude which is critical in detecting apneic events.       
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Chapter 5: Breathing Detection 

Breathing Detection Validation Experiment 1: Different Lying Positions 

Motivation 

In order to test and validate the load cell system’s ability to detect the breathing of 

an individual lying on the bed, the respiration rates calculated using the load cell 

breathing signal for several healthy controls were compared to respiration rates found 

using clinically accepted signals and methods.  Respiration rates were compared for 

various lying positions in order to ascertain the effect of lying position on the load cell 

system’s ability to detect breathing.   

Subjects 

Twenty-four healthy subjects were recruited from a convenience sample to 

participate in the study.  Eleven subjects were female and 13 were male.  The average age 

was 30.5 ± 8.0 years, the average weight was 76.0 ± 16.8 kg, and the average BMI was 

24.5 ± 4.7 kg/m
2
.   
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Setup 

Each participant was outfitted with several sensors connected to a portable PSG 

monitor: respiration belts around their chest and abdomen, a nasal pressure cannula 

placed in their nostrils, and a finger pulse oximeter attached to their right index finger.  

For this experiment two portable PSG monitors were utilized.  Subjects were either 

outfitted with the Embletta
®
 system (Embla, Ontario, Canada) or the Alice PDx system 

(Phillips Respironics, USA).  The subjects also wore five different tri-axial 

accelerometers (PAM-RL, Phillips Respironics, OR, USA), one attached to each wrist 

and each ankle, and one placed around their abdomen.  One load cell (V1) was installed 

under each of the 4 supports of a full sized bed for a total of 4 load cells.  During the 

experiment load cell data was collected at 2000 Hz. 

Methods 

The study participants were instructed to lie on the bed and breathe normally 

without any extraneous movements except when explicitly instructed to move.  The 

experiment lasted 32 minutes during which time the participants were instructed using a 

prerecorded message to lie in 4 different positions.  The participants spent 8 minutes 

lying in each of the following positions: back, left side, right side, and stomach.  The 

interpretation of how to lie in each of these positions was left up to the discretion of each 

participant.  At the 2.5 and 5 minute mark after having assumed each of the 4 positions, 

the participants were prompted to shift the position of either their arm(s) or leg(s).  Once 

again, the particular movement of the arm or leg was left to the participant’s own 

interpretation.  The study protocol was approved by the Oregon Health & Science 

University Institutional Review Board. 
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Analysis 

Clinically Accepted Respiration Rate Calculation: 

The several medical devices that are used to monitor respiration output a 

respiration rate estimate.  The algorithms used to calculate the respiration rate are usually 

proprietary and the results vary in accuracy.  Therefore, the clinical standard for 

estimating an individual’s breathing rate is to simply count the number of breaths that 

occur during a specified amount of time such as 30 seconds or 1 minute.  I developed an 

algorithm that would estimate the temporal location of each breath in the flow signal (i.e. 

the breathing signal measured using the nasal pressure cannula placed in the participants’ 

nostrils).  Then following clinical convention, the algorithm’s estimate of each breath 

location was visually inspected by an independent investigator, and any detection errors 

were fixed manually.  

The algorithm detected each breath by first decimating the flow signal to a 

sampling rate of 5 Hz.  In order to attenuate any frequencies in the flow signal that were 

not associated with respiration, the decimated flow signal was then low pass filtered 

using an 8
th

 order Chebyshev Type II filter that was monotonic in the pass-band, had a 

stop-band edge frequency of 0.6 Hz, and attenuated the stop band by 40 dB.  The 

temporal location of each breath was estimated by locating the peaks and troughs in the 

low pass filtered flow signal that represent the transitions between inspiration and 

expiration.   

The trend of the decimated flow signal was estimated using a 4
th

 order low pass 

Chebyshev Type II filter that was monotonic in the pass-band, had a stop-band edge 

frequency of 0.05 Hz, and attenuated the stop band by 20 dB.  Peaks were detected by 
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finding the point of maximum value during each period that the decimated flow signal 

was greater than the trend.  Troughs were detected by finding the point of minimum value 

during each period that the decimated flow signal was less than the trend.  The peak and 

trough times were then multiplied by the same factor used to decimate the flow signal to 

5 Hz so that the locations of the each breath (i.e. the peaks and troughs) could be 

visualized on the original flow signal for inspection. An example of the implementation 

of the algorithm is shown in figure 5-1. 

 
Figure 5-1.  Illustration of the algorithm implemented to locate each breath in the flow signal 

from the nasal pressure cannula.  (A) Flow signal (blue) recorded during the experiment for one 

subject.   The 12 two minute segments of quiescence (3 for each lying position) that were used to 

estimate respiration rate are highlighted in green.  (B)  Close up visualization of the 30 seconds of 

data that are outlined with the black rectangle in ‘A’.  The flow signal that has been decimated to 

5 Hz is shown in blue.  The green trace represents the decimated flow signal after being low 

passed filtered.  The black line denotes the trend estimated for the decimated flow signal.  Peaks 

and troughs (black squares) were calculated as the local maximums and minimums in the green 

trace above and below the trend respectively.  The peaks and troughs represent points of 

transition between inspiration and expiration and vice versa for each breath.  The time points of 

these detected peaks and troughs on the original flow signal would then be presented to the 

independent investigator for any needed corrections.   

A 

B 
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The corrected peaks and troughs from the flow signal were used to estimate the 

respiration rate for 12 predefined 2-minute segments.  The 2-minute segments were 

chosen to include periods of quiescence between each movement.  In all there were three 

2-minute segments selected for each lying position (back, left side, right side, and 

stomach).  The respiration rate measured in breaths per minute for each segment was 

calculated by first finding the average time in seconds between serial peaks and between 

serial troughs.  This average time for each breath (seconds/breath) was then inverted 

(breaths/second) and multiplied by 60 (seconds/minute) in order to derive a respiration 

rate in breaths per minute.   

Load Cell Respiration Rate Calculation: 

 An algorithm was developed to automatically detect peaks and troughs in the 

load cell breathing signal that represent the transitions between inspiration and expiration.   

While these peaks and troughs are utilized to calculate the respiration rate, such as is 

done in this chapter, peaks and troughs detected using this algorithm are also used to 

estimate breathing amplitude from the load cell breathing signal - an important part of the 

automatic sleep apnea detection algorithm described in chapter 7.  There was some 

concern that a peak/trough detection method which found the maximums and minimums 

above or below a trend line would miss the peaks and troughs associated with breaths 

during an apnea or a hypopnea that had significantly attenuated amplitudes.    Therefore, 

the developed algorithm detects all local maximums and minimums in the load cell 

breathing signal and eliminates any extraneous peaks and troughs that are not 

representative of inspiration/expiration transitions. 
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In the algorithm, the data from each load cell was used to calculate the center of 

pressure along the head-to-toe axis of the bed as described in chapter 3.  The load cell 

center of pressure signal (CoPy) was then decimated to a sampling rate of 10 Hz.  Due to 

the nature of the experiment protocol, the temporal location of movements by the subject 

(e.g. arm movement, leg movement, rolling over, etc.) were known and subsequently 

removed.  The linear trend was then subtracted from the remaining load cell data using 

data from periods when the subject was lying quiescently.   With the significant 

movements and DC offset removed from CoPy, the signal was low pass filtered in order 

to attenuate any frequencies not associated with breathing (i.e. ‘resonant’ response of the 

bed described in chapter 4).  The filter used was a 6
th

 order low pass Chebyshev Type II 

filter that was monotonic in the pass-band, had a stop-band edge frequency of 0.76 Hz, 

and attenuated the stop band by 40 dB.  Initial locations of each breath in the load cell 

signal were estimated by finding all the local peaks and troughs. Experience from 

working with the load cell breathing signals suggested that most extra peak and trough 

pairs were of considerable lower amplitude (measured as the distance between the peak 

and trough) than both the preceding and following peak/trough pairs. Therefore, any 

peak/trough pair found to be significantly less than the smaller of the preceding or 

following peak/trough pairs was eliminated.  This procedure is illustrated in figure 5-2. 

The respiration rate for each segment was estimated in the same manner as 

utilized for the reference flow signal, using the average time between subsequent peaks 

and subsequent troughs.  Critical to the function of the algorithm for estimating the 

respiration rate for the load cell breathing signal was the determination of the threshold 

for deciding when to eliminate peak/trough pairs.  In other words, a peak/trough pair 



68 

 

 

would be removed if their amplitude is less than a specified percentage of the amplitude 

of the smaller of the previous or following peak/trough pair.  To do this, thresholds 

ranging from 0% to 95% were tested.  The respiration rates using the load cell breathing 

signal were estimated for all twelve segments for each subject using each of the different 

thresholds.  These results were compared to the corresponding respiration rates estimated 

 
 

Figure 5-2.  Illustration of the algorithm developed to detect individual breaths in the load cell 

breathing signal.  (A) Ninety seconds of load cell data collected from one subject.  The load cell 

center of pressure (CoPy) signal that has been decimated to a sampling rate of 10 Hz is shown in 

blue. The black trace represents the CoPy signal after having been low pass filtered.  (B) The first 

35 seconds of the low passed CoPy signal shown in ‘A’.  The local peaks and troughs detected in 

the CoPy signal are displayed as green circles and squares respectively.  The black circles mark 

extraneous peak/trough pairs that meet criteria for removal (i.e. significantly lower amplitude 

than the surrounding peak/trough pairs).  (C) The final peaks and troughs detected in the load cell 

breathing signal denoting the points of transition between inspiration and expiration for each 

breath.    

A 

B C 
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using the reference flow signal (see figure 5-3).  With the smallest average difference 

between the load cell and reference estimated respiration rates, a threshold of 45% was 

ultimately chosen.    

Respiration Rate Comparisons: 

Linear regression and R
2
 values were used to compare the respiration rate 

estimated using the load cell breathing signal (RRLC) to the respiration rates calculated 

from the flow signal (RRFLOW).  Agreement between the respiration rate measurements 

were also analyzed using Bland-Altman plots [63].  Finally, a 3-way repeated measures 

analysis of variance (ANOVA) was utilized to determine the effect of various factors on 

the agreement between the load cell measurement of respiration rate and the respiration 

rate estimated from the flow signal.  The three factors were: (1) respiration measurement 

type (i.e. load cell vs. flow signal), (2) lying position (i.e. back vs. left side vs. right side 

vs. stomach), and (3) the three different 2 minute segments used for each lying position 

(i.e. trial 1 vs. trial 2 vs. trial 3).  When analyzing the main effect of measurement type, 

the interaction of measurement type with lying position, and the interaction of 

 
 

 

Figure 5-3.  Average difference 

between RRFLOW and RRLC with 

corresponding 95% confidence 

intervals across all subjects and lying 

positions for various thresholds.  The 

threshold represents the point at which 

a peak/trough pair will be eliminated 

because its estimated amplitude is less 

than this percent of the smallest 

amplitude estimated from the 

preceding and following peak/trough 

pairs.      
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measurement type with lying position and trial, the Greenhouse-Geisser correction was 

used as these situations violated the assumption of sphericity.   

Results 

 The linear regression and R
2
 values for RRFLOW vs. RRLC separated out by lying 

position are shown in figure 5-4.  The Bland-Altman plots showing the agreement 

between RRFLOW and RRLC for each different lying position are shown in figure 5-5.  

There was no significant main effect of respiration measurement type (F1,23 = 0.043, p = 

0.837).  There were also no significant interactions found for respiration measurement 

type and trial (F2,46 = 1.182, p = 0.316), respiration measurement type and lying position 

(F1.566,36.012 = 3.486, p = 0.052), or respiration measurement type, lying position, and trial 

(F3.258,74.937 = 0.653, p = 0.596).    
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Figure 5-4.  Linear regression plots including R

2
 values for RRLC vs. RRFLOW while the subjects 

were lying on their (A) backs, (B) left sides, (C) right sides, and (D) stomachs.   
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Figure 5-5.  Bland-Altman plots for visualization of the agreement between the RRFLOW and RRLC 

while the subjects were lying on their (A) backs, (B) left sides, (C) right sides, and (D) stomachs.   
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Discussion/Conclusion 

 An accurate respiration rate was able to be estimated using the load cell breathing 

signal.  This suggests that the load cell system can reliably detect the breathing of an 

individual lying on the bed.  More importantly, these test results also suggest that the 

ability of the load cells to detect the breathing signal is independent of lying position.  

The respiration rate estimated by the load cell was consistently high for one individual 

especially while they were lying on their left and right sides (RRLC ≈ 10-13 breaths per 

minute vs. RRFLOW ≈ 6-8 breaths per minute).  It is unclear whether the load cell system 

struggled with the somewhat low respiration rate or if there was something specific about 

this subject that caused the inaccuracies.  The load cell breathing signal was used to 

accurately estimate respiration rate for other subjects/lying positions at similar low 

reference respiration rates so the issue may have been with some nuance on how the 

subject was breathing or possibly how they were lying on the bed.  Overall, the load cell 

system did well at predicting respiration rate.  

   An important step in identifying individual breaths in the load cell breathing 

signal is low pass filtering.  The higher frequencies in the load cell data associated with 

the heart beating and the resonance of the bed/mattress system need to be attenuated so 

that local peak/trough detection techniques can be utilized.  With the typical breathing 

rate being between about 8 and 24 breaths per minute
4
 or 0.13 and 0.4 Hz, setting the 

cutoff frequency for the low pass filter can be difficult.  The filter must be designed so as 

not to attenuate higher breathing rates (e.g. 24 breathes per minute or 0.4 Hz); however, 

                                                 
4
 For reasons unknown, some subjects exhibited breathing rates below 8 breaths per minute during these 

experiments.   
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this often results in extra peaks/troughs showing up in the load cell data of individuals 

with lower breathing rates.   

 Paalasmaa et al. attempted to use several different low-pass filters with different 

cutoff frequencies to account for this issue when using load cells to estimate breathing 

rate [58].  Since the respiration rate of the individual is unknown in advance, their 

approach was based on filtering the load cell signal with all the different filters and then 

for various time segments choosing the filtered signal that resulted in the least variability 

in the breathing amplitude (measured using the detected peaks/troughs).  Since the 

ultimate goal of this dissertation work is to detect sleep apnea where identifying periods 

of breathing amplitude change is critical, this approach is not ideal.  Instead, I have 

developed an approach that uses a single low pass filter with a stop-band edge frequency 

of 0.76 Hz and a -3 dB point of 0.54 Hz.  This filter effectively attenuates the ‘resonance’ 

response of the bed while not affecting any of the frequency content of the load cell CoP 

signal associated with the entire range of breathing rates expected from individuals lying 

on the bed/mattress system.  Extra peaks and troughs are accounted for by eliminating 

extraneous peak/trough pairs that are 45% less than the immediately surrounding 

peak/trough pairs. 

One area of concern for this approach is that during an apneic event the 

peaks/troughs associated with a single significantly attenuated breath could be 

eliminated.  However, an analysis of over 38,000 apnea/hypopnea events associated with 

oxygen desaturations by Otero et al. found the average apnea or hypopnea event duration 

to be greater than 20 seconds for individuals without sleep apnea and greater than 23 

seconds for patients with sleep apnea [66].  A breathing rate of approximately 3 breaths 
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per minute is unlikely; therefore, few apneic events that are a single breath in duration are 

expected.  The outlined approach for eliminating extraneous peaks/troughs in the load 

cell breathing signal has been shown to accurately detect the breathing of an individual 

lying on the bed and is not expected to interfere with the overall goal of detecting sleep 

apnea.       
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Breathing Detection Validation Experiment 2: Different Mattress Types 

Motivation 

While the previous experiment demonstrated that the load cell system can reliably 

estimate the respiration signal independent of lying position, these tests were carried out 

using a single innerspring mattress.  With the availability of several different mattress 

types for individuals to sleep on, it was also important to validate the ability of the load 

cell system to detect the breathing signal for several different commonly utilized mattress 

types.  Therefore, the respiration rates calculated using the load cell breathing signal for 

several healthy controls lying on four different mattress types were compared to 

respiration rates found using clinically accepted signals and methods.   

Subjects 

Seventeen healthy subjects were recruited from a convenience sample to 

participate in the study.  Eight subjects were female and 9 were male.  The average age 

was 33.1 ± 13.1 years, the average weight was 76.9 ± 17.5 kg, and the average BMI was 

26.4 ± 4.8 kg/m
2
.   

Setup 

Each participant was outfitted with several sensors connected to the Embletta
®
 

portable PSG monitor (Embla, Ontario, Canada): respiration belts around their chest and 

abdomen and a nasal pressure cannula placed in their nostrils.   A WristOx2
TM

 (Nonin 

Medical, Inc., MN, USA) pulse oximeter was placed on each participant’s left wrist with 

the sensor attached to their left index finger.  The subjects also wore five different tri-

axial accelerometers (PAM-RL, Phillips Respironics, OR, USA), one attached to each 
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wrist and each ankle, and one placed around their abdomen.  One load cell (V3) was 

installed under each of the 4 supports of a full sized metal bed frame for a total of 4 load 

cells.  During the experiment load cell data was collected at 500 Hz.  The different 

mattresses that were tested were: 1.) a mattress with an air-filled bladder with adjustable 

air pressure encased in foam (similar to a Sleep Number
®
 mattress), 2.) a mattress made 

of memory foam (similar to a Tempur-Pedic
®
 mattress), 3.) a coil mattress with 

independent springs (i.e. springs that are not connected), 4.) and a coiled mattress with 

dependent springs (i.e. all the springs are connected). 

Methods 

The following protocol was implemented for each study participant and repeated 

for each different mattress type.  The study participants were instructed to lie on the bed 

and breathe normally without any extraneous movements except when explicitly 

instructed to move.  The experiment for each mattress type lasted 10 minutes during 

which time the participants were instructed using a prerecorded message to lie in 4 

different positions.  The participants spent 2.5 minutes lying in each of the following 

positions: back, left side, right side, and stomach.  The interpretation of how to lie in each 

of these positions was left up to the discretion of each participant.  The study protocol 

was approved by the Oregon Health & Science University Institutional Review Board. 

Analysis 

 Two minute segments of data were selected for each subject while they lay 

quiescently on their back, left side, right side, and stomach for each of the four mattress 

types.  A total of 16 two minute segments were selected for each subject (i.e. 4 lying 
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position   4 mattress types).  The average respiration rate for each segment was 

estimated using the flow signal from the nasal pressure cannula (i.e. RRFLOW) and the load 

cell breathing signal (i.e. RRLC) following the same methods as described in the previous 

section (i.e. “Breathing Detection Validation Experiment 1: Different Lying Positions”).  

Similar to the last section agreement between RRLC and RRFLOW was analyzed 

using linear regression, R
2
 values, and Bland-Altman plots [63].  A 3-way repeated 

measures ANOVA was again utilized to determine the effect of various factors on the 

agreement between RRLC and RRFLOW.  The three factors for this experiment were: (1) 

respiration measurement type (i.e. load cell vs. flow signal), (2) lying position (i.e. back 

vs. left side vs. right side vs. stomach), and (3) the mattress type.  When analyzing the 

main effect of measurement type and the interaction of measurement type with lying 

position and mattress type, the Greenhouse-Geisser correction was used as these 

situations violated the assumption of sphericity.   

Results 

 The linear regression and R
2
 values for RRLC vs. RRFLOW separated out by mattress 

type are shown in figure 5-6.  The Bland-Altman plots showing the agreement between 

RRFLOW and RRLC for each different mattress type are contained in figure 5-7.  There was 

a moderately significant main effect found for respiration measurement type (F1,16 = 

4.756, p = 0.044).  There were also a significant interaction found for respiration 

measurement type and mattress type (F3,48 = 5.338, p = 0.003).  The interaction between 

respiration measurement type and lying position was not significant (F3,48 = 1.395, p = 

0.256).  The interaction between all three factors was also found to not be significant 

(F4.404,70.457 = 1.331, p = 0.265).   
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In order to explore the cause of the main effect found for the respiration 

measurement type and its interaction with mattress type, paired t-tests were used to test 

the difference between both measurement types for each mattress type.  For the mattress 

with an air-filled bladder, it was found that on average RRFLOW was 0.264 more than 

RRLC, which was significant (t67 = 4.6286, p << 0.001 with a 95% confidence interval of 

[0.1503 0.3782]).  The differences between RRFLOW and RRLC for the rest of the mattress 

 
Figure 5-6.  Linear regression plots including R

2
 values for RRLC vs. RRFLOW while the subjects 

were lying on the four different mattress types: (A) the mattress with an air-filled bladder with 

adjustable air pressure encased in foam (similar to a Sleep Number
®
 mattress), (B) the mattress 

made of memory foam (similar to a Tempur-Pedic
®
 mattress), (C) the coil mattress with 

independent springs (i.e. springs that are not connected), and (D) the coiled mattress where the 

springs are all connected.    

A 

C D 

B 
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types were not significant.  For the memory foam mattress RRFLOW was on average 0.050 

higher than RRLC ((t67 = 1.1938, p = 0.2368) with a 95% confidence interval of [-0.0333 

0.1323]).  RRFLOW from the data collected for the coil mattress with independent springs 

was on average 0.050 greater than RRLC ((t67 = 0.8265, p = 0.4114) with a 95% 

confidence interval of   [-0.0704 0.1699]). Finally, the results from the coiled mattress 

where the springs are all connected showed an average RRFLOW that was 0.002 higher 

than RRLC ((t67 = 0.0484, p = 0.9615) with a 95% confidence interval of   [-0.0744 

0.0781]). 

 
Figure 5-7.  Bland-Altman plots for visualization of the agreement between the RRFLOW and RRLC 

while the subjects were lying on the four different mattress types: (A) the mattress with an air-

filled bladder with adjustable air pressure encased in foam (similar to a Sleep Number
®
 mattress), 

(B) the mattress made of memory foam (similar to a Tempur-Pedic
®
 mattress), (C) the coil 

mattress with independent springs (i.e. springs that are not connected), and (D) the coiled 

mattress where the springs are all connected.    

 

A 
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Discussion/Conclusion 

 Overall data from the load cell system was able to be used to accurately estimate 

the breathing rate for individuals lying on the bed/mattress independent of mattress type.  

There was a small difference between RRFLOW and RRLC when using the mattress with an 

air-filled bladder with adjustable air pressure encased in foam.  The Bland-Altman plot in 

figure 5-7 shows that for this mattress type RRFLOW minus RRLC is skewed in the positive 

direction.  This, along with three possible outliers, likely led to the small bias between 

RRFLOW and RRLC.  This difference of 0.264 represents only a 1.9% error when compared 

to the average breathing rate for all the subjects during the experiments for this mattress 

(14.05 breaths per minute).  Furthermore, the high R
2
 value and good agreement seen in 

figure 5-6 and figure 5-7 indicate that the load cell system is able to reliably detect the 

breathing signal for this mattress setup despite the slight offset between RRFLOW and 

RRLC.  
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Chapter 6: Movement Detection and Removal 

Motivation 

It has been shown that the load cell system installed under the supports of the bed 

is sensitive enough to detect small movements of mass such as those associated with an 

individual’s respiration while lying on the bed/mattress system.  From empirical 

evidence, I have observed that the movements associated with breathing that are detected 

by the load cell system are orders of magnitude smaller then movements such as the 

individual rolling over or changing lying position (see figure 6-1 (A)).  These larger 

movements completely wash out the load cell breathing signal (i.e. CoP) and can affect 

analysis of the CoP signal near such large movements.  For instance, low pass filters 

designed to remove the bed resonance (i.e. the 2-4 Hz impulse response believed to result 

from the heart beating) can result in significant artifact introduced into the CoP signal 

near large movements due to the impulse response of the filter, and any frequency 

analysis of the CoP signal will be altered in windowed regions that happen to include 

periods of significant movement.  Therefore, in order to achieve the end goal of my 

dissertation which is to automatically analyze a complete night of load cell CoP data in 

order to automatically detect the presence of sleep apnea, a method to first remove any 

significant movements from the data is needed.   
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     Brink et al. and Chung et al. have used load cells to detect movement [44, 45]; 

however, the ability of these approaches to detect individual movements was not 

systematically validated.  Previous work in our lab has also focused on detecting 

movements of an individual lying on a bed/mattress system using the assumption that 

periods of movement would have much more variance than segments of non-movement 

[43, 46].  This work utilized the variance of windowed segments of data from each 

individual load cell weighted by their proximity to the estimated center of mass of the 

individual and then summed together in order to determine if movement was occurring or 

not.  A supervised learning approach was used to determine which values of the weighted 

and summed load cell variance features were associated with movement and non-

movement.  Unfortunately, the generalizability of this supervised learning approach is 

uncertain.  

I propose to sum all the outputs of the load cells before calculating the variance as 

opposed to calculating the variance from each individual load cell signal.  This approach 

would reduce much of the variance due to the breathing signal detected by the individual 

load cells.   The breathing signal detected by each load cell at the head of the bed is 

expected to be about 180° out phase with the load cells at the foot of the bed.  Therefore, 

summing them all together would likely attenuate much of the breathing signal.  In this 

chapter, I present a systematic approach to determining a generalizable (i.e. able to be 

used for load cell data collected while any individual sleeps on the bed/mattress system) 

threshold of variance in order to distinguish between periods of quiescence and 

movement using a slightly altered approach already developed in our lab [43, 46].      
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Subjects 

The subjects recruited for this experiment were the same as those recruited for the 

“Breathing Detection Validation Experiment 1: Different Lying Positions” experiment in 

chapter 5. 

Setup 

The setup for this experiment was the same as the setup for the “Breathing 

Detection Validation Experiment 1: Different Lying Positions” experiment in chapter 5. 

Methods 

The methods for this experiment were the same as those used for the “Breathing 

Detection Validation Experiment 1: Different Lying Positions” experiment in chapter 5. 

Analysis 

Ground truth movement time periods were determined using data from the tri-

axial accelerometers.  The output from all 5 accelerometers was combined into a single 

signal (ACCsum) by first combining the xyz components for each accelerometer and then 

summing these results across all 5 accelerometers.  Cross-correlation analysis was then 

used to time align the accelerometer output to the load cell data.  Finally, the ACCsum 

signal was visually inspected and the beginning and ending points of all 11 movements 

from the experiment protocol (i.e. 3 roll overs and 8 arm and/or leg shifts) were annotated 

for each of the 24 subjects. 

Periods of movement in the load cell data from each of the 24 subjects were 

detected by first summing together the output from each load cell (LCsum).   LCsum was 

then decimated to a sampling rate of 40 Hz in order to match the sampling rate of the 
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accelerometers and the variance was calculated for N overlapping windows of length L 

(seconds) from this signal.  Using a threshold specified as n times the median variance 

calculated from all the LCsum segments of length L, the overlapping windowed segments 

containing movement were detected.  Finally, overall movement periods in the load cell 

signal were determined by coalescing windows of data determined to be movement that 

either overlapped or were within 10 seconds of each other.  The 10 second cutoff for the 

allowable time between movement windows was chosen because by definition an apnea 

must be at least 10 seconds in length [3].   

In order to develop a generalizable solution for detecting movements in the load 

cell data based upon the approach previously used in our lab [43, 46], an optimal window 

length L and threshold n (i.e. n times the median variance) needed to be determined.  

Therefore, ROC curves were generated for each of the 24 subjects using several different 

thresholds (i.e. n) ranging from 1 to 5000 times the median variance.  A separate ROC 

curve was generated for each subject for 10 different window lengths (i.e. L) ranging 

from 0.5 to 5 seconds.  In order to produce the ROC curves, the sensitivity or true 

positive rate (TPR) for each threshold/window length combination was calculated using: 

TP
TPR

P
                                                        (6.1)  

where TP is the number of points determined as movement in LCsum  that correspond with 

points designated as movement from ACCsum and P is the total number of movements 

labeled in ACCsum.  The false positive rate (FPR) or 1 – specificity was also calculated 

using: 

    
( )

FP
FPR

FP TN



                                                 (6.2) 
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where FP is the number of non-movement points in ACCsum detected as movement in 

LCsum, and TN is the number of non-movement points in ACCsum correctly deemed as 

non-movement  in LCsum. 

The effectiveness of each window length (L) was assessed by estimating the area 

under each subjects’ ROC curves (AUC) for each of the 10 different window lengths.  

The AUC values for each window length were then averaged across the 24 subjects, and 

analysis of variance was utilized to compare the mean AUC values in order to choose the 

window length L. Finally, the ROC curves for the chosen window length L were averaged 

across all the subjects, and the threshold for separating movement from non-movement 

windows was chosen as the value (i.e. n times the median variance) that was closest 

(Euclidean distance) to the FPR = 0 and TPR = 1 point.   

Results 

Figure 6-1 contains an example of how the variances calculated from LCsum are 

utilized to detect movements in the load cell data.  The AUCs estimated for each subject 

and window length L are shown in table 6-1 along the mean and standard deviation 

calculated for each window length.  Window length did have an effect on the estimated 

AUCs (F9,230 = 8.27, p << 0.01).  Further analysis using multiple comparison techniques 

revealed that the average AUC estimated for L = 0.5 seconds was significantly less than 

the other 9 window lengths.  It was also found that only the mean AUCs for L = 2.5 

seconds and L = 3 seconds were significantly higher than the mean AUC for L = 1 second 

which had the second lowest average.  Ultimately, the window length chosen was L = 2.5 

seconds as it had a slightly larger average AUC (0.9927 ± 0.0061).  Consequently, the 

threshold chosen (i.e. n times the median variance) was 14 as shown in figure 6-2.     
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Figure 6-1.  (A) Load cell CoP signal in the y-direction (head-to-foot axis of the bed) for one 

subject showing examples of large movements (i.e. rolling over) and smaller movements (i.e. 

moving an arm or a leg).  (B) Load cell signal from the same subject where the data from all the 

load cells under the bed have been summed together.  (C) Distribution of the variances calculated 

using the summed load cell data and a 2.5 second window.  The median of all the variances is 

shown with the cyan line, and the variances considered to represent movement (i.e. 14 times the 

median variance) are shown in green.   The data has been log transformed for visual purposes. 

(D) Summed load cell signal (black) with detected movements (green).  Of note is the small 

movement detected at the very beginning of the signal that was not part of any prescribed 

movement and would therefore have been considered to be a false positive.   
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Table 6-1 

Area Under Curve (AUC) calculated for each subject. 

 Window  Length 

Subject 0.5 (s) 1 (s) 1.5 (s) 2 (s) 2.5 (s) 3 (s) 3.5 (s) 4 (s) 4.5 (s) 5 (s) 

1 0.9936 0.9939 0.9932 0.9929 0.9936 0.9939 0.9930 0.9919 0.9907 0.9890 

2 0.9512 0.9776 0.9839 0.9862 0.9883 0.9888 0.9877 0.9857 0.9833 0.9811 

3 0.9788 0.9978 0.9985 0.9977 0.9964 0.9945 0.9924 0.9901 0.9878 0.9855 

4 0.8991 0.9476 0.9794 0.9902 0.9934 0.9933 0.9921 0.9900 0.9875 0.9846 

5 0.8474 0.8870 0.9292 0.9703 0.9946 0.9958 0.9949 0.9936 0.9920 0.9903 

6 0.9618 0.9604 0.9649 0.9672 0.9677 0.9686 0.9676 0.9674 0.9648 0.9637 

7 0.9912 0.9969 0.9980 0.9982 0.9977 0.9966 0.9952 0.9936 0.9912 0.9887 

8 0.9884 0.9982 0.9983 0.9975 0.9963 0.9947 0.9929 0.9909 0.9887 0.9865 

9 0.9886 0.9954 0.9967 0.9964 0.9957 0.9949 0.9938 0.9926 0.9913 0.9894 

10 0.9306 0.9533 0.9784 0.9924 0.9933 0.9933 0.9927 0.9915 0.9898 0.9878 

11 0.9552 0.9759 0.9815 0.9853 0.9897 0.9927 0.9935 0.9923 0.9911 0.9897 

12 0.9799 0.9926 0.9977 0.9978 0.9974 0.9968 0.9957 0.9944 0.9930 0.9917 

13 0.9216 0.9467 0.9735 0.9869 0.9910 0.9918 0.9915 0.9900 0.9890 0.9863 

14 0.9509 0.9670 0.9817 0.9942 0.9971 0.9963 0.9949 0.9934 0.9915 0.9896 

15 0.9932 0.9990 0.9987 0.9980 0.9969 0.9956 0.9942 0.9923 0.9906 0.9884 

16 0.9771 0.9843 0.9908 0.9921 0.9933 0.9934 0.9925 0.9912 0.9897 0.9880 

17 0.9917 0.9944 0.9950 0.9944 0.9955 0.9947 0.9934 0.9919 0.9902 0.9885 

18 0.9954 0.9963 0.9961 0.9958 0.9950 0.9942 0.9933 0.9920 0.9907 0.9884 

19 0.9813 0.9886 0.9924 0.9933 0.9928 0.9930 0.9925 0.9915 0.9902 0.9886 

20 0.9818 0.9953 0.9971 0.9973 0.9966 0.9955 0.9948 0.9939 0.9928 0.9916 

21 0.9622 0.9747 0.9848 0.9929 0.9957 0.9947 0.9933 0.9919 0.9904 0.9882 

22 0.9806 0.9885 0.9868 0.9866 0.9855 0.9840 0.9826 0.9812 0.9800 0.9785 

23 0.9759 0.9854 0.9897 0.9925 0.9936 0.9937 0.9920 0.9901 0.9878 0.9857 

24 0.9368 0.9706 0.9883 0.9889 0.9873 0.9858 0.9833 0.9815 0.9806 0.9801 

 0.9631 0.9778 0.9864 0.9910 0.9927 0.9924 0.9912 0.9898 0.9881 0.9862 

± 0.0347 0.0249 0.0148 0.0078 0.0061 0.0058 0.0059 0.0057 0.0059 0.0057 
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Figure 6-2.  ROC curve for a window length of L = 2.5 seconds averaged across all 24 subjects 

(AUC = 0.9927 ± 0.0061).  The 95% confidence intervals for the FPRate values and TPRate values 

are shown in green and blue respectively.  The chosen threshold (i.e. 14 times the median 

variance) is designated with a yellow square.         
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Discussion/Conclusion 

Other groups, including researchers from our lab, have utilized load cells to detect 

the movement of individuals lying on the bed/mattress system [43-49].  However, the 

techniques used were either not clearly outlined or the eventual thresholds used for the 

parameters to distinguish movement from non-movement were not-expressly mentioned 

or are not generalizable.  Therefore, building upon an approach previously designed in 

our lab, I developed a method for detecting movement based on the variance of the load 

cell data.  I also systematically tested this method using a data set with known movement 

times in order to determine the optimal threshold (i.e. 14 times the median variance) and 

window length (i.e. L = 2.5 seconds) needed for the movement detection algorithm to 

function.   

The development of the data set used to test the movement detection algorithm 

and determine the threshold and window length had a couple limitations.  There was 

likely some error introduced by human bias when the ground truth movements were 

annotated.  A concerted effort was also made to only annotate movements at the time 

periods when a movement was expected per the experiment protocol so there were some 

extraneous movements in the data set that were not annotated.  It should also be 

mentioned that while the technique was tested using data sampled at 40 Hz, it is expected 

to function well for other sampling rates as the window length is dependent upon time 

duration in seconds and not the number of data points.     

The developed movement detection algorithm did very well as is illustrated by the 

AUCs in table 6-1.  In theory, since the threshold is individualized (i.e. 14 times the 

median variance estimated from each individual’s own data) and not based upon an 
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absolute magnitude, the threshold should be generalizable across different individuals. 

However, this theory will need to be tested using a load cell data set with known 

movement time points that is separate from the data set used herein to determine the 

needed window length and threshold.    
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Chapter 7: Sleep Apnea Detection 

Sleep Apnea Detection: Visual Scoring 

Acknowledgement 

 The work presented in this section, with edits, was originally published in the 

Journal of Sleep Research (2013). 

 

Motivation 

The current clinical standard for diagnosing sleep apnea is an overnight sleep test 

or PSG test.  During an overnight PSG test, several sensors are used to monitor the 

patient’s respiration (e.g. nasal pressure, oral-nasal thermistor, chest belt, and abdominal 

belt) and blood oxygen levels (e.g. pulse oximeter).  In order to ascertain the presence or 

severity of sleep apnea, a sleep technologist typically uses special software to view the 

signals collected during the PSG test.  With 30 seconds to a couple of minutes worth of 

PSG signals displayed on the screen at a time, the technologist scrolls through the entire 

night of data and manually annotates each instance of an apneic event by looking for 

amplitude attenuations in the PSG breathing signals and blood oxygen desaturations.  

Beattie, Z. T., Hayes, T. L., Guilleminault, C. and Hagen, C. C. (2013), Accurate 

scoring of the apnea–hypopnea index using a simple non-contact breathing sensor. 

Journal of Sleep Research, 22: 356–362. doi: 10.1111/jsr.12023 
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This type of PSG analysis is frequently referred to as “visually scoring”.  The severity of 

sleep apnea is determined by the AHI
5
 which is simply the number of apneic and 

hypopneic events divided by the total time in hours that the patient was asleep.   

In order to initially test the efficacy of using the load cells to detect sleep apnea, I 

designed an experiment that yields comparable results as the standard test for sleep 

apnea.  The following describes an experiment where I compared the traditional visual 

scoring of several overnight PSG tests to the visual scoring of the same data with 

replacement of all PSG breathing signals with load cell breathing signals.  

Subjects 

Forty-five patients from the Pacific Sleep Program sleep lab gave informed 

written consent to the study (OHSU Institutional Review Board eIRB 6308). 

Setup 

The load cell data for this study was collected from load cells that were placed 

under each of the 5 supports of a bed at the Pacific Sleep Program sleep lab (Portland, 

OR, USA).  The load cell data was collected simultaneously with the overnight PSG data 

for each patient during their regularly scheduled sleep test.   

Methods 

PSG data was collected using Datalab, Rembrandt 9.0 (Embla 2008) and initially 

scored in accordance with current American Academy of Sleep Medicine (AASM) 

guidelines using Analysis Manager, Rembrandt 9.0 (Embla 2008).  An experienced 

polysomnographic technologist used AASM rules for the scoring of AASM defined 

                                                 
5
 While typically not displayed, the units for index values such as the apnea-hypopnea index (AHI) or the 

respiratory disturbance index (RDI) are the number of events per hour. 
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Central apnea, Mixed apnea, Obstructive apnea, and Hypopnea [3].  The sum of scored 

apneas and hypopneas were divided by total sleep time to generate the AHI-PSG.  Apneas 

(including central, mixed, obstructive) were scored when there was an amplitude 

reduction of 90% or greater for at least 10 seconds in the PSG breathing signals.  Apneas 

were labeled as central when the amplitude reduction was associated with a lack of 

breathing effort as determined using the chest and abdomen belt and obstructive when 

effort was determined to still be present.  Mixed apneas were scored when respiratory 

effort was initially absent but determined to be present at the end of the event.  For 

determining hypopneas, an amplitude reduction of 30% in the PSG breathing signal that 

lasted at least 10 seconds and was associated with at least a 4% oxygen desaturation was 

required.  In addition to scoring apneic events, the technologist also scored Respiratory 

Effort Related Arousals (RERA) defined by discernible reductions in airflow associated 

with arousal (i.e. patient awakenings) that did not meet criteria for other events.  The total 

of these events were combined with the sum of apneas and hypopneas and divided by 

total sleep time to obtain the Respiratory Disturbance Index (RDI-PSG). 

Apnea patients were then classified by their AHI as having negative (AHI < 5), 

mild (5 ≤ AHI < 15), or moderate-severe (AHI ≥ 15) apnea based on their PSG results. 

Fourteen records were selected for the negative group, 16 records were selected for the 

mild group, and 15 records were selected for the moderate-severe group (45 patients in 

total).  The data for all 45 records were anonymized and converted to European Data 

Format (EDF).  All PSG signal channels related to airflow or respiratory effort from each 

PSG record (nasal pressure, oral-nasal thermistor, chest belt, and abdominal belt) were 

replaced with load cell breathing signals.  The load cell breathing signals were combined 
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with the usual PSG record (e.g. EEG, EKG, blood oxygenation, etc.) to create a load cell 

scoring montage (LC montage) (see figure 7-1 [59]).  The load cell breathing signals 

included a band passed CoP signal in the Y direction (i.e. long axis if the bed) and an “all 

sum
6
” signal that consisted of the band pass filtered result of simply summing the output 

of all the load cells together.  The band pass filter had a pass band of 0.077 Hz to 1 Hz.     

The same scorer subsequently scored blindly the integrated load cell record at 

least 5 months after scoring the initial PSG, using Analysis Manager Rembrandt 9.0 

(Embla 2008).   Standard AASM respiratory event scoring rules for routine scoring were 

applied for duration of event and percentage reduction in the load cell (LC) tracing 

excursion.  A 30% to 90% reduction in the LC excursion for greater than 10 seconds 

associated with a 4% desaturation was scored as obstructive hypopnea (OH-LC).  A 

reduction of the LC excursion of 90% or greater for more than 10 seconds was scored as 

obstructive apnea (OA-LC).  Absence of LC excursion for greater than 10 seconds 

duration was scored as central apnea (CA-LC).  Load cell examples of actual respiratory 

events from each category (OH-LC, OA-LC, & CA-LC) scored by the technologist are 

shown in figure 7-2 (originally published in [59]). AHI-LC was determined from the 

number of events (OH-LC, OA-LC, and CA-LC) per hour of sleep.  Discernible 

reductions in the load cell breathing signal excursion for 10 seconds or greater duration 

associated with an EEG arousal (i.e. awakening) that did not meet criteria for other events 

were scored as a RERA (RERA-LC). The number of RERA-LC was summed with the 

combined number of OH-LC, OA-LC, and CA-LC, and this overall total was divided by 

total sleep time in order to calculate the RDI-LC. 

                                                 
6
 The load cell “all sum” signal was included in the LC montage as a visual indication of gross movement 

picked up by the combined load cell signals.   
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Figure 7-1.  Screen shots comparing the scoring montages used for scoring with typical PSG 

signals (upper) and with load cell breathing signals (lower).  The screen shots were taken from 

the same 120 seconds for both scoring results from one patient.  The nasal pressure, oral-nasal 

thermistor, chest belt, and abdominal belt are colored purple in the PSG scoring montage (upper), 

and the load cell breathing signals are similarly colored purple in the load cell scoring montage 

(lower).   The load cell tracing “All_Sum_HP” is the summation of all the load cells, and the 

“COP_Y_HP” is the center of pressure load cell signal.  The purple, horizontal boxes in both 

cases indicate the locations of scored respiratory events.   
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Analysis 

Differences between AHI severity group characteristics (specifically age, BMI, 

and sex) were examined using a multivariate analysis of variance (MANOVA) with the 

AHI group as the fixed effect.  The dependence of the LC scoring accuracy on BMI was 

examined using linear regression and a t statistic to test whether resulting slope was 

different from 0.  The log transformed absolute difference between PSG scoring and load 

cell scoring for both AHI and RDI (i.e. scoring error) was regressed against BMI for this 

analysis. Comparison of the traditional PSG to LC scoring was analyzed using linear 

correlation, a paired t-test, and 95% confidence intervals for the difference between the 

two scorings.  Finally, the accuracy of scoring the AHI severity of patients using the load 

cell montage was assessed using sensitivity and specificity.   

 
Figure 7-2. Segments of the load cell breathing signal from a single patient illustrating the 

scoring of respiratory events using the load cell trace.  (Upper) A scored hypopnea showing a 

slight reduction in the excursion of the load cell signal.  (Middle) A scored obstructive apnea 

showing a major reduction in the excursion of the load cells signal.  However, some LC 

excursion appears to still be present suggesting breathing effort may still exist.  (Lower) A scored 

central apnea showing a complete absence of excursion in the load cell signal.   
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Results 

The overall demographic information and the apnea class specific demographics 

are contained in table 7-1.  There were significant differences in demographics between 

the groups (p = 0.02). Post-hoc tests revealed that this was due primarily to the younger 

age of the low AHI group compared to the high AHI group.  

 The intra-class correlation coefficient (ICC) for AHI was 0.97 with a 95% 

confidence interval of [0.95 0.98]; the ICC for RDI was 0.85 with a 95% confidence 

interval of [0.66 0.93].  The AHI estimated by PSG was on average only 0.4 larger than 

that estimated using load cells, which was not significant (t44 = 0.37, p = 0.71 with a 95% 

confidence interval of [-1.67 2.42]).  In contrast, the RDI estimated from the LC montage 

was on average 7.7 greater than that obtained using the PSG montage; this difference was 

significant (t44 = -3.89, p <0.001) with a 95% confidence interval of [-11.7 -3.70]. 

Although there were differences in the absolute estimates of AHI and RDI, the PSG and 

LC scoring were strongly correlated for both AHI and RDI (Pearson’s correlation 

coefficient 0.97 and 0.89 respectively).  Least square linear fits for AHI and RDI 

comparing PSG and LC scoring are shown in figure 7-3.  Agreement between the two 

scoring modalities is shown using Bland-Altman plots in figure 7-4.  Both figures were 

originally published in [59].  

Table 7-1. 

Demographic information for all patients.  Values are reported as mean ± standard 

deviation. 

 Gender (M/F) Age (years) BMI (kg/m2) 

AHI < 5 6/8 43.9 ± 13.6* 29.8 ± 7.1 
5 ≤ AHI <15 10/6 52.4 ± 13.2 33.4 ± 6.5 
AHI ≥ 15 11/4 56.1 ± 13.8* 33.7 ± 6.0 

Overall 27/18 51.0 ± 14.2 32.3 ± 6.6 
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Figure 7-3. Linear least squares regression plots for AHI-LC vs. AHI-PSG and RDI-LC vs. RDI-

PSG.    

 

 

Figure 7-4. Bland-Altman plots for visualization of the agreement between the PSG and load cell 

scoring of AHI and RDI.   
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The sensitivities and specificities of AHI-LC to detect sleep apnea for various AHI 

cutoffs are contained in table 7-2.  The positive likelihood ratios for each AHI cutoff are 

also presented in table 7-2. Our ability to detect severe apnea in particular was very high, 

with 100% sensitivity and 97% specificity, and with a positive likelihood ratio of 33. 

Discussion/Conclusion 

This study showed that using unobtrusive load cells under the bed to replace the 

four standard respiratory leads for polysomnography provides an accurate measure of 

AHI. The AHI using load cell respiration tracings was highly correlated with the standard 

montage.  Finally, the load cell AHI was also highly predictive of the presence of sleep 

apnea particularly for AHIs greater than 15.  Our success at detecting mild apnea is 

encouraging, and we believe load cell performance will improve with our future work to 

clarify how specific features in the load cell excursion correlate with various types of 

respiratory events.    

In order to control for inter-rater variability, we chose to have both the standard 

PSG records and the LC montages scored by the same registered polysomnographic 

technologist.  Thus, each PSG record was scored twice by the same individual.  At least 

five months elapsed between the original scoring of the standard PSG record and the 

anonymized scoring of the LC montage.  Consequently, between the 1
st
 and 2

nd
 scoring of 

each record the technologist scored over 300 PSG records, and prior to scoring the LC 

Table 7-2. 

Sensitivities, specificities, and positive likelihood ratios (LR+) of using AHI-LC to detect 

sleep apnea for several AHI cutoffs. 

 Sensitivity Specificity LR+ 

AHI ≥ 5 0.84 0.79 4 
AHI ≥ 15 0.87 0.97 29 
AHI ≥ 30 1.00 0.97 33 
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montage the records were anonymized, further mitigating any chance that the 

technologist would be influenced by recollection of the 1
st
 scoring.  Thus, there could be 

no recall of raw data appearance or blinded record labels.   

As expected, AHI-LC did very well compared to AHI-PSG.  We were not 

surprised to find that load cell scoring tended to be less specific when scoring RERA 

compared to hypopnea and apnea.  RERA scoring has been shown to have lower inter-

scorer reliability, to be less sensitive when based on nasal pressure and respiratory 

inductance plethysmography [5], and is best performed with esophageal manometry, 

which was not used in this protocol.  We are encouraged by our success at detecting 

respiratory effort related arousal.  Though improvement is needed, our further work 

analyzing feature changes specific to flow reductions with arousal and RERA may permit 

a non-invasive method for detecting patients with upper airway resistance syndrome that 

have historically required more invasive tests with esophageal manometry [67]. There has 

been great interest in finding non-invasive ways to measure RERAs and flow limitations.  

Other groups have worked on novel methods for identifying respiratory effort [68].  Flow 

limitation during total sleep time is also of interest as flow limitation may impair sleep 

during each breath rather than with distinct scorable events [67, 69].   

The load cell breathing signal comes from mass movement; therefore it may 

actually be more indicative of respiratory effort. However, it could also be argued that the 

load cells susceptibility to non-respiratory related movement could have contributed to 

more RERAs being scored.  Similarly, since the load cells are detecting mass movements, 

we were concerned that higher BMI might make changes in the load cell breathing signal 

less apparent.  In fact, the AHI scoring error (i.e. the difference between AHI-PSG and 
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AHI-LC) increased significantly with increasing BMI (t43 = 2.06, p = 0.05), although only 

9% of the variance in the AHI scoring error was accounted for by BMI.  There was no 

dependence (t43 = 1.09, p = 0.28) on BMI found for RDI scoring error.   

The rules used in this study to identify apneic events were adapted from AASM 

standards for scoring events using flow and thermistor tracings.  As the load cell signal 

originates from visceral mass movements caused by breathing as opposed to actually 

measuring air flow, it seems obvious that different standards fine tuned to the nuances of 

the load cell signals themselves would improve the accuracy of using the load cell 

tracings.  Future work can isolate morphologic changes that improve event type 

specificity and should include an event by event analysis to develop load cell specific 

scoring features.   We have previously reported successful discrimination of obstructive 

apnea from central apnea [70]. Discriminating central hypopnea from obstructive 

hypopnea may be aided by observation of retention of the normal rounded nasal pressure 

excursion, absence of paradoxical respiratory effort, absence of snoring, decreased 

intercostal EMG activity and/or less negative pressure swings on esophageal manometry 

when available.  While we demonstrated that central apnea is reliably identified with load 

cells in previous work, we believe our future work at isolating the unique morphologic 

changes within the load cell signal will help identify reduced effort in more subtle events 

like central hypopnea and help discriminate these from obstructive hypopnea or RERA.  

In the future, we also plan to refine our ability to detect RERAs with the load cell signals, 

to explore the use of load cells to identify respiratory effort. 

We have demonstrated the feasibility of using load cells installed under the bed to 

detect sleep apnea.  Other unobtrusive devices have been proposed for monitoring sleep 
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apnea.  Thermal infrared imaging [71], the static charge sensitive bed [72], a sheet array 

of pressure sensors [73], and a pressure sensitive pad [74] have all been studied.  

However, all of these devices have their limitations and are not as versatile as the load 

cell system.  The infrared camera in [71] must have a clear view of the patients face to 

detect respiration and likely will not work if the subject turns away from the camera or 

covers their mouth/nostrils in some manner.  The static charge sensitive bed [72] is 

placed under the mattress and the pressure sensitive sheet and pad [73, 74] are placed on 

top of the mattress.  These all alter the sleeping environment and run the risk of 

undesirable interaction with the patient (e.g. sensor movement, becoming unplugged, 

etc.) which would make long-term, in-home monitoring difficult.  The load cell system is 

completely out of the way and can detect the breathing from the patient lying anywhere 

on the bed.  Calibrated load cells can also be used to monitor a patient’s weight as well as 

the lying position of an individual lying on the bed [41].  Monitoring a patient’s weight 

and lying position is important because sudden weight changes may indicate fluid 

retention due to heart issues [75] and many individuals with sleep apnea have more 

apneic events when lying on their back as opposed to their side [76-78].  The pressure 

sensitive [73] sheet may be able to detect lying position but not the patient’s weight and 

the other sensors [71, 72, 74] are likely incapable of either. 

Load cell data is easy to collect and does not require any sensors in contact with 

the patient. Current flow and effort leads during attended PSG are obtrusive and 

disruptive to sleep.  Unlike standard polysomnography leads, the load cells do not 

become displaced during the night, resulting in more reliable signals and far superior 

signal integrity for serial night collections such as might be seen during unattended home 
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monitoring.  While the study presented herein was performed in a sleep lab, we will soon 

be placing similar devices in patients’ own homes for long-term, unobtrusive monitoring 

while they sleep in a familiar environment.   
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Sleep Apnea Detection: Automatic Scoring 

Motivation 

 Using the load cell breathing signal to detect sleep apnea shows great promise in 

the sleep lab setting.  I have shown that replacing several obtrusive breathing sensors 

with the load cell system is feasible during overnight sleep studies in the lab.  

Nonetheless, with the amount of individuals suspected of having sleep apnea in the 

United States alone [4], the often long wait times or limited access to overnight sleep 

studies [10], and the high cost of such sleep studies, a deployable solution to test/monitor 

individuals while they sleep in their own homes would be beneficial.  The load cell 

system could be fitted to patient’s beds permitting them to be monitored while they sleep 

in their own homes.  This could allow for the triage of patients into the sleep lab, the 

possible diagnosis of individuals with severe sleep apnea, and/or track the progress of 

patients over time after the initial diagnosis of sleep apnea.  However, it would be 

unreasonable to assume that each night of load cell breathing signal data collected could 

be visually scored by a sleep technologist due to the sheer amount of data that would be 

produced. 

I have previously shown that load cell data can be used to differentiate between 

manually selected segments of normal breathing and apneic breathing [70].  Since then I 

have developed more reliable techniques to estimate the load cell breathing signal (CoP) 

and detect individual breaths allowing for more accurate breathing amplitude 

calculations.  I have used these techniques to test the feasibility of detecting sleep apnea 

from continuous load cell recordings across the entire night that do not rely on predefined 

segments of data.  In this section, I describe an algorithm that I developed as a first pass 
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attempt to automatically process the load cell data collected while an individual sleeps on 

the bed and produce an AHI representing the severity of sleep apnea exhibited by the 

patient.  The predicted AHIs from this initial algorithm that uses only load cell data were 

compared to the corresponding clinical AHIs scored by sleep technologists utilizing 

standard PSG signals.    

Subjects 

The subjects for this study were recruited from the Oregon Health & Science 

University (OHSU) sleep lab and the Pacific Sleep Program (PSP) sleep lab.  Fifteen 

patients from the OHSU sleep lab participated in this study (an IRB was deemed 

unnecessary by the OHSU Institutional Review Board).  Eighty-nine patients from the 

Pacific Sleep Program sleep lab gave informed written consent to the study (OHSU 

Institutional Review Board eIRB 6308).  Forty-five subjects were female and 59 were 

male.  The average age was 49.3 ± 14.0 years and the average BMI was 32.8 ± 7.1 kg/m
2
.   

Setup 

The load cell data from the OHSU sleep lab was collected from load cells placed 

under each of the 6 supports of a king sized bed.  At the PSP sleep lab, load cell data for 

this study was collected from load cells that were placed under each of the 5 supports of a 

queen sized bed.  At each sleep lab the load cell data was collected simultaneously with 

the overnight PSG data for each patient during their regularly scheduled sleep test.   
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Methods 

Clinical AHI 

For overnight sleep studies at both the OHSU and PSP sleep labs, the PSG data 

was scored by an experienced polysomnographic technologist employed at the 

corresponding sleep lab.  In both cases, apneic events were scored in accordance with 

current AASM guidelines.  Apneas were scored when there was an amplitude reduction 

of 90% or greater for at least 10 seconds in the PSG breathing signals, and hypopneas 

were scored when there was an amplitude reduction of 30% in the PSG breathing signal 

that lasted for at least 10 seconds and was associated with at least a 4% oxygen 

desaturation as measured by a pulse oximeter during the PSG test.  The severity of sleep 

apnea presented by each patient was gauged using the AHI.  The sum of scored apneas 

and hypopneas were divided by total sleep time to generate the AHI-PSG.  In addition to 

scoring apneic events, the technologist also scored RERAs defined by discernible 

reductions in airflow associated with arousal (i.e. patient awakenings) that did not meet 

criteria for other events.  The total number of these events were combined with the sum 

of apneas and hypopneas and divided by total sleep time to obtain the RDI-PSG.   

Load Cell AHI 

 Several steps were involved to develop the algorithm used to automatically 

calculate the severity of sleep apnea (i.e. AHI-LCAUTO and RDI-LCAUTO) using only the 

load cell data collected as a patient slept overnight on a bed with load cells placed under 

each support.  First, the load cell data had to be conditioned or prepared so that relevant 

information about the load cell breathing signal could be extracted.  Then features from 
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the load cell breathing signal were estimated.  Finally, a linear model used to combine the 

various load cell features into a prediction of sleep apnea severity (i.e. AHI-LCAUTO and 

RDI-LCAUTO) was trained and tested using the corresponding clinically estimated AHI-

PSG and RDI-PSG.   

Signal Conditioning 

 The load cell data collected from each overnight sleep test were first trimmed to 

only include the period from the time the patient fell asleep to the time when the lights 

were turned on indicating the end of the sleep test.  The low pass filtered center of 

pressure (CoPy) signal along with the corresponding peaks and troughs of CoPy 

representing the transitions from inspiration to expiration were then derived from the load 

cell data following the procedures described in the analysis section of chapter 5.  The 

only difference was that movements from the overnight load cell data were automatically 

detected by summing together the output from each load cell (LCsum) and utilizing the 

protocol developed in chapter 6 with the exception that the load cell sampling rate was 10 

Hz and not 40 Hz.   Periods when the patient was estimated to be out of the bed (e.g. 

visiting the restroom) were grouped with the segments estimated to be movement and 

were subsequently removed.  Out-of-bed segments were calculated using the K-means 

unsupervised clustering technique [79].  The details of this approach are described in [42] 

which outlines how differences in the total weight on the bed – as estimated using the 

summed output from all the load cells (LCsum) - are used to predict periods when the 

patient is either in or out-of bed.  Ultimately, assuming that the peaks and troughs of the 

CoPy breathing signal represent the maximum (peaks) and minimum (troughs) 
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displacement of the mass moved during a breathing cycle, the breathing amplitude was 

estimated by calculating the difference between the peaks and troughs in the CoPy signal.  

Feature Extraction 

 Three features were calculated from each night of load cell data.  The first feature 

was selected to represent the overall amount of patient movement detected during the 

night.  Experience has shown that individuals with sleep apnea tend to have restless sleep 

(see figure 7-5) which is likely caused by small awakenings that frequently follow apneic 

events [80].  This first feature or movement index (MI) was calculated using: 

#

LC

Movements
MI

T
                                                         (7.1) 

 
Figure 7-5.  Load cell data collected during an overnight sleep test for a patient without sleep 

apnea (upper) and a patient with severe sleep apnea (lower).  The summed output from each load 

cell placed under the bed (LCSUM) is shown in blue.  Movements detected using LCSUM are 

illustrated in black above the load cell data. Significantly more movement was present for the 

patient with sleep apnea.     
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where #Movements is the number of detected movement and/or out of bed segments and 

TLC is the number of hours of load cell data collection.   

 Additional features were selected based on the fact that the load cell breathing 

signal is tracking the movement mass caused by the diaphragm during breathing.  The 

theory is that when the airway into the lungs is occluded during an apneic event, the 

diaphragm is now pulling against a more negative pressure inside the lungs and 

subsequently will move less.  This should lead to a gradual or sudden decrease in the 

amplitude of the load cell breathing signal.  Eventually, as the patient increases their 

breathing effort during the apneic event, the diaphragm will increasingly begin to 

displace the mass tracked by the load cells more until the apneic event is terminated.  It is 

also possible that once the airway is open there could be an increase in breathing 

amplitude above normal due to the recently heightened breathing effort.  The second and 

third features were designed to capture these constant breathing amplitude changes that 

are hypothesized to frequently occur in individuals with sleep apnea.   

 The second feature was selected to capture variance in the breathing amplitude.  

The exact method used for estimating the breathing amplitude on a sample-by-sample 

basis from the load cell CoPy signal for this feature is outlined in figure 7-6.  The variance 

in the load cell breathing amplitude across the entire night was estimated using the 

coefficient of variation (cV) for non-overlapping windows: 
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where cV(j) is the coefficient of variation for the j
th

 window, LCAMP is the amplitude of 

the load cell breathing signal, and n is the number of amplitude estimates contained in the 

j
th

 window.  It was theorized that the cV would be higher in individuals with sleep apnea 

(see figure 7-7), and the second feature (cV%) is defined as the ratio of time that the cV of 

the load cell signal is above a defined threshold (thrcV):   

 # ( )
%




cV cV

LC

cV j thr wn
cV

t
                                             (7.3) 

where wncV is the window size is seconds used to calculate each cV(j) and tLC is the total 

recording time in seconds.  

 
Figure 7-6.  (A) The load cell breathing signal (CoPy) is shown as the black trace with detected 

peaks (green circles) and detected troughs (green squares).  A peak and trough value was 

estimated for each individual data point in the CoPy signal (light blue traces) using nearest 

neighbor interpolation from the actually detected peaks and troughs (green circles and squares).  

(B) The breathing amplitude (dark blue trace) was estimated for every sample or data point in the 

CoPy breathing signal by subtracting the interpolated trough values from the interpolated peak 

values. 

A 

B 
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The third feature was developed to estimate the number of times per hour that the 

amplitude of the load cell breathing signal (i.e. CoPy) decreased significantly during the 

course of the overnight sleep study.  This feature was also used to capture the continual 

decreasing and increasing of load cell breathing amplitude that is often observed during 

apneic events (see figure 7-8).  In order to calculate the third feature, the amplitude of the 

load cell breathing signal was estimated on a breath-by-breath basis using the difference 

 
Figure 7-7.  The coefficient of variation (cV) calculated from non-overlapping five second 

windows of load cell derived breathing amplitude.  The load cell data was collected during an 

overnight sleep study for an individual without sleep apnea (upper) and a patient with sleep apnea 

(lower).  The green horizontal line represents a threshold of 0.4.  The cV data points below this 

threshold are shown in black and cV data points above the threshold are shown in blue.  The 

patient with sleep apnea exhibits many more segments of high breathing amplitude variability 

than the patient without sleep apnea.      
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between peak/trough pairs in the load cell CoPy signal.  The amplitude of each breath was 

calculated twice.  Once using the difference between the peak value of the breath and the 

following trough value and once using the difference between the same peak value of the 

breath and the previous trough value.  The following methodology utilized both 

amplitude estimates independently to detect disordered breathing events and then 

combined the resulting disordered breathing events found using both estimates.     

Figure 7-8.  Ninety seconds of load cell breathing signal (black trace) collected from a patient 

during an overnight sleep study illustrating the decreasing followed by increasing breathing 

amplitude often observed in the load cell data during apneic/hypopneic events.  Automatically 

detected peaks and troughs used for estimating the breathing amplitude on a breath-by-breath 

basis are displayed as green circles and green squares respectively.    The peaks of breaths 

automatically determined to be part of a disordered breathing event are encased in black circles.  

Of note, is the peak at about 55 seconds which appears to represent a breath of significant 

amplitude.  This peak was considered a continuation of the crescendo effect at the end of the 

disordered breathing event due to its amplitude - estimated as the difference between the peak 

value and the following trough value - being less than the following breath’s amplitude at about 

60 seconds estimated the same way.  As a reference, time periods that were visually scored as 

apneas/hypopneas by a sleep technologist using the LC montage (see the “Sleep Apnea 

Detection: Visual Scoring” section) are presented as horizontal blue lines.   
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Disordered breathing events (i.e. apneas or hypopneas) were identified by first 

locating and marking individual breaths that had amplitudes that were less than a defined 

percentage (AMP%) of the median breathing amplitude that was estimated over the 

previous N seconds.  Second, the breathing amplitudes of the individual breaths directly 

before any of these marked breaths were searched for a decrescendo effect in the 

breathing amplitudes.  In other words, any breath that immediately preceded the 

originally marked breath that had a breathing amplitude less than the breath directly 

before it was marked as part of the disordered breathing event.  Then, in a similar 

manner, the breathing amplitudes of the individual breaths directly after any of the 

originally marked breaths were searched for a crescendo effect in the breathing 

amplitudes (i.e. any breath with an amplitude larger than the breath directly after it was 

included in the disordered breathing event.).  Finally, the third feature or disordered 

breathing index (DBI) was calculated using 

#
 Disordered

LC

Breath
DBI

T
                                             (7.4)   

where #BreathDisordered is the number of disordered breathing events identified that met a 

minimum time duration constraint (tapnea) and TLC is the number of hours of collected load 

cell data after movement and/or out of bed periods have been removed. 

Model Training/Testing 

 The three features defined were utilized to automatically estimate sleep apnea 

severity (i.e. AHI-LCAUTO) using a linear model with constant coefficients. 

     1 2 3 4%      
AUTOLCAHI MI cV DBI                               (7.5) 
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A leave one out method was used to iteratively train and test the model [79].  For each 

iteration, features calculated from the load cell data for one patient were held out.   Then 

linear regression was used to estimate the model coefficients (β1-4) by fitting the features 

from the remaining 103 patients to their corresponding AHI-PSG in a least-squares sense. 

The AHI-LCAUTO was estimated for the patient whose data was held out using these 

model coefficients and the features estimated for this patient.  The whole process was 

repeated to estimate an AHI-LCAUTO for each of the 104 patients.  An RDI-LCAUTO was 

also predicted for each of the 104 patients in the same manner with the exception that the 

model coefficients (β1-4) were estimated utilizing RDI-PSG.  

For the cV% and DBI features various thresholds and window sizes were initially 

unknown.  In order to maximize the effectiveness of the cV% feature, the threshold 

(thrcV) for distinguishing high variability from low variability and the size (in seconds) of 

the non-overlapping windows (wncV) needed to be chosen.  For the DBI feature, the N 

previous seconds used to calculate the median breathing amplitude reference and the 

percentage of this reference amplitude (AMP%) that indicated a significant breathing 

amplitude attenuation needed to be found. Also, the minimum time duration (in seconds) 

of disordered breathing segments (tapnea) needed for the segment to be considered an 

apnea or hypopnea had to be chosen.  Therefore, a range of values for each parameter 

was investigated:  

thrcV = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] 

                                wncV = [5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 120]  

                                     N = [30, 60, 90, 120] 

                            AMP% = [10, 30, 50, 70, 90]  

                                tapnea = [5, 10,15, 20] 



116 

 

 

and an exhaustive search was carried out across every possible combination of these 

parameters in order to discover the combination that optimized the estimation of AHI-

LCAUTO and RDI-LCAUTO.   

Analysis 

 The combination of parameters (i.e. thrcV, wncV, N, AMP%, and tapnea) that resulted 

in the highest coefficient of determination (R
2
) and lowest mean squared error (mse) were 

chosen when using AHI-PSG as the ground truth reference.  R
2
 was calculated using: 

 

 
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                                             (7.6) 

where PSGAHI is the mean of AHI-PSG, and mse was calculated using: 

 
21

4 AUTOLC PSGmse AHI AHI
n

 

                                      (7.7) 

where (n - 4) is the number of AHI-LCAUTO minus the number of coefficients in the linear 

model shown in 7.5.  The same method for choosing optimal parameters was utilized 

when using RDI-PSG as the ground truth method.   

 Comparison of AHI-PSG and RDI-PSG to AHI-LCAUTO and RDI-LCAUTO 

respectively was analyzed using paired t-tests with 95% confidence intervals for the 

difference between the two scorings.  Bland-Altman plots were used to visually compare 

the results.  Finally, the ability of the automatic scoring algorithm using the load cell data 

to detect sleep apnea was assessed using ROC curves.  The sensitivities and specificities 

for detecting sleep apnea using AHI-LCAUTO at various thresholds were calculated.  Three 

AHI cutoff levels were considered for defining overnight sleep tests as being positive for 

sleep apnea: (AHI-PSG ≥ 5, AHI-PSG ≥ 15, and AHI-PSG ≥ 30).  The sensitivities and 



117 

 

 

specificities for detecting sleep apnea using RDI-PSGAUTO were also calculated using 

three RDI cutoff levels for positive sleep apnea tests (RDI-PSG ≥ 15, RDI-PSG ≥ 30, and 

RDI-PSG ≥ 60).  

Results 

 The optimal combination of parameters when comparing the automatic scoring 

algorithm to AHI-PSG was (thrcV = 0.4, wncV = 5 s, N = 30 s, AMP% = 50%, and tapnea = 

10 s).  The optimal combination when comparing to RDI-PSG was (thrcV = 0.7, wncV = 5 

s, N = 120 s, AMP% = 50%, and tapnea = 10 s).  Tables 7-3 and 7-4 contain the average 

linear model coefficients with corresponding 95% confidence intervals used to estimate 

AHI-LCAUTO and RDI-LCAUTO respectively. 

 Direct comparison of AHI-LCAUTO vs. AHI-PSG and RDI-LCAUTO vs. RDI-PSG 

are shown in figure 7-9 with the corresponding R
2
 values.  Comparison of the difference 

between the automatic scoring of the load cell data and the PSG scoring are shown in the 

Bland-Altman plots contained in figure 7-10. 

Table 7-3 

Linear model coefficients used to estimate AHI-LCAUTO. 

Model Coefficients Mean Confidence Interval (95%) 

β1 -12.746 [-12.799 -12.692] 

β 2 0.389 [0.387 0.392] 

β 3 -195.198 [-196.121 -194.276] 

β 4 2.159 [2.154 2.164] 

 
Table 7-4 

Linear model coefficients used to estimate RDI-LCAUTO. 

Model Coefficients Mean Confidence Interval (95%) 

β1 3.133 [3.080 3.187] 

β 2 0.565 [0.563 0.567] 

β 3 -276.584 [-277.461 -275.706] 

β 4 1.743 [1.739 1.747] 
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Figure 7-9.  Comparison of AHI-LCAUTO vs. AHI-PSG (left) and RDI-LCAUTO vs. RDI-PSG with 

corresponding R
2
 values. Due to the regression analysis utilized to predict AHI-LCAUTO, some 

predicted values ended up being negative.  While a negative AHI is not traditionally logical, the 

negative AHI-LCAUTO values only occurred for AHI-PSG values less than 5 suggesting that they 

are clinically equivalent to the absence of sleep apnea.    

 
Figure 7-10.  Bland-Altman plots showing the agreement between the AHI-PSG and AHI-LCAUTO 

(left) and RDI-PSG and RDI-LCAUTO (right).     
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AHI-PSG was on average only 0.0058 less than AHI-LCAUTO, which was not 

significant (t103 = -0.0035, p = 0.9972 with a 95% confidence interval of [-3.2947 

3.2830]).  RDI-PSG was on average 0.0449 less than that of RDI-LCAUTO; this difference 

was also not significant (t103 = -0.0277, p = 0.9780) with a 95% confidence interval of    

[-3.2556 3.1659].  

The ROC curves showing the ability of the automatically scored load cell data to 

determine the presence of sleep apnea are contained in figure 7-11.  The Area Under 

Curve (AUC) for each cutoff level of AHI is 0.8698 for AHI-PSG ≥ 5, 0.9220 for AHI-

PSG ≥ 15, and 0.9095 for AHI-PSG ≥ 30.  The AUC for each cutoff level of RDI are 

0.8345 for RDI-PSG ≥ 15, 0.8548 for RDI-PSG ≥ 30, and 0.9173 for RDI-PSG ≥ 60. 

 
 

Figure 7-11.  ROC curves showing the ability of the load cell data to predict overnight sleep 

studies positive for sleep apnea.  The left plot displays the results for detecting sleep apnea at 

various thresholds of AHI-LCAUTO when positive tests are defined as AHI-PSG ≥ 5 (blue), AHI-

PSG ≥ 15 (black), and AHI-PSG ≥ 30 (red).  The right plot displays the results for detecting sleep 

apnea at various thresholds of RDI-LCAUTO when positive tests are defined as RDI-PSG ≥ 15 

(blue), RDI-PSG ≥ 30 (black), and RDI-PSG ≥ 60 (red). 
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Discussion/Conclusion 

The algorithm presented herein was a first-pass attempt to explore the feasibility 

of using only load cell data to automatically detect sleep apnea.  High AUC values from 

the ROC analysis (see figure 7-11) indicate that the load cell system has promise as a 

prescreening tool where high sensitivity is desired to confirm the suspicion of sleep 

apnea.   There was some variability in the results; however, this is not surprising due to 

the high inconsistency that is seen in the visual scoring of PSG between different sleep 

technologists [5, 81].  Therefore, exact agreement between the AHI-LCAUTO and RDI-

LCAUTO with AHI-PSG and RDI-PSG was not expected.  The results of the automatic 

algorithm are especially encouraging considering that the load cell data was collected at 

two different sleep labs (OHSU vs. PSP).  Good agreement despite the variability 

introduced by different sleep technologists scoring the overnight sleep tests and despite 

slightly different load cell setups (i.e. different beds with differing numbers of load cells 

under each bed) suggests robustness and generalizability in the system and the automatic 

algorithm.   

The negative coefficient for the cV% was also perplexing.  It is counterintuitive   

that estimates for AHI-LCAUTO or RDI-LCAUTO would decrease with increasing variability 

in breathing amplitude as perceived by the cV% feature.  The cV% feature was initially 

intended to capture the constant changes in breathing amplitude associated with recurring 

apneas and hypopneas.  It may be that there is some complex interaction between the 

cV% feature and the DBI feature.  It is possible that the DBI feature overestimates the 

presence of apneic and hypopneic events in individuals with high variability in their 

breathing amplitudes as detected in the CoPy signal.  In such a case, the cV% feature 
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could act as some sort of compensation for this overestimation.  Further study is needed 

to determine whether this is the case or if there is some other cause.  Future work should 

also include using a gradient descent method to search across a larger space for the 

optimal combination of parameters (i.e. thrcV, wncV, N, AMP%, and tapnea) that maximize 

the ability of cV% and DBI to help estimate AHI-LCAUTO or RDI-LCAUTO.  It is likely that 

values for these parameters could be found that enhance the ability – measured using 

some combination of R
2
 and mse – of the linear models used to estimate AHI-LCAUTO or 

RDI-LCAUTO.  Parameter values could also be discovered that lead to accurate linear 

models with more intuitive coefficients.    

Other attempts to automatically detect sleep apnea using non-contact sensors have 

been made.  In particular, Zaffaroni et al. used a radio-frequency sensor placed on a night 

table near the bed [82] and Agatsuma et al. used a sheet with an array of pressure sensors 

placed on top of the mattress [83] achieving good agreement between their estimates of 

AHI for several patients and the AHI calculated using traditionally scored PSG data.  

Zaffaroni et al. reported AUC values for detecting sleep apnea at several different AHI 

cutoff levels of 0.858 for AHI-PSG ≥ 5, 0.940 for AHI-PSG ≥ 10, 0.971 for AHI-PSG ≥ 

15, and 0.948 for AHI-PSG ≥ 20 [82].  Agatsuma et al. reported AUC values for detecting 

sleep apnea at two different AHI cutoff levels of 0.96 for AHI-PSG ≥ 5, and 0.97 for 

AHI-PSG ≥ 15 [83].  However, both sensor modalities have their limitations.  It is 

unknown how well the radio-frequency sensor will work if it’s “view” of the patient is 

occluded by items placed on the night stand or by the patient sleeping under various 

layers of blankets and bedding.  The sheet of pressure sensors is placed between the 

patient and their mattress which may lead to discomfort especially if several nights of 
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data are to be collected for long term monitoring.  In contrast, once the load cells are 

placed under the supports of the bed, they are able to collect data without needing to alter 

the sleeping environment and have a minimal risk of being altered by patients during 

common practices such as changing bedding or placing items on their nightstand.   

In 2007 the American Academy of Sleep Medicine (AASM) outlined rules for 

sleep technologists to follow when scoring sleep studies for sleep apnea.  In an attempt to 

improve inter-rater reliability between scorers, the AASM advised that hypopneas (i.e. 

breathing amplitude reduction of 30% or more) must be accompanied by an oxygen 

desaturation [5].  This was the rule followed when defining AHI-PSG for comparison to 

the automatic load cell algorithm (i.e. AHI-LCAUTO).  Recently, in order to improve the 

overall detection of sleep apnea, the AASM has changed their recommendations for 

hypopnea detection.  Hypopneas are now defined as discernible reductions in airflow 

(≥30%) associated with an oxygen desaturation or arousal (i.e. patient awakenings) [84].  

This new hypopnea definition corresponds to the rules followed for scoring RDI-PSG, the 

ground truth used for obtaining RDI-LCAUTO.  The results from the pressure sensor sheet 

were only compared to AHIs scored using a hypopnea rule requiring an oxygen 

desaturation.  Therefore agreement between their results and AHIs scored following 

scoring rules similar to the improved recommendations by the AASM are unknown.  The 

scoring rules followed for the radio-frequency sensor for manually scoring AHIs from the 

PSG data were unspecified.  In contrast, the automatic scoring algorithm developed for 

the load cell data performed well when developed and compared to both AHI-PSG and 

RDI-PSG, and future improvements to the algorithm are expected to further enhance its 
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ability to automatically detect sleep apnea (i.e. increase AUC values for AHI-PSG cutoff 

levels of 5, 15, & 30 and RDI-PSG cutoff levels of 15, 30 & 60). 
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Chapter 8: Summary and Conclusions 

Summary 

 Millions of Americans suffer from some sort of sleep disorder [1].  It is estimated 

that 9% of middle aged women and 24% of middle aged men have some degree of sleep 

apnea [4].  Several serious health risks, such as cardiovascular disease, are associated 

with sleep apnea [5].  The current clinical standard for diagnosing and monitoring sleep 

apnea (PSG) requires individuals who are already experiencing problems sleeping to 

sleep in a foreign environment while wired up to several uncomfortable sensors.  The 

obtrusive nature and sometimes limited access [10] to PSG has led to a heightened 

interest in unobtrusive methods to monitor an individual’s breathing while they are 

sleeping in a bed. 

 Previously in our lab, load cells placed under the supports of a bed were used to 

detect and classify movements while an individual was lying in the bed [43, 46-49] and to 

extract parameters of overall sleep hygiene [40].  The ability of load cells to detect 

breathing has also been shown [44, 58].  In order to build upon our earlier work to 

monitor individuals while they sleep with load cells placed under the supports of the bed 

and to enhance the ability of these load cells to detect the respiration of an individual 

lying on the bed so as to allow sleep apnea detection, I developed a functional and robust 

load cell system.  With the exception of a commercial A/D converter, the electronics used 



125 

 

 

for conditioning (i.e amplifying and filtering) the load cell signals were designed and 

assembled in house with assistance of John Hunt M.S.E.E.  Originally, the load cells 

were attached to steel bars housed in wood footings with cedar blocks attached to the top 

of the load cells fabricated to contain the supports of the bed (see figure 2-3).  Eventually, 

this load cell setup was deemed unstable and new footings and connections to the bed 

frame were developed for the load cells.  In the new setup, the load cells were bolted to 

aluminum bases and metal fittings were designed that could be attached to the top of the 

load cells and connect them to a conventional metal bed frame in the same manner as the 

traditional wheel castor (see figure 2-4).  The voltage output from all the load cells was 

shown to be linearly dependent upon the amount of force placed on the load cells.    

 It is theorized that the load cell system is able to detect the breathing of an 

individual lying on the bed due to the displacement of visceral organs in the abdominal 

cavity caused by the movement of the diaphragm as the lungs are inflated and deflated.  I 

was able to mathematically demonstrate that with reasonable assumptions the load cells 

placed under the supports of the bed could be used to track these center of mass changes 

caused by calculating the CoP (see equation 3.10).  Using the CoP, I was able to confirm 

the theory behind the origin of the load cell breathing signal (see figure 3-3).       

 Several experiments were designed to determine what effect the bed/mattress 

system would have on the data collected from load cells placed under the supports of the 

bed.  By applying an impulse to the bed/mattress system, I was able to show the 

frequency of response and damping characteristics of the system was dependent upon 

amount of mass loaded on the bed. Independent of mattress type, the resonant frequency 

of the bed/mattress system decreased with increasing load placed on the bed (see figure 
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4-4).  Similarly, the amount of damping (i.e. the rate at which the impulse response 

amplitude was attenuated) generally decreased with increasing amount of mass loaded on 

the bed (see figure 4-5).  

 It was encouraging that the observed frequency responses of the bed/mattress 

systems ranging from approximately 2-10 Hz were not in the range of respiration rate that 

is expected to be below 0.5 Hz.   Tests were performed to see how well the CoP signal 

could track the known motion of a mass rotating on the bed/mattress system and gauge 

the effects of the bed/mattress system on mass movements in the frequency range of 

respiration.  Overall the load cell CoP signal was able to reliably recreate the movement 

of the mass on the bed despite some distortion caused by the bed/mattress system and 

centripetal forces not accounted for when calculating CoP (equation 4.8).  I was also able 

to show that the load cell CoP signal could detect changes in the amplitude of mass 

movement on the bed which is an important function of the load cell system in order to 

detect sleep apnea as apnea are mainly defined as changes in breathing amplitude.   

 An algorithm was developed to detect individual breaths in the load cell CoP 

signal that tracked mass movements due to breathing.  Each breath in the load cell CoP 

signal is detected by detecting local peaks and troughs found in the low pass filtered 

version of the CoP signal.  These peaks and troughs represent the transitions between the 

direction of mass movement during inspiration and expiration.  Extraneous peaks and 

troughs that frequently appear in the low passed CoP signal and that do not signify 

inspiration/expiration transitions were eliminated by discarding any peak/trough pairs 

that had significantly smaller amplitude than the preceding and following peak/trough 

pairs.  
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In order to test how well the load cell CoP signal could detect the breathing of an 

individual lying on the bed, two experiments were designed to compare the respiration 

rate derived from the peaks and troughs in the load cell CoP signal to the breathing rate 

estimated using the flow signal from a nasal pressure cannula.  There were no differences 

between the respiration rates estimated using the load cell CoP and the respiration rates 

estimated from the flow signal for lying position or three mattress types (memory foam 

mattress and the two coiled spring mattresses).  There was a significant difference 

between the two methods of respiration rate estimation found using the mattress with an 

air-filled bladder encased in foam.  This difference of 0.264 breaths/minute is not 

clinically significant.  Overall, the results from two experiments revealed that the peaks 

and troughs in the load cell CoP signal could be used to accurately and reliably estimate 

the respiration rate of individuals lying quiescently on the bed regardless of lying position 

or mattress type. 

Large movements by an individual lying in the bed (i.e. rolling over or moving an 

arm or leg) result in excursions of the load cell signal that are orders of magnitude greater 

than the load cell breathing signal.  These large movements completely “washout” the 

ability of the load cell system to detect breathing during the movement and can 

significantly alter the effects of the low pass filter on the load cell data in the immediately 

surrounding regions.  Previous work in our lab focused on detecting such large 

movements [43, 46].  I was able to build upon this research and develop an approach to 

automatically remove all significantly large movements from the load cell data.  With the 

large movements detected and removed, the remaining load cell data representing periods 
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of quiescence could be analyzed for the presence of apneic events which is the ultimate 

goal of this dissertation.    

The load cell system has been shown to have great capacity to be used to detect 

sleep apnea.  A sleep technologist was able to score overnight sleep studies for sleep 

apnea using modified PSG data (i.e. traditional respiration tracings replaced with load 

cell breathing signals) with similar accuracy to the scoring of the PSG data with the 

original breathing signals.  I was also able to develop an algorithm that could 

automatically detect the presence of sleep apnea using only load cell data.  These results 

suggest that the load cell system could be beneficially used in both the sleep lab and in 

patients’ homes.  In the sleep lab, the load cell breathing signal could be utilized for all 

patients or targeted to those who have a difficult time tolerating the currently used 

obtrusive breathing sensors (e.g. belts placed snuggly around the chest and abdomen 

along with thermistors and nasal pressure cannulas positioned inside the nostrils) such as 

those with insomnia, allergies to adhesives, children, and the elderly.  The load cell 

system could also be outfitted to patients’ beds in order to prescreen patients suspected of 

having sleep apnea or monitor patients with known sleep apnea for extended periods of 

time while they sleep in their own unaltered sleeping environments.   

Future Work 

 The natural progression of this research is to collect data from load cell systems 

deployed into patients’ homes.  Individuals suspected of have sleep apnea could have 

load cells attached to the supports of their own beds and load cell data could be collected 

each night for the week before they are scheduled to have an overnight test at the sleep 
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lab.  Load cell data would be collected along with traditional PSG data during their stay 

at the sleep lab.  Comparison of the load cell system’s prediction of sleep apnea severity 

while the patients sleep in their own homes versus the severity of sleep apnea detected by 

the load cells and PSG during the overnight sleep study would be very useful.  This has 

substantial clinical utility given the known night-to-night variability of sleep apnea [85-

88].  It is also widely believe that individuals sleep differently in the sleep lab and this 

may affect the results of their sleep test [7, 8]. 

Collecting and analyzing load cell data while individuals sleep in their own beds 

at home presents some unique challenges that are not present in the sleep lab.  The 

current method for connecting the load cells to the bed works well for metal bedframes 

that are quiet common; however, there are also several other types of bedframes that 

sleep apnea patients may own.  It is possible that some kind of tensioning device could be 

placed between the load cells and the bedframe.  Several load cells could be set under the 

bedframe in various locations and the tensioning devices used to slightly raise the 

bedframe, effectively transferring the weight of the bed to the load cells.  The 

development of such a device would allow access to the load cell system for most sleep 

apnea patients independent of what type of bed they have.   

 Two other challenges presented by in-home load cell data collection will be 

determining when the patient is asleep and accounting for multiple individuals sleeping 

on the bed/mattress system.  To address the former, an algorithm that we developed in the 

lab that was able to accurately distinguish between epochs of sleep and epochs of wake 

[51] could be utilized.  This sleep/wake algorithm utilized more information than just the 

load cell data so testing will be needed to determine how well it performs when only the 



130 

 

 

load cell signals are available.  For the latter challenge of in-home data collection, I was 

also able to show in a brief unpublished experiment that by using independent component 

analysis (ICA) techniques (implemented using the fastICA algorithms [89]) it appears 

possible to separate the load cell breathing signals from two individuals lying on the bed.  

Load cell data was collected while two individuals lay down on the bed/mattress system.  

Using ICA, two breathing signals were extracted from the load cell data.  Respiration 

rates calculated independently for each different load cell breathing signal showed good 

agreement with the corresponding ground truth respiration rates measured using 

respiratory inductance plethysmography belts for each subject.   

 Other elements could also be added to the algorithm presented herein to aid in the 

automatic detection of sleep apnea using load cell data collected from patients’ homes.  

Many patients with sleep apnea exhibit worsening symptoms when sleeping on their 

backs compared to sleeping on their sides [76-78], and heart rate changes have been 

associated with apneic events [90, 91].  In previous work, I was able to develop a method 

using the load cell signals that could accurately predict whether or not an individual was 

lying their side [41].  The load cells have also shown potential at detecting heart rate [44, 

52-57].  Adding heart rate and lying position detection would likely enhance the load cell 

systems ability to detect the presence of sleep apnea in individuals as they slept in their 

own homes.   

Conclusions 

 I have shown that the load cell system can accurately detect the breathing of an 

individual lying on the bed.  I have also shown the potential of using the load cell signals 
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to diagnose and monitor sleep apnea.  The use of other unobtrusive technologies have 

been studied to extrapolate the breathing signal of person lying on the bed and in some 

cases make observations about the presence of sleep apnea.  However, the limitations of 

these devices range from restricting where the individual can lie on the bed to altering the 

sleeping environment which may affect the sleep of the person being monitored.  The 

load cell system does not change the sleeping environment and once in place is at less of 

a risk of being altered by the subject either intentionally or inadvertently (e.g. during 

routine bedding changes).  The load cell system also has other capabilities outside the 

realm of detecting breathing and heart rate.  For example, in long term care facilities, 

calibrated load cells could monitor the weight of a resident on a nightly basis and alert 

caretakers/doctors if sudden weight changes occur that may indicate fluid retention 

related to  heart issues [75].  The load cells could also be used as a presence detector for 

patients at risk of roaming during the night.  The load cell system could also be applied to 

detecting and monitoring other sleep disorders such as periodic leg movements or 

circadian rhythm disorders that currently utilize accelerometers placed on the patient if 

diagnosis outside of the sleep lab is desired.   

 In particular, I have developed the load cell system and used it to make three 

significant contributions to the field of unobtrusive breathing monitoring and sleep apnea 

detection.  I used the load cell system to characterize the bed/mattress system for several 

different types of beds.  I have introduced the method of using the load cell CoP signal to 

monitor respiration.  I am also the first to demonstrate the ability of the load cell system 

to detect obstructive sleep apnea and central sleep apnea.   
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 Some groups interested in unobtrusive breathing/heart rate detection have 

mentioned the possible effects of the bed/mattress system on the signals that they are 

collecting; however, to my knowledge I am the first to systematically analyze the 

response of the bed/mattress system to an applied impulse.  I was able to show that the 

bed/mattress system, for several different mattress types, displayed frequency and 

damping responses that were mass dependent.  In unpublished research, I have found the 

resonance response of the bed to be particularly disruptive to the heart rate detection for 

several individuals.  Heart rate detection using sensors such as the load cells depends on 

detecting small movements of the individual’s body in response to reactionary forces 

caused by their heart beating.  To my knowledge, most methods for detecting heart rate 

from unobtrusive sensors are centered on finding some kind of peak in the time domain 

signal that represents the heartbeat.  The results from my characterization of the 

bed/mattress system suggest that heart rate detection difficulty could be increased for 

persons with higher weight and heart rate.  It is possible that individual heart beats would 

frequently be “hidden” due to temporal summation if several heart beats caused by 

significant resonance from the bed/mattress system and the lack of attenuation.  A 

reliable unobtrusive technique to detect heart rate would need to take these effects of the 

bed/mattress system into consideration. 

 Placing the load cells under all the supports of the bed allows me to uniquely 

track the mass movements caused by breathing using the load cell CoP signal.  Other 

groups using load cells to detect breathing appear to have either only used a single load 

cell under one support of the bed [58] or have simply summed (i.e. added and subtracted) 

the output of various load cells to achieve the best results [44].  The optimal combination 
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of load cell data in order to generate a CoP signal allows for accurate representation of 

mass movement during breathing and the detection of changes due to apneic events.    

The ultimate goal of this dissertation was to demonstrate the feasibility of the load 

cell system to detect sleep apnea.  I have shown that load cells can be used as 

replacements for traditional breathing signals during PSG to diagnose sleep apnea, and I 

have developed an automatic algorithm to predict the presence of sleep apnea in a patient 

using only the load cell signals.  To my knowledge I was the first to validate the load 

cells in such a manner and the technology is patent pending.    
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Appendix A 

The following protocol was followed separately for each different mattress.  

During the experiments using the adjustable air-filled mattress, the “Comfort Select 

Level” was set at 75.  Load cell data was collected for each iteration of the experiment 

using a sampling rate of 500 Hz for each individual load cell. 

1. One minute of load cell data was collected with nothing on the mattress. 

2. The wooden platform was placed on the bed. 

3. The bed/mattress system was allowed to settle for approximately 15 seconds. 

4. One minute of load cell data was collected.  

a.  At approximately 25 seconds after the start of the data collection, the impulse 

weight (0.77 kg) was dropped onto the mattress in the approximate center of 

the hole cut out of the wooden platform from a height of about 30 cm. 

b. The impulse mass was allowed to only “bounce” once on the mattress before 

being caught and removed.  The exception being the experiments performed 

using the foam mattress where the impulse mass did not physically “bounce” 

off the mattress and was therefore simply dropped and left. 

5. Two masses (≈ 2.3 kg each) were loaded onto the wooden platform.   

a. For all mass loadings of the wooden platform, one mass was placed on the 

platform above the hole cutout (i.e. towards the head of the bed), and the other 

was placed below the impulse hole (i.e. towards the foot of the bed). 

6. Steps 3 and 4 were repeated. 

7. The two masses from step 5 were removed from the wooden platform and were 

replaced with two larger masses (≈ 11 kg each). 
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8. Steps 3 and 4 were repeated. 

9. Two more masses (≈ 11 kg each) were added to the wooden platform, and steps 3 and 

4 were repeated. 

10. Two more masses (≈ 11 kg each) were added to the wooden platform, and steps 3 and 

4 were repeated. 

11. Two more masses (≈ 11 kg each) were added to the wooden platform, and steps 3 and 

4 were repeated. 

12. Two more masses (≈ 11 kg each) were added to the wooden platform, and steps 3 and 

4 were repeated. 

13. Two more masses (≈ 11 kg each) were added to the wooden platform, and steps 3 and 

4 were repeated. 

14. Steps 3 through 13 were repeated with the exception that during each iteration two 

masses were removed from the wooden platform as opposed to being loaded on the 

wooden platform.   

15. Steps 3 through 14 were repeated so that one minute of data was collected four times 

for each specific mass loading of the wooden platform.   
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