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Abstract 

 
 
Ionizing radiation (IR) is commonly used in the treatment of cancer through radiation 

therapy. In addition, exposure to IR is a vital safety risk that nuclear workers constantly 

face. The effect of IR on human cell, both normal and malignant, is biologically 

significant. The purpose of this study is three fold: 1) to determine which genes are 

differentially expressed in cells exposed to radiation, 2) to discover critical pathways 

affected by these genes, 3) and identify drugs that significantly target the differentially 

expressed pathways. The raw data for this study consists of 5 Gene Expression 

Omnibus (GEO) data sets that contain microarray expression data for normal or 

cancerous cell lines exposed to IR. A secondary analysis on these data sets utilizes 

various Bioconductor R packages in the analysis of genes that are differentially 

expressed and the identification of critical pathways. Numerous genes and pathways 

were found to be differentially expressed in this analysis. In addition, six pathways were 

differentially expressed across all cancer cell data sets. No pathways that were 

differentially expressed across all normal cell data sets. The critical Reactome pathways 

that were significant across all cancer cell data sets are the following: 1) "Cell Cycle, 

Mitotic", 2) "DNA Replication", 3) "Mitotic M-M/G1 phases", 4) "AKT phosphorylates 

targets in the cytosol", 5) "M Phase", 6) "Mitotic Prometaphase". A drug pathway 

analysis was performed on these pathways and the genes that were differentially 

expressed and members of these pathways. The drug pathway analysis found that six 

significant gene targets. These six gene targets are: POLA1, POLA2, PLK1, CENPE, 

AURKB, CDKN1B, and RB1. The results of our study are significant because they allow 
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for the identification of potential genes and pathways that could be used as genetic 

markers in radiation therapy. In addition, the identification of drug targets will allow for 

testing to determine if drugs that target these genes affect the radioresistance or 

radiosensitivity of cancerous cells upon exposure to IR.
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Introduction 

 

1.1.1 Ionizing Radiation 
 

Ionizing radiation is a form of radiation that ionizes atoms along its trajectory and can 

deposit energy on the medium it passes through [1]. Exposure to ionizing radiation (IR) 

is known to increase an individual’s chance of developing cancer and can lead to 

severe medical complications and death [2]. Mitigating the risk for exposure of nuclear 

workers or the general public to IR is extremely important. Previous studies have shown 

that individuals who work with radioactive material are exposed to higher levels of 

radiation and have a higher chance to develop medical complications [3]. Ionizing 

radiation can affect human cells through direct or indirect effects [1]. Direct effects occur 

when the radiation directly reacts with a cell [1]. The most damaging example of a direct 

effect would be radiation interacting with the DNA of a cell [1]. The other method of 

interaction is called indirect effects and consists of the creation of free radicals through 

the interaction of the radiation with water or other compounds in the cell [1]. These free 

radicals can damage the cell and cellular DNA [1]. The direct or indirect interaction of 

radiation with cellular DNA can cause double or single stranded breaks in the DNA [1]. 

The damages caused by IR through these effects, particularly double stranded breaks 

as they are more difficult to repair, can lead to mutations or cell death [1]. Therefore, it is 

important to note the potential of IR exposure to cause the development of cancer 

[1,2,3]. Finally, there are many different medical applications of IR that exist, including 

the exploitation of IR characteristics to treat cancer and other medical conditions [1,4,5].  
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1.1.2 Medical Applications of Ionizing Radiation 

 

A common practice in cancer treatment is radiation therapy, which utilizes different 

forms of IR to treat patients [4]. A large percentage of cancer patients receive radiation 

therapy at some point during their treatment [1]. Radiation therapy is widely practiced 

because it has been shown to increase the survival rate of some cancer patients [5]. 

There are two different techniques for delivering radiation therapy. The first technique 

involves the delivery of an external beam of radiation to the cancerous tumor [4]. The 

second technique is brachytherapy, which is the placement of a radioactive source next 

to the tumor (intracavitary) or directly inside the gross tumor (interstitial). Furthermore, 

brachytherapy can be delivered via low-dose rate (permanent or temporary) or high -

dose rate (usually temporary) techniques. Radiation therapy involves the targeting of 

cancerous tissue with IR in an effort to kill the cancerous cells [4]. It is well known that 

most types of cancer are significantly more sensitive to radiation damage than normal 

cells [4]. However, the use of radiation therapy has some serious side effects. The main 

obstacle in the use of radiation therapy is the damage to normal tissue that occurs. 

Inevitably, some healthy cells located near the targeted cancerous tumor are exposed 

to ionizing radiation [4]. This can lead to the destruction of healthy tissue and the 

increased risk of the patient developing a secondary cancer in the future [6]. Therefore, 

due to the serious medical conditions that can arise from exposure to IR and the 

medical applications of IR, it is imperative that novel therapeutic techniques are 

developed in order to mitigate the negative effects of IR exposure to healthy tissue and 

increase the effect of IR on cancerous tissue in order to increase the effectiveness of 

radiation therapy.  
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1.2.1 Data Utilized 

 

The raw data utilized in this study consisted of gene expression data from GEO 

datasets that contain Affymetrix microarray analysis data. GEO is a public collection of 

microarray data that is compiled from past experiments. Previous studies have been 

performed utilizing gene microarray gene expression data in the field of radiation 

medicine. These studies have found a number of genes that are differentially expressed 

in human tissue exposed to radiation [2,7,8,10,11,12,13]. For example, the original 

studies that utilized the GEO data sets that were selected for this study found that 

genes that were critical to DNA damage and replication were differentially expressed 

[14,15,16,17,18]. In addition, each of these studies found that p53 and genes 

associated with p53 expression were differentially expressed. This result was also 

observed in this study and is expected given the significant role that p53 expression 

plays in cell apoptosis [11,17,18].  

 

The analyses performed in the referenced studies provide evidence that shows gene 

and pathway expression analysis can be performed to determine a list of candidate 

genes and pathways that could potentially contribute to variable radiosensitivity or 

radioresistance in human cancer and normal cell lines. However, few studies have 

performed a comprehensive meta-analysis utilizing multiple microarray datasets. In 

addition, most of the previous studies have focused primarily on the expression analysis 

of known metabolic pathways and genes that are widely known to be associated with 

cancer, such as p53 [11]. The few studies that have performed a comprehensive meta-

analysis to identify differential pathway expression in human tissue exposed to radiation 
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have focused on individual cell types [19]. The analysis performed in this thesis is novel 

because of its meta-analysis of multiple microarray gene expression data sets from 

different cell types. In addition, the experimental analysis that was performed allowed 

for the identification of biological pathways that have not been previously associated 

with changes in radioresistance or radiosensitivity.  

 

1.2.2 Gene Expression Analysis 

 

The analysis of gene expression in Affymetrix microarrays is a well-known process [20]. 

The basic premise for performing a gene expression analysis with microarray 

technology is that the level of a specific RNA in a cell is positively correlated with the 

expression of the gene coding for that RNA [20,21,22,23]. The Affymetrix microarrays 

consist of oligonucleotide probes that are complimentary to a specific RNA sequence 

[20,23]. The three most common types of Affymetrix microarray platforms are the HGU 

133 Plus 2.0, Human Exon 1.0 ST, and Human gene 1.0 ST arrays. The probes in the 

HGU 133 Plus 2.0 array are 25 nucleotides in length and contain a complimentary 

sequence that perfectly matches the target RNA [15,23,24,25]. However, to account for 

noise and random binding, an oligonucleotide probe that contains 1 altered base pair, 

usually at the 13th nucleotide, is created [20,24,25]. In contrast, the Human Exon 1.0 ST 

and Human Gene 1.0 ST arrays use probes that do not match with any human RNA as 

negative control probes [24,25]. Therefore, the intensity of the negative control probes 

for each array can be utilized to filter the microarray data in order to remove non-binding 

probes.  
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The use of gene expression data is typically analyzed by using the probe intensity 

values to compare the expression of a specific gene between a treatment and control 

group [2, 26]. If the difference of the intensity value between the two groups is 

significant, then it can be concluded that the gene is differentially expressed in the 

treatment group [2,26]. If the intensity of a probe is statistically higher in one group, then 

its corresponding gene is concluded to be expressed at a higher level than the other 

group. Likewise, if the intensity of the probe is lower than the other group then the gene 

is concluded to be expressed at a lower level than the other group. If the difference 

between the intensity of a specific probe is not significantly different between the two 

groups then it is concluded that the probe’s corresponding gene is not differentially 

expressed between the two groups [26]. One issue with this form of testing with 

microarray data is correcting for multiple testing. Multiple testing is an issue because 

there are thousands of probes corresponding to a specific gene on a microarray. 

Therefore, it is necessary to perform a correction for multiple testing to lower the 

occurrences of false positives.  

 

The probe IDs and their corresponding intensity values are reported in the GEO 

datasets, which can be utilized for secondary analysis. GEO data sets typically contain 

replicates for their control and treatment groups. This is important because performing a 

replicate microarray analysis with the replicate data sets for each group helps to 

account for any sources of error that may affect the data. The secondary meta-analysis 

of gene expression data from multiple GEO datasets can introduce a possible bias from 
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batch effect, which should be addressed. [21,27] The batch effect bias may occur due to 

the use of data from different experiments. Normalization is one common method that 

can be utilized to remove batch effect and other sources of bias. The process of 

normalization will allow for the removal or mitigation of various sources of experimental 

bias [21]. The Robust Multi-Array Analysis (RMA) is an appropriate method for 

normalizing Affymetrix microarray data and correcting for batch effect and other sources 

of bias [24,25]. The use of quality control, background correction, and normalization 

methods are critical for the mitigation of potential biases that may occur during a gene 

expression analysis and are vital steps in any analysis [22,24,25,28].  

 

1.2.3 Annotation 

 
 
The use of different Affymetrix microarray platforms in a meta-analysis can cause some 

issues regarding gene annotation. Therefore, identifying which gene is associated with 

a specific piece RNA, and the RNA that is complementary to a probe, is very important. 

The process for identify the genes that are represented by specific probe IDs is called 

annotation [25,29]. This process is extremely important because faulty annotation can 

lead to the misidentification of differentially expressed genes and faulty data [25,29].  

Therefore, for a gene expression analysis to ensure that each probeset is annotated to 

the correct gene, an efficient annotation method is needed. One effective tool for 

properly annotating gene expression data from various Affymetrix platforms is the 

Bioconductor package Annmap. This package matches the various probeset IDs from 

the microarray to specific genes by comparing the probe sequences with a reference 
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genome [1]. Any unrealizable probesets, such as probe sets that contain probes that do 

not map to the genome or have multiple targets, are removed [1]. This is an effective 

means of annotation because it ensures that the probeset IDs that are determined to be 

differentially expressed are annotated to the correct gene. Without proper annotation, a 

gene expression analysis could misidentify genes that are differentially expressed 

through the incorrect mapping of a probeset to its corresponding gene.   

 

1.2.4 Pathway Analysis 

 
 
The data obtained from the identification of genes that are differentially expressed has 

previously been successfully utilized to determine which pathways are differentially 

expressed between a treatment and control group [30]. For the pathway expression 

analysis of microarray data, the Bioconductor package Graphite and the Reactome 

pathway database are useful tools. The Reactome database consists of pathways for 

various biologically processes [31]. The base unit of the pathways in the Reactome 

database is a connection of various reactions and a pathway comprised of the 

interactions of the base units [31]. The Reactome database is often used because the 

development of pathways with a base unit of biological reactions allows for a 

comprehensive pathway analysis that accounts for the interactions of the various gene 

products [31].  

 

For a pathway analysis to be performed, a gene expression analysis needs to be 

performed in order to determine which genes to test for pathway membership. The 
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biological products of these genes are utilized to determine their membership in the 

Reactome pathways and to perform the pathway analysis [29,31]. The Bioconductor 

package GRAPHITE offers the use of the method of Signaling Pathway Impact Analysis 

(SPIA) for pathway analysis [29]. The SPIA pathway analysis utilizes the fold change of 

the differentially expressed genes and the interactions between various gene products 

to determine the amount of perturbation that occurs in a specific pathway [29,32]. The 

results of this pathway analysis are of great significance because the statistical analysis 

performed is influenced by knowledge of the biological processes and interactions of the 

gene products for the differentially expressed genes that are being analyzed [29,32]. 

However, one common issue in pathway analysis is the concern of multiple testing[32]. 

A pathway analysis performs many statistical tests for each pathway, which can lead to 

a high number of false positives. Therefore, a form of correction for multiple testing is an 

important aspect of pathway analysis. The use of the analysis of the perturbation of the 

biological pathways along with the pathway enrichment analysis and multiple testing is a 

vital aspect in ensuring that a pathway analysis has a high significance.   

 

1.2.5 Drug Target Analysis 
 

MetaDrug is a comprehensive knowledgebase that contains information regarding 

protein-protein interaction and the reactions of various gene productions to create an 

interaction network in the context of drug toxicology [33]. This database can utilize input 

data in the form of genes that are differentially expressed and pathways that are 

significantly enriched with these gens [33]. One goal of this study is to identify 
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pharmaceutical compounds that target genes and pathways that are differentially 

expressed in human cells exposed to radiation. Therefore, the MetaDrug database was 

utilized in order to identify these pharmaceutical compounds through an analysis of the 

MetaDrug interaction network using the microarray data consisting of differentially 

expressed genes and pathways that were obtained in our analysis. The use of 

MetaDrug is vital to the identification of novel therapeutic targets in the field of radiation 

medicine as the identification of significant pharmaceutical compounds that target 

pathways and genes that are differentially expressed upon exposure to radiation can 

allow for the identification of currently existing drugs that could be utilized in the field of 

radiation oncology or radiation protection.  

 

1.3.1 Previous Studies 

 
 
Microarray array technology has been used to analyze the biological response of 

human cells to exposure to ionizing radiation. These past studies have found that a 

large fraction of the genes that are differentially expressed upon exposure to IR are 

involved with cell cycle regulation, apoptosis, and DNA repair pathways [34]. However, 

one major concern in performing a gene expression analysis is the issue of false 

positives and multiple testing [34]. However, this study will perform statistical corrections 

for the issue of multiple testing. In addition to studies utilizing one dataset, some meta-

analyses studying the effects of IR on human cells have been performed using 

microarray technology [19]. One of the most meta-analyses most relevant to this study 

by Kim et al. involved the exposure of the NCI-60 cancer cell lines to 2 Gy of IR [19]. 

This study identified genes that were differentially expressed between each of the 
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cancer cell lines upon exposure to IR and in agreement with past studies found that 

most of the differentially expressed genes were members of cell cycle regulation and 

DNA replication pathways [19]. In addition to the field of radiation medicine and the 

treatment of cancer with IR, studies have also been conducted in the field of radiation 

protection using microarray technology. One study by Fachin et al. performed a gene 

expression analysis on nuclear workers that were exposed to IR during their normal 

work routine [35]. This study also found that the genes that were differentially expressed 

were members of pathways that centered on cell cycle regulation and stress 

response/DNA repair [35].  

 
 
These previous studies have shown the feasibility of using microarray technology to 

analyze the biological response to IR in human cells. In addition, the various fields 

covered in these previous studies ranging from radiation treatment to radiation 

protection have shown that our current study has a great significant in the field of 

radiation medicine as a whole. In contrast to the past research that has been performed 

in this area, our study seeks to not only perform a gene expression analysis, but to 

perform a pathway analysis and a drug pathway target analysis. This will allow for the 

determination of which genes are differentially expressed upon exposure to IR, which 

pathways these genes are significantly perturbing, and which drugs significantly target 

the differentially expressed pathways.  
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1.3.2 Rationale and Objective 

 

The long term goal of this study is to identify critical pathways with altered gene 

expression in human cells exposed to radiation and to identify pharmaceutical 

compounds that target these pathways. This goal is based on our central hypothesis 

that changes in gene expression in cells exposed to radiation is a common response in 

all cells and the identification of genes and pathways that have altered expression when 

exposed to radiation will allow for the identification of candidate drugs that can be used 

for novel approaches in radiation medicine to treat, utilize, or moderate the effects of 

exposure to IR. The specific aims of this study are the following: 

 

1. Determine which genes are differentially expressed in human cells after 

exposure to radiation through the secondary analysis of GEO datasets.  

2. Identify which biological pathways are significantly enriched with the genes that 

are differentially expressed after exposure to ionizing radiation. 

3. Identify pharmaceutical drugs that target significantly target the biological 

pathways that are differentially expressed in human cells exposed to ionizing 

radiation. 
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Methods 

 

2.1.1 Data 

 
 
The data for this project consists of GEO datasets containing Affymetrix microarray 

expression data. These datasets contain microarray data for a treatment group and a 

control group. The treatment group consists of the gene expression data for the human 

cell line exposed to radiation. The control group consists of the gene expression data for 

the same cell line without exposure to radiation. In addition, there was a set criterion 

that was used to select the data sets for this study, which is outlined below.  

 

The GEO datasets used in this study were selected based on the following criteria: 

 

1. The microarray expression data was collected from human cells that received a 

dose of 2Gy, 5Gy, or 10Gy. 

2. The RNA post radiation extraction time must range from 2 to 8 hours.  

3. The control group for each data set must contain the same cell lines as the 

treatment group and be collected using the same laboratory techniques.  

4. The treatment and control groups in each dataset must contain at least 1 

replicate (2 different microarray expression data for each of the treatment and 

control group). 
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These dose values for the criteria were chosen due to their clinical significance as the 

use of 2Gy, 5Gy, or 10Gy dose fractions is common in radiation therapy [36]. In 

addition, the RNA extraction time post radiation values for the datasets ranging from 2 

hours to 8 hours was chosen because these times are relatively close. The use of 

expression data with small differences in DNA extraction time has been found to allow 

for an accurate gene expression analysis and should have little negative effect on the 

data quality [37]. A control group was required for each analysis because an analysis of 

the same cell line without exposure to radiation is needed to determine which genes are 

differentially expressed when the same cell line is exposed to radiation. Data sets were 

required to contain at least 1 replicate because this would help to identify any bias or 

sources of error in the data.  

 

One of the 5 GEO data sets contains microarray data for normal cell lines and 

cancerous cell lines. Therefore, this data set was split and the normal and cancerous 

sub-datasets were treated as individual data sets. The 5 GEO datasets utilized in this 

project are also divided into two groups. These two groups are labeled Control and 

Treatment. The control group consists of four datasets that contain gene expression 

data for normal cells exposed to radiation. The second group will consist of the two data 

sets that contain data for cancerous tissue exposed to radiation.  

 

A list of the GEO datasets, cell types, radiation exposure in Gray (Gy), post radiation 

RNA extraction time, and group assignment can be seen in table 1.  
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GEO 

Dataset 

Platform Cell Type (All 

Human) 

Dose Received 

(Gray) 

Post Radiation 

RNA Extraction 

Time 

Group  

GSE26841  

 

GPL5175 [HuEx-1_0-

st] Affymetrix 

Human Exon 1.0 ST 

Array [transcript 

(gene) version] 

Primary 

Fibroblast 

 

10Gy 4 hours 
 

Normal (1) 

GSE37668 GPL6244 [HuGene-

1_0-st] Affymetrix 

Human Gene 1.0 ST 

Array [transcript 

(gene) version] 

Embryonic 

Human 

Fibroblasts 

2Gy 2,4,8 hours Normal (1) 

GSE41840 GPL5175 [HuEx-1_0-

st] Affymetrix Human 

Exon 1.0 ST Array 

[transcript (gene) 

version] 

Primary 

Fibroblast 

10Gy 4 hours Normal (1) 

GSE30240 GPL570 [HG-

U133_Plus_2] 

Affymetrix Human 

Genome U133 Plus 

2.0 Array 

G361, HepG2, 

TK6, U2OS, BJ 

cell lines 

 

5Gy 

 

3,6 hours Normal(1) 

and 

Cancer(2) 

GSE20549 GPL6244 [HuGene-

1_0-st] Affymetrix 

Human Gene 1.0 ST 

Array[transcript (gene) 

version] 

Lung Cancer 

Cell Lines 

H460 and 

H1299 

2Gy 2,4,8 hours 

 

Cancer (2) 

Table 1: List of GEO datasets and their corresponding attributes. 

 

 

2.1.2 Data Import 
 
 
Various R Bioconductor packages were used to perform the gene expression and 

pathway analysis on the data from the GEO datasets. The specific R code that was 
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utilized in this study can be seen in Appendix 1.The CEL files for the samples for each 

of the GEO data sets were downloaded from the GEO website and unzipped to the local 

drive. The Bioconducter package Oligo was then utilized to import the raw intensity data 

for each dataset into R. Once the raw intensity data for each data set was imported, 

quality control was performed. First, a histograph and boxplot of each of the samples 

within a data set was performed. This allowed for the identification of any obviously 

corrupted data. To analyze the quality of the data, a proble-level model was fit to the 

data using the Bioconductor package Olgi.  Next, the Normalized Unscaled Standard 

Error (NUSE) was calculated and graphed for each of the samples in the data set. The 

NUSE plots are boxplots of the normalized standard error from the probe-level model fit 

for each sample [25]. These NUSE plots were analyzed in order to identify any 

abnormal arrays. A Relative Log Expression (RLE) plot was also performed from the 

probe-level model. The RLE plot was also useful in analyzing the quality of the arrays 

and ensuring that none of the arrays contain abnormal values with respect to the other 

samples in the dataset [25].  

 

2.2.1 Normalization and Probeset Filtering 

 

After quality control was performed on the arrays in the data set, the expression data 

was normalized. The normalization and summarization o the expression data was 

performed using the Robust Multi-Array Analysis (RMA) technique. The RMA method is 

extremely popular and creates a linear model of the log-scale expression data in order 

to perform a background correction and normalization of the data [25,29]. 
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After the microarray expression data was background corrected and normalized, the 

probesets were filtered based on their intensity. For the gene filtering step, the 

packages limma, affyPLM, and genefilter were used. The gene filtering technique used 

in this study consisted of obtaining the intensity of all of the negative control probes in a 

dataset and creating a normal distribution of those intensities. Next, the 85th percentile 

value of that distribution was calculated. This value was used as the filtering value cutoff 

so that at least 1/3 of the probeset intensities for a specific probeset ID had to be above 

this value. This was performed in an effort to remove irrelevant or non-binding 

probesets and probesets for genes that are not expressed [25,29]. For the datasets with 

the HuEx 1.0 ST and Gene 1.0 ST platforms, the anti-genomic negative control 

probesets were obtained using the Oligo packages. These anti-genomic probesets 

consist of probesets that correspond to genes that are not present in humans and are 

therefore not expect to be expressed in the array [25,29]. Therefore, the intensity value 

for these probesets is likely to be caused by non-specific binding and other sources of 

noise [25,29].  

 

For the datasets using the HGU 133 Plus 2.0 platform, the negative strand matching 

probesets were used as negative control. These are probesets that are not expected to 

hybridize to any RNA that is present in human cells [25,29]. To obtain the probeset IDs 

for the negative strand matching probesets, the NetAffx annotation files (release 33) for 

the HGU 133 Plus 2.0 platform were downloaded from the Affymetrix website. This file 

contains the probeset IDs for all of the probesets in the array. This information was used 
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to obtain all negative strand matching probes. The intensity of all of the negative strand 

matching probesets was collected and a normal distribution was created as well. The 

value of the 85th percentile was also used as the filtering cutoff value. 

 

2.2.2 Gene Expression Analysis 

 

The gene expression analysis in this study was performed by fitting a linear model to 

the normalized and filtered expression data utilizing the Bioconductor package limma. 

This analysis separated the expression samples in a dataset into two groups, control or 

treatment. The control group consisted of the intensity values for each probeset for the 

samples that weren't exposed to radiation and the treatment group consisted of the 

intensity values for each probeset for the samples that were exposed to radiation. For 

this gene expression analysis, correction for multiple testing must be performed. In the 

gene expression analysis there were thousands of probesets that were tested for 

differential expression. This means that a large number of the probes that are not 

differentially expressed would be expected to be significant at a p-value cutoff of 0.05 

because of random chance [25,29]. Therefore, to correct for the issue of multiple 

testing, The Benjamini and Hochberg's method to control the false discovery rate was 

used [25,29]. The cutoff value for the adjusted p-value given through this method used 

in this study was 0.05. Therefore, after the differentially gene expression analysis and 

correction for multiple testing, any probesets that were found to have an adjusted p-

value of less than 0.05 were identified as being differentially expressed upon exposure 

to radiation.  
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2.2.3  Annotation 

 

The output from the gene expression analysis consisted of the probeset IDs along with 

the log intensity and log fold change of the corresponding probeset IDs. There are 

various annotation techniques that can be used to identify the genes that correspond to 

each probeset [25,29]. However, many annotation techniques do not map probeset IDs 

to the same genes and can give differing results [25,29,38]. In addition, the use of HuEx 

1.0 ST and HuGene 1.0 ST arrays presents further annotation issues. It is possible for 

some probesets to contain sequences that would map to many different genes [38,39]. 

This would make it difficult to determine which gene is being expressed and the true 

intensity value for that gene [38,39]. In addition, many genes undergo alternate splicing, 

which can add further complications when attempting to annotate the HuEx 1.0 ST array 

[38,39].  To achieve accurate annotation for the gene expression analysis performed on 

each of the different Affymetrix platforms, the Bioconductor package Annmap was used. 

The Annmap package utilizes the unique exon structure of a specific gene and the 

specific transcripts that can be mapped to a gene to provide accurate gene annotation 

[38,39].  

 

Annmap aligns each of the probeset sequences with a reference human genome in 

order to determine the specific genes that correspond to that probeset [38,39]. This 

allows for the identification of probesets that are considered to be unreliable. Unreliable 

probesets are defined as probesets that either map to the genome multiple times or do 
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not map to the genome [38,39]. The annotation performed in this study removed all 

unreliable probesets in order to increase the accuracy of the gene annotation. This 

annotation approach with Annmap was used for the differential gene expression 

analysis for the data sets that contained microarray data on the HGU 133 Plus 2.0, 

HuGene 1.0 ST, and HuEx 1.0 ST Affymetrix platforms.  

 

The output from Annmap is the Ensemble gene ID for each of the differentially 

expressed genes. However, the pathway analysis performed in this study requires 

Entrez Gene ID. Therefore, to annotation the Ensemble gene IDs to Entrez IDs the 

Bioconductor package BioMart was used. BioMart is a commonly used annotation tool 

that can effectively annotate between Ensemble IDs and Entrez IDs [33]. The human 

genome is well annotated and the annotation approach utilizing BioMart and Annmap is 

an efficient method for ensuring that the differentially expressed probesets are mapped 

correctly to their corresponding genes and that the output data from the gene 

expression analysis is formatted correctly for the pathway analysis.  

 

2.2.4 Pathway Analysis 

 

The pathway analysis for this study was performed with the Bioconductor package 

Graphite, which utilizes the package SPIA. The input for these packages consisted of a 

named vector that contained the log fold change and Entrez gene ID for each gene that 

was found to be differentially expressed. These values were used to determine which 
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Reactome biological pathways were significantly inhibited or activated by the differential 

expression of the significant genes.  

 

The packages Graphite and SPIA use an effective and unique approach to pathway 

analysis. The pathway analysis performed by these packages uses a interaction 

network that allows for the creation of a perturbation p-value, which is calculated based 

on the effect that the differentially expressed genes have on the pathway [29]. This 

factor is calculated by determining the relationship of each of the genes in the pathway 

and using the log fold change values for the differentially expressed genes to calculate 

how much the pathway was perturbed [29]. These pathway analysis packages also take 

the topology of the pathway into account [29] For example, a gene with many 

interactions at the beginning of a pathway that is differentially expressed would perturb 

the pathway more than a gene that is near the end of the pathway with few gene 

product interactions [29]. In addition, a p-value is also calculated based on how many 

genes would be expected to be differentially expressed within the pathway based on 

random chance [29]. These two attributes are used to calculate an overall p-value for 

the significance of the pathway [29]. However, like in the gene expression analysis, the 

pathway analysis must include a correction for multiple testing since there are hundreds 

of pathways that are being tested. For this study, a FDR adjusted p-value cutoff of 0.05 

was used. The output of this pathway analysis was the identification of pathways that 

are significantly inhibited or activated by the differential expression of the significant 

genes that were determined in our gene expression analysis.  
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This pathway analysis used the Reactome database for biological pathways in order to 

ensure that the pathway analysis was significant. The Reactome database consists of 

pathways that are built with a base unit of a reaction between the gene products [31]. 

This is very important to the significance of the pathway analysis since the Reactome 

pathway accounts for the numerous interactions and reactions between gene products 

[31]. In addition, the Reactome database is a free open-source pathway database that 

is constantly updated [31].  

 

In summary, the pathway analysis in this section was performed using the Bioconductor 

packages Graphite and SPIA. The input for this analysis consisted of the gene IDs for 

the differentially expressed genes obtained in the gene expression analysis and their 

respective log fold change values. The output from this analysis was the identification of 

the pathways that are significantly inhibited or activated by exposure to ionizing 

radiation.  

 

2.2.5 Drug Target Analysis 

 

The drug target analysis for this study was performed using MetaDrug, a curated drug 

knowledgebase. The drug target analysis was performed for the six pathways that were 

found to be differentially expressed among all data sets in the cancer group. These six 

pathways were: Cell Cycle Mitotic, DNA Replication, Mitotic M-M/G1 phases, AKT 

phosphorylates targets in the cytosol, M Phase, and Mitotic Prometaphase. The input 

for this analysis consisted of the name of each pathway that was differentially 

expressed and the genes that were differentially expressed in each pathway. After the 
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analysis was performed for each pathway, the names of the drugs that significantly 

targeted each pathway and the gene targets of the drug were recorded. The drug output 

from this analysis was compared with the results from the gene expression analysis to 

ensure that the drugs found in the analysis targeted genes that were found to be 

differentially expressed in our gene expression analysis. Finally, the drug targets that 

were found in this analysis were compared across each significant pathway. The results 

of this analysis can be seen in Table 3.  

 

Results 

 

3.1.1 Gene Expression and Pathway Analysis 

 

The complete list of pathways that were obtained from the pathway analysis and were 

found to be either significantly inhibited or activated by exposure to ionizing radiation in 

each data set can be seen in table 2.  

 

GEO 
Dataset 
(Group) 

Differentially Expressed Reactome Pathways 

GSE 26841 
(Normal) 

No Significant Pathways 

GSE 41840 
(Normal) 

No Significant Pathways 

GSE 37668 
(Normal) 

"Mitotic G1-G1/S phases" 

GSE 30240 
(Normal) 

"APC/C:Cdc20 mediated degradation of Cyclin B", "M Phase", "Mitotic Prometaphase", 
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"Cell Cycle, Mitotic", "DNA Replication", "Mitotic M-M/G1 phases" 

GSE 20549 
(Cancer) 

"AKT phosphorylates targets in the cytosol", "Meiotic Recombination",  "RNA, 

Polymerase I Transcription", "RNA Polymerase I Promoter Clearance",  "Activation of 

the pre-replicative complex", "RNA Polymerase I Promoter Opening", "Telomere 

Maintenance",  "RNA Polymerase I, RNA Polymerase III, and Mitochondrial 

Transcription",  "Chromosome, Maintenance",  "G/M, Checkpoints",  "Activation of 

ATR in response to replication stress",  "Mitotic, G-G/S, phases",  "G/S, Transition",  

"Cell Cycle, Mitotic", "Metabolism of carbohydrates",  "Metabolism of RNA", "SLC-

mediated transmembrane transport", "Processing of Capped Intron-Containing Pre-

mRNA",  "mRNA Processing", "Influenza Life Cycle", "Influenza Infection",  

"Transcription",  "SemaD induced cell migration and growth-cone collapse", "SemaD in 

semaphorin signaling", "Export of Viral Ribonucleoproteins from Nucleus",  "Eukaryotic 

Translation Elongation",  "Translation", "Peptide chain elongation",   "Glucose 

transport", "Hexose transport",  "Transport of Mature mRNA derived from an Intron-

Containing Transcript", "Transport of Ribonucleoproteins into the Host Nucleus", 

"Transport of Mature Transcript to Cytoplasm", "NEP/NSInteracts with the Cellular 

Export Machinery",  "Chromosome Maintenance", "DNA Replication",  "Mitotic M-M/G 

phases", "Apoptosis" 

GSE 30240 
(Cancer) 

"M Phase", "Mitotic Prometaphase", "Cell Cycle, Mitotic", "DNA Replication", "Mitotic 

M-M/G1 phases", "APC/C-mediated degradation of cell cycle proteins" 

Table 2: Differentially expressed pathways by GEO dataset. 
 

It should be noted that many of the pathways are known to have a high level of 

biological significance, such as "apoptosis" and "cell cycle, mitotic" [19,34,5]. A large 

proportion of the pathways that were found to be significant are related to cell cycle 

regulation. In addition, there were some pathways that were novel and unexpected, 

namely "Export of Viral Ribonucleoproteins from Nucleus", "Influenza Life Cycle", 

"Influenza Infection". However, the following pathways were found in every data set 

using cancerous cell lines: Cell Cycle Mitotic, DNA Replication, Mitotic M-M/G1 phases, 

AKT phosphorylates targets in the cytosol, M Phase, and Mitotic Prometaphase. There 

were no pathways that were found to be differentially expressed in each of the normal 

cell type groups. This provides further evidence for the significance of cell cycle 
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regulation in cancerous cells that are exposed to ionizing radiation. In addition, these 

pathways may provide possible genetic markers for use in radiation therapy for cancer.   

 

3.1.2 Drug Pathway Analysis 

 

The drug pathway analysis that was performed on the six pathways that were 

differentially expressed in each of the cancer data sets was performed separately for 

each pathway. After this analysis, the drugs that significantly targeted each of the 

pathways and their respective gene targets were determined. The six drug targets that 

were targeted in at least 1 of the six pathways are: POLA1, POLA2, PLK1, CENPE, 

AURKB, CDKN1B, and RB1. The drug gene targets, the effect of the drug on its 

respective pathway, and the number of pathways that are affected by the gene target 

are outlined in table 3.  

Drug Target Effect Number of Significant 

Pathways Targeted 

PLK1 Inhibited 5/6 

CENPE Inhibited 5/6 

POLA1 Inhibited 3/6 

POLA2 Inhibited 3/6 

CDKN1B Inhibited 3/6 

AURKB Inhibited 2/6 

RB1 Inhibited 2/6 

Table 3: List of drug targets found in drug target analysis 
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Discussion 

 

4.1.1 Gene and Pathway analysis in Perspective 

 

A large portion of the pathways that were found to be significantly inhibited or activated 

after the gene expression analysis and pathway analysis was performed were involved 

with cell cycle regulation or DNA repair. For example, some of the pathways that were 

found to be significant were "Apoptosis", "Cell Cycle, Mitotic", "DNA replication", and 

other pathways that were involved in various steps of the cell cycle. These pathways 

are extremely similar to the pathways found in previous studies. Previous studies that 

performed gene expression analyses have found that the genes that were differentially 

expressed were members of pathways that are involved in cell cycle regulation, 

apoptosis, and DNA replication [19,34,35]. However, the analysis performed in this 

study utilized thorough statistical procedures through a comprehensive pathway 

analysis that included the known biological reactions and interactions of the gene 

products of the genes that were found to be differentially expressed. This is significant 

because it provides further evidence that the pathways that were found to be significant 

are critical to the radiation response of normal and cancerous human cells.  
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4.1.2 Drug Pathway Analysis 

 

The identification of the drugs that have a significant impact on the pathways that were 

differentially expressed in each cancerous data set is very significant. Our findings 

suggest that the drugs that were identified in our drug pathway analysis could have a 

potential use in the field of radiation medicine. In order to provide further evidence of the 

impact of these drugs on cancerous tissue during radiation therapy, further study with 

experimental validation is needed. One possible future experimental validation is a 

survival analysis between cancerous tissue that is exposed to IR and cancerous tissue 

that is treated with each of the drugs that were found to be significant and exposed to 

IR. This would allow for the determination of the effects of the drugs on cancerous 

tissue exposed to IR. If the validation shows that these drugs have a negative impact on 

the survivability of cancerous tissue upon exposure to radiation, they could potential be 

used during radiation therapy to lower the possibility of recurrence occurring post 

treatment.   

 

4.1.3 Impact of the Results and Perspective 

 

This study successfully identified the genes that are differentially expressed upon 

exposure to IR, the pathways that are significantly inhibited or activated during exposure 

to IR, and the pharmaceutical compounds that significantly target these pathways. 

These results contain data that is clinically significant and contains numerous medical 

applications with high impact. The identification of pathways that are significantly 
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inhibited or activated by exposure to IR will allow for the identification of novel 

therapeutic targets that can be utilized to develop new drugs in the field of radiation 

therapy or radiation protection.  

 

The six significant pathways identified in this study were critical to the cell cycle or DNA 

repair. This is consistent with the findings of other previous studies [19,34,35]. In 

addition, the pathways that were significant in only one data set could be implicated in 

radiation response and involved DNA repair pathways. DNA repair pathways have also 

been found to be differentially expressed in human cells exposed to IR 

[14,15,16,17,18,35]. The identification of critical pathways and genes that are 

differentially expressed allows for the future identification of genetic markers that can be 

utilized to predict patient outcome to radiation treatment. In addition, the identification of 

currently developed drugs that significantly target the pathways that are inhibited or 

activated by exposure to IR and their respective drug targets allows for the identification 

of drugs that can be used for a novel purpose in the field of radiation medicine. This has 

a high degree of clinical significance because novel drugs or drug applications that 

either increases the radioresistance of normal cells or radiosensitivity of cancerous 

tissue will have a positive impact on patient treatment. The identification of drugs that 

increase the radioresistance of normal cells would have applications in the field of 

radiation protection as these compounds could be utilized to protect nuclear workers 

from IR exposure. Drugs that significantly increase the radiosensitivity of cancerous 

cells would be extremely useful in radiation therapy as they would make the cancerous 

tissue more responsive to treatment and reduce the risk of cancer recurrence. This 
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study lays the foundation for futures studies to determine the effect of drugs that 

significantly target these differentially expressed pathways on the radiosensitivity and 

radioresistance of human cells and the identification of genetic markers that can be 

used in radiation therapy.  

 

The targets of the drugs that were identified are also of significant interest. The targets 

of these drugs are: POLA1, POLA2, PLK1, CENPE, AURKB, CDKN1B, and RB1. There 

have been many studies that have identified PLK1 as a potential therapeutic target in 

radiation medicine [40,41,42,43]. Many studies involving RNAi knockdowns of PLK1 in 

cancerous tissue have also been performed. These studies found that inhibition of PLK1 

stunted cell growth and increased cell death in cancerous tissues [40,41,42,43]. In 

addition, Harris et al found that the use of BI 2536, a drug that inhibits PLK1 and was 

found in our drug analysis, increases the radiosensitivity of cancerous cells to radiation 

[42]. Therefore, the numerous studies that show the effect of PLK1 inhibition on 

cancerous cell growth and exposure to radiation provide further evidence for our 

pathway and drug target analysis results in the identification of PLK1 as a possible 

genetic hotspot effecting cancerous cell radiosensitivity. 

 

 In addition to PLK1, previous studies have found that CENPE expression was linked to 

radiation induced fibrosis [44]. This suggests that CENPE could potentially be used as a 

genetic marker to determine patient outcome, in particular the development of radiation 

fibrosis, after radiation therapy. However, there are no comprehensive studies to our 
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knowledge that discussed the use of CENPE as potential therapeutic targets in radiation 

therapy. 

 

The significance of the identified gene targets of POLA1 is also supported by previous 

studies. A study by Toukoki et al found that POLA1 has a significant role in the 

response of streptococcus to peroxide stress [45]. This is significant to radiation 

response because the indirect effect of radiation on human cells damages DNA in a 

similar mechanism to peroxide [1]. The mechanism for DNA damage from the indirect 

effects of radiation involves the formation of free radicals from the interaction of 

radiation with water molecules, which damages DNA using the same mechanism 

involved in peroxide stress [1]. Therefore, this provides significant evidence that POLA1 

may have a significant role in the radiosensitivity of cancerous cells.  

 

The significant gene target of POLA2 has also been previously studied. Previous 

studies have found that POLA2 is differentially expressed in cancerous cells that were 

exposed to chemotherapy and ionizing radiation [46,47]. This is significant because 

these studies provide further evidence of the potential role of POLA2 as a genetic 

marker for radiation response or treatment. In addition, it provides further support for our 

identification of this gene as a possible therapeutic target to increase cancer cell 

radiosensitivity.  

 

The gene target of AURKB that our study identified has been found to be a significant 

gene of interest in radiation response. Many papers have previously performed 
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knockdowns of AURKB and found that AURKB inhibition is associated with increased 

cancer cell death [48,49]. In addition, an increase in the radiosensitivity of cancer cells 

was observed upon the inhibition of AURKB [48,49]. Therefore, the significance of this 

identified gene target has been found to be very high in previous studies and our 

identification of this gene provides further evidence for its role in the radiation sensitivity 

of cancerous cells.  

 

The gene target of CDKN1B that was identified by our analysis has also been 

associated with changes in radiosensitivity in previous studies. It has been shown that 

knocking down CDKN1B increases the radioresistance of cancerous cells and that 

higher expression of CDKN1B is correlated with increased radiosensitivity [50,51]. In 

addition, the last gene target, RB1, was found to be associated with increased 

radioresistance [52]. RB1 is known to play a role in homologous DNA repair, which is 

critical to repairing double strand breaks that occur upon exposure to ionizing radiation 

[52].  

 

The association of these gene targets with changes in the radiosensitivity or 

radioresistance of cancerous cells is significant as it allows for future research to be 

performed determining if these genes could be utilized as therapeutic targets for new 

drugs. In addition, some of these gene targets could potentially serve as genetic 

markers to predict patient outcome or response to different treatments.  

 



 

31 
 

Conclusion 

 

The analysis performed in this study is novel in its approach as a meta-analysis of 

microarray data on human normal and cancerous cells exposure to IR. In addition, the 

thorough use of novel statistical approaches that incorporate the biological interactions 

and reactions between gene products allowed for a robust and high impact pathway 

analysis. This study has identified critical pathways that are significant to the biological 

response of human cells to IR and has laid the foundation for further pharmaceutical 

research of drugs that target these specific pathways in order to alter the radiosensitivity 

or radioresistance of normal and cancerous tissue. In addition, the identification of 

current drugs that target the pathways that are significantly affected by exposure to IR is 

significant and allows for the identification of new potential drugs that can be utilized in 

the field of radiation medicine or radiation protection. Given the results of this study in 

relationship to previous studies, it is evident that biological pathways involved with cell 

cycle regulation, apoptosis, and DNA repair are critical to the response of human cells 

to IR. However, the novel approach in this study has allowed for the identification of 

specific pathways and gene product interactions that are effect by IR exposure. In 

addition, this paper has outlined the high potential for the use of gene expression and 

pathway analyses in the identification of pharmaceutical compounds that can target the 

specific biological pathways that are critical to IR exposure. This paper also outlined the 

power of meta-analysis of microarray data and the potential use of online repositories to 

perform future studies on any biological question of interest. Finally, this paper has 

shown that this approach can also be used to analyze the biological pathways critical to 
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any potential question of interest and the identification pharmaceutical compounds and 

gene hotspots that can potentially be used in a novel manner.  
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Appendix 

 

 1.1 R code for differential expression and pathway analysis for HGU 133 

Plus 1.0 Platform.  
 

#Quality Control 

 

library(oligo) 

setwd("C:/Users/Chris/Documents/Thesis/R/GSE30240_C1_Cell/U2OS_6hr") 

dat=read.celfiles(list.celfiles("C:/Users/Chris/Documents/Thesis/R/GSE30240_C1_Cell/U2OS_6

hr")) 

#Adjust the path to the CEL files 

library("RColorBrewer") 

usr.col=brewer.pal(9, "Set1") 

mycols=rep(c("blue ", "red"), c(3,3)) 

hist(dat, lty=rep(1,6), col=mycols) 

Legend("topright", rownames(pData(dat)), lty=rep(1,6), col=mycols, cex=0.6) 

boxplot(dat,col=mycols,las=3,cex.axis=0.5,names=sampleNames(dat)) 

plm <- fitProbeLevelModel(dat) 

NUSE(plm)   

RLE(plm) 

eset <- rma(dat)  

bgp=read.csv(file.choose(), header=FALSE) 

#Choose the csv file containing the negative control probeset IDs.  

sql <- paste("select * from pmfeature where fsetid in ('", 

paste(bgp[,1], collapse = "','"), "');", sep = "") 

 

# Gene Filtering 

 

library(limma) 

library(affyPLM) 

TS <- gl(2,3,length=6, labels=c("control", "treatment") ) 

#Adjust TS for each data set  

design<-model.matrix(~0+TS) 

colnames(design)<-levels(TS) 

fit1<-lmFit(eset,design) 

cont.matrix<-makeContrasts(contrast=treatment-control, levels=design) 

fit1<-contrasts.fit(fit1, cont.matrix) 

fit1<-eBayes(fit1) 

topall2<-topTable(fit1, coef="contrast", number=nrow(eset), adjust="BH", p.value=1,) 

limmaDEgene<-topTable(fit1, coef="contrast", number=nrow(eset), adjust="BH", p.value=1) 

#p-value cutoff of 1. This step just gives all probe IDs and intensity. 
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bgp=as.matrix(bgp) 

holder=c() 

x=1 

while (x< dim(limmaDEgene[1])+1){ 

if (limmaDEgene[x,][[1]][1]%in%bgp==TRUE){ 

holder=c(holder,limmaDEgene[x,][[3]][1])} 

x=x+1} 

 

Cutoff=quantile(holder, 0.85) 

library(genefilter) 

f1<-pOverA(1/3,Cutoff) 

ff<-filterfun(f1) 

index<-genefilter(eset,ff) 

eset1<-eset[index,] 

#Filters genes based on the negative control distribution.  

 

# DE TEST 

 

library(limma) 

library(affyPLM) 

TS <- gl(2,3,length=6, labels=c("control", "treatment") ) 

#Adjust TS for each data set  

design<-model.matrix(~0+TS) 

colnames(design)<-levels(TS) 

fit1<-lmFit(eset1,design) 

cont.matrix<-makeContrasts(contrast=treatment-control, levels=design) 

fit1<-contrasts.fit(fit1, cont.matrix) 

fit1<-eBayes(fit1) 

topall2<-topTable(fit1, coef="contrast", number=nrow(eset1), adjust="BH", p.value=1,) 

limmaDEgene<-topTable(fit1, coef="contrast", number=nrow(eset1), adjust="BH", 

p.value=0.05) 

dim(limmaDEgene) 

testinglist=limmaDEgene[,1] 

 

# Annotation  

 

library(annmap) 

annmapConnect('human70') 

arrayType(name='HG-U133Plus2') 

geneListExp=probesetToGene( testinglist, as.vector=TRUE, rm.unreliable=TRUE ) 

 

# PATHWAY ANALYSIS 

 

library(annmap) 

annmapConnect('human70') 
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arrayType(name='HG-U133Plus2') 

inten=limmaDEgene[,1:2] 

L=dim(limmaDEgene)[1] 

EnsIntensity=c() 

EnsID=c() 

z=1 

while (z<L+1){ 

geneList=probesetToGene(limmaDEgene[z,][[1]][1], as.vector=TRUE, rm.unreliable=TRUE ) 

if (is.null(geneList)){} 

else { 

if (length(geneList) ==1){ 

EnsIntensity=c(limmaDEgene[z,][[2]][1], EnsIntensity) 

EnsID=c(geneList, EnsID)} 

else{ 

for (x in geneList){ 

EnsID=c(x, EnsID)} 

t=0 

T=length(geneList) 

while (t<T){ 

EnsIntensity=c(limmaDEgene[z,][[2]][1], EnsIntensity) 

t=t+1}}} 

z=z+1} 

 

Together=data.frame(EnsID=EnsID, EnsIntensity=EnsIntensity) 

averageInt=ave(Together[,2], Together[,1]) 

Together2=data.frame(EnsID=EnsID, EnsIntensity=EnsIntensity, averageInt = averageInt) 

FinalTable= Together2[!duplicated(Together2["EnsID"]),] 

FinalTable=FinalTable[,-2] 

EnsList=as.vector(FinalTable[,1]) 

EnsListInt=as.vector(FinalTable[,2]) 

 

library(biomaRt) 

mart <- useMart(biomart = "ensembl", dataset = "hsapiens_gene_ensembl") 

GOterms = getBM(attributes=c('ensembl_gene_id','entrezgene'),filters='ensembl_gene_id', 

values=EnsList, mart=mart) 

GOterms=na.omit(GOterms) 

 

OutputTable= data.frame(EnsID=GOterms$ensembl_gene_id, Entrez=GOterms$entrezgene, 

Intensity=FinalTable[match(GOterms$ensembl_gene_id, FinalTable$EnsID ), 2]) 

GeneNames=OutputTable[,2] 

DE_genes=OutputTable[,3] 

 

RepeatGeneID = data.frame(GeneNames=GeneNames, DE_genes=DE_genes) 

Average2=ave(RepeatGeneID[,2], RepeatGeneID[,1]) 

RepeatGeneID2=data.frame(GeneNames=GeneNames, DE_genes=DE_genes, 

Average2=Average2) 
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RepeatGeneID2=RepeatGeneID2[!duplicated(RepeatGeneID2["GeneNames"]),] 

GeneNames=RepeatGeneID2[,1] 

DE_genes= RepeatGeneID2[,3] 

names(DE_genes)=GeneNames 

 

#Get Gene Universe 

TS <- gl(2,3,length=6, labels=c("control", "treatment") ) 

design<-model.matrix(~0+TS) 

colnames(design)<-levels(TS) 

fit1<-lmFit(eset1,design) 

cont.matrix<-makeContrasts(contrast=treatment-control, levels=design) 

fit1<-contrasts.fit(fit1, cont.matrix) 

fit1<-eBayes(fit1) 

topall2<-topTable(fit1, coef="contrast", number=nrow(eset1), adjust="BH", p.value=1,) 

limmaDEgene<-topTable(fit1, coef="contrast", number=nrow(eset1), adjust="BH", p.value=1) 

dim(limmaDEgene) 

testinglist=limmaDEgene[,1] 

 

library(annmap) 

annmapConnect('human70') 

arrayType(name='HG-U133Plus2') 

geneList=probesetToGene( testinglist, as.vector=TRUE, rm.unreliable=TRUE ) 

universe=geneList 

 

GOtermsUniverse = 

getBM(attributes=c('ensembl_gene_id','entrezgene'),filters='ensembl_gene_id', values=universe, 

mart=mart) 

GOtermsUniverse=GOtermsUniverse[,2] 

GOtermsUniverse =unique(GOtermsUniverse) 

GOtermsUniverse[GOtermsUniverse!=""] 

GOtermsUniverse <- GOtermsUniverse [!is.na(GOtermsUniverse)] 

ALL_genes=GOtermsUniverse 

 

library(SPIA) 

res=spia(de=DE_genes,all=ALL_genes,organism="hsa",nB=2000,plots=FALSE,beta=NULL,co

mbine="fisher",verbose=FALSE) 

res$Name=substr(res$Name,1,10) 

res[1:20,-12] 

 

library(graphite) 

prepareSPIA(reactome, "prepareSPIApathway", print.names = FALSE) 

a=runSPIA(de=DE_genes, all=ALL_genes, "prepareSPIApathway") 

 

TextOutput=c() 

x=1 

while (x<length(a[,1])+1){ 
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if (a[x,][8][1]<=0.05){ 

TextOutput=c(TextOutput, a[,1][x])} 

x=x+1} 

 

x=1 

FinalText=c() 

while (x<length(TextOutput)+1){ 

FinalText=c(FinalText, TextOutput[x]) 

p=reactome[[TextOutput[x]]] 

pEntrez <- convertIdentifiers(p, "entrez") 

pathwayGenes=nodes(pEntrez) 

for (z in pathwayGenes){ 

if (z%in%GeneNames){ 

FinalText=c(FinalText, z)}} 

x=x+1} 

 

write(FinalText, file = "AllDEtesting.txt", 

ncolumns = if(is.character(x)) 1 else 5, 

append = FALSE, sep = ",") 

 

 

1.2 R code for differential expression and pathway analysis HuGene 1.0 

ST and HuEx 1.0 ST Platforms.  
 

#Quality Control 

 

library(oligo) 

library(annmap) 

annmapConnect('human70') 

setwd("C:/Users/Chris/Documents/Thesis/R/GSE26841_N1_Cell/Fib_4hr_sample2") 

dat=read.celfiles(list.celfiles("C:/Users/Chris/Documents/Thesis/R/GSE26841_N1_Cell/Fib_4hr

_sample2")) 

#Adjust the path to the CEL files 

library("RColorBrewer") 

usr.col=brewer.pal(9, "Set1") 

mycols=rep(usr.col,  each=2) 

hist(dat, lty=rep(1,length(rownames(pData(dat)))), col=mycols) 

legend("topright", rownames(pData(dat)), lty=rep(1,length(rownames(pData(dat)))), col=mycols, 

cex=0.6) 

boxplot(dat,col=mycols,las=3,cex.axis=0.5,names=sampleNames(dat)) 

plm <- fitProbeLevelModel(dat, target= "probeset") 

NUSE(plm)   

RLE(plm) 

eset <- rma(dat, target= "probeset")  
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# Gene Filter 

 

controlProbesets <- getProbeInfo(eset, field=c('fid', 'fsetid', 'type'), target='probeset', subset= type 

== 'control->bgp->antigenomic') 

controlProbesets = controlProbesets[,2] 

controlProbesets=unique(controlProbesets) 

eset2 = eset[featureNames(eset) %in% controlProbesets,]  

#Create new eset2 with just control probesets  

 

library(limma) 

library(affyPLM) 

TS <- gl(2,2,length=4, labels=c("control", "treatment") ) 

design<-model.matrix(~0+TS) 

colnames(design)<-levels(TS) 

fit1<-lmFit(eset2,design) 

cont.matrix<-makeContrasts(contrast=treatment-control, levels=design) 

fit1<-contrasts.fit(fit1, cont.matrix) 

fit1<-eBayes(fit1) 

topall2<-topTable(fit1, coef="contrast", number=nrow(eset2), adjust="BH", p.value=1,) 

limmaDEgene<-topTable(fit1, coef="contrast", number=nrow(eset2), adjust="BH", p.value=1) 

#p-value cutoff of 1. This step just gives all probe IDs and intensity. 

 

holder=c() 

x=1 

while (x< dim(limmaDEgene[1])+1){ 

if (limmaDEgene[x,][[1]][1]%in%controlProbesets==TRUE){ 

holder=c(holder,limmaDEgene[x,][[3]][1])} 

x=x+1} 

 

Cutoff=quantile(holder, 0.85) 

library(genefilter) 

f1<-pOverA(1/3,Cutoff) 

ff<-filterfun(f1) 

index<-genefilter(eset,ff) 

eset1<-eset[index,] 

#Filters genes based on the negative control distribution.  

 

# TEST 

 

TS <- gl(2,2,length=4, labels=c("control", "treatment") ) 

#Adjust TS for each data set  

design<-model.matrix(~0+TS) 

colnames(design)<-levels(TS) 

fit1<-lmFit(eset,design) 

cont.matrix<-makeContrasts(contrast=treatment-control, levels=design) 
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fit1<-contrasts.fit(fit1, cont.matrix) 

fit1<-eBayes(fit1) 

topall2<-topTable(fit1, coef="contrast", number=nrow(eset), adjust="BH", p.value=1,) 

limmaDEgene<-topTable(fit1, coef="contrast", number=nrow(eset), adjust="BH", p.value=0.05) 

dim(limmaDEgene) 

testinglist=limmaDEgene[,1] 

 

# Annotation  

library(annmap) 

annmapConnect('human70') 

geneListExp=probesetToGene( testinglist, as.vector=TRUE, rm.unreliable=TRUE ) 

 

#Pathway Analysis 

 

library(annmap) 

annmapConnect('human70') 

inten=limmaDEgene[,1:2] 

L=dim(limmaDEgene)[1] 

EnsIntensity=c() 

EnsID=c() 

z=1 

while (z<L+1){ 

geneList=probesetToGene(limmaDEgene[z,][[1]][1], as.vector=TRUE, rm.unreliable=TRUE ) 

if (is.null(geneList)){} 

else { 

if (length(geneList) ==1){ 

EnsIntensity=c(limmaDEgene[z,][[2]][1], EnsIntensity) 

EnsID=c(geneList, EnsID)} 

else{ 

for (x in geneList){ 

EnsID=c(x, EnsID)} 

t=0 

T=length(geneList) 

while (t<T){ 

EnsIntensity=c(limmaDEgene[z,][[2]][1], EnsIntensity) 

t=t+1}}} 

z=z+1} 

  

Together=data.frame(EnsID=EnsID, EnsIntensity=EnsIntensity) 

averageInt=ave(Together[,2], Together[,1]) 

Together2=data.frame(EnsID=EnsID, EnsIntensity=EnsIntensity, averageInt = averageInt) 

FinalTable= Together2[!duplicated(Together2["EnsID"]),] 

FinalTable=FinalTable[,-2] 

EnsList=as.vector(FinalTable[,1]) 

EnsListInt=as.vector(FinalTable[,2]) 
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library(biomaRt) 

mart <- useMart(biomart = "ensembl", dataset = "hsapiens_gene_ensembl") 

GOterms = getBM(attributes=c('ensembl_gene_id','entrezgene'),filters='ensembl_gene_id', 

values=EnsList, mart=mart) 

GOterms=na.omit(GOterms) 

 

OutputTable= data.frame(EnsID=GOterms$ensembl_gene_id, Entrez=GOterms$entrezgene, 

Intensity=FinalTable[match(GOterms$ensembl_gene_id, FinalTable$EnsID ), 2]) 

GeneNames=OutputTable[,2] 

DE_genes=OutputTable[,3] 

 

RepeatGeneID = data.frame(GeneNames=GeneNames, DE_genes=DE_genes) 

Average2=ave(RepeatGeneID[,2], RepeatGeneID[,1]) 

RepeatGeneID2=data.frame(GeneNames=GeneNames, DE_genes=DE_genes, 

Average2=Average2) 

RepeatGeneID2=RepeatGeneID2[!duplicated(RepeatGeneID2["GeneNames"]),] 

GeneNames=RepeatGeneID2[,1] 

DE_genes= RepeatGeneID2[,3] 

names(DE_genes)=GeneNames 

#This brings the intensity values over with the gene IDs.  

 

#Get Gene Universe 

TS <- gl(2,2,length=4, labels=c("control", "treatment") ) 

#Adjust TS for each data set  

design<-model.matrix(~0+TS) 

colnames(design)<-levels(TS) 

fit1<-lmFit(eset1,design) 

cont.matrix<-makeContrasts(contrast=treatment-control, levels=design) 

fit1<-contrasts.fit(fit1, cont.matrix) 

fit1<-eBayes(fit1) 

topall2<-topTable(fit1, coef="contrast", number=nrow(eset1), adjust="BH", p.value=1,) 

limmaDEgene<-topTable(fit1, coef="contrast", number=nrow(eset1), adjust="BH", p.value=1) 

dim(limmaDEgene) 

testinglist=limmaDEgene[,1] 

 

library(annmap) 

annmapConnect('human70') 

geneList=probesetToGene( testinglist, as.vector=TRUE, rm.unreliable=TRUE ) 

universe=geneList 

 

GOtermsUniverse = 

getBM(attributes=c('ensembl_gene_id','entrezgene'),filters='ensembl_gene_id', values=universe, 

mart=mart) 

GOtermsUniverse=GOtermsUniverse[,2] 

GOtermsUniverse =unique(GOtermsUniverse) 
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GOtermsUniverse[GOtermsUniverse!=""] 

GOtermsUniverse <- GOtermsUniverse [!is.na(GOtermsUniverse)] 

ALL_genes=GOtermsUniverse 

 

library(SPIA) 

res=spia(de=DE_genes,all=ALL_genes,organism="hsa",nB=2000,plots=FALSE,beta=NULL,co

mbine="fisher",verbose=FALSE) 

res$Name=substr(res$Name,1,10) 

res[1:20,-12] 

 

library(graphite) 

prepareSPIA(reactome, "prepareSPIApathway", print.names = FALSE) 

a=runSPIA(de=DE_genes, all=ALL_genes, "prepareSPIApathway") 

 

TextOutput=c() 

x=1 

while (x<length(a[,1])+1){ 

if (a[x,][8][1]<=0.05){ 

TextOutput=c(TextOutput, a[,1][x])} 

x=x+1} 

 

 

x=1 

FinalText=c() 

while (x<length(TextOutput)+1){ 

FinalText=c(FinalText, TextOutput[x]) 

p=reactome[[TextOutput[x]]] 

pEntrez <- convertIdentifiers(p, "entrez") 

pathwayGenes=nodes(pEntrez) 

for (z in pathwayGenes){ 

if (z%in%GeneNames){ 

FinalText=c(FinalText, z)}} 

x=x+1} 

 

write(FinalText, file = "AllDEtesting.txt", 

ncolumns = if(is.character(x)) 1 else 5, 

append = FALSE, sep = ",") 

 

 

 

 

 

 


