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Introduction

Two of the major obstacles that have persisted in the fight against cancer are its
heterogeneity and its ability to adapt. Cancer of a given organ system can have a
number of different variants, each defined by the unique patterns of cellular
aberration driving the cancer’s oncogenicity (Koboldt et al. 2012; McLendon et al.
2008; Hammerman et al. 2012). This heterogeneity presents hurdles both in
determining the molecular mechanisms driving the cancer and in finding effective
treatments for the cancer, as many of the variants tend to respond differently to
different treatments. When effective treatments are found, the other obstacle often
surfaces -- cancer is often able to adapt and become refractory to treatments,
rendering useless many treatments that initially provided a promising outcome
(Yonesaka et al. 2011). Both of these obstacles point to the need for new and more
advanced cancer treatments that are specifically tailored for an individual patient’s
cancer strain.

Research consortiums such as the The Cancer Genome Atlas project (TCGA) have
made considerable progress using integrative analysis techniques to reveal patterns
of cellular aberration associated with a number of different cancers (Koboldt et al.
2012; McLendon et al. 2008; Hammerman et al. 2012; Network 2012) (Koboldt et al.
2012; Hammerman et al. 2012; McLendon et al. 2008; Verhaak et al. 2013). The
patterns of cellular aberration identified by these techniques can be used to infer
cellular pathways that are likely to play significant roles in driving the cancer being
studied. These integrative techniques combine data from multiple global, or omic
measurements, such as whole exome sequencing or full transcriptome analysis, to
provide comprehensive views of the cancer cell’s state.

Although the integrative analysis approach has enabled critical steps in revealing
the aberrational basis of many cancers, these types of studies do not directly
address two critical questions in the fight against cancer. First, they leave open
questions surrounding etiology. There are arguments to support that aberrational
cellular pathways revealed by these studies do include those that drive or support
oncogenicity, as many are found to have aberrations which are believed to facilitate
emergent phenomena such as cell proliferation. However, it is difficult to
demonstrate, through these approaches, how the highlighted cellular pathways
functionally affect a cancer. Second, these studies, which integrate multiple
aberration data types, are not designed to address the question of how to treat the
cancer variants they reveal, although their findings can provide critical information
for drug development efforts.

An emerging strategy for cancer treatment is to design what are known as molecular
targeted therapies. These therapies target the particular cellular pathways upon
which a given cancer is likely to be dependent. Where classic chemotherapeutic
drugs take the rudimentary approach of inhibiting general cell proliferation,
molecular targeted therapies provide the nuance of tailoring treatment so that it can



target elements that are uniquely critical to a particular cancer’s survival (B ]
Druker et al. 1996). These therapies have had major successes, as with the case of
imatinib which targets the BCR-ABL fusion protein in chronic myelogenous
leukemia (B ] Druker et al. 2001), and tamoxifen which inhibits binding of estrogen
to estrogen receptors in ER-positive breast cancer (Jordan 2003; Early Breast
Cancer Trialists’ Collaborative Group 1998).

Assuming suitable targeted drugs exist for a given patient’s cancer, the primary
challenge is in determining which of the thousands (Wishart et al. 2006) of available
drugs will effectively and selectively target a particular patient’s strain of cancer.
Urgent time frames and negative drug side effects make it critical to administer only
those therapies that have a high probability of success.

High-throughput RNA interference screens (RNAi) have provided valuable utility in
elucidating useful drug targets in cancer cells (Echeverri and Perrimon 2006). This
technique harnesses the naturally occurring phenomena of RNA interference, where
short strands of interfering RNA repress the expression of specific gene transcripts.
RNA interference can be used to mimic the inhibitory effect of a targeted drug, and
thus has been used to systematically probe cancer cells to find their vulnerabilities
to down-regulation of particular, potential driver genes (Cheung et al. 2011).
Although this technology has aided critical steps in functional genomics and drug
discovery, its use is limited by problems such as off-target effects, varying dose
efficiency and degradation of the RNAI (Iorns et al. 2007). As well, although RNAi
can specifically target and inhibit genes, to the best of our knowledge, no RNAi-
based therapy has yet been approved for use in cancer patients.

The drug screen panels developed by Tyner et al. offer a new technique to
simultaneously screen over a hundred molecular targeted drugs for their effect on a
cancer cell line and reveal specific genes that can serve as sensitive drug targets
(Tyner et al. 2012; Kulesz-Martin et al. 2013). In doing this, these panels provide an
opportunity, similar to RNAi screens, to systematically examine the functional
behavior of a cancer. But, unlike RNAI screens, the drug screen panels directly
evaluate molecular targeted drugs; many of which are either FDA approved
treatments or are already in clinical trials.

There are, however, several hurdles in the application of these panels. Currently,
they are capable of testing between 100 and 200 targeted drugs, in turn targeting
between 200 and 400 genes. With this number of genes, it is critical to select
targeted drugs that will test the cellular elements most likely to play significant
roles in the cancer examined. As well, many of the drugs currently available target
not one, but a small set of gene products. As a result, the sensitivity of particular
genes cannot always be determined.

Individual aberrational genes may not be targetable, or may not provide useful drug
targets. However, given that they act in biochemical pathways, which through the
collective input of their constituents fulfill particular functions, it is likely there
exists effective targets along their respective pathways. Thus, an approach to finding



drug-sensitive gene targets is to construct drug-screen panels that target genes in
cellular pathways that show evidence of dysregulation in a given cancer. Here we
present a tool that facilitates drug panel design suited to the heterogeneity and
vulnerabilities of a given cancer, and exploration of the relationship between
genomic aberrations and patterns of drug sensitivity.

Aims
To construct this tool, two aims were achieved.

1) We sought to develop a workflow for using drug sensitivity data to reveal
sets of drug sensitive pathways.

2) We sought to develop an evaluation framework for analyzing aberration data
types to reveal cellular pathways that are likely to be critical to the survival
of a cancer.

Combining the products of these two aims provides a set of scored, prioritized
pathways and an integrated view which can help inform a number of decisions in
the development and application of drug screen panels and targeted therapies.

This tool promises to be useful to address the obstacles of cancer heterogeneity and
adaptation in three ways. The first addresses the risk that a given panel design
might leave important driver pathways in the dark--untargeted by the drugs on the
panel--and thus miss critically important sensitive drug targets. This tool provides
an important utility for the construction of drug screen panels. Pathways revealed
as critical that cannot be targeted by the currently available drugs might be fruitful
areas of investigation for future drug development efforts.

The second is, in providing an integrated view of drug sensitivities and genomic
aberrations, this tool can aid investigations into the biological relationship between
genomic aberrations and drug sensitivities.

The third is, in highlighting pathways that are both significantly dysregulated and
which contain sensitive targets for precision drugs the tool can help inform
decisions about the clinical application of targeted therapies.



Methods

Program Design

The tool was constructed as a computer program, which accepts as inputs
aberration data, such as somatic mutations copy number alterations and drug-
screen data. From these inputs the program produces summaries describing
pathway aberration and sensitivity patterns, as well as the overlap between drug
targeted and aberrational pathways.

Overall design goals
The program was constructed to meet six overall specifications:
1) Analyze data from either individual patients or a cohort of multiple
patients.
2) Determine likely driver pathways from aberration data.
3) Describe the overlap between aberrational pathways and drug targeted
or drug sensitive pathways.
4) Allow visualization of aberrations and drug targeting in network
diagrams of cellular pathways.
5) Assess performance of peripheral algorithms performing roles such as
pathway significance testing and genomic aberration data filtering.
6) Provide sufficient flexibility to allow utilization of alternate pathway
repository, gene identification systems, and input aberration data types.

Program architecture

The program was constructed with the R statistical programming language
(http://www.r-project.org ; v3.0.1), and uses a set of packages from the
Bioconductor code repository(Gentleman et al. 2004).

A schematic representation of the program’s architecture can be found in figure 1.
The general architecture of the program is to allow input of a given data type (drug
screen, genomic, etc.), provide data-type specific summaries, analysis, treatments
and filtering, and then restructure the data so that it adheres to a general format, a
“patient gene matrix” (PGM). PGMs are constructed to describe the status of each
gene in each patient in the cohort, and makes this information amenable as input to
a generalized pathway-analysis function. It is noted that, although the program is
currently designed to analyze each gene as being in either an “on” or “off” state,
original data values for each patient are retained so that enrichment techniques
utilizing continuous or multi-leveled data can be implemented in the future. Ifa
single patient has more than one aberration in the same gene, for example more
than one damaging variant in the same protein-coding region, the gene will simply
be considered aberrational, thus data on repeated mutations will not be utilized.

The generalized pathway analysis function provides two chief roles. First, the
function provides general summary statistics describing how many of the genes
from the current analysis are annotated to the current set of pathways. These
summary statistics include coverage of the pathways by the current platform and



coverage of the genes from the analysis platform by the pathway repository
selected.

Second, the summary function provides summary statistics describing enrichment
of that pathway in genes affected under a given data type. These statistics include
the frequency that the pathway is affected across the cohort, the number of genes in
the pathway that are affected, and a selection of statistical tests to assess how
significantly each pathway is effected. The default statistical tests currently
implemented are the hypergeometric test and the Model-Based Gene Set
Enrichment test (MGSA)(Bauer, Robinson, and Gagneur 2011), however, the
program was designed so that other pathway analysis test or techniques could be
easily integrated.
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Figure 1: Program architecture. One or more genomic data sets can be input and examined individually
for their relation to cellular pathways. If more than one data set is entered, they are combined. Pathway
analysis is conducted and the set of putative driver pathways is compared to the set of pathways
containing and enriched in drug sensitive targets.

Pathway repositories

Currently, the program allows selection of Reactome, KEGG, NCI, or Biocarta
pathway repositories, which are provided via the Graphite Bioconductor
package(Sales et al. 2012). Additionally, the program facilitates input of alternate,
user provided and/or defined pathway sets. These alternate pathway sets can be
provided in the BioPax format(Demir et al. 2010), GSEA format, or bipartite graph



matrix format (using columns as genes and rows as paths). At this time, BioPax is
the only available format that will allow for visualization of gene network diagrams
by this program.

Gene symbol standards

The program’s current implementation requires that genes described in all data
types and in cellular pathways be annotated using HGNC/HUGO symbols. Although
gene symbol repositories such as Uniprot can provide more stable mapping of
symbols, this decision was made because all of the data sources currently utilized by
this program employ HUGO symbols. A small script is built into the program that
allows the user to check and correct HUGO symbols and synonyms not matching
those currently approved by HGNC, then coordinate these symbol corrections so
that the same set of symbol correction mappings is used in all parts of the program.
In the majority of the analyses presented here, not all gene symbols could be
corrected to match approved HUGO symbols.

Visualization

Aberration and drug targeting in pathways can be visualized with use of the
Cytoscape network visualization program (Shannon et al. 2003; Cline et al. 2007). A
script within the program communicates with Cytoscape using the Bioconductor
packages, Graphite and Rcytoscape and the Cytoscape plug-in, CytoscapeRPC.



Data processing

Statistical techniques

As a default, the program implements the hypergeometric test to determine
significant pathways, and, in turn, highlight them as possible driver pathways. As
implemented here, this test examines whether the proportion of genes aberrational
or drug sensitive in an individual pathway is significantly higher than the
proportion of genes found to be aberrational or drug sensitive across all pathways.
This test thus requires that all genes are considered to be either on or off; with the
on state corresponding to genes that are considered aberrational or drug-sensitive.
As a result of this requirement, continuous or multi-level values must be
thresholded or filtered so that genes can be considered “on” or “off”

(aberrational /drug sensitive or normal/drug insensitive).

Gene variant data

Two programming modules for processing small nucleotide variant data were
constructed. One processes targeted sequence capture data annotated by a custom
programmatic pipeline, constructed at Oregon Health & Science University (OHSU).
The other script processes somatic sequencing data provided in the .maf format, as
specified by TCGA (“Mutation Annotation Format (MAF) Specification - TCGA -
National Cancer Institute - Confluence Wiki” 2013). Currently, the program is
constructed to ignore variants not annotated with gene identifiers, except for the
purpose of providing overall summaries of per-patient variation counts.

The general schema in both modules is to first check the input data for duplicate
records and other inconsistencies, then allow filtering based on variant
classification, and annotation of any variants with dbSNP database values (Sherry et
al. 1999). Individual variants processed by the OHSU pipeline are annotated with
one or more sequence ontology terms, as described by the Sequence Ontology
project (http://www.sequenceontology.org/index.html or
http://uswest.ensembl.org/info/genome/variation/predicted_data.html). Variant
annotations described in somatic mutation data are annotated with single variant
identifiers as described in the TCGA .maf specification.

The PolyPhen-2 classification algorithm was applied to both the somatic mutation
and OHSU variant data to further stratify missense variants by the probability that
they will alter their associated protein’s value (Adzhubei et al. 2010).

Drug screen data processing

A module of this program was constructed to accept drug screen data. For coverage
analysis, this module reads in a set of drug-targeted genes and determines pathways
containing targets and the distribution of percent and number of genes targeted in
all pathways. For analysis of sensitive targets, this module was constructed with the
expectation that drug-screen gene scores, as described in Tyner et al. 2012, will be
provided. The program provides the user with a distribution of drug screen scores
and allows the user to select, with the distribution as a visual aid, a cutoff value to
differentiate sensitive and non-sensitive targets.



Single-patient analysis versus cohort analysis

The design requirements of this program necessitate that the program be capable of
analyzing either single patients or cohorts of patients. When the program is being
used to analyze data from an individual patient, the set of genes found aberrational
or drug sensitive in that patient can be used directly in the hypergeometric test.
However, when the program is used to analyze cohorts of patients, the data from the
cohort must be “collapsed” into a single set of genes that are considered to be either
on or off. To carry out this collapse, the default option for the program is to consider
a gene to be in an on state if it is found to be on in any member of the cohort.
However, two other options are available, allowing a gene to be considered on if it is
found on in more than a user-defined number or proportion of patients in the
cohort.

Reduced coverage analysis

When data is provided from a low-coverage platform, such as the drug screen,
which analyzes 500 targeted genes, the full set of genes in the chosen pathway
repository generally cannot be used. To account for these limited-coverage
situations, before pathway significance calculations are performed pathways from
the repository are limited to include only those genes analyzed by the analysis
platform.

Simultaneous analysis of multiple aberration data types

The program allows multiple aberration data types, such as copy number and RNA
sequencing, to be analyzed and compared. The technique currently implemented for
combining multiple data types is to first classify genes as aberrational or normal,
with each data type independently, then merge sets of aberrational and normal
genes together, weighting each aberration type equally.

Data procurement

TCGA

Publically available somatic mutation data sets for 75 acute meyloid leukemia
(AML) patients and 323 head and neck squamous cell carcinoma (HNSCC) patients
were downloaded from The Cancer Genome Atlas project data portal website on
June 20t, 2012 and April 18th, 2012, respectively.

AML data from OHSU

Targeted sequence capture data was obtained for 14 of the 34 AML patients
analyzed in Tyner et al, 2012. This sequencing data was produced for a study
examining patterns of aberration in the tyrosine kinome, thus the coverage of the
genes targeted is biased toward kinases, phosphatases, and other kinase-relate
genes. For a more detailed description of how this data set was produced, see
Loriaux et al. (2008).

Drug screen data
The drug screen data used in the analyses presented here comes from two sources:
Tyner et al. (2012) and the lab of Dr. Molly Kulesz-Martin at OHSU. The Tyner et al



drug screen data was produced by assaying cancer samples from 151 leukemia
patients against 66 different targeted therapies, and is publically available through
the supplementary material available on the journal’s website. The Kulesz-Martin
drug screen was designed for the assay HNSCC patients. Only the target spectrum
from this drug screen panel is analyzed here.

Results

Three use cases were explored to demonstrate the utility of this tool. The first use
case examines the overlap of drug-sensitive pathways and putative driver pathways
found when examining drug screen data and sequence variant data both produced
from the same cohort of 14 AML patients. The second use case examines the same
overlap, but utilizes drug screen data from 34 AML patients and a publically
available, high-quality sequence variant data set from a much larger cohort of 75
AML patients.

This demonstrates the interaction between aberrations and drug sensitivities in the
context of cellular pathways. Next this explores how a broader survey of
aberrational pathways can be used to get a better picture of the range of likely
driver pathways and thus assess how well the panel design actually targets critical
driver pathways. Together, these first two use cases compare the use of aberration
data and drug screen data from the same patients with the use of aberration and
drug screen data from separate patient cohorts.

One caveat of this comparison is that DNA variants from use case one and two are
determined in different manners. In use case one, variants are determined by
comparing the DNA sequence from a tumor sample to the corresponding sequence
in the human reference genome. On the other hand, the variants in use case two
were determined by comparing the sequences found in tumor and normal samples
from the same patients. The results from these two approaches will differ in several
ways. The unpaired data should show a much higher per-patient mutation rate,
because the variants found reflect the genetic differences expected between
unrelated individuals, as opposed to the variants that arise in the life of an
individual. A critical technique used to ameliorate the large number of variants
found in unpaired sequencing data is to filter out variants found in the dbSNP
database. dbSNP is a database of variants which are commonly found across the
population(Sherry, Ward, and Sirotkin 1999). Because of their frequency in the
population, variants found in dbSNP are regarded to be generally unassociated with
disease processes. However, it cannot be strictly assumed that they will never
contribute to diseases and it is entirely possible some disease-associated variants
are found in dbSNP and were ignored in the analysis because of this. A corollary
issue is that because use-case two only examines variants that arose in the life of the
patient, any disease causing or supporting variants that are found in the matched-
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normal sample and the tumor sample, (ex: a disease causing gene inherited by a
patient from their parents), will be ignored.

The third use case explores the utility this program can offer to the design of panels
being built to examine HNSCC. A large, high quality sequence variant data set is used
to determine likely driver pathways. This set of driver pathways is then compared
to those targeted by a drug screen panel to determine which pathways are left dark
by it’s set of targeted therapies.

Use case 1: drug screen and sequence capture data from same cohort

Drug screen data description and results

In all analyses of drug screen data presented here, the gene scores described in
Tyner et al, 2012 are utilized to determine drug sensitivity of genes and pathways.
In all use cases a gene score cutoff of 40 was used to differentiate between sensitive
and insensitive gene targets. This cutoff score was empirically determined by visual
inspection of the distribution of all gene scores for the full cohort of 34 AML patients
from Tyner et al, 2012 (see figure 2). After applying this cutoff, only 10 of the 14
matched patients were found to have genes sensitive to the drugs on the panel. As
the goal of the analysis presented in this use case was to examine how patterns of
genomic aberration directly relate to patterns of drug sensitivity, the 4 patients
showing no drug sensitivity were excluded from the overall analysis, reducing the
cohort in both the drug screen and the sequence capture to 10 patients. A
comparison of the gene scores for the 4 patients filtered out and the 10 remaining
can be found in figure 2.

Among the cohort of 10 patients, 49 genes were found to be drug-sensitive targets,
with individual patient samples having between 1 and 26 sensitive targets. Of the
drug sensitive genes, 31 were found to have annotation to pathways in Reactome,
indicating 244 pathways as containing drug sensitive targets.

A pathway enrichment analysis of drug-sensitive targets revealed 104 pathways to
have significant enrichment in drug-sensitive targets(hypergeometric p-values<
0.05; false-discovery rate adjusted). However, of the 104 enriched pathways, 37 had
only a single drug-targeted gene. A table of pathways containing drug-sensitive
genes can be found in the use case 1 supplement.
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Figure 2. Top: distribution of drug sensitivity scores in 34 AML patients. Bottom: comparison of drug
screen scores in the 4 patients that were found to have no sensitive gene targets and were excluded from
the cohort to those scores in the 10 patients found to have sensitive gene targets.

Sequencing data

The set of genes targeted in the targeted sequence capture data was selected
specifically to explore the mutational landscape in the tyrosine kinome of several
types of leukemia (Loriaux et al. 2008; Tyner et al. 2008), and thus this data only
achieves coverage of a set of 3501 unique genes, among which are a large
proportion of kinases, phosphatases and other kinase-related genes. Of the 3501
genes that were sequenced, 1230 had annotation to 984 Reactome pathways. A
histogram describing the distribution of pathway coverage can be found in the
Appendix. To adjust for the low sequence capture coverage, the set of Reactome
pathways used in the enrichment analysis was limited to include only those genes
that were sequenced.
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In the cohort of 10 patients, 772,404 sequence variants were found annotated with
HUGO symbols; of these, 751,857 had records in the dbSNP database and were
filtered out, leaving 20,547 variants. Filtering was then done by variant type after
annotating missense variants with PolyPhen predictions (Polyphen predictions
allowed 206 of 387 PolyPhen-annotated variants to be filtered out). A list of variant
types retained and discarded can be found in the Appendix, along with distributions
of variant types found in the cohort. Filtering by variant type produced a final set of
236 unique, qualified aberrations, with individual patients having between 9 and 55
aberrations each.

Paths enriched

Pathway enrichment analysis using aberrations from across the cohort showed 69
Reactome pathways to be significantly enriched in aberration. A table of these
pathways can be found in the use case 1 supplement.

Overlap analysis

287 genes were both sequenced and targeted by drugs on the panel, however, only 4
of these, "EPHA8”, "ERBB2", "FLT3" and "RET" were found, among all members of
the cohort, both to be aberrational and to be drug-sensitive targets.

20 pathways were found to contain sensitive targets and to be enriched in
aberration; of these, seven were also found to be significantly enriched in drug-
sensitive targets. However, only two of these 7 pathways, CD28 co-stimulation and
Semaphorin interactions, were found to have more than 1 aberrational and 1
sensitive target. A table comparing pathways containing drug sensitive gene targets
to their aberrational composition can be found in the use case 1 supplement.

Dark pathways

Examining the cohort as a whole, 22 pathways were found to be “dark”, with
significant enrichments in aberration, but with no genes targeted by the drugs on
the leukemia panel. (Among individual patients, between 1 and 9 pathways were
found to be dark.) These pathways contained between 1 and 3 aberrational genes.
The only 4 pathways with more than one aberrational gene were also found to have
the largest number of testable genes. A table detailing all 22 dark pathways can be
found in the use case 1 supplement.

Cryptic pathways

We also examined cryptic pathways: those which show evidence of drug sensitivity,
but given the aberrational analysis platforms utilized, do not show evidence of
significant levels of aberration. In all, 211 pathways were found to contain sensitive
targets but were not found to have significant aberration. Of the 211 pathways, 118
were found to have some aberrational genes.

Use case 2: drug screen data + somatic sequencing data from TCGA

Use case two analyzes the aberrations found in a larger cohort of AML patients to
provide a better picture of the spectrum of gene aberration patterns, and, by
extension, the spectrum of pathways likely to be associated with AML. To get a
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better idea of the potential spectrum of aberrational pathways in AML, and answer
the question of how well the panel from use case 1 targeted driver pathways, we
analyzed somatic mutation data for a cohort of 75 AML patients.

Drug screen data from all 34 AML patients from Tyner et al, 2012 was analyzed in
the second use case. Of the 34 patients, however, only 14 were found to have targets
that were sensitive to the drugs on the panel. Additionally, with the 4 additional
patients, only 3 additional genes, "FLT1", "FLT4" and "MAPK12", were found to be
drug sensitive. As a result, the set of pathways containing drug-sensitive genes was
the same as the set found in use case 1.

Somatic mutation data

Where in use case 1, 10 patients were analyzed for aberration using targeted
sequence capture, use case 2 analyzes somatic mutation data from a cohort 75 AML
patients. In the unfiltered data from this cohort, 1354 unique variants were found,
with individual patients having between 1 and 177 variants each. Sequence variant
types were annotated differently in the somatic mutation data, although the
different annotations refer to many of the same variants. PolyPhen was again used
to predict damaging missense mutations, and to further annotate the missense
mutations. Figure 3 shows the distribution of variant types found annotated to the
top 20 most variant genes, before filtering. The variant types selected to qualify
variants as valid aberrations can be found in the Appendix. Filtering by variant type
removed 759 unique variants; another 54 were found to have their gene symbol
annotated as “Unknown” and were removed, and 17 genes were found to have more
than one variant in a single patient. Because somatic mutations are considered to
have occurred in the life of a patient, those with dbSNP values have a higher
probability of being directly associated with a patient’s cancer. Thus, while variants
with dbSNP records were filtered out in the case of the sequence capture data from
use case 1, they were not filtered out of the somatic mutation data.

After all filtering, 578 variants remained, and were considered as the set of valid

aberrations in this cohort, for the somatic mutation data type. Individual patients
were found to have between 1 and 57 aberrations each; a distribution of aberrations

14



per patient can be found in the appendix.

Mutation types for the top 20 most mutated genes
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Figure 3: Distributions of variant types in the top 20 most variant genes found in the somatic mutation
data of 75 AML patients.

462 unique HUGO symbols were found annotated to the final set of 578 aberrations.
Of these symbols, 147 were found annotated to 522 Reactome pathways. Of these
522 pathways containing aberrational genes, pathway enrichment analysis revealed
71 to have statistically significant numbers of aberrational genes, however, 22 of
those paths considered enriched contained only one aberrational gene. A table of
these significantly enriched paths can be found detailed in the use case 2
supplement.

Overlap analysis

Prioritized pathways

Of the 45 pathways that were enriched in aberration and were drug-targeted, 36
were also found to contain sensitive drug targets. A further 8 of those 36 pathways
were also significantly enriched in sensitive targets. Interestingly, all of the 8 paths
that were significantly enriched had 2 or more drug sensitive targets; whereas, in
use case 1, 6 out of the 7 pathways that were aberration-enriched and sensitive-
target enriched had enrichments in sensitive targets that consisted of only one gene.

Dark pathways

This analysis revealed 26 dark pathways that could provide valuable targets for
future drug panel designs. Together these 26 pathways contained 163 genes; 29 of
which were found in more than one of the aberration-enriched pathways. However,
only 10 of the pathways had more than one aberrational gene and the remaining 16
had testable path lengths of 5 or less. A table detailing the enrichments found in the
dark pathways can be found in the use case 2 supplementary materials.
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Cryptic pathways

Evidence was also found that other types or larger samples of aberration data might
reveal other dysregulated pathways, as 208 pathways were found to contain drug-
sensitive targets, but not to have significant enrichment in aberrational genes. Of
these 208 pathways, 58 showed no aberrational genes at all, and the remaining 150
had aberrational genes, but in quantities that did not achieve statistical significance.
81 of the 208 pathways have significant enrichment in sensitive genes, however 37
of these pathways had a testable path length of 1. A table detailing the cryptic
pathways can be found in the use case 2 supplementary materials.

Comparing use case 1 with use case 2:

Parameters of comparison:

Use cases 1 and 2 serve to compare using the same patients for aberration and
functional analysis with using different cohorts for aberration and functional
analysis. In both cases the same aberration data type was analyzed--DNA sequence
variants--and the same set of drug screen data, all from the AML patients presented
in Tyner et al, 2012. However, because the DNA sequencing techniques differed,
several adjustments were necessary to carry out a more accurate comparison. First,
the somatic mutation data was coverage-limited, reducing the data set to include
only those genes sequenced by the sequence capture analysis from use case 1. As
well, dbSNP mutations were filtered out of the somatic mutation data to better
match the processing from the sequence capture.

Gene by gene and pathway by pathway comparison

Comparison of aberrational genes identified by both approaches showed only 4
genes that were found by both sequencing approaches (TTN, FLT3, SMG1 and
AP1G2). Pathway enrichment analysis indicated the two approaches had 21
pathways in common that were enriched in aberration, however, only four of these
pathways contained more than one aberrational gene.

Four pathways, Cell death signaling via NRAGE, NRIF and NADE, NRAGE signals death
through JNK, Prolactin receptor signaling and Signaling by constitutively active EGFR,
were found to be enriched in aberration and to contain sensitive targets by both
approaches.

Use case 3: Somatic sequencing data and drug screen coverage

The final use case answers the question of how well a particular drug screen panel
design targets pathways showing significant enrichment in aberration.

Somatic mutation data from TCGA

Somatic mutation data from a cohort of 323 HNSCC patients was analyzed for
pathway enrichment. Of the 67,835 unique variants found across the cohort, 40274
were filtered out as benign, yielding a set of 27,111 qualified aberrations. Variant
types selected to imply valid aberrations can be found in the Appendix. 1,553
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variants had records in dbSNP, but, because these mutations are somatic, there is a
higher probability they are associated with pathogenesis, thus the dbSNP variants
were not filtered out. Individual patients had between 13 and 2,238 variants before
filtering; of these variants, between 4 and 821 variants were ultimately qualified as
valid aberrations (not counting multiple aberrations in the same gene).

Somatic mutation Enrichment

10,820 unique HUGO symbols were annotated to the 27,111 qualified aberrations;
of these HUGO symbols, 3,734 could be found annotated to Reactome pathways.
Pathway enrichment analysis was then conducted with this set of genes and
revealed 133 pathways to be enriched in aberration. A table detailing pathway
enrichments can be found in the use case 3 supplements.

Drug screen coverage

The drug screen panel assessed for coverage of aberrational paths contained 129
drugs, together targeting 385 genes. Of these genes, 189 could be found annotated
across 537 Reactome pathways. A figure comparing the distributions of drug-
targeted genes to the number of drug-targeted genes in pathways can be found in
the Appendix.

Dark pathways

Comparing the set of pathways found to be enriched in aberration to the set of drug
targeted pathways, a total of 76 dark, aberration-enriched, not drug targeted
pathways were found. Together these pathways provide 931 possible new gene
targets for drug panel development. The current panel design did target 57 of the
aberration-enriched pathways, however, 12 of these pathways contained only single
drug targets, including 2 pathways that were found to carry aberrations in more
than 20 patients from the cohort. A table detailing the enrichments found in the
dark pathways found for the current HNSCC panel design can be found in the use
case 3 supplementary materials.

Discussion

Use case 1

Data from the drug screen panel examined in use case 1 indicated that among the 10
patients analyzed, there were 49 drug sensitive gene targets. However, these are
likely not the only sensitive targets in this cohort. The panel targeted only 290 genes
and, given the drug score cutoff selected, 4 of the cancer samples analyzed showed
no genes to be drug sensitive (Of 34 AML patients from Tyner et al. 2012, 20 had no
genes showing significant sensitivity). The tool presented here used genomic
aberration data taken from the same set of patients to reveal 22 dark pathways,
who’s aberrational nature suggest they play roles driving the cancer, but which are
not targeted by any drugs on the panel. This result suggests future panels
constructed to target these pathways are likely to find additional sensitive gene
targets.
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Another 20 cellular pathways were revealed both to contain sensitive targets and to
have statistically significant levels of genomic aberration. Two of these pathways,
which were of particular interest, are the Nef and signal transduction pathway and
the Signaling by constitutively active EGFR pathway. With three out of three targeted
genes showing sensitivity, the Nef and signal transduction pathway had the highest
proportion of sensitive gene targets. In addition, aberrations in this pathway
suggested it might play a role as a driver of cancer, as 1 out of the 4 genes sequenced
was found to be aberrational.

The other pathway, Signaling by constitutively active EGFR, showed one out of two
tested genes to be sensitive drug targets and 1 out of 9 sequenced genes to be
aberrational. Because only 1 aberrational gene in each of these pathways gave the
pathways statistically significant enrichment in aberration, the reliability of
statistical enrichment as a metric to reveal driver pathways is questionable. In cases
such as this one, where limited genomic coverage and small sample size affect the
reliability of conclusions determined from statistical calculations, the pathways
prioritized might be considered as prioritized for further genomic or drug screen
analysis, as opposed to clinical use or immediate panel construction options.

A crucial detail of the analysis conducted in use case 1 is that the drug screen data
and the genomic aberration data was produced from the same set of patients.
Results from analysis of individual patients can be seen in table 1.

Table 1: Overlap of sensitive and aberrational pathways in individual patients.

Pathways Pathways Pathways Pathways not
aberration- aberration- aberration- aberration-

Patient enriched but enriched, without enriched and enriched, but

Number not targeted sensitive targets  drug sensitive drug sensitive
7.00335 6 4 3 103
8.00024 9 10 1 50
8.00053 7 64 3 14
8.00076 1 22 0 14
8.00102 2 2 3 109
9.00256 4 10 0 94
9.00453 2 21 6 58
9.00454 6 44 32 95
9.00473 8 10 0 30
10.00136 7 2 5 150

As can be seen in table 1, overlap is generally seen between drug sensitive and
aberrational pathways. Where overlap is not seen in three of the patients, it is likely
the genomic aberration analysis or drug screen analysis did not have wide enough
coverage to detect genes in those pathways that would have overlapped.
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Use case 2

In use case 2 we investigated more deeply and more broadly the patterns of
aberration associated with AML by analyzing a higher quality genomic aberration
data set from a much larger cohort of AML patients. Comparing the results from this
genomic aberration data with the targeting spectra of drug panel, 26 dark pathways
were found, which had levels of aberration suggesting they might drive strains of
AML, but which were not targeted by drugs on the panel. Three of the pathways
from use case 2 were of particular interest and are judged as more promising
candidates for drug targeting: Interaction between L1 and Ankyrins, Cohesin Loading
onto Chromatin and Establishment of Sister Chromatid Cohesion. These paths are
relatively small, containing 26, 10 and 11 genes, respectively, and they are seen
repeatedly aberrational in the cohort, with 4, 10 and 10 individuals effected, but the
repeated aberration was not found to be due to a single frequently aberrational
gene in either of the three cases.

The product of use case 2 also allowed us to evaluate some of the results from use
case 1. For instance, Nef and signal transduction pathway, which appeared
aberration-enriched in use case one, did not show significant enrichment when
examining the larger, higher quality data set from use case 2. While it is possible
that the Nef and signal transduction pathway in fact drives a very rare strain of AML,
this result suggests the 1 gene enrichment seen in use case 1 was a spurious
enrichment resulting from the background noise of randomly occurring mutation.

In contrast to the Nef pathway, analysis of use case 2’s genomic data provided
support for the conclusion from use case 1 that the signaling by constitutively active
EGFR pathway was a likely driver pathway, as this pathway again showed significant
enrichment in genomic aberration using the somatic mutation data from use case 2.

The results from use case 2 highlight this tool’s utility in revealing both known
driver pathways and new pathways not currently associated with AML. The
Signaling to RAS pathway and the GRBZ events in ERBBZ signaling pathway are both
well established as being of particular significance to AML. With 34 genes, the
Signaling to RAS pathway is of a manageably small size yet among the cohort, 7 out
of 14 targeted genes were found to be sensitive targets. As well, generally larger
numbers of patients see aberration and drug sensitivity in this pathway -- 8 of the
drug screen cohort’s patients show drug sensitivities along this path, and 5 patients
from the somatic mutation cohort show mutations along this path. Finally, RAS is a
well-known oncogene, which has previously been reported to play a role in
AML(Grossmann et al. 2013; Goodsell 1999) .

The GRBZ events in ERBBZ signaling pathway provides another example of a
pathway highlighted by the approach presented here, which is supported in
literature as being associated with cancer and the specific cancer examined here. In
the data analyzed here, this pathway shows significant enrichment for aberration
and drug sensitive gene targets. Although references in literature to the particular
Reactome pathway name “GRBZ events in ERBBZ signaling” are scarce, ERBB2

19



signaling pathways are widely implicated in cancer (Hynes and MacDonald 2009;
Yonesaka et al. 2011) and in AML (Martin-Subero et al. 2001).

Finally, the Cell surface interactions at the vascular wall pathway provides an
example of a novel pathway revealed by the tool presented here. To the best of our
knowledge, this pathway has not been implicated as having a role in AML. However
this pathway shows 5 out of 9 targeted genes to be sensitive targets, and 9 genes to
be aberrational, the highest number out of the 8 aberrational pathways showing
drug sensitivities. This pathway is also the largest out of the 8, and its percent of
aberrational genes is relatively low, but still statistically significant.

One patient from use case 1 showed aberration in the Cell surface interactions at the
vascular wall pathway. Although the Cell surface interactions at the vascular wall
pathway was not found in this patient’s set of drug sensitive pathways, this patient’s
drug screen scores for several of the genes in this pathway were relatively high. Two
of them, LCK and YES1 were in fact right at the threshold established for sensitivity,
with scores of 39.25 and 39.675. In figure 4, a network diagram is provided which
illustrates the relation between the aberrational and drug sensitive genes in this
pathway, with the drug screen sensitivity threshold lowered from 40 to 39. The
observance of drug sensitive targets and genomic aberrations in this pathway
provides support for it playing a significant role in some of the AML strains analyzed
here.

Comparing aberrational pathways in use cases 1 and 2

One expectation is that examination of a larger cohort should reveal a greater
proportion of the pathways expected to play a role in a cancer. Comparing the
significantly aberrational pathways found in use cases 1 and 2 appears to confirm
this expectation, as the analysis of the 75 patients yields 109 pathway to be
significantly enriched in aberration, while analysis of the sequence capture data
highlighted just 69 pathways. However, there were 48 pathways which showed
enrichment by the sequence capture data that did not see enrichment using the
somatic data. There are a number of reasons why we might expect to find pathways
that only appear enriched in the sequence capture cohort. One is that the larger
cohort will not necessarily capture the full range of aberrations that can drive the
cancer in question, or show significant enrichment in all the pathways associated
with those aberrations.
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Figure 4: A sub network of the 92-gene pathway, Cell surface interactions at the vascular wall, displaying
the aberrational genes (yellow), drug sensitive genes (red rings), drug insensitive genes (blue), and
genes not included in the sequence capture and drug screen coverage (grey circles and rings,
respectively) as found in patient 9.00454

There are also several reasons why direct comparison of these results is likely to be
misleading. First and foremost, different sequencing techniques were used to
generate the data in use cases 1 and 2. Because the sequencing from use case 1 did
not employ an approach to highlight somatic mutations, many of the variants from
use case 1 which were qualified to be aberrations are likely just noise—random
variants unassociated with the cancer. Another issue is that a low overall mutation
rate and small cohort size will lead to a situation where pathways, especially smaller
ones, will show statistically significantly enrichment with the presence of just a
single aberrational gene. This problem is multiplied by the effects low coverage,
because the lengths of many pathways are reduced, and by the greater number of
random, unspecific mutations found in variant data sets produced without matched
normal tissue samples.
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Table 2: Comparison of the aberration data sets used in the three use cases

Use case 1: AML Use case 2: AML Use case 3: HNSCC
Aberration data Targeted sequence
type capture variants
Number of 10 75 323
patients

Mutations per
patient, before 78910 to 81730 1to177 13 to 2238

filtering

Mutations per

patient, after 9 to 55 1to 57 4 to 821
filtering

Unique

aberrational 59 462 10820
genes in cohort
Number of
pathways with
aberrational
genes

Number of
pathways found
enriched in 69 71 133
aberrational

genes

Somatic mutation Somatic mutation

208 522 1204

Use case 3

Among the 133 paths enriched for aberration in the HNSCC cohort are 76 dark
paths, not targeted by the drugs selected for the current panel design.

In this set of 76 paths are 931 genes that might serve as drug screen targets. As the
current panel design targets less than 400 genes, careful selection of gene targets is
necessary so that the largest and most pertinent set of cellular pathways can be
tested for drug sensitivity.

One technique for determining important targets is to select those pathways that
are most commonly seen affected across the cohort. A number of summary statistics
provided by this program can help to highlight the most interesting of these
pathways. The lon Channel Transport and NCAM1 interactions pathways are of
interest because they are found to be aberrational in 34% and 38% of the cohort.
Finally, mutation rates in these pathways are more spread out, with individual
genes not mutated in more than 12 patients, but with overall counts of aberration in
these pathways across the cohort relatively high (156 and 175 aberrations,
respectively). This low hanging fruit approach is important, but given the demands
of personalized medicine, which urges treatment of individual patients as opposed
to something that approaches the median of a population, only focusing on the most
commonly aberrational pathways may be a undesirable approach. Another tactic is
to select genes that are annotated to multiple pathways. Using this approach, we see
that genes such as ARHGEF9, a GTPase involved in cell signaling, and ITGB1, an
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integrin family membrane receptor involved in cancer metastasis (Brakebusch and
Fassler 2005, 1), are found in multiple dark pathways (6 and 5, respectively)

Hypergeometric not ideal, though widely used

The hypergeometric test was included as the program’s default method for finding
possible driver pathways based on gene aberration data. Use of this test here makes
the assumption that if a pathway is found relatively enriched for mutation in a
cancerous cell, then it likely has a role in driving the cancer. False discovery rate
adjustment for multiple testing must be used because of the large number of
pathways examined. This adjustment technique assumes pathways are not
overlapping; but as there is significant overlap between pathways, the number of
pathways found to be significant might be misleading.

Another drawback is that this technique does not leverage the specific topology of a
cellular pathway network in determining the significance of gene aberrations or
drug targeting, rather, all genes are given the same weight. This is undesirable
because it is known that some genes in fact act as hubs, connecting large numbers of
other genes, or as critical bottle necks in information flow or rate limiting steps in
metabolic pathways. So-called “topology-based” pathways analysis techniques, such
as PARADIGM, have gained wide acceptance for their power in elucidating the
significance of aberrations in a pathway(Eifert and Powers 2012; Ng et al. 2012;
Vaske et al. 2010).

Enrichment for drug sensitive targets

Although statistical enrichment for drug-sensitive targets in a pathway is an
interesting result, and is useful for prioritizing pathways, for several reasons it may
be less of an important metric than enrichment is in the case of aberration analysis.
A second reason is that while molecular targeted drugs generally down-regulate the
activity of a gene, it is likely not all genes along a driver pathway will have
functionality that will aid the oncogenicity of a cancer. Thus, in a pathway that is
most ideal for drug targeting, there are likely numerous genes, whose inhibition
with targeted drugs would not have a desirable effect on a cancer.

As well, the limited coverage of the drug screen panels can give many pathways
significantly significant enrichment even if only a single drug-sensitive target is
found.

Conclusion

Here we have developed a tool for evaluating drug targets, drug sensitivities and
genomic aberrations in the context of cellular pathways. This provides critical
information to aid in the selection of targeted therapies and in the construction of
future drug screen panels.

[t is centrally important that the drug screen’s functional analysis does not leave

important pathways in the dark—untargeted by the drugs on a panel. The tool
presented here provides a framework for in silico modeling of the relation between
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a drug screen panel’s target spectra and the likely driver pathways in a cancer. Thus,
this tool provides key information for assuring likely driver pathways are
illuminated by the drug screen analysis.

Drug screens can suggest a number of drug targets. In some situations, the degree of
a target’s sensitivity can make it stand clearly apart from other targets; however,
this is not always the case, and additional information might be needed to make
informed treatment decisions. Leveraging knowledge of aberrations in particular
genes can help to highlight genes that can serve as sensitive targets, but this might
only be an effective strategy in the case of activating mutations and provides only
single targetable genes. Putting drug sensitivities and aberrations in a pathway
context allows the expansion of target lists and, conversely, can help to stratify lists
of potential targets based on the aberrational status of the cellular pathways in
which they operate.

As well as providing a way to put drug sensitivities in the context of aberrations, this
tool can be used to place genomic aberrations in a functional context, and help guide
selection of analysis platforms for revealing disease-causing cellular dysregulation.

Although the use cases presented here analyze cancer data from drug screen panels,
this tool is agnostic of both disease and functional analysis platform. RNAi functional
genomic screens and drug screen panels both probe individual genes in pathways to
determine points of sensitivity. And, as do the drug screen panels, RNAi screens
have limitations in the number of genes they are able to simultaneously target.
Beyond investigations in cancer treatment, this tool should prove useful in
investigating the wide spectrum of diseases who's patterns of cellular dysregulation
play a role in determining patterns of drug sensitivity.
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Appendix

Number drug targeted versus proportion drug-targeted genes
by AML panel in Reactome pathways
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Supplementary figure 1: Comparison of the distributions of the numbers genes to the proportion of
genes in Reactome pathways targeted by the AML panel from Tyner et al 2012.
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Supplementary figure 2: Percent sequenced, versus number of sequenced genes in pathway for the
sequence capture gene variant data.
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Occurances of variant identifiers

_incomplete_terminal_codon variant;codin%_sequeng:e_variant
splice_region_variant;3_prime_UTR_variant;NMD_transcript_variant
missense_variant;splice_region_variant;PolyPhen_unknown

splice “region_variant;synonymous_variant
frameshift_variant;feature_elongation
missense_variant;splice_region_variant;PolyPhen_possibly_damaging
splice_region_variant;non_coding_exon_variant;nc_transcript_variant
splice_region_variant;non_coding_exon_variant;nc_transcript_variant:feature_truncation
. splice_region_variant;5_prime_UTR_ variant;feature_truncation
mlssense_vanam;spllce_re'glon_vanarﬂ:_PoIﬂ?hen _Brobably_damaglng
missense_variant;NMD_transcript_variant;PolyPhen_unknown
synonymous_variant;NMD_transcript_variant
splice_donor_variant;nc_transcript_variant

' ) ) _splice_donor_variant
missense_variant;NMD_transcript_variant;PolyPhen_benign
5_prime_UTR_variant;NMD_transcript_variant
splice_region_variant;intron_variant;nc_transcript_variant
splice_region_variant;intron_variant;NMD_ transcript_variant
splice_region_variant;intron_variant

frameshift “variant;feature_truncation

3_prime_UTR_variant;NMD _transcript_variant;feature_truncation

. _~ splice_region_variant;intron_variant;feature _elongation
missense_variant;NMD_franscript_variant;PolyPhen_probably_damaging
3_prime_UTR_variant;NMD_transcript_variant

missense_variant

missense_variant;PolyPhen_unknown

. . missense_variant;PolyPhen_benign
missense_variant;splice_region_variant;PolyPhen_benign
synonymous_variant

missense_variant;PolyPhen_possibly_damaging
missense_variant;PolyPhen _probably_damaging

_prime_UTR_variant

non_coding_exon_variant;nc_transcript_variant

i . 5_prime_UTR variant

intron_variant:nc_transcript_variant
intron_variant;NMD_transcript_variant

intron_variant
non_coding_exon_variant;nc_transcript_variant;feature_truncation
frameshift_variant;Splice_region_variant;intron_variant;feature “elongation
splice_region_variant;intron_variant;NMD_transcript_variant;feature_truncation
. . .  splice_region_variant;intron_variant.feature_truncation
splice_region_variant;non_coding_exon_varianfnc_transcript "variant;feature “elongation
. prime_UTR variant;feature_truncation
frameshift_variant:NMD _transcript variant;feature _elongation
intron_variant;NMD_ transcript_variant;feature_truncation

. intron_variant:nc_transcript_variant;feature_truncation
3_prime_UTR_variant;NMD “transcript_variant;feature__elongation
intron_variant;NMD__transcript_variant;feature_elongation

5_prime_UTR _variant;NMD_transcript_variant;feature_elongation
5_prime_UTR variant;feature_elongation
non_coding_exon_variant;nc_transcript_variant;feature_elongation
3_prime_UTRvariant:feature_truncation
intron_variant;feature_truncation

upstream_gene_variant
intron_variant;nc_transcript_variant;feature_elongation
intron_variant;feature_elongation

downstream_gene_variant

L_ [Ww e

3_prime_UTR_variant;feature_elongation
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Supplementary figure 3: Distribution of variant types found in the sequence capture data for AML
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Variant types for the top 20 most mutated genes

B frameshift_variant;splice_region_variant;intron_variant;feature_elongation
PIK3R1 _ W missense_variant;PolyPhen_probably_damaging
osscn [N B missensovatanl o
MAP4K3 _ B missense_variant;NMD_transcript_variant;PolyPhen_probably_damaging
B frameshift_variant;feature_truncation
FLT3 _ a missense__varianl:splioe_n;,gion_varianl:PonPhen_unknown
cnksrs [
ccocssA [
crr112 [
inerse [
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Supplementary figure 5: Distribution of the variant types in the top 20 most aberrational genes found in
the AML sequence capture data, after all filtering steps.
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Supplementary table 1: Variant types selected to indicate valid aberrations and variant types filtered out. Individual variant
types are composed of a set of variant terms, which are separated by semicolons, while types are separated by semicolons

and spaces.

Variant types
selected as
indicating genes to
be in an
aberrational state

missense_variant;PolyPhen_probably_damaging; splice_acceptor_variant;
splice_acceptor_variant;nc_transcript_variant;
missense_variant;NMD_transcript_variant;PolyPhen_probably_damaging; missense_variant;PolyPhen_unknown;
missense_variant;splice_region_variant;PolyPhen_probably_damaging;
frameshift_variant;splice_region_variant;intron_variant;feature_elongation; splice_donor_variant;
splice_donor_variant;nc_transcript_variant; stop_gained; stop_gained;NMD_transcript_variant;
frameshift_variant;feature_elongation; missense_variant;NMD_transcript_variant;PolyPhen_unknown;
missense_variant; frameshift_variant;feature_truncation;
frameshift_variant;NMD_transcript_variant;feature_truncation;
frameshift_variant;splice_region_variant;feature_truncation;
missense_variant;splice_region_variant;PolyPhen_unknown;
incomplete_terminal_codon_variant;coding_sequence_variant; splice_acceptor_variant;NMD_transcript_variant;
splice_donor_variant;feature_elongation; splice_donor_variant;nc_transcript_variant;feature_elongation;
inframe_insertion; splice_acceptor_variant;nc_transcript_variant;feature_elongation;
missense_variant;splice_region_variant;NMD_transcript_variant;PolyPhen_unknown;
splice_acceptor_variant;feature_truncation; splice_acceptor_variant;nc_transcript_variant;feature_truncation; stop_lost;
stop_gained;splice_region_variant

Variant types
selected as not
qualifying valid
aberrations

3_prime_UTR_variant;feature_elongation; downstream_gene_variant; intron_variant;feature_elongation;
intron_variant;nc_transcript_variant;feature_elongation; upstream_gene_variant; intron_variant;feature_truncation;
3_prime_UTR_variant;feature_truncation; non_coding_exon_variant;nc_transcript_variant;feature_elongation;
5_prime_UTR_variant;feature_elongation; 5_prime_UTR_variant;NMD_transcript_variant;feature_elongation;
intron_variant;NMD_transcript_variant;feature_elongation;
3_prime_UTR_variant;NMD_transcript_variant;feature_elongation;
intron_variant;nc_transcript_variant;feature_truncation; intron_variant;NMD_transcript_variant;feature_truncation;
frameshift_variant;NMD_transcript_variant;feature_elongation; 5_prime_UTR_variant;feature_truncation;
splice_region_variant;non_coding_exon_variant;nc_transcript_variant;feature_elongation;
splice_region_variant;intron_variant;feature_truncation;

splice_region_variant;intron_variant;NMD_ transcript_variant;feature_truncation;
non_coding_exon_variant;nc_transcript_variant;feature_truncation; intron_variant;
intron_variant;NMD_transcript_variant; intron_variant;nc_transcript_variant; 5_prime_UTR_variant;
non_coding_exon_variant;nc_transcript_variant; 3_prime_UTR_variant;
missense_variant;PolyPhen_possibly_damaging; synonymous_variant;
missense_variant;splice_region_variant;PolyPhen_benign; missense_variant;PolyPhen_benign;
3_prime_UTR_variant;NMD_transcript_variant; splice_region_variant;intron_variant;feature_elongation;
3_prime_UTR_variant;NMD_transcript_variant;feature_truncation; splice_region_variant;intron_variant;
splice_region_variant;intron_variant;NMD_ transcript_variant;
splice_region_variant;intron_variant;nc_transcript_variant; 5_prime_UTR_variant;NMD_transcript_variant;
missense_variant;NMD_transcript_variant;PolyPhen_benign; synonymous_variant;NMD_transcript_variant;
splice_region_variant;5_prime_UTR_variant;feature_truncation;
splice_region_variant;non_coding_exon_variant;nc_transcript_variant;feature_truncation;
splice_region_variant;non_coding_exon_variant;nc_transcript_variant;
missense_variant;splice_region_variant;PolyPhen_possibly_damaging; splice_region_variant;synonymous_variant;
splice_region_variant;3_prime_UTR_variant;NMD_transcript_variant
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Supplementary table 2: Variant types retained as valid aberrations (top) and discarded (bottom) from
the AML somatic mutation data analyzed in use case 2.

Retained these Missense_Mutation_PolyPhen_probably damaging; Frame_Shift Del; Splice_Site;
variant types as Nonsense_Mutation; Missense_Mutation; Frame_Shift_Ins; In_Frame_Del;
valid aberrations Missense_Mutation_PolyPhen_unknown; In_Frame_Ins

Filtered out these  [Missense_Mutation_PolyPhen_benign; Missense_Mutation_PolyPhen_possibly
variant types damaging; Silent; RNA

Counts of different types of somatic mutations

In_Frame_lIns
Missense_Mutation_PolyPhen_unknown
In_Frame_Del

Frame_Shift_Ins

Missense_Mutation

Nonsense_Mutation

Splice_Site

Frame_Shift_Del

RNA

Silent

Missense_Mutation_PolyPhen_possibly damaging
Missense_Mutation_PolyPhen_probably damaging
Missense_Mutation_PolyPhen_benign
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Supplementary figure 6: Distributions of all variant types found in the somatic mutation data
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Supplementary figure 7: Distribution of aberrations per patient found in the AML somatic mutation data,
after all filtering.
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Supplementary table 3: Variant types selected to imply valid aberration in the examination of HNSCC
data from TCGA

Retained these Missense_Mutation_PolyPhen_probably damaging; Splice_Site; Nonsense_Mutation;
aberration types as |Frame_Shift_Del; Missense_Mutation; In_Frame_Del; Frame_Shift_Ins;
valid aberrations In_Frame_Ins; Nonstop_Mutation; Missense_Mutation_PolyPhen_unknown

Filtered out these  |Missense_Mutation_PolyPhen_possibly damaging; Silent;

variatn types Missense_Mutation_PolyPhen_benign; RNA; 5'Flank; Translation_Start_Site; IGR
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Supplementary figure 6: Comparison of number of drug targeted genes to the proportion of the path targeted by the current panel
design for HNSCC
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Supplementary materials

Column header abreviations

TPLdrg Scn testable path length for the drug screen analysis

# D S Gen Number of drug sensitive genes

PPDS proportion of pathway genes which were found to be drug sensitive
P. co. w D sens in

pth proportion of cohort w drug sensitive gene in path

#patWDSGin
Pth

Num patient with drug sensitive gene .s. in path

CD S xin Pths x
coh

count of drug sensitive genes in path cross cohort

FPL full path length

TPLADb testable path length for aberration analysis
ab. gen. aberrational genes

p. ab. percent of pathway found to be aberrational

P. co. w ab in pth

proportion of cohort w aberrational gene in path

# pat w ab in pth

Number of patients with aberrational gene(s) in path

# ab x co Number of aberrational genes in path cross cohort

number of patients gene is mutated in for the gene that is most frequently
Mx O G mutated in the cohort

number of patients gene is mutated in for the gene that is least frequently
Mi O G mutated in the cohort
Hyp G Hyper geometric p-value
Hyp G FDR Hyper geometric p-value with False discovery rate correction




Use case 1 supplement AML panel genes not in paths 20of 14

AAK1 EPHB4 PKN2
ACVR1 MAPK6 PLK3
ACVRL1 MAPK4 PRKD2
ADCK3 MAPK15 PRKD3
ADCK4 FLT3 PRKX
ALK FRK PTK6
ANKK1 EIF2AK4 RET
NUAK1 INSRR RIOK1
AURKC STK10 RIOK3
AXL LTK ROS1
BMP2K MAP3K4 MYLK4
BRSK1 MAP3K5 SLK
BRSK2 MAP4K1 NUAK2
CAMK1 MAP4K3 SIK1
CAMK1D MAP4K4 SIK2
CAMK1G MAP4K5 SRMS
CAMKK1 MAPKAPK5 SRPK1
CAMKK2 MARK1 SRPK2
CDK3 MARK2 STK16
CIT MARK3 STK33
CLK1 MARK4 STK36
CLK2 MELK TIE1
CLK3 MKNK2 TLK1
CLK4 MYLK3 TLK2
CSF1R MAP3K9 TNIK

CSNK1A1L MAP3K10 TNK1
CSNK1G1 MAP3K11 TNK2
CSNK1G3 CDC42BPA TNNI3K

DCLK1 CDC42BPB NTRK3
DCLK2 MST1 TSSK1B
DCLK3 MUSK TTK
DDR1 MYLK2 TXK
DDR2 MYO3A TYRO3
MAP3K12 MYO3B STK32B
DMPK STK38L STK32C
CDC42BPG NEK1 STK25
STK17A NEK5 ZAK
STK17B NEK6

DYRK1B NEK?7

EPHA1 NEK9

EPHA2 NLK

EPHA3 CDK16

EPHA4 CDK17

EPHAS CDK18

EPHAG6 CDK14

EPHA7 PIM1

EPHAS8 PIM2

EPHB1 PIM3

EPHB3 PKN1



Use case 1 supplement Paths enriched in aberration. Showing top 86 pathways, 3 of 14
sorted by number of aberrational genes

proportion

of cohort w count of

variant Num patient variant genes mgsa mgsa

proportion gene in with variant in path cross |Mx O [Mi O Hyp G probability std

path id FPL |TPLab|variant genes variant path gene (s) in path|cohort G G Hyp G |FDR estimate error
Signaling
Pathways 1874 543 14 0.026 0.7 7 14 1 0.053 0.101 0 0
GPCR
downstream
signaling 909 273 8 0.029 0.6 6 8 1 0.063 0.11 0 0
Signaling by
GPCR 1022 339 8 0.024 0.6 6 8 1 0.19 0.253 0 0
Signaling by NGF 374 137 5 0.036 0.3 3 5 1 0.042 0.09 0 0
Immune System 1335 298 5 0.017 0.3 3 5 1 0.544 0.547 0 0
Metabolism 1569 308 5 0.016 0.4 4 5 1 0.581 0.581 0 0
G alpha (q)
signalling events 181 116 4 0.034 0.4 4 4 1 0.068 0.113 0 0
Gastrin-CREB
signalling
pathway via PKC
and MAPK 210 139 4 0.029 0.4 4 4 1 0.125 0.179 0 0
Adaptive Immune
System 856 153 4 0.026 0.3 3 4 1 0.168 0.231 0 0
Disease 1105 176 4 0.023 0.4 4 4 1 0.252 0.316 0 0
Rho GTPase cycle 212 19 3 0.158 0.1 1 3 1 0 0.015 0.189| 0.013
Signaling by Rho
GTPases 212 19 3 0.158 0.1 1 3 1 0 0.015 0.193| 0.012
p75 NTR receptor
mediated
signalling 143 23 3 0.13 0.2 2 3 1 0.001 0.02 0.049| 0.003
TCR signaling 77 29 3 0.103 0.3 3 3 1 0.002 0.02 0.034| 0.003
G alpha (12/13)
signalling events 118 34 3 0.088 0.2 2 3 1 0.003 0.026 0.006 0
G alpha (s)
signalling events 126 65 3 0.046 0.2 2 3 1 0.034 0.078 0 0
Downstream
Signaling Events
Of B Cell Receptor
(BCR) 179 67 3 0.045 0.2 2 3 1 0.037 0.082 0 0




Use case 1 supplement Paths enriched in aberration. Showing top 86 pathways, 4 of 14
sorted by number of aberrational genes

Signaling by
ERBB4 175 74 0.041 0.2 2 0| 0.051 0.1 0 0
B Cell Activation 344 78 0.038 0.2 2 0| 0.06 0.107 0 0
Cell Cycle, Mitotic 371 85 0.035 0.4 4 0| 0.078 0.121 0 0
Signaling by
ERBB2 171 86 0.035 0.3 3 0] 0.081 0.124 0 0
Signaling by SCF-
KIT 155 87 0.034 0.3 3 0| 0.084 0.128 0 0
Gene Expression 1092 96 0.031 0.4 4 0] 0.111 0.164 0 0
Cell Cycle 457 99 0.03 0.4 4 0| 0.121 0.174 0 0
Cytokine
Signaling in
Immune system 349 113 0.027 0.2 2 0] 0.172 0.234 0 0
Developmental
Biology 450 115 0.026 0.2 2 0] 0.18 0.243 0 0
GPCR ligand
binding 292 143 0.021 0.2 2 0| 0.302 0.32 0 0
Innate Immune
System 649 164 0.018 0.2 2 0| 0.401 0.408 0 0
Nonsense-
Mediated Decay 107 11 0.182 0.3 3 0] 0.001 0.02 0.119| 0.011
Nonsense
Mediated Decay
Enhanced by the
Exon Junction
Complex 107 11 0.182 0.3 3 0| 0.001 0.02 0.119] 0.011
NRAGE signals
death through
INK 90 13 0.154 0.1 1 0| 0.002 0.02 0.033| 0.002
Cell death
signalling via
NRAGE, NRIF and
NADE 119 16 0.125 0.1 1 0| 0.003 0.026 0.018| 0.001
Downstream TCR
signaling 60 20 0.1 0.2 2 0| 0.006 0.035 0.016] 0.002
Cyclin D
associated events
in G1 39 21 0.095 0.3 3 0| 0.007 0.035 0.014| 0.002
G1 Phase 39 21 0.095 0.3 3 0| 0.007 0.035 0.013| 0.001
Semaphorin
interactions 66 23 0.087 0.2 2 0| 0.009 0.038 0.009] 0.001




Use case 1 supplement Paths enriched in aberration. Showing top 86 pathways, 5 of 14
sorted by number of aberrational genes

CD28 co-
stimulation 33 28 2 0.071 0.2 2 2 0| 0.016 0.047 0.003 0
Metabolism of
mRNA 221 32 2 0.062 0.3 3 3 0f 0.022 0.058 0.002 0
Synthesis of PIPs
at the plasma
membrane 33 33 2 0.061 0.2 2 2 0| 0.024 0.061 0.001 0
Metabolism of
RNA 269 35 2 0.057 0.3 3 3 0| 0.028 0.069 0.001 0
Costimulation by
the CD28 family 93 38 2 0.053 0.2 2 2 0[ 0.035 0.08 0 0
Mitotic G1-G1/S
phases 139 44 2 0.045 0.3 3 3 0[ 0.051 0.1 0 0
Constitutive
PI3K/AKT
Signaling in
Cancer 94 45 2 0.044 0.2 2 2 0| 0.054 0.101 0 0
PI Metabolism 50 45 2 0.044 0.2 2 2 0| 0.054 0.101 0 0
HIV Infection 424 47 2 0.043 0.2 2 2 ol 0.06 0.107 0 0
PI3K/AKT
Signaling in
Cancer 109 50 2 0.04 0.2 2 2 0| 0.07 0.113 0 0
PI-3K cascade 109 50 2 0.04 0.2 2 2 ol 0.07 0.113 0 0
PI3K events in
ERBB2 signaling 109 50 2 0.04 0.2 2 2 ol 0.07 0.113 0 0
PI3K events in
ERBB4 signaling 109 50 2 0.04 0.2 2 2 0 0.07 0.113 0 0
PIP3 activates
AKT signaling 109 50 2 0.04 0.2 2 2 0 0.07 0.113 0 0
PI3K/AKT
activation 111 51 2 0.039 0.2 2 2 0| 0.074 0.118 0 0
GAB1
signalosome 113 52 2 0.038 0.2 2 2 0| 0.077 0.121 0 0
Phospholipid
metabolism 132 55 2 0.036 0.2 2 2 0| 0.088 0.134 0 0
Signaling by
Interleukins 112 79 2 0.025 0.2 2 2 0] 0.196 0.26 0 0
Downstream
signaling of
activated FGFR 157 83 2 0.024 0.2 2 2 0| 0.217 0.284 0 0
Axon guidance 274 86 2 0.023 0.2 2 2 0] 0.233 0.299 0 0




Use case 1 supplement Paths enriched in aberration. Showing top 86 pathways, 6 of 14
sorted by number of aberrational genes

Platelet
activation,
signaling and
aggregation 198 86 0.023 0.7 0.233 0.299 0 0
DAP12 signaling 169 87 0.023 0.2 0.238 0.304 0 0
DAP12
interactions 185 88 0.023 0.2 0.243 0.309 0 0
Signaling by FGFR 171 89 0.022 0.2 0.249 0.314 0 0
Downstream
signal
transduction 170 93 0.022 0.2 0.27 0.319 0 0
Signaling by
PDGF 199 96 0.021 0.2 0.287 0.319 0 0
Signaling by FGFR
in disease 190 96 0.021 0.2 0.287 0.319 0 0
Signaling by
EGFR in Cancer 193 97 0.021 0.2 0.292 0.319 0 0
Signaling by
EGFR 191 97 0.021 0.2 0.292 0.319 0 0
Peptide ligand-
binding receptors 191 98 0.02 0.2 0.298 0.319 0 0
Class A/1
(Rhodopsin-like
receptors) 202 102 0.02 0.2 0.32 0.335 0 0
Metabolism of
lipids and
lipoproteins 554 106 0.019 0.2 0.342 0.356 0 0
NGF signalling via
TRKA from the
plasma
membrane 225 115 0.017 0.2 0.393 0.402 0 0
Hemostasis 454 142 0.014 0.7 0.537 0.542 0 0
Regulation of PAK-
2p34 activity by
PS-GAP/RHG10 2 1 1 0.1 0 0 0.07| 0.003
Stimulation of the
cell death
response by PAK-
2p34 2 1 1 0.1 0 0 0.068| 0.004




Use case 1 supplement

Paths enriched in aberration. Showing top 86 pathways,
sorted by number of aberrational genes

7 of 14

GRB7 events in
ERBB2 signaling

0.5

0.1

0.015

0.061

0.004

Abortive
elongation of HIV-
1 transcript in the
absence of Tat

24

0.333

0.1

0.001

0.02

0.035

0.002

Interleukin-1
processing

0.333

0.1

0.001

0.02

0.035

0.003

Elongation arrest
and recovery

32

0.25

0.1

0.002

0.02

0.027

0.003

HIV-1 elongation
arrest and
recovery

32

0.25

0.1

0.002

0.02

0.025

0.002

Pausing and
recovery of HIV-1
elongation

32

0.25

0.1

0.002

0.02

0.026

0.002

Pausing and
recovery of Tat-
mediated HIV-1
elongation

56

0.25

0.1

0.002

0.02

0.028

0.003

Tat-mediated HIV-
1 elongation
arrest and
recovery

56

0.25

0.1

0.002

0.02

0.026

0.003

Regulation of
Glucokinase by
Glucokinase
Regulatory
Protein

31

0.25

0.1

0.002

0.02

0.042

0.005

Inflammasomes

23

0.25

0.1

0.002

0.02

0.027

0.002

Regulated
proteolysis of
p75NTR

18

0.25

0.1

0.002

0.02

0.028

0.002

GP1b-IX-V
activation
signalling

10

0.25

0.1

0.002

0.02

0.032

0.003

Nef and signal
transduction

35

0.25

0.1

0.002

0.02

0.026

0.002

Striated Muscle

Contraction

31

0.2

0.6

0.004

0.026

0.031

0.004




Use case 1 supplement

Sensitive & aberrational paths: showing top 61 pathways,
sorted by hypergeometric p-value for sensitivity

8 of 14

path id

FPL

TPL
drg
Scn

#DS
Gen

PPD

P. co. w
D sens
in pth

# pat
WDS
Gin
Pth

CDS
X in
Pths x
coh

Mx
0G

Mi
0 G

Hyp G

Hyp G
FDR

FPL

TPL
Ab

ab.
gen

p. ab.

P. co.
w ab
in pth

# pat
w ab in
pth

# ab
X CO

Mx
0G

Mi O
G

Hyp G

Hyp G
FDR

Activation of
BIM and
translocation to
mitochondria

0.1

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Activation of
BMF and
translocation to
mitochondria

0.1

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Phosphorylation
of proteins
involved in
G1/S transition
by active Cyclin
E:Cdk2
complexes

0.1

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

c-src mediated
regulation of
Cx43 function
and closure of
gap junctions

0.1

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Regulation of
gap junction
activity

0.1

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

G2 Phase

0.1

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

GRB7 events in
ERBB2
signaling

0.1

0.50

0.1

4E-04

0.015

Role of Abl in
Robo-Slit
signaling

0.6

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Interleukin-7
signaling

0.2

0.14

0.1

0.007

0.035




Use case 1 supplement

Sensitive & aberrational paths: showing top 61 pathways,

sorted by hypergeometric p-value for sensitivity

9 of 14

Downregulation
of ERBB4
signaling

10

0.1

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

PECAM1
interactions

12

0.3

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Platelet
Adhesion to
exposed
collagen

13

0.3

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Interleukin-6
signaling

13

0.2

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Regulation of
IFNG signaling

14

0.2

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Prolactin
receptor
signaling

15

0.2

15

0.1

0.038

Platelet
sensitization by
LDL

22

0.6

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Gap junction
trafficking and
regulation

22

0.1

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

ADP signalling
through P2Y
purinoceptor 1

24

0.4

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

GO and Early
G1

25

0.1

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Regulation of
IFNA signaling

26

0.1

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NRIF signals
cell death from
the nucleus

27

0.1

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Signal
amplification

30

0.4

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

EGFR
downregulation

31

0.2

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Activation of
the pre-
replicative
complex

31

0.1

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA




Use case 1 supplement

Sensitive & aberrational paths: showing top 61 pathways,

sorted by hypergeometric p-value for sensitivity

10 of 14

Nef Mediated
CD4 Down-
regulation

36

0.2

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Nef-mediates
down
modulation of
cell surface
receptors by
recruiting them
to clathrin
adapters

48

0.2

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Golgi
Associated
Vesicle
Biogenesis

49

0.1

49

21

0.05

0.1

0.061

0.107

Nuclear
signaling by
ERBB4

50

0.2

50

11

0.09

0.1

0.018

0.051

CDK-mediated
phosphorylation
and removal of
Cdc6

50

0.1

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Meiotic
Recombination

54

0.1

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Clathrin derived
vesicle budding

56

0.1

56

22

0.05

0.1

0.066

0.112

trans-Golgi
Network Vesicle
Budding

56

0.1

56

22

0.05

0.1

0.066

0.112

SCF(Skp2)-
mediated
degradation of
p27/p21

56

0.1

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

p53-Dependent
G1 DNA
Damage
Response

57

0.1

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA




Use case 1 supplement Sensitive & aberrational paths: showing top 61 pathways, 11 of 14
sorted by hypergeometric p-value for sensitivity

p53-Dependent
G1/S DNA
damage
checkpoint 57 1 0.1 1 1 1 0 O[NA NA NA NA NA NA NA [NA |NA |NA NA
Orcl removal
from chromatin 71 1 0.1 1 1 1 0 O[NA NA NA NA NA NA NA [NA |NA |NA NA
Switching of
origins to a
post-replicative
state 71 1 0.1 1 1 1 0 O[NA NA NA NA NA NA NA [NA |NA |NA NA
Removal of
licensing
factors from
origins 73 1 0.1 1 1 1 0 O[NA NA NA NA NA NA NA [NA |NA |NA NA
Regulation of
DNA replication 76 1 0.1 1 1 1 0 O[NA NA NA NA NA NA NA [NA |NA |NA NA
DNA Replication
Pre-Initiation 83 1 0.1 1 1 1 0 O[NA NA NA NA NA NA NA [NA |NA |NA NA
M/G1 Transition 83 1 0.1 1 1 1 0 0[NA NA NA NA NA NA NA [NA |NA |NA NA
Meiosis 85 1 0.1 1 1 1 0 O[NA NA NA NA NA NA NA [NA |NA |NA NA
NRAGE signals
death through
INK 90 1 0.1 1 1 1 0 0 90 13 0.15| 0.1 0.002| 0.02
Synthesis of
DNA 96 1 0.1 1 1 1 0 0[NA NA NA NA NA NA NA [NA |NA |NA NA
DNA Replication| 104 1 0.1 1 1 1 0 O[NA NA NA NA NA NA NA [NA |NA |NA NA
Interferon
alpha/beta
signaling 113 1 0.1 1 2 1 0 O[NA NA NA NA NA NA NA [NA |NA |NA NA
Cell death
signalling via
NRAGE, NRIF
and NADE 119 1 0.1 1 1 1 0 0 119 16 0.13 0.1 0.003] 0.026
Regulation of
KIT signaling 16 0.857 0.5 5 13 0| 7.07E-06| 3.60E-05|NA NA NA NA NA NA NA [NA |NA |NA NA




Use case

1 supplement

Sensitive & aberrational paths:
sorted by hypergeometric p-value for sensitivity

showing top 61 pathways,

12 of 14

Interleukin-3, 5
and GM-CSF
signaling

46

13

0.538

0.6

12

o

0.000694

0.00345

46

38

0.03

0.1

0.168

0.231

Signaling by
SCF-KIT

155

37

14

0.378

0.7

29

o

0.000709

0.00346

155

87

0.03

0.3

0.084

0.128

B Cell
Activation

344

26

11

0.423

0.7

26

o

0.000782

0.00374

344

78

0.04

0.2

0.06

0.107

Antigen
Activates B Cell
Receptor
Leading to
Generation of
Second
Messengers

171

0.667

0.4

o

0.001249

0.0057

171

16

0.06

0.1

0.037

0.082

GRB2 events in
ERBB2
signaling

33

11

0.545

0.3

o

0.001262

0.0057

33

20

0.05

0.1

0.056

0.101

SHC1 events in
ERBB2
signaling

36

11

0.545

0.3

o

0.001262

0.0057

36

22

0.05

0.1

0.066

0.112

Nef and signal
transduction

35

0.75

0.3

o

0.00136

0.00593

35

0.25

0.1

0.002

0.02

The role of Nef
in HIV-1
replication and
disease
pathogenesis

55

0.75

0.3

o

0.00136

0.00593

55

18

0.06

0.1

0.046

0.093

Immune
System

1335

77

22

0.286

10

45

o

0.001941

0.00831

1335

2

98

0.02

0.3

0.544

0.547

CTLA4
inhibitory
signaling

28

0.556

0.3

o

0.00222

0.00918

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Cell surface
interactions at
the vascular
wall

93

0.556

0.3

o

0.00222

0.00918

93

26

0.04

0.1

0.089

0.134

Signaling by
ERBB4

175

29

11

0.379

0.7

24

o

0.002734

0.01112

175

74

0.04

0.2

0.051

0.1

Signaling by
ERBB2

171

37

13

0.351

0.7

26

o

0.002916

0.01166

171

86

0.03

0.3

0.081

0.124




Use case 1 supplement

Aberration enriched, not drug targeted pathways

13 of 14

path id

full
path
length

testable
path
length

aberrationa
| genes

proportion
aberrational

proportion
of cohort
w
aberration
al gene in
path

Num
patient
with
aberration
al gene .s.
in path

count of
aberration
al genes
in path
cross
cohort

max in
one
gene

min in
one
gene

hyperg p
value

hyperg p
w FDR

Abortive
elongation of HIV-
1 transcript in the
absence of Tat

24

0.33333333

0.1

0.00108

0.02022

Interleukin-1
processing

0.33333333

0.1

0.00108

0.02022

Regulation of
Glucokinase by
Glucokinase
Regulatory
Protein

31

0.25

0.00214

0.02022

Inflammasomes

23

0.25

o
ol G

0.00214

0.02022

Regulated
proteolysis of
p75NTR

18

0.25

0.1

0.00214

0.02022

Striated Muscle
Contraction

31

0.2

0.6

0.00352

0.02617

Molecules
associated with
elastic fibres

24

0.2

0.1

0.00352

0.02617

Inhibition of
replication
initiation of
damaged DNA by
RB1/E2F1

13

0.2

0.1

0.00352

0.02617

TRAF6 mediated
NF-kB activation

22

0.16666667

0.1

0.00522

0.03194




Use case 1 supplement

Aberration enriched, not drug targeted pathways

14 of 14

NF-kB is activated
and signals
survival

13

1| 0.16666667

0.00522

0.03194

Orexin and
neuropeptides FF
and QRFP bind to
their respective
receptors

00

)

1| 0.16666667

©
'—l

0.00522

0.03194

Relaxin receptors

1] 0.16666667

0.00522

0.03194

Elastic fibre
formation

35

1[ 0.14285714

0.00722

0.03493

Synthesis of PIPs
at the late
endosome
membrane

10

1 0.125

0.00951

0.03806

Platelet
degranulation

77

10

0.01493

0.04567

Hexose uptake

45

10

ofe
[ IS

o
=l [9)}

0.01493

0.04567

Glucose transport

43

10

0.01493

0.04567

Synthesis of IP2,
IP, and Ins in the
cytosol

11

10

1 0.1

0.01493

0.04567

Nonsense-
Mediated Decay

107

11

2| 0.18181818

0.00097

0.02022

Nonsense
Mediated Decay
Enhanced by the
Exon Junction
Complex

107

11

2| 0.18181818

0.00097

0.02022

Rho GTPase cycle

212

19

3| 0.15789474

0.00036

0.01519

Signaling by Rho
GTPases

212

19

3] 0.15789474

0.00036

0.01519




Use case 2 supplement Paths enriched in aberration 1 of 15
Num
patient
proportion of |with count of
testable cohort w mutated mutated max in |min in mgsa

full path |path mutated |proportion [mutated gene|gene (s) in |genes in path|one one hyperg p hyperg p w |probability|mgsa std
path id length |length genes |mutated in path path cross cohort |gene gene |value FDR estimate |error
Cohesin Loading
onto Chromatin 10 10 5 0.5/ 0.133333333 10 11 3 0 3.15E-08 1.64E-05| 0.461084| 0.01164
Establishment of
Sister Chromatid
Cohesion 11 11 5[0.4545455|0.133333333 10 11 3 0 6.79E-08 1.77E-05| 0.378012| 0.01588
cell division 14 14 5[0.3571429[0.133333333 10 11 3 0 4.16E-07 7.24E-05| 0.164799| 0.0071
Tie2 Signaling 18 18 5(0.2777778 0.08 6 6 2 0 2.38E-06| 0.0003101| 0.89513| 0.00258
Axon guidance 274 272 18/ 0.0661765|0.213333333 16 19 2 0 2.00E-05| 0.0020847 0 0
Depolarization of
the Presynaptic
Terminal Triggers
the Opening of
Calcium Channels 12 11 3[0.2727273 0.04 3 3 1 0 8.85E-05| 0.0068915] 0.912528] 0.00508
GRB2 events in
EGFR signaling 22 21 4]10.1904762]| 0.066666667 5 5 2 0] 0.0001056] 0.0068915| 0.012371| 0.00085
SOS-mediated
signalling 22 21 410.1904762]| 0.066666667 5 5 2 0] 0.0001056] 0.0068915| 0.013039| 0.00056
SHC1 events in
EGFR signaling 23 22 410.1818182| 0.066666667 5 5 2 0] 0.0001341] 0.0069992| 0.012481| 0.00032
SHC-mediated
signalling 24 22 4]10.1818182|0.066666667 5 5 2 0| 0.0001341| 0.0069992| 0.012396| 0.0007
Integrin cell surface
interactions 86 85 8]0.0941176] 0.106666667 8 8 1 0] 0.0001665| 0.0072421] 0.58028| 0.01986
Developmental
Biology 450 427 22|0.0515222 0.32 24 28 6 0| 0.0001588| 0.0072421 0 0
SHC-related events 26 24 4]10.1666667|0.066666667 5 5 2 0| 0.0002083| 0.0083631| 0.008592| 0.00085
SHC-related events
triggered by IGF1R 30 25 4 0.16] 0.066666667 5 5 2 0] 0.0002554|] 0.009523| 0.006948| 0.00068
Interaction
between L1 and
Ankyrins 26 26 4]10.1538462]0.053333333 4 4 1 0| 0.0003102| 0.010121] 0.866428| 0.01072




Use case 2 supplement

Paths enriched in aberration

2 of 15

Cell surface
interactions at the
vascular wall

93

92

]

0.0869565

0.0003051

0.010121

0.000738

0.00022

Activation of Na-
permeable Kainate
Receptors

0.5

0.013333333

0.0005602

0.0102789

0.074249

0.00415

Conjugation of
phenylacetate with
glutamine

0.5

0.013333333

0.0005602

0.0102789

0.096762

0.0052

Conjugation of
salicylate with
glycine

0.5

0.013333333

o

0.0005602

0.0102789

0.09714

0.00287

ERK2 activation

0.5

0.013333333

0.0005602

0.0102789

0.063926

0.0039

phospho-PLA2
pathway

0.5

0.013333333

0.0005602

0.0102789

0.068015

0.00362

Transcriptional
activation of cell
cycle inhibitor p21

0.5

0.013333333

0.0005602

0.0102789

0.106041

0.00564

Transcriptional
activation of p53
responsive genes

0.5

0.013333333

0.0005602

0.0102789

0.10818

0.00704

Spry regulation of
FGF signaling

16

15

0.2

0.04

0.0003399

0.0102789

0.143883

0.00822

Regulation of KIT
signaling

16

16

w

0.1875

0.04

0.0004448

0.0102789

0.223542

0.00962

RAF/MAP kinase
cascade

18

17

w

0.1764706

0.053333333

0.000571

0.0102789

0.016662

0.00121

SHC1 events in
ERBB4 signaling

31

28

0.1428571

0.066666667

0.0004461

0.0102789

0.003914

0.00039

NCAM signaling for
neurite out-growth

78

77

~N

0.0909091

0.106666667

0.0004402

0.0102789

0.008468

0.00052

L1CAM interactions

95

94

(o]

0.0851064

0.08

0.0003588

0.0102789

0.038617

0.0042

GRB2 events in
ERBB2 signaling

33

30

0.1333333

0.066666667

0.0006226

0.0108329

0.00171

0.00024

Signaling by
constitutively active
EGFR

19

18

w

0.1666667

0.053333333

0.0007207

0.0121364

0.01973

0.00119

SHC1 events in
ERBB?2 signaling

36

32

0.125

0.066666667

0.0008468

0.0138136

0.001755

0.00016




Use case 2 supplement Paths enriched in aberration 3 of 15

EGFR

Transactivation by

Gastrin 9 9 2]10.2222222 0.04 3 3 2 0] 0.0009924| 0.0156981| 0.005447| 0.00052
Signalling to RAS 40 34 410.1176471|0.066666667 5 5 2 0| 0.0011263| 0.017292] 0.001002| 0.00013
Netrin mediated

repulsion signals 10 10 2 0.2]0.026666667 2 2 1 0| 0.0013931| 0.0207777| 0.05314] 0.00116
Amino Acid

conjugation 3 3 1]/0.3333333|0.013333333 1 1 1 0] 0.0016544| 0.0221436| 0.076658| 0.00241
Conjugation of

benzoate with

glycine 3 3 1]/0.3333333|0.013333333 1 1 1 0| 0.0016544| 0.0221436| 0.081181| 0.00226
Conjugation of

carboxylic acids 3 3 1]0.3333333]0.013333333 1 1 1 0] 0.0016544| 0.0221436] 0.075189| 0.00354
Signalling to p38

via RIT and RIN 23 22 3]0.1363636| 0.053333333 4 4 2 0] 0.0016003| 0.0221436| 0.005257| 0.00022
Interleukin-6

signaling 13 11 2|/0.1818182]|0.026666667 2 2 1 0] 0.0018824| 0.0245651| 0.024076] 0.0013
Activation of Ca-

permeable Kainate

Receptor 10 12 2|0.1666667]|0.026666667 2 2 1 0] 0.0024664| 0.0268222] 0.220422] 0.00738
ERK activation 13 12 210.1666667| 0.026666667 2 2 1 0| 0.0024664| 0.0268222| 0.012922| 0.00048
Ionotropic activity

of Kainate

Receptors 10 12 21 0.1666667| 0.026666667 2 2 1 0| 0.0024664| 0.0268222| 0.216852| 0.00627
Metabolism of

Angiotensinogen to

Angiotensins 12 12 21 0.1666667| 0.026666667 2 2 1 0] 0.0024664| 0.0268222| 0.307955| 0.01597
ARMS-mediated

activation 26 24 3 0.125]0.053333333 4 4 2 0] 0.0022405| 0.0268222| 0.006005| 0.00063
Lysosome Vesicle

Biogenesis 24 24 3 0.125 0.04 3 3 1 0| 0.0022405| 0.0268222| 0.349359| 0.01275
S Phase 125 121 8] 0.0661157{0.173333333 13 14 3 0] 0.0022151| 0.0268222 0 0
Hemostasis 454 457 20/ 0.0437637]|0.253333333 19 23 3 0] 0.0024465| 0.0268222 0 0
Frs2-mediated

activation 28 25 3 0.12]0.053333333 4 4 2 0] 0.0026186| 0.0278959( 0.004132] 0.00046
Activation of NOXA

and translocation to

mitochondria 4 4 1 0.25[/0.013333333 1 1 1 0] 0.0032572| 0.0295497| 0.064183| 0.00277




Use case 2 supplement

Paths enriched in aberration

4 of 15

Activation of PUMA
and translocation to
mitochondria

0.25

0.013333333

0.0032572

0.0295497

0.069191

0.00149

Chk1/Chk2(Cds1)
mediated
inactivation of
Cyclin B:Cdk1
complex

0.25

0.013333333

0.0032572

0.0295497

0.077643

0.00306

G2/M DNA
replication
checkpoint

0.25

0.013333333

0.0032572

0.0295497

0.078058

0.00297

LDL endocytosis

0.25

0.013333333

0.0032572

0.0295497

0.099038

0.00598

Polo-like kinase
mediated events

0.25

0.013333333

0.0032572

0.0295497

0.078251

0.00381

Transport of
vitamins,
nucleosides, and
related molecules

13

13

N

0.1538462

0.026666667

0.0031509

0.0295497

0.242654

0.01326

Prolonged ERK
activation events

29

26

w

0.1153846

0.053333333

0.0030383

0.0295497

0.003865

0.00028

Signalling to ERKs

51

43

N

0.0930233

0.066666667

0.0032833

0.0295497

0.00027

HHEHHH

FRS2-mediated
cascade

50

44

0.0909091

0.066666667

0.0036346

0.0321572

0.000154

HHEHHEH

Recycling pathway
of L1

29

28

w

0.1071429

0.04

0.004011

0.0348957

0.103943

0.00519

Activation of RAS in
B Cells

0.2

0.026666667

0.0053442

0.0404301

0.009004

0.00051

Ca activated K+
channels

0.2

0.013333333

0.0053442

0.0404301

0.07852

0.00199

NOSTRIN mediated
eNOS trafficking

0.2

0.013333333

0.0053442

0.0404301

0.034371

0.00219

RAF activation

0.2

0.026666667

N|=

0.0053442

0.0404301

0.007785

0.00044

Retinoid
metabolism and
transport

0.2

0.013333333

0.0053442

0.0404301

0.0777

0.00415

Serotonin and
melatonin
biosynthesis

0.2

0.013333333

0.0053442

0.0404301

0.080303

0.00355




Use case 2 supplement Paths enriched in aberration 5 of 15
GRB2:S0S provides

linkage to MAPK

signaling for

Intergrins 15 15 2[0.1333333|0.026666667 2 2 0.0048413| 0.0404301| 0.013047| 0.00101
Interleukin-2

signaling 48 47 4]10.0851064| 0.066666667 5 5 0.00485| 0.0404301| 0.000152| #####
Neuronal System 301 272 13]0.0477941|0.173333333 13 13 0.0049965| 0.0404301 0 0
Other semaphorin

interactions 16 16 2 0.125] 0.026666667 2 2 0.0058558| 0.0436678| 0.211202| 0.00962
Platelet

Aggregation (Plug

Formation) 35 32 3 0.09375 0.04 3 3 0.0065464| 0.0481299| 0.04971| 0.00277




Use case 2 supplement Dark pathways 6 of 15

Num patient

proportion of [with count of
testable cohort w aberrational |aberrational max in
full path |path aberrational proportion aberrational |gene (s) in |genes in path |one min in hyperg p
path id length length genes aberrational gene in path |path cross cohort gene one gene |value hyperg p w FDR
Cohesin
Loading onto
Chromatin 10 10 5 0.5 0.13333333 10 11 3 0 3.15E-08 1.64E-05
Activation of Na
permeable
Kainate
Receptors 2 2 1 0.5 0.01333333 1 1 1 0] 0.000560221 0.010278856

Conjugation of
phenylacetate
with glutamine 2 2 1 0.5/ 0.01333333 1 1 1 0] 0.000560221 0.010278856

Conjugation of
salicylate with
glycine 2 2 1 0.5 0.01333333 1 1 1 0] 0.000560221 0.010278856

Transcriptional
activation of
cell cycle
inhibitor p21 2 2 1 0.5] 0.01333333 1 1 1 0] 0.000560221 0.010278856

Transcriptional
activation of

p53 responsive
genes 2 2 1 0.5] 0.01333333 1 1 1 0] 0.000560221 0.010278856

Establishment
of Sister
Chromatid
Cohesion 11 11 5| 0.454545455| 0.13333333 10 11 3 0 6.79E-08 1.77E-05

Amino Acid
conjugation 3 3 1| 0.333333333| 0.01333333 1 1 1 0| 0.001654407 0.022143602

Conjugation of
benzoate with
glycine 3 3 1| 0.333333333| 0.01333333 1 1 1 0| 0.001654407 0.022143602

Conjugation of
carboxylic acids 3 3 1| 0.333333333] 0.01333333 1 1 1 0] 0.001654407 0.022143602




Use case 2 supplement Dark pathways 7 of 15

Depolarization
of the
Presynaptic
Terminal
Triggers the
Opening of
Calcium
Channels 12 11 3| 0.272727273 0.04 3 3 1

o

8.85E-05 0.006891504

Activation of
NOXA and
translocation to
mitochondria 4 4 1 0.25| 0.01333333 1 1 1 0| 0.003257221 0.029549671

Activation of
PUMA and
translocation to
mitochondria 4 4 1 0.25| 0.01333333 1 1 1 0| 0.003257221 0.029549671

LDL endocytosis 4 4 1 0.25] 0.01333333 1 1 1 0] 0.003257221 0.029549671

Activation of
RAS in B Cells 5 5 1 0.2| 0.02666667 2 2 2 0| 0.005344214 0.040430139

Ca activated K+
channels 5 5 1 0.2] 0.01333333 1 1 1 0] 0.005344214 0.040430139

NOSTRIN
mediated eNOS
trafficking 6 5 1 0.2] 0.01333333 1 1 1 0| 0.005344214 0.040430139

Retinoid
metabolism and
transport 5 5 1 0.2| 0.01333333 1 1 1 0| 0.005344214 0.040430139

Serotonin and
melatonin
biosynthesis 7 5 1 0.2] 0.01333333 1 1 1 0| 0.005344214 0.040430139

Activation of Ca{
permeable
Kainate
Receptor 10 12 2| 0.166666667| 0.02666667 2 2 1 0] 0.002466405 0.026822157

Ionotropic
activity of
Kainate

Receptors 10 12 2| 0.166666667| 0.02666667 2 2 1 0] 0.002466405 0.026822157




Use case 2 supplement

Dark pathways

8 of 15

Metabolism of

Angiotensinoge

n to
Angiotensins

12

12

0.166666667

0.02666667

0.002466405

0.026822157

Interaction

between L1 and

Ankyrins

26

26

0.153846154

0.05333333

0.000310222

0.010121001

Transport of
vitamins,
nucleosides,
and related
molecules

13

13

0.153846154

0.02666667

0.0031509

0.029549671

Lysosome
Vesicle
Biogenesis

24

24

0.125

0.04

0.002240476

0.026822157

Other
semaphorin
interactions

16

16

0.125

0.02666667

0.005855829

0.043667754




Use case 2 supplement Sensitive and Cryptic Pathways. Showing top 104 pathways, 9 of 15
sorted by hypergeometric p-value for sensitive gene enrichment

#

pat

WD [CDS # pat

TPL|#D P. co. w|S G |xin w ab
drg |[S PP D |D sens |in Pths x |[Mx |Mi Hyp G [T PL]|ab. P. co. w |in # ab [Mx O [MiO Hyp G

path id FPL |[Scn |Gen|S in pth [Pth |coh O G |OG|Hyp G |FDR Ab |gen p. ab. |abin pth|pth |xco |G G Hyp G FDR
Role of Abl in
Robo-Slit
signaling 9 2 2 1{0.2059 7 9 6 3 0 NA NA NA NA NA NA NA NA |NA NA
VEGF binds to
VEGFR leading to
receptor
dimerization 17 3 3 1{0.0882 3 5 3 1 0 NA NA NA NA NA NA NA NA |NA NA
Downregulation
of ERBB4
signaling 10 1 1 1{0.0294 1 1 1 1 0 NA NA NA NA NA NA NA NA |NA NA
G2 Phase 5 1 1 11 0.0294 1 1 1 1 0 NA NA NA NA NA NA NA NA |[NA NA
DNA Replication
Pre-Initiation 83 1 1 1{0.0294 1 1 1 1 0 NA NA NA NA NA NA NA NA |NA NA
M/G1 Transition 83 1 1 1{0.0294 1 1 1 1 0 NA NA NA NA NA NA NA NA |[NA NA
Regulation of
DNA replication 76 1 1 1{0.0294 1 1 1 1 0 NA NA NA NA NA NA NA NA |NA NA
Removal of
licensing factors
from origins 73 1 1 1{0.0294 1 1 1 1 0 NA NA NA NA NA NA NA NA |NA NA
Orcl removal
from chromatin 71 1 1 1{0.0294 1 1 1 1 0 NA NA NA NA NA NA NA NA |[NA NA
Switching of
origins to a post-
replicative state 71 1 1 1{0.0294 1 1 1 1 0 NA NA NA NA NA NA NA NA |NA NA
Regulation of gap
junction activity 4 1 1 11 0.0294 1 1 1 1 0 NA NA NA NA NA NA NA NA |[NA NA
ADP signalling
through P2Y
purinoceptor 1 24 1 1 1{0.1765 6 6 6 6 0 NA NA NA NA NA NA NA NA |NA NA
SCF(Skp2)-
mediated
degradation of
p27/p21 56 1 1 11 0.0294 1 1 1 1 0 NA NA NA NA NA NA NA NA |[NA NA




Use case 2 supplement

Sensitive and Cryptic Pathways. Showing top 104 pathways,

sorted by hypergeometric p-value for sensitive gene enrichment

10 of 15

CDK-mediated
phosphorylation
and removal of
Cdc6

50

0.0294

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Activation of the
pre-replicative
complex

31

[y

0.0294

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

GO and Early G1

25

[y

0.0294

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Nef Mediated CD4
Down-regulation

36

0.0882

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

GRB7 events in
ERBB2 signaling

0.0294

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NRIF signals cell
death from the
nucleus

27

0.0294

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Activation of BMF
and translocation
to mitochondria

0.0294

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Platelet Adhesion
to exposed
collagen

13

0.1176

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Signaling by
VEGF

22

0.0882

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

VEGEF ligand-
receptor
interactions

22

0.0882

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Interleukin-7
signaling

0.0588

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Neurophilin
interactions with
VEGF and VEGFR

0.0882

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Phosphorylation
of proteins
involved in G1/S
transition by
active Cyclin
E:Cdk2
complexes

0.0294

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA




Use case 2 supplement

Sensitive and Cryptic Pathways. Showing top 104 pathways,

sorted by hypergeometric p-value for sensitive gene enrichment

11 of 15

Activation of BIM
and translocation
to mitochondria

0.0294

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

c-src mediated
regulation of
Cx43 function and
closure of gap
junctions

[y

0.0294

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

DNA Replication

104

[y

0.0294

1

02

[y

0.0098

0.01333

o

0.70257

0.74089

Synthesis of DNA

96

0.0294

94

0.0106

0.01333

0.65902

0.6992

Meiotic
Recombination

54

0.0294

84

0.0119

0.01333

0.59766

0.64193

p53-Dependent
G1 DNA Damage
Response

57

0.0294

56

0.0179

0.01333

0.38561

0.46595

p53-Dependent
G1/S DNA
damage
checkpoint

57

0.0294

56

0.0179

0.01333

0.38561

0.46595

Nuclear signaling
by ERBB4

50

0.0588

41

0.0244

0.01333

0.25436

0.35033

Interferon
alpha/beta
signaling

113

0.0294

65

0.0308

0.02667

0.20011

0.29424

Cell death
signalling via
NRAGE, NRIF and
NADE

119

0.0294

63

0.0317

0.02667

0.18795

0.28112

Signal
amplification

30

0.1765

30

0.0333

0.01333

0.15863

0.25558

EGFR
downregulation

31

0.0588

26

0.0385

0.01333

0.12583

0.22806

Regulation of
IFNA signaling

26

0.0294

26

0.0385

0.01333

0.12583

0.22806

NRAGE signals
death through
INK

90

0.0294

47

0.0426

0.02667

0.09996

0.19543




Use case 2 supplement Sensitive and Cryptic Pathways. Showing top 104 pathways, 12 of 15
sorted by hypergeometric p-value for sensitive gene enrichment

Nef-mediates
down modulation
of cell surface
receptors by
recruiting them to
clathrin adapters 48 1 1]/ 0.0882 3 0 0| 20 1 0.05/0.01333 1 1 0| 0.08054| 0.17404
Platelet
sensitization by
LDL 22 2 1] 0.2353 9 0 0 17 0.0588]/ 0.01333 1 1 0] 0.06035| 0.15038
Meiosis 85 1 1] 0.0294 1 0 0] 115 0.0435/0.14667 11 11 0 0.05528| 0.14499
Prolactin receptor
signaling 15 1 1] 0.0588 2 0 0 16 1] 0.0625]0.01333 1 1 0] 0.05407| 0.14256
Gap junction
trafficking and
regulation 22 1 1] 0.0294 1 0 0 14 1] 0.0714]0.01333 1 1 0 0.04229| 0.12834
Regulation of
IFNG signaling 14 2 1] 0.0588 3 0 0 14 1] 0.0714]0.01333 1 1 0| 0.04229| 0.12834
PECAM1
interactions 12 5 1]10.1176 12 0 0 12 1] 0.0833]0.01333 1 1 0] 0.03163| 0.11794
Golgi Associated
Vesicle Biogenesis 49 1 1] 0.0294 1 0 0| 49 3| 0.0612 0.04 3 3 0 0.02832| 0.11284
Clathrin derived
vesicle budding 56 1 1] 0.0294 1 0 0| 56 4| 0.0714]0.05333 4 4 0| 0.01019| 0.0638
trans-Golgi
Network Vesicle
Budding 56 1 1] 0.0294 1 0 0| 56 4] 0.0714]0.05333 4 4 0 0.01019| 0.0638
DSCAM
interactions 14 0.8/ 0.1765 12 0.0004] 0.0017|NA NA NA NA NA NA NA NA |[NA NA
p38MAPK events 17 0.8/ 0.1765 12 0.0004| 0.0017 13 1] 0.0769] 0.02667 2 2 0| 0.03681| 0.12317
CDO in
myogenesis 30 0.8/ 0.2353 17 0.0004] 0.0017| 30 2| 0.0667]|0.02667 2 2 0 0.03336| 0.11845
Myogenesis 30 0.8/ 0.2353 17 0.0004| 0.0017| 30 2| 0.0667]0.02667 2 2 0| 0.03336| 0.11845
Interleukin-3, 5
and GM-CSF
signaling 46 13 0.538] 0.2059 15 0.0014] 0.0061| 45 3| 0.0667 0.04 3 3 0] 0.02141| 0.1001
Nef and signal
transduction 35 4 0.75]0.1176 7 0.002| 0.0082|NA NA NA NA NA NA NA NA |NA NA




Use case 2 supplement

Sensitive and Cryptic Pathways. Showing top 104 pathways,

sorted by hypergeometric p-value for sensitive gene enrichment
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The role of Nef in
HIV-1 replication
and disease
pathogenesis

55

0.75

0.1176

0.002

0.0082

27

0.037

0.01333

o

0.13387

0.23769

Antigen Activates
B Cell Receptor
Leading to
Generation of
Second
Messengers

171

N

0.667

0.1471

o

0.002

0.0082

29

N

0.069

0.02667

0.03054

0.11794

B Cell Activation

344

26

0.423

0.2647

34

0.0022

0.0088

190

ul

0.0263

0.08

0.29672

0.39715

Signaling by SCF-
KIT

155

37

14

0.378

0.2647

38

0.0026

0.0098

142

~N

0.0493

0.10667

0.01933

0.09608

CTLA4 inhibitory
signaling

28

0.556

0.1176

12

0.0038

0.0139

22

[y

0.0455

0.01333

0.095

0.18713

Immune System

1335

77

23

0.299

0.3824

13

59

0.0048

0.0171

1040

17

0.0163

0.2

15

18

0.95071

0.95711

Cell-Cell
communication

132

12

0.5

0.1765

15

0.0048

0.0171

128

(o)

0.0469

0.09333

0.03213

0.11845

Activation of the
AP-1 family of
transcription
factors

10

0.571

0.1765

13

0.0059

0.0202

10

0.1

0.01333

0.02224

0.1001

Signaling by
ERBB4

175

29

11

0.379

0.2647

31

0.0072

0.0243

153

ul

0.0327

0.08

0.15576

0.25558

Constitutive
PI3K/AKT
Signaling in
Cancer

94

19

0

0.421

0.2353

27

0.0078

0.0261

84

N

0.0238

0.02667

0.32184

0.41687

Nucleotide-
binding domain,
leucine rich
repeat containing
receptor (NLR)
signaling
pathways

53

0.6

0.1765

11

0.0084

0.0271

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NOD1/2 Signaling
Pathway

31

0.6

0.1765

11

0.0084

0.0271

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA




Use case 2 supplement Sensitive and Cryptic Pathways. Showing top 104 pathways, 14 of 15
sorted by hypergeometric p-value for sensitive gene enrichment

Host Interactions
of HIV factors 318 5 3 0.6/0.1176 4 7 0.0084| 0.0271| 126 2| 0.0159 0.32 24 24 23 0| 0.58002| 0.62815
Signaling by
ERBB2 171 37| 13[/0.351]0.2647 9 34 0.0088| 0.0279| 159 5| 0.0314 0.08 6 6 2 0| 0.17632| 0.26912
DCC mediated
attractive
signaling 14 3 210.667]0.0588 2 3 0.0098 0.03|NA NA NA NA NA NA NA NA |NA NA
Destabilization of
mRNA by KSRP 17 3| 2[/0.667]|0.1765 6 10 0.0098 0.03 17 1| 0.0588]0.02667 2 2 2 0| 0.06035| 0.15038
GAB1
signalosome 113 23| 9/0.391]0.2353 8 28 0.0103] 0.031| 102 2| 0.0196] 0.02667 2 2 1 0 0.43829| 0.50395
Signaling by NGF 374 50|/ 16/ 0.32]0.3235] 11 44 0.012] 0.0357| 285 7] 0.0246(0.10667 8 8 2 0] 0.36542| 0.45309
Regulation of
signaling by CBL 19 8| 4| 0.5]0.1471 5 10 0.0132] 0.0387 18 1] 0.0556]0.01333 1 1 1 0] 0.06687| 0.16387
Adaptive Immune
System 856 39| 13[0.333]|0.2647 9 37 0.0156| 0.0453| 606 13] 0.0215 0.16 12 14 2 0| 0.58549| 0.63276
PI3K/AKT
Signaling in
Cancer 109 21 8(0.381]0.2353 8 27 0.0175| 0.0481 98 2| 0.0204]0.02667 2 2 1 0| 0.41287| 0.48322
PI-3K cascade 109 21| 8/0.381]0.2353 8 27 0.0175| 0.0481| 98 2| 0.0204] 0.02667 2 2 1 0 0.41287| 0.48322
PI3K events in
ERBB?2 signaling 109 21 8(0.381]0.2353 8 27 0.0175| 0.0481 98 2| 0.0204]0.02667 2 2 1 0| 0.41287| 0.48322
PI3K events in
ERBB4 signaling 109 21 8(0.381|0.2353 8 27 0.0175| 0.0481 98 2| 0.0204]0.02667 2 2 1 0| 0.41287| 0.48322
PIP3 activates
AKT signaling 109 21| 8/0.381]0.2353 8 27 0.0175| 0.0481| 98 2| 0.0204] 0.02667 2 2 1 0| 0.41287| 0.48322
Innate Immune
System 649 56| 17/0.304]0.3529| 12 47 0.0186| 0.0503| 445 7| 0.0157/0.10667 8 8 2 0 0.83972| 0.86457
Downstream
signal
transduction 170 36/ 12[0.333]0.2647 9 32 0.0198] 0.0525| 158 5[ 0.0316 0.08 6 6 2 0] 0.17282| 0.26912
Signaling by
PDGF 199 36| 12[0.333]|0.2647 9 32 0.0198| 0.0525| 187 7| 0.0374|0.10667 8 8 2 0| 0.07623| 0.17168
NGF signalling via
TRKA from the
plasma
membrane 225 48| 15]/0.313/0.3235] 11 43 0.0201] 0.0528]| 202 6| 0.0297(0.09333 7 7 2 0] 0.20386| 0.29792
Signaling by
Interleukins 112 25 9| 0.36]0.2059 7 19 0.0208] 0.0539]| 110 5| 0.0455 0.08 6 6 2 0] 0.04625| 0.13341




Use case 2 supplement Sensitive and Cryptic Pathways. Showing top 104 pathways, 15 of 15
sorted by hypergeometric p-value for sensitive gene enrichment

HIV Infection 424 6| 3| 0.5[0.1176 4 7 0| 0.0213| 0.0541| 198 4] 0.0202]0.33333 25 26 23 0| 0.5094| 0.55981
Interleukin
receptor SHC
signaling 28 6/ 3| 0.5]0.0588 2 5 0| 0.0213] 0.0541 28 1| 0.0357]/0.01333 1 1 1 0| 0.14202| 0.24387
CD28 co-
stimulation 33 12 510.417|0.1176 4 12 0] 0.0247| 0.0592|NA NA NA NA NA NA NA NA |NA NA
Downstream
Signaling Events
Of B Cell Receptor
(BCR) 179 22| 8/0.364]0.2353 8 27 0] 0.0249| 0.0592| 167 3| 0.018]0.05333 4 4 2 0] 0.5647| 0.61284
PI3K/AKT
activation 111 22| 8/0.364|0.2353 8 27 0| 0.0249| 0.0592| 100 2 0.02] 0.02667 2 2 1 0| 0.42563| 0.49373
DAP12
interactions 185 37| 12[0.324]0.2941| 10 33 0| 0.0257| 0.0592| 170 5| 0.0294 0.08 6 6 2 0| 0.21666| 0.31415
DAP12 signaling 169 37| 12[0.324]0.2941| 10 33 0| 0.0257| 0.0592| 160 5| 0.0313 0.08 6 6 2 0| 0.17985| 0.27291
Signaling by
EGFR in Cancer 193 37| 12[0.324|0.2647 9 32 0| 0.0257| 0.0592| 178 6] 0.0337]0.09333 7 7 2 0| 0.13014| 0.23506
Signaling by
EGFR 191 37| 12[0.324]0.2647 9 32 0| 0.0257| 0.0592| 176 6| 0.0341(0.09333 7 7 2 0| 0.12471| 0.22806
Regulation of
mitotic cell cycle 82 4 2 0.5/ 0.0588 2 2 0| 0.0333| 0.0713|NA NA NA NA NA NA NA NA |NA NA
CD28 dependent
Vavl pathway 11 4 2 0.5/ 0.0882 3 5 0| 0.0333| 0.0713|NA NA NA NA NA NA NA NA |NA NA
APC/C-mediated
degradation of
cell cycle proteins 82 4 2 0.5/ 0.0588 2 2 0| 0.0333| 0.0713|NA NA NA NA NA NA NA NA |NA NA
Platelet
homeostasis 87 4] 2] 0.5/0.2353 8 9 0] 0.0333| 0.0713] 81 2| 0.0247]0.02667 2 2 1 0] 0.3022| 0.40345
Growth hormone
receptor signaling 24 4 2 0.5/ 0.1765 6 6 0| 0.0333| 0.0713 25 1 0.04]0.01333 1 1 1 0] 0.11791] 0.2214
Signaling by FGFR| 171 38| 12[/0.316|0.2647 9 32 0| 0.033| 0.0713| 158 7| 0.0443[0.10667 8 8 2 0| 0.03386| 0.11943
Signaling by FGFR
in disease 190 38| 12[/0.316]0.2647 9 32 0] 0.033] 0.0713] 173 8| 0.0462 0.12 9 9 2 0] 0.02151| 0.1001
Netrin-1 signaling 41 4] 2| 0.5]0.0588 2 3 0| 0.0333] 0.0713] 42 3| 0.0714 0.04 3 3 1 0] 0.01698| 0.09138
Phosphorylation
of CD3 and TCR
zeta chains 39 2 1 0.5/ 0.0882 3 3 0| 0.047| 0.0802|NA NA NA NA NA NA NA NA |NA NA




Use case 3 supplement Aberration Enriched Pathways. Showing top 81 pathways, 1of 13
sorted by number of aberrational genes
Num count of
proportion [patient |mutated mgsa
proporti|of cohort [with genes in [max |min probab

full testable on w mutated |mutated |path in in ility mgsa

path |path mutated |mutate |gene in gene (s) |cross one [one |hyperg p |hyperg p |estima [std
path id length |length |genes |d path in path |cohort |gene |gene [value w FDR te error
Signaling
Pathways 1874 1653 1043| 0.631| 0.987616 319 2898( 222 0| 0.00318]0.034144| 0.999| 3E-04
Developmental
Biology 450 427 318| 0.7447| 0.900929 291 1141 56 0 7.03E-11| 1.24E-09| 0.997| 8E-04
Transmembrane
transport of
small molecules 425 410 291]| 0.7098| 0.798762 258 738] 12 0 1.30E-06| 2.18E-05| 0.998| 6E-04
Generic
Transcription
Pathway 496 430 284| 0.6605| 0.786378 254 733] 56 0| 0.00486]0.044987| 0.212]| 0.197
Axon guidance 274 272 213| 0.7831| 0.817337 264 825 16 0[ 3.69E-11] 6.63E-10| 0.019| 0.001
Neuronal
System 301 272 202| 0.7426| 0.678019 219 570( 13 0] 2.83E-07| 4.87E-06( 0.999( 2E-04
Signaling by
NGF 374 285 199( 0.6982| 0.758514 245 604| 48 0] 0.00026| 0.003485( 0.016( 5E-04
SLC-mediated
transmembrane
transport 230 226 162] 0.7168] 0.591331 191 351 11 0| 0.00011]0.001593] 0.017| 6E-04
NGF signalling
via TRKA from
the plasma
membrane 225 202 141] 0.698] 0.653251 211 415| 48 0] 0.00177| 0.02104( 0.016{| 4E-04
Signaling by
PDGF 199 187 138 0.738] 0.73065 236 476 48 0[ 3.15E-05| 0.00048| 0.017| 9E-04
Transmission
across Chemical
Synapses 189 180 131 0.7278| 0.582043 188 384 13 0] 0.00014] 0.002044| 0.016| 4E-04




Use case 3 supplement

Aberration Enriched Pathways. Showing top 81 pathways,

sorted by number of aberrational genes

2 of 13

Signaling by
EGFR in Cancer

193

178

124

0.6966

0.640867

207

370

48

0.00345

0.03582

0.016

8E-04

Signaling by
EGFR

191

176

122

0.6932

0.637771

206

365

48

0.00481

0.044936

0.016

7E-04

Signaling by
ERBB2

171

159

112

0.7044

0.613003

198

350

48

0.00281

0.030997

0.017

6E-04

Extracellular
matrix
organization

147

145

111

0.7655

0.634675

205

440

20

9.81E-06

0.000153

0.998

5E-04

Downstream
signal
transduction

170

158

111

0.7025

0.634675

205

357

48

0.00336

0.035804

0.016

9E-04

Neurotransmitte
r Receptor
Binding And
Downstream
Transmission In
The
Postsynaptic Cell

140

133

100

0.7519

0.510836

165

298

12

9.18E-05

0.001365

0.017

4E-04

Rho GTPase
cycle

212

122

96

0.7869

0.535604

173

309

19

4.11E-06

6.69E-05

0.016

2E-04

Signaling by Rho
GTPases

212

122

96

0.7869

0.535604

173

309

19

4.11E-06

6.69E-05

0.016

5E-04

Regulation of
Lipid Metabolism
by Peroxisome
proliferator-
activated
receptor alpha
(PPARalpha)

120

113

81

0.7168

0.433437

140

210

20

0.00417

0.039437

0.016

4E-04

L1CAM
interactions

95

94

79

0.8404

0.544892

176

316

16

1.28E-07

2.23E-06

0.016

6E-04




Use case 3 supplement Aberration Enriched Pathways. Showing top 81 pathways, 3 of 13
sorted by number of aberrational genes

PPARA Activates

Gene Expression 115 110 79| 0.7182] 0.414861 134 199 20 0.00419] 0.039437| 0.015| 3E-04

Collagen

formation 86 86 69| 0.8023[ 0.513932 166 307 20 2.09E-05]| 0.000323( 0.017( 6E-04

Integrin cell

surface

interactions 86 85 63| 0.7412( 0.458204 148 233 22 0.00255] 0.028607| 0.016| 2E-04

NCAM signaling

for neurite out-

growth 78 77 60| 0.7792| 0.495356 160 261 12 0.00031] 0.004178| 0.016| 4E-04

Potassium

Channels 79 78 59| 0.7564| 0.328173 106 161 12 0.0014( 0.017049( 0.016| 8E-04

Collagen

biosynthesis and

modifying

enzymes 64 64 56 0.875[ 0.452012 146 243 20 3.21E-07| 5.44E-06| 0.016( 7E-04

Semaphorin

interactions 66 66 51] 0.7727| 0.408669 132 206 12 0.0011] 0.013894( 0.016( 8E-04

Ion channel

transport 56 56 46| 0.8214] 0.343653 111 156 8 0.00012] 0.001651| 0.016| 6E-04

GABA receptor

activation 50 50 39 0.78[ 0.306502 99 123 12 0.00245] 0.028043]| 0.016| 5E-04

NRAGE signals

death through

JNK 90 47 38| 0.8085| 0.349845 113 155 19 0.00072] 0.009482| 0.016| 7E-04

Voltage gated

Potassium

channels 43 43 38[ 0.8837[ 0.226006 73 107 6 9.29E-06( 0.000147] 0.017| 4E-04

NCAM1

interactions 44 44 37| 0.8409( 0.383901 124 175 12 0.00015]| 0.00216| 0.015| 3E-04

Interleukin-3, 5

and GM-CSF

signaling 46 45 35( 0.7778| 0.334365 108 127 48 0.00402|] 0.03845| 0.017]| 0.001




Use case 3 supplement Aberration Enriched Pathways. Showing top 81 pathways, 4 of 13
sorted by number of aberrational genes

G-protein

mediated events 41 43 35 0.814[ 0.287926 93 115 12 0| 0.00083(0.010719| 0.015| 5E-04

PLC beta

mediated events 40 42 34| 0.8095 0.28483 92 114 12 0| 0.00116(0.014589| 0.016| 6E-04

Hexose uptake 45 42 33| 0.7857[ 0.195046 63 75 6 0| 0.0036/(0.036427| 0.016| 7E-04

Elastic fibre

formation 35 35 28 0.8] 0.247678 80 98 10 0] 0.00372(0.036855| 0.017| 1E-03

Signal

transduction by

L1 35 35 28 0.8] 0.226006 73 87 11 0] 0.00372]0.036855( 0.016( 9E-04

Apoptotic

cleavage of

cellular proteins 33 32 27| 0.8438] 0.321981 104 127] 29 0| 0.00077(0.010106| 0.064| 0.005

Adherens

junctions

interactions 29 29 27| 0.931] 0.260062 84 107 14 0] 8.34E-06( 0.000134| 0.069| 0.007

PLCG1 events in

ERBB2 signaling 31 33 27| 0.8182| 0.247678 80 97 12 0] 0.00216(0.025466| 0.016| 6E-04

GPVI-mediated

activation

cascade 33 32 26| 0.8125( 0.312693 101 113] 48 0] 0.00307]0.033335( 0.016 3E-04

EGFR interacts

with

phospholipase C-

gamma 30 32 26| 0.8125( 0.241486 78 93 12 0] 0.00307]0.033335( 0.016( 6E-04

Interaction

between L1 and

Ankyrins 26 26 24| 0.9231| 0.303406 98 141 16 0| 3.45E-05( 0.000519| 0.016| 3E-04

Ion transport by

P-type ATPases 28 28 23| 0.8214| 0.22291 72 85 8 0] 0.00347( 0.03582] 0.016| 6E-04




Use case 3 supplement

Aberration Enriched Pathways. Showing top 81 pathways,

sorted by number of aberrational genes

5o0f 13

Recycling
pathway of L1

29

28

23

0.8214

0.157895

51

58

0.00347

0.03582

0.015

7E-04

RORA Activates
Circadian
Expression

26

26

22

0.8462

0.229102

74

88

20

0.00173

0.020849

0.017

4E-04

Synthesis of IP3
and IP4 in the
cytosol

25

27

22

0.8148

0.20743

67

77

10

0.005

0.045934

0.036

0.02

Circadian
Repression of
Expression by
REV-ERBA

25

25

21

0.84

0.216718

70

83

20

0.00257

0.028607

0.016

5E-04

Nephrin
interactions

22

22

20

0.9091

0.303406

98

112

48

0.00022

0.003075

0.037

0.002

Molecules
associated with
elastic fibres

24

24

20

0.8333

0.195046

63

68

10

0.00379

0.036855

0.016

9E-04

CD28 dependent
PI3K/Akt
signaling

23

21

18

0.8571

0.229102

74

79

48

0.00256

0.028607

0.016

6E-04

Regulation of
signaling by CBL

19

18

17

0.9444

0.232198

75

82

48

0.00011

0.001597

0.016

5E-04

Platelet calcium
homeostasis

19

19

17

0.8947

0.173375

56

61

0.0009

0.011507

0.016

5E-04

PKA activation in
glucagon
signalling

17

17

16

0.9412

0.160991

52

58

12

0.00018

0.00253

0.016

6E-04

Ligand-gated ion
channel
transport

17

17

15

0.8824

0.142415

46

51

0.00224

0.02613

0.016

6E-04

Other
semaphorin
interactions

16

16

14

0.875

0.176471

57

68

12

0.00351

0.03582

0.016

5E-04




Use case 3 supplement

Aberration Enriched Pathways. Showing top 81 pathways,

sorted by number of aberrational genes

6 of 13

CRMPs in
Sema3A
signaling

16

16

14

0.875

0.133127

43

48

0.00351

0.03582

0.016

6E-04

Sema3A PAK
dependent Axon
repulsion

15

15

13

0.8667

0.164087

53

58

0.00549

0.049743

0.015

3E-04

p130Cas linkage
to MAPK
signaling for
integrins

15

15

13

0.8667

0.123839

40

43

10

0.00549

0.049743

0.016

7E-04

Caspase-
mediated
cleavage of
cytoskeletal
proteins

12

12

12

0.22291

72

77

29

0.018

4E-04

Adenylate
cyclase
inhibitory
pathway

13

13

12

0.9231

0.142415

46

50

12

0.00139

0.017049

0.016

6E-04

Inhibition of
adenylate
cyclase pathway

13

13

12

0.9231

0.142415

46

50

12

0.00139

0.017049

0.016

4E-04

GABA A receptor
activation

12

12

12

0.126935

41

44

0.016

4E-04

Downregulation
of ERBB2:ERBB3
signaling

15

12

11

0.9167

0.083591

27

27

0.00231

0.02669

0.016

9E-04

Adenylate
cyclase
activating
pathway

10

10

10

0.139319

45

48

12

0.016

6E-04




Use case 3 supplement Aberration Enriched Pathways. Showing top 81 pathways, 7 of 13
sorted by number of aberrational genes

Cohesin Loading

onto Chromatin 10 10 10 1| 0.083591 27 27 6 0 0 0.016| 4E-04

Recycling of bile

acids and salts 11 11 10| 0.9091] 0.083591 27 27 6 0.00383] 0.036855| 0.016| 4E-04

Synthesis of IP2,

IP, and Ins in

the cytosol 11 11 10{ 0.9091| 0.074303 24 25 6 0.00383] 0.036855| 0.02] 0.005

Establishment of

Sister Chromatid

Cohesion 11 11 10 0.9091| 0.068111 22 22 5 0.00383] 0.036855| 0.016| 6E-04

CHL1

interactions 8 8 8 1| 0.095975 31 32 9 0 0| 0.015] 6E-04

Nef and signal

transduction 35 8 8 1] 0.083591 27 28 9 0 0] 0.021] 0.002

Vitamin D

(calciferol)

metabolism 7 7 7 1[ 0.111455 36 40 15 0 0 0.015]| 4E-04

Downregulation

of ERBB4

signaling 10 7 7 1| 0.086687 28 29 14 0 0| 0.016] 1E-04

Terminal

pathway of

complement 7 7 7 1| 0.077399 25 26 10 0 0 0.016]| 6E-04

Cation-coupled

Chloride

cotransporters 7 7 7 1 0.04644 15 16 5 0 0| 0.016| 4E-04

Neurofascin

interactions 7 7 7 1 0.04644 15 16 5 0 0 0.017]| 7E-04

Mineralocorticoid

biosynthesis 7 7 7 1| 0.021672 7 8 2 0 0| 0.016| 4E-04

RSK activation 6 6 6 1| 0.049536 16 17 4 0 0| 0.016] 5E-04




Use case 3 supplement Dark pathways 8 of 13
count of
Num aberration
proportion of|patient with|al genes [max [min
full testable|aberratio|proportion |cohort w aberrational|in path in in
path path nal aberration |aberrational [gene (s) in |cross one (one |hypergp [hypergp
path id length |length |[genes al gene in path [path cohort gene |gene |value w FDR
Extracellular matrix
organization 147 145 111] 0.765517| 0.63467492 205 440] 20 0] 9.81E-06| 0.00015
SLC-mediated
transmembrane
transport 230 226 162| 0.716814| 0.59133127 191 351 11 0] 0.000108]| 0.00159
Rho GTPase cycle 212 122 96| 0.786885( 0.53560372 173 309 19 0] 4.11E-06| 6.69E-05
Signaling by Rho
GTPases 212 122 96| 0.786885( 0.53560372 173 309 19 0| 4.11E-06| 6.69E-05
Collagen formation 86 86 69| 0.802326| 0.51393189 166 307 20 0| 2.09E-05| 0.00032
Collagen biosynthesis
and modifying
enzymes 64 64 56 0.875| 0.45201238 146 243 20 0| 3.21E-07| 5.44E-06
NCAM1 interactions 44 44 37| 0.840909( 0.38390093 124 175 12 0] 0.000154| 0.00216
Ion channel transport 56 56 46| 0.821429| 0.34365325 111 156 8 0| 0.000115f 0.00165
Potassium Channels 79 78 59| 0.75641| 0.32817337 106 161 12 0] 0.001402| 0.01705
GABA receptor
activation 50 50 39 0.78| 0.30650155 99 123 12 0] 0.002446| 0.02804
Interaction between
L1 and Ankyrins 26 26 24| 0.923077| 0.30340557 98 141 16 0| 3.45E-05| 0.00052
Adherens junctions
interactions 29 29 27| 0.931034| 0.26006192 84 107] 14 0| 8.34E-06| 0.00013
Elastic fibre formation 35 35 28 0.8] 0.24767802 80 98 10 0] 0.003725]| 0.03685
RORA Activates
Circadian Expression 26 26 22| 0.846154( 0.22910217 74 88 20 0 0.001732] 0.02085
Voltage gated
Potassium channels 43 43 38| 0.883721| 0.22600619 73 107 6 0] 9.29E-06| 0.00015




Use case 3 supplement Dark pathways 9 of 13
Caspase-mediated

cleavage of

cytoskeletal proteins 12 12 12 1] 0.22291022 72 77| 29 0 0
Ion transport by P-

type ATPases 28 28 23| 0.821429| 0.22291022 72 85 8 0.003472] 0.03582
Circadian Repression

of Expression by REV-

ERBA 25 25 21 0.84( 0.21671827 70 83| 20 0.002566| 0.02861
Synthesis of IP3 and

IP4 in the cytosol 25 27 22| 0.814815| 0.20743034 67 77 10 0.004998| 0.04593
Molecules associated

with elastic fibres 24 24 20| 0.833333| 0.19504644 63 68 10 0.003785| 0.03685
Hexose uptake 45 42 33| 0.785714] 0.19504644 63 75 6 0.0036| 0.03643
Other semaphorin

interactions 16 16 14 0.875| 0.17647059 57 68 12 0.003511] 0.03582
Platelet calcium

homeostasis 19 19 17| 0.894737| 0.17337461 56 61 8 0.000898| 0.01151
Adenylate cyclase

inhibitory pathway 13 13 12| 0.923077] 0.14241486 46 50 12 0.001389]| 0.01705
Inhibition of

adenylate cyclase

pathway 13 13 12| 0.923077( 0.14241486 46 50 12 0.001389] 0.01705
Ligand-gated ion

channel transport 17 17 15| 0.882353| 0.14241486 46 51 6 0.002235| 0.02613
Adenylate cyclase

activating pathway 10 10 10 1{ 0.13931889 45 48 12 0 0
GABA A receptor

activation 12 12 12 1] 0.12693498 41 44 6 0 0
Vitamin D (calciferol)

metabolism 7 7 7 1/ 0.11145511 36 40 15 0 0
Activation of BID and

translocation to

mitochondria 4 4 4 1| 0.10526316 34 34 29 0 0
CHL1 interactions 8 8 8 1| 0.09597523 31 32 9 0 0




Use case 3 supplement

Dark pathways

10 of 13

Cohesin Loading onto
Chromatin

10

10

10

1

0.08359133

27

27

0

0

Recycling of bile acids
and salts

11

11

10

0.909091

0.08359133

27

27

0.003826

0.03685

Terminal pathway of
complement

1

0.07739938

25

26

10

0

0

Synthesis of IP2, IP,
and Ins in the cytosol

11

11

10

0.909091

0.07430341

24

25

0.003826

0.03685

Regulation of
Commissural axon
pathfinding by Slit
and Robo

0.07120743

23

23

Establishment of
Sister Chromatid
Cohesion

11

11

10

0.909091

0.06811146

22

22

0.003826

0.03685

Activation of AMPA
receptors

1

0.06501548

21

21

ATP sensitive
Potassium channels

1

0.05882353

19

19

12

Cation-coupled
Chloride
cotransporters

0.04643963

15

16

Neurofascin
interactions

0.04643963

15

16

Serotonin and
melatonin
biosynthesis

0.0371517

12

12

Apoptotic cleavage of
cell adhesion proteins

0.03405573

11

12

Class C/3
(Metabotropic
glutamate/pheromone
receptors)

0.02786378




Use case 3 supplement

Dark pathways

Amino Acid
conjugation

(BN

0.0247678

Conjugation of
benzoate with glycine

0.0247678

Conjugation of
carboxylic acids

(BN

0.0247678

Lectin pathway of
complement
activation

0.0247678

Mineralocorticoid
biosynthesis

0.02167183

Astrocytic Glutamate-
Glutamine Uptake
And Metabolism

0.02167183

Neurotransmitter
uptake and
Metabolism In Glial
Cells

0.02167183

Conjugation of
salicylate with glycine

0.02167183

Organic anion
transporters

0.01857585

Plasmalogen
biosynthesis

0.01857585

Activation of Na-
permeable Kainate
Receptors

0.01857585

Electric Transmission
Across Gap Junctions

0.01547988

ER Quality Control
Compartment (ERQC)

0.01547988

Transmission across
Electrical Synapses

0.01547988




Use case 3 supplement

Dark pathways

12 of 13

Beta oxidation of
palmitoyl-CoA to
myristoyl-CoA

0.01547988

Formation of the
active cofactor, UDP-
glucuronate

0.01547988

N-glycan antennae
elongation in the
medial/trans-Golgi

0.01547988

Reactions specific to
the complex N-glycan
synthesis pathway

0.01547988

The NLRP1
inflammasome

0.01547988

Conjugation of
phenylacetate with
glutamine

0.01547988

ul

ul

=

o

o

Vitamins

=

0.01547988

ul

ul

N

o

o

VRNP Assembly

0.01547988

o

o

Synthesis of IPs in the
nucleus

0.0123839

=

o

o

GABA synthesis

=

0.00928793

N

o

o

Synthesis of PG

0.00928793

WW|h

WIW|h

N

o

o

Synthesis and
processing of
accessory proteins

28

0.00928793

Entry of Influenza
Virion into Host Cell
via Endocytosis

11

0.00619195

Nef mediated
downregulation of
CD28 cell surface

expression

29

0.00619195




Use case 3 supplement Dark pathways 13 of 13

BoNT Light Chain
Types A, C1, E cleave
SNAP-25 0.00309598 1 1 1 1
DNA Damage Bypass 2 1 1 1| 0.00309598 1 1 1 1 0 0
Translesion synthesis
by DNA polymerases
bypassing lesion on
DNA template 2 1 1 1| 0.00309598 1 1 1 1 0 0
Translesion synthesis
by Pol zeta 2 1 1 1| 0.00309598 1 1 1 1 0 0
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