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ABSTRACT

Public omics datasets from sequencing and array-based platforms now amount to millions of samples
across thousands of studies and projects. This wealth of data is difficult to access and analyze due
to heterogeneous and incomplete metadata, varying assay quality, and limited amounts of raw data
provided for certain platforms. Despite this, accessing and reusing public omics data is an economical
and prudent means of planning and conducting new experiments.

DNA methylation (DNAm) consisting of a cytosine-bound methyl group is an epigenetic mark that is
widely probed across the human genome using Illumina’s serialized Infinium BeadArray platforms.
While tens of thousands of samples now have raw DNAm array image data available in the Gene
Expression Omnibus (GEO), there have been few attempts to uniformly process sample metadata
and raw signals for these samples. We programmatically obtained public DNAm array data from
GEO, and we uniformly processed and compiled samples run on HM450K and EPIC, the two most
popular platforms. We provided access to these compilations with support functions and vignettes
for preprocessing and analyses in the recountmethylation Bioconductor package. We further
developed the recountmethylation_instance Snakemake workflow to support the generation of
future compilations.

Using the above data compilations, we conducted novel cross-study analyses of public DNAm array
data. We studied DNAm variance patterns across seven normal tissues, and identified probes with
either low variances across tissues or high tissue-specific variances. We further conducted cross-study
and cross-platform analyses of prevalent blood sample types, which we used in power analyses
as well as to replicate subsets of probes with differential methylation across sexes from two prior
epigenome-wide association studies (EWAS). Our findings can inform future experiment design
efforts, expectations for replication of differentially methylated probes, and novel cross-study analyses
of public DNAm array data.

We further tested the reliability of several software tools for calling retained introns (RIs) from
short-read RNA-seq data by using long-read RNA-seq data as our reference. We identified and
obtained sample-matched public short-read and long-read RNA-seq data from the Sequence Read
Archive (SRA), including data from a human induced stem cell sample and from a human whole
blood sample. We found that RI-detection tool performances according to precision, recall, and
F1-score, were related to their key assumptions, and that tools showed uniformly low performances
for calling RIs which were also persistent in long-read data. Our results show the limitations of
widely used RI-detection tools, and they can inform future efforts to improve the reliability of tools
for calling alternatively spliced transcripts from short-read RNA-seq data.
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1 Introduction

1.1 Public omics data types and sources, and issues for reanalysis

Omics data refers to a variety of data types enabling study of entire classes of molecules like DNA, RNA, and proteins.

Analyses of omics data yield high-resolution snapshots of life inside a cell or tissue [1]. This drives the discovery and

characterization of gene networks whose coordinated expression gives rise to specialized phenotypes, cell signaling

pathways, tissue development, and much more. Comparative studies of omics data from normal and diseased tissues

can reveal the dynamic molecular mechanisms underlying health and illness. These studies can inform development of

novel clinical panels of molecular signatures called biomarkers, with the ultimate goal of improving screening protocol

efficacy, diagnosing diseases earlier and more accurately, and personalizing interventions and treatments.

Public omics datasets have grown immensely in the decades since the first publication of a sequenced human

genome [2], and newer omics technologies continue to improve the resolution and reliability of data collected [3–5].

With growth in available omics data, there is increasing need to make existing public omics data more readily

accessible. These datasets can be useful for planning new experiments, testing new hypotheses, and performing

independent validation and multi-omics analyses, especially when the raw or non-normalized assay data are paired with

complete and descriptive metadata. Unfortunately, inconsistent reporting standards and completeness in public omics

metadata remain common, making it difficult for other investigators to reuse samples in new analyses. Further, public

omics data compilations can be very large in size, making scalable memory-efficient methods crucial for

comprehensive and cross-study analyses.

This section provides an overview of the omics data types studied in this dissertation, how omics data are made

available and accessible from public repositories, obstacles to more extensive use of public omics data in research, and

modern issues surrounding reproducible research for computational disciplines.

1.1.1 Transcriptomics and the exome

Transcriptomics is the study of the transcriptome, or the set of all RNA molecules transcribed from DNA and processed

by splicing. RNA molecules can include sequence regions spliced together during transcript processing, called exons,

and these may cue the polymerization of amino acids into proteins. The entire set of such regions is called the “exome,”

and whole-exome studies focus specifically on these regions [6]. Related to the concept of the exome is the set of all

possible products resulting from RNA splicing, or what is occasionally referred to as the “spliceome” [6]. As with other

omics data types, transcriptomics data can be generated from microarray-based or sequencing-based technologies,

where the latter is usually called RNA-seq.

During sample processing, most sequencing platforms produce reads, and understanding read characteristics can

be central to differentiating sequencing platforms. Reads commonly consist of hundreds to tens of thousands

nucleotides, and they are produced by the amplification of library-specified DNA sequences where these are present in

the sample being processed. Reads are sequenced, mapped to a reference genome sequence, then analyzed to determine
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the genes and transcripts expressed the processed sample. Next-generation sequencing (NGS) technologies include

many high-throughput platforms which produce upwards of millions of reads per sample and can target regions

throughout the human genome. Many platforms are used to produce RNA-seq data, of which we draw attention to

Illumina’s NextSeq and HiSeq platforms for short-read sequencing and PacBio’s long-read sequencing platform

(Section 1.3.3). In Section 4, we use public data from these platforms to study the reliability of tools for calling

alternatively spliced transcripts containing retained introns [5] (Section 1.3). Short-read platforms have historically

been more widely used than long-read platforms, but long-read platforms are gaining in popularity as costs to run

samples decline and methods for preprocessing and analyzing short-read data have matured.

1.1.2 Epigenomics and the methylome

Epigenomics is the study of the epigenome, which refers to a large set of physical or chemical phenomena that can

impact gene expression. For example, many types of non-protein encoding RNAs are considered part of the epigenome.

The addition of methyl groups to a DNA nucleotide, otherwise called DNA methylation (DNAm), is the epigenetic

mark of focus for this dissertation. The collective set of all DNAm in a cell is called the methylome. Just as the exome

refers to a subclass of molecules in the transcriptome, the methylome is a subclass of molecules in the epigenome. The

methylome is commonly studied in Epigenome-Wide Association Studies (EWAS) using several types of

high-throughput microarray platforms. Platforms for studying DNAm vary widely in their scope, resolution, reliability,

and costs (Section 1.2.4). In depth discussion of the biological and clinical relevance of DNAm and its quantification in

omics data are provided in Section 1.2. This informs the cross-study analyses appearing in following chapters

(Sections 2 and 3).

1.1.3 Omics data sources and access

Public omics data is typically accessed from a data source, called a public data repository, using a browser or FTP

connection. Many resources varying in size and scope provide access to public omics data in some form [7–9]. Some of

the most comprehensive resources contain data produced by large consortia, such as the Encyclopedia Of DNA

Elements (ENCODE) [10, 11], the Cancer Cell Line Encyclopedia (CCLE) [12], the Genotype-Tissue Expression

Project (GTEx) [13, 14], and the The Cancer Genome Atlas (TCGA) [15]. Data from these consortia represent the

efforts of many labs over many years, or sometimes decades, and it is common to see these datasets cited in hundreds or

thousands of papers [14]. Alongside consortia are smaller datasets hosted in the GEO and SRA repositories maintained

by NCBI [8, 9, 16]. These repositories commonly host data published from one or several labs, to accompany one or

several studies. The stated purpose of repositories like GEO and SRA is to archive data for published work on behalf of

authors [8, 9, 16]. Since there is limited curation, spot checking, and error correction performed on data and metadata

hosted by these sources, these important tasks are largely left to researchers [3, 4, 17].

In many ways, GEO’s name belies its effective role as a metadata purveyor and a source for supplemental data,

including epigenomics data. Many experiments are accompanied by a GEO study record ID, which corresponds to a
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unique record in the database which includes important study and sample metadata. Each record may also include a

section for supplemental data that may include the platform annotations, processed forms of the analyzed data, and

even raw data from array platforms. While raw or unprocessed array data can be found in the supplemental sections of

GEO records, corresponding raw data from sequencing platforms is provided through the SRA. This includes all

manner of sequencing data, from RNA-seq, to genome sequencing, to bisulfite sequencing and less popular data types

from human, and non-human organisms. Despite this, many sequencing experiments will host study and sample

metadata in GEO and other databases. This means researchers can often query GEO to learn details about sequencing

experiments whose data is hosted in SRA.

GEO, SRA, and other NCBI repositories include helpful search features accessible from the browser. However,

browser interaction is not optimal for automation and reproducibility. Thus, most computational researchers will find

the Entrez Programming Utilities [18] software extremely valuable for programmatically accessing NCBI database

Application Programming Interfaces (APIs). APIs provide an interface between the repository and the data miner,

where key properties of the data are exposed for query. APIs can also dictate the query logic which a programmer can

apply to reliably obtain a result based on certain information provided in the query. The Entrez software provides a

standard way of identifying studies and samples by properties of the data type, platform, metadata, and so on. We used

this software to automatically find sample and study record IDs for DNAm arrays and RNA-seq datasets across

multiple platforms (Sections 2.2.1 and 3.2.1). We conducted Entrez queries using a Python script to automatically find

record IDs and construct the download URLs to obtain supplemental files (Appendix A.1).

While Entrez Programming Utilities enables programmatic access to records and data from GEO, the

SRA-Toolkit [16, 19] software enables programmatic access to sequencing data from SRA. For short-read samples, raw

data takes the form of a pair of FASTQ-formatted files containing the reads generated in either the forward or reverse

DNA strand. We downloaded FASTQs using the toolkit’s fastq-dump or fasterq-dump functions. By contrast, the

toolkit functions don’t presently support download of raw long-read data, called movie files, and these files needed to

be batch downloaded using custom scripts (Section 4.2.2).

1.1.4 Obstacles for analysis of public omics data

Several key obstacles impede analysis of public omics data. First, available information from published experiments

can vary widely. A scan of public archives shows varying completeness of experiment records, ranging from only study

metadata, to limited sample metadata paired with normalized assay data, to complete sample metadata provided with

raw or non-processed assay data. The latter is the most reproducible way of reporting an experiment because the raw

data can be used to repeat the entire preprocessing and analysis workflow from the beginning. Complete and thorough

metadata is crucial for relating samples across projects and fully understanding the origins of assay data. In addition to

data and code, studies should describe their pipelines in sufficient detail so that they can be fully reproduced. Better yet,

a runnable workflow or pipeline script can be provided. Studies of omics data frequently use multistage pipelines that
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need to be thoroughly documented to ensure their reproducibility (Section 1.1.10), many studies unfortunately don’t

report their methods in sufficient detail to be reproduced [20].

Next, public omics datasets can be difficult to analyze and interpret. Manipulation of omics data often requires

specialized training and skills, and omics data studies demand careful planning. Further, even well-designed omics

studies can be difficult to interpret because of statistical assumptions and because observational data is usually

insufficient to show a causal relationship between some molecular marker or signature and a condition of interest

(Section 1.4.4). Many omics studies focus on discovering biological indicators of disease or pre-disease conditions, a

pursuit called “biomarker discovery.” Biomarker discovery describes a significant portion of biomedical research, yet

even exceptionally robust and informative biomarkers need only be consistently indicative or correlated with a condition

and need not have any causal relationship to the condition of interest [21–24]. Thus there is constant need to elucidate

biological mechanisms and processes that explain health and disease at a deeper levels beyond robust correlations.

Finally, metadata heterogeneity and varying completeness can confound cross-study omics data analyses even

where individual studies have provided raw data and sufficient sample metadata. Metadata heterogeneity arises due to

lack of standards for metadata reporting, which might dictate how information is conveyed and organized, and which

could entail the mapping of controlled vocabularies [17, 25] (Section 1.1.6). Varying metadata completeness

contributes to metadata heterogeneity, and can arise in three key ways. First, metadata may be omitted to protect subject

identity. For example, this could be a concern for studies of exceedingly rare disease, where there is reasonable concern

a patient could be identified from provided metadata and/or provided omics data. Second, incomplete metadata can

arise due to negligence or ignorance on the part of the researcher or data recorder. Lack of widespread metadata

reporting standards exacerbates this particular problem, as this means more work on the part of researchers to

familiarize themselves with previously archived metadata to determine how best to represent metadata for their own

study. Third, metadata may appear to be lacking if metadata mapping or learning pipelines cannot access it. This can

happen if metadata is erroneously recorded in an unexpected location or using a non-standard format. Finally,

non-standardized and highly specialized recorded metadata contributes to metadata heterogeneity. For example, sample

identifier codes are often meaningless outside of a particular lab or consortium, and manifests describing the meaning

of sample codes are not always readily available. Ultimately, metadata heterogeneity confounds omics data discovery

and reuse, and moving forward it will become more crucial to introduce standard metadata reporting practices as well

as develop tools to help researchers properly represent published data in public archives [3, 4, 26].

1.1.5 The role of raw data

The above obstacles for analysis of public omics data can be overcome through several means. First, data miners can

limit the scope of their data searches to include only records with raw or non-normalized data available. The rawest

possible form of data for an assay is typically the most desirable for follow-up analyses. This is because follow-up

analyses may involve data from several studies, and disparate normalization strategies can confound analysis of
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samples across studies and pipelines. Further, the bias introduced by disparate normalization procedures can impede

efforts to perform bias correction across studies, and this is a major obstacle for most meta-analyses (Section 1.1.8).

For DNAm array experiments, raw data consists of two paired color intensity (a.k.a. “IDAT”) files, one each for

the red and green color channels on the array reader. These paired files are read by software such as Genome Studio or

minfi [27] R package, then parsed into methylated (M) and unmethylated (U) signals for further processing. These are

discussed in greater detail in Section 1.2.5. Raw data from sequencing experiments consists of FASTQ files for

short-read data, and movie files for PacBio long-read data. These are discussed in greater detail below (Section 1.3).

Provision of raw data also encourages reproducibility because it allows one to repeat the published data processing

and analyses exactly as described by the authors. However, raw data can consist of very large files requiring large and

expensive servers to host. As with whole-genome bisulfite sequencing data, the raw form of some data further may not

be its most informative or useful representation (Section 1.2.4). Further, some metadata must be excluded from

archived experiments to protect subject identity, and grants or other official sources can impose limits on information

that can be made publicly available. For these and other reasons, many studies neglect to provide access to raw forms of

omics datasets [3] (Section 2.3.1).

1.1.6 Harmonization of heterogeneous metadata

Next, metadata heterogeneity may be addressed using metadata harmonization [17, 25]. This technique aims to

combine samples under a single set of standardized descriptive terms using standard and well-defined vocabularies

describing biological, medical, demographic, and technical aspects of the sample [3, 4, 28]. Harmonized metadata can

be obtained by either systematically mapping controlled vocabularies to encountered metadata, by learning controlled

vocabularies or predictions using natural language processing, or by prediction or imputation from omics assays

themselves. For metadata mapping, many entire curated term hierarchy dictionaries, or “ontologies,” are now freely

available through projects such as ENCODE [29]. These were previously used to map SRA metadata and make them

queryable as the MetaSRA resource [17]. Despite their availability, there is no standard way of using ontologies for

research, and even the MetaSRA makes use of just a handful of the dozens of available term ontologies [17]. This means

it is largely upon individual researchers to determine how best to harmonize metadata mined from public repositories.

Fortunately, metadata mapping is not an intractable problem. For recountmethylation data compilations, we

incorporated metadata mapping using R scripts applying regular expressions, an extremely common and useful syntax

for matching complex character patterns. First, sample metadata in JSON file format, which is stored using a

predictable “key:value” format, is coerced into a flat table (Appendix A.3). Then these data are postprocessed by

mapping a more informative and controlled vocabulary under informative variables for characteristics like sample type,

disease condition, and so on (details in Section 2.2.7), which was an approach inspired by a prior compilation of DNAm

array data [28] (Appendix A.4). While we did not map terms from ENCODE ontology dictionaries, we used descriptive

terms capturing the most common information in the archived metadata, as determined by a combination of

observation, manual review, spot checks, analysis, and summarization. We also used the MetaSRA-pipeline
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(Section 2.2.6), which was used to compile the MetaSRA and which we found was also generalizable to metadata

encountered in GEO. We further expanded the harmonized data using variables predicted from DNAm with canonical

models, including the attributes sex [27], age [30], blood cell fractions [31], and genetic ancestry [32] (Section 3.2.2).

1.1.7 Previous public omics data compilations of note

Several notable efforts have been made to compile public omics data, where we take data compilations to be resources

combining metadata and assay data in some way, such as in a relational database, where compiled data has usually been

subjected to some kind of uniform processing. This definition excludes utilities which may mirror public data or

perhaps provide a new dashboard or browser interface to query and summarize datasets [33–37]. While these resources

can be useful, they don’t strictly provide a means of jointly preprocessing and analyzing sample metadata and assay

data without considerable additional effort.

Many projects have attempted to comprehensively compile and process public RNA-seq data. Importantly for this

dissertation is the recount project, from which the recountmethylation [38] Bioconductor [39] package gets its

name. The recount project now spans three key versions [26, 40, 41] and a separate project for data from brain

samples [42]. For recount, researchers compiled sequencing data mined from the SRA. In its newest manifestation as

recount3, the project includes human and mouse samples from a wide array of bulk and single cell sample types [26].

Importantly, the recount data compilations are supported by helpful browser interfaces and complementary

Bioconductor packages [39, 43, 44]. These resources ensure it is easy to summarize experiment and sample metadata,

query the compiled data, and apply the same processing methods to new data. Further, data from recount was used to

make a queryable index of splice junctions called Snaptron. Thus recount is a prime example of how public omics

data can be made more accessible and used to develop new research tools.

For DNAm array data, the Marmal-aid [28] resource compiled uniformly processed HM450K [45, 46] and

HM27K samples from GEO. It was initially released in 2013, and updated for several years after. Importantly, it

included harmonized and uniformly formatted metadata under several variables such as tissue, disease, sex, and age.

These variables informed the metadata variables we used in recountmethylation (Sections 2.2.5 and 3.2.2). While

an impressive effort, the maraml-aid resource is now out of date, as relatively few HM27K samples have ultimately

been published to GEO, and the newer EPIC [47] platform is now overtaking the HM450K platform in popularity and

prevalence. Harmonized metadata can be further enhanced with reliable DNAm-based attribute predictions using

canonical models. We were able to predict age, sex, blood cell fractions, and genetic ancestry for samples in the

recountmethylation data compilations. Detailed discussion of the Illumina Infinium BeadArray platforms for

DNAm array data are provided in Sections 1.2.4 and 1.2.5 (Section 2.3.3, Appendix 6.1).

1.1.8 Cross-study analyses versus meta-analyses

Cross-study analysis is an important experiment design strategy used throughout omics literature. In contrast to

meta-analyses, cross-study analyses are best characterized as analyses of studies using uniformly normalized data rather
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than data normalized independently or from distinct normalization pipelines. For example, a cross-study analysis may

compare results from many different studies, may uniformly process and normalize data from many different studies, or

use some combination of the two approaches.

In theory, cross-study analysis allows one to leverage greater quantities and varieties of samples more effectively

than would be possible in a meta-analysis. In practice, there is need to more fully develop and benchmark methods for

effective cross-study analyses. We tackled one piece of this larger issue by evaluating different strategies for performing

study ID-specific bias corrections across DNAm array data from thousands of blood samples and dozens of studies

(Section 3.3.2). These efforts make it clear that study ID explains a lot of variances across samples while also serving as

a surrogate for technical bias, and they underscore the importance of having uniformly normalized data, as disparate

normalization strategies would inflate study ID-specific variances across samples and reduce explained variances after

bias correction efforts.

Prior work includes numerous studies which effectively employ cross-study analysis experiment designs. For

example, [30] introduced one of the first highly accurate pan-tissue epigenetic clocks. This paper conducted

independent validation across studies as well as normalization across both the HM27K and HM450K array platforms

(details in Section 1.2.5). Further, [48] leveraged many different tissues to evaluate the behavior of differentially

methylated probes from sperm across a variety of other tissues. In addition, [49] used many birth cohorts to validate an

epigenetic clock that accurately predicts gestational age. Importantly, public repositories feature samples from

exceptionally rare conditions and diseases, and these have been used to develop novel DNAm-based panels for

diagnosing multiple rare Mendelian disorders [50, 51]. Many prior studies use cross-study analyses of transcriptomics

data, including a characterization of brain regions and cell types [42], and a systematic comparison of bulk and

single-cell transcriptomics in mouse and human [26].

1.1.9 Present and future applications of public omics data

There are many useful applications of public omics data. A researcher planning her next experiment might use

empirical effect size estimates from public data to estimate the number of samples needed to test a new hypothesis

(Section 1.4.8). An analyst could periodically revisit an analysis pipeline using GEO data to repeatedly test a

hypotheses over time as more data becomes available, and a clinician might query SRA for samples from an extremely

rare condition in order to test the efficacy of a biomarker panel.

The increasing volume and variety of public omics data is driving novel applications such as appropriation of old

methods for new platforms, development of new methods, and novel uses for old samples. Multiple omics data types

for a single tissue can be analyzed together in a multi-omics experiment, and such analyses of orthogonal assays can

further an understanding of the biological systems and networks underlying normal development and disease [52, 53].

For example, transcriptomics and epigenomics data from the same tissue could be integrated and jointly studied, which

can possibly uncover epigenetic marks mediating gene expression, gene co-expression networks that change global

epigenetic profiles, trans-acting epigenetic marks and transcription factors, and more.
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Recent work applies the concept of transfer learning to complementary data types to improve analysis of either

data type individually. For example, single-cell sequencing data can be used to impute cell types in less high-resolution

spatial transcriptomics data [54]. Further, hybrid methods make joint use of short-read and long-read data for

preprocessing to reduce the technical errors in long reads [55]. Innovative public omics data analyses can also be driven

by older methods. For example, transcriptome and differential expression analysis of newer long-read data can make

use of tools developed previously for short-read data. Further, cell type deconvolution methods developed for bulk

RNA-seq data can also be appropriated for deconvolution problems involving single-cell and spatial transcriptomics

data. Many recently developed methods make novel use of machine learning techniques, especially convolutional

neural networks [54, 56]. Thus transfer learning, appropriation of old methods for new data types, and novel machine

learning approaches are driving new applications of public omics data.

1.1.10 The central role of reproducibility in research

There are numerous opportunities and challenges presented by public omics datasets, and effective omics research

demands critical thinking about not only biological systems but also the ways in which those systems can be studied.

Reproducibility is the ability to recreate an analysis using the exact data, methods, and code provided in a study. This

idea is central to empirical inquiry since rigorous science should be reproducible by definition. However, it has been

specially emphasized for computational fields over concerns that far too few studies are reproducible in

practice [57–59]. These concerns motivate frequent reference to “reproducible research” as a way of proactively calling

attention to methods and practices that ultimately increase reproducibility.

As a scientific approach, reproducible research emphasizes key ideas like methodological rigor, transparent

methods, detailed documentation, and other domain-specific practices. Adherence to reproducible research benefits

individual researchers, the greater community, and even the wider lay community. First, it benefits those who practice it

because it encourages better practices in reporting and documentation [58]. Second, reproducibility enables

replicability, which refers to the ability to effectively apply the exact methods as reported in order to analyze new data.

This clearly follows because reproducible methods are more transparent and detailed, which improves the researcher’s

ability to repeat those methods in a new setting. Third, reproducible research benefits the greater scientific and lay

community overall because they clarify the specific accomplishments and limitations of scientific studies. This paves

the way for more constructive and honest interpretation of results and it discourages erroneous or over-optimistic

interpretations.

Domain-specific reproducibility measures must be considered for computationally-intensive disciplines. These

measures encompass the inclusion of all dependencies with their versions in reported methods, making code legible

with comments and docstrings, and making code open-access to promote transparency [60]. Reproducibility is further

encouraged through complete provision of code with datasets, as this enables the study’s entire pipeline to be repeated.

Provision of code with dependencies is encouraged by virtual environments and containers (Section 1.4.9).

Reproducibility standards may also be applied to data compilation efforts. For example, initial recountmethylation
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data compilations provided uniformly processed metadata and DNAm array data in several formats. These large

compilations were used by several groups to study a variety of topics (private correspondence). However, this approach

demanded manual curation, and the large datasets required significant server resources to host. After several updates

and the introduction of EPIC platform samples, we are shifting towards providing access only to

recountmethylation_instance [61], a Snakemake workflow for compilations of public DNAm array data from

GEO. Hosting a workflow requires trivial cloud storage space, and users can fork, modify, and update the workflow to

suit their needs. We attempted to limit the need for manual curation by automating parts of this workflow. More details

about workflows and other tools to promote computational reproducibility for omics data analyses are discussed in

Section 1.4.9.

1.2 Probing the methylome with DNA methylation microarrays

DNAm is the best-studied epigenetic mark and is now known to play crucial roles in development, gene expression

regulation, genome stability, and more. DNAm is most commonly studied using microarray-based technologies. DNAm

marks specifically refer to a class of chemical modifications applied to individual DNA nucleotides, resulting in the

addition of a methyl (CH3) group. The best studied of these modifications consists of the addition of the methyl group

at the 5’ position of cytosine, which yields 5-methylcytosine (5mC). 5mC is especially common at cytosine-guanine

sequence regions, otherwise known as CG dinucleotides or CpG loci. Unless otherwise noted, usages of DNAm below

refer strictly to 5mC occurring at a CpG locus. CpG loci are commonly assayed in bulk tissue samples using

high-throughput microarrays, or simply “arrays,” among which Illumina’s Infinium BeadArray-based platforms have

been the most popular and widely used. This section describes DNAm in greater detail, including relevant biological

context and processes, its biological and clinical importance, and how DNAm arrays detect and quantify 5mC.

1.2.1 Molecular mechanisms of DNAm gain and loss

Like most epigenetic marks, DNAm varies across cells and tissues within an organism in a phenomenon called

“epigenetic mosaicism.” Characterizing and predicting the conditions, patterns, and limits of epigenetic mosaicism are

key tasks of modern epigenetics research. For decades it has been appreciated that genome DNAm patterns reflect

competing and interacting genetic and environmental influences, but the specific nature of those influences is just

starting to be elucidated.

DNAm is linked to cell functions and activities, and especially to the cellular processes of replication and

senescence. Conversion of cytosine into 5mC is mediated by the family of enzymes called DNA methyltransferases

(DNMTs), especially subclasses known as DNMT1, DNMT3a, and DNMT3b. During and following cell replication,

DNMT1 acts in concert with other proteins to facilitate addition of methylation back to cytosine on the newly

polymerized DNA strand [62, 63]. This process is called “maintenance methylation,” as DNMT1 attempts to exactly

copy DNAm patterns in the original template DNA. DNMT1 has lower fidelity compared to similar replication

enzymes like DNA polymerase, and this low fidelity explains replication-associated DNAm loss [64].
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Alongside DNMT1 maintenance methylation, several types of DNMT3 enzymes facilitate de novo methylation,

which is the addition of a new methyl group to cytosine at a previously unmethylated CpG locus [65]. DNMT3 activity

is complex and driven by interactions with other factors including ten-eleven translocation (TET) enzymes [66].

Further, the subclass of DNMT3b enzymes may specifically increase DNAm in the gene body [67]. When DNAm is

lost either through active demethylation or passively through imperfect DNMT1 maintenance, DNMT3s may promote

maintenance DNAm by facilitating 5mC reformation [63].

1.2.2 The biological importance of DNAm

Our understanding of the biological importance of DNAm has increased drastically in recent years, and it is now widely

accepted that DNAm is an important mediator of gene expression, transcript selection, and alternative splicing [63, 68].

Among DNAm’s roles in regulating gene expression, it is well known to down-regulate expression in cis when it is

present in the gene’s promoter [69–71]. Among several key mechanisms explaining this phenomenon, one of the most

well-described involves DNAm’s prevention of binding by transcription factors which are required to promote

transcription [63, 72].

DNAm in the gene body may up-regulate gene expression, including by discouraging spurious transcription

initiation in a DNMT3b-dependent manner [67], or possibly because body DNAm stabilizes RNA polymerase during

transcription. DNAm may promote or repress gene expression in trans through its presence or absence at intergenic

regulatory regions known as enhancers and insulators [69–71]. Through this and other means, DNAm acts in tandem

with DNA-protein complexes called histones, 3d genome topology, non-coding RNAs, and other elements and

conditions to regulate gene expression. Unfortunately, much of our understanding of DNAm is confounded by issues

with unambiguously assigning CpGs to either a gene’s body or promoter, especially where the CpG overlaps multiple

transcripts asymmetrically. These concerns are discussed further in Section 1.4.1.

Besides gene regions, DNAm is associated with other cytosine- and guanine-rich regions located throughout the

genome called CpG islands [73]. Further, cytosine- and guanine-depleted regions that surround CpG islands are called

shores, shelves, and OpenSeas, respectively [74]. While up to 80% of CpGs are thought to be methylated

genome-wide, CpG islands typically show low DNAm despite having high concentrations of CpG loci [63]. Most gene

promoters either overlap or occur in cis to a CpG island [75]. CpG island-specific DNAm dynamics, such as

age-associated drift, can mediate expression at these CpG island-proximal genes [76, 77].

DNAm plays a key role in X chromosome inactivation in human females, or the process by which sex

chromosome gene dosage is controlled by systematic high DNAm and repressed gene expression at one X chromosome

but not the other [78, 79]. Relatedly, DNAm plays an important role suppressing activity in repetitive and retroviral

regions, preventing transcription interference and disease-promoting processes [80, 81]. DNAm is further tied to tissue

and embryological development, cell fate, and cell identity [82]. Several waves of demethylation, or widespread loss of

DNAm, occur prior to egg fertilization and during embryonic development in mammals, with focal conservation of

parentally inherited 5mC at imprinted genes [63, 83]. Further, DNAm changes are triggered by cell activity and
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development, such as in T-cell activation and stem cell induction [84]. DNAm variation and loss is associated with cell

mitotic activity and biological aging [85, 86] in a manner conserved across many species [87, 88] (Section 1.2.3).

1.2.3 Clinical applications of DNAm

Many studies have discovered potential DNAm biomarkers of conditions ranging from obesity and diabetes [24, 89–91]

to cancer [92–99]. DNAm from blood samples yields information about immune cell content and activity, cell free

circulating DNA, and other potential markers of certain diseases and conditions, and blood DNAm tests are being

investigated in the development of minimally invasive panels for clinical use [100, 101]. It takes considerable effort and

resources to develop a DNAm biomarker-based panel ready for clinical use, and statistically most promising biomarker

candidates don’t ultimately pass rigorous validation [21–24]. As a result, DNAm is used in only a few clinical tests to

date [102, 103].

Because DNAm is closely tied to genetic variation, it has been used as a surrogate for individual genetic variants

and small nucleotide polymorphisms [32, 104]. This motivated investigation of DNAm as a biomarker of rare genetic

diseases and development of EpiSign, a molecular panel for the simultaneous and accurate diagnosis of numerous rare

Mendelian genetic disorders from DNAm array data [50, 51]. DNAm tests also show promise for improving screening

of patients with gastroesophageal maladies. For example, Barrett’s esophagus is a common disease characterized by

metaplastic tissue at the gastroesophageal junction. Barrett’s is one of the best risk factors for esophageal

adenocarcinoma, a rare but deadly cancer of the lower esophagus [105, 106]. Despite available screening procedures

and tests, it remains difficult to stratify Barrett’s patients according to their risk of progression to cancer. This motivated

extensive research into DNAm as a possible molecular marker of cancer progression risk in Barrett’s patients [92,

107–112]. A cheap and effective DNAm clinical panel that improves risk stratification of Barrett’s patients could reduce

population burden of esophageal adenocarcinoma and promote more effective interventions and treatments for patients

at the highest levels of progression risk.

Recent DNAm research has had a profound impact in the fields of aging and rejuvenation therapies. Alongside an

organism’s temporal age, it is thought that the phenotype may reflect an independent and parallel age with relevance to

health and longevity, otherwise known as a “biological clock”. DNAm was found to correlate with temporal age in

surprising ways, and inferring biological age from DNAm is now one of the key ways in which aging is studied in the

context of biomedical research [30, 113, 114]. This work could further yield more precise gestational age estimates

from neonate cord blood DNAm, which could ultimately improve the efficacy of prenatal screening [49, 115–118].

DNAm-based clocks have been applied in a wide variety of settings and organisms, including to study the immune

system, predict mortality, characterize biological responses to low-gravity environments, and more [30, 49, 113,

119–121].
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1.2.4 Profiling DNAm by sequencing

DNAm can be quantified using either sequencing or array-based technologies. Most technologies initially subject DNA

to a chemical transformation called bisulfite conversion. Bisulfite conversion converts non-methylated cytosines to

uracil while preserving 5mC bases [122, 123]. The converted DNA can then be amplified and sequenced to determine

whether a CpG contained 5mC.

Whole-genome bisulfite sequencing (WGBS) yields high-resolution, high-density datasets [124–129]. It is

high-resolution because it shows the methylation status of an individual CpG locus on an individual DNA strand, rather

than an aggregate of DNAm across DNA in an entire sample. Bisulfite sequencing is high-density because it yields very

large data files. Their size can make these files difficult to work with even in a modern remote server environment with

excellent memory and disk space resources. Further, the information yield is higher than necessary for most purposes.

For example, certain genome regions tend to have high or low DNAm with great uniformity. In such regions, it is only

necessary to retain the methylation status of a few informative CpG loci rather than all regional loci. These drawbacks

have motivated development of reduced-representation techniques for sequencing data, as well as motivated interest in

far more compact Infinium BeadArray platforms for studying the human methylome.

Alternative sequencing strategies can yield phased single-nucleotide DNAm information without having to use

bisulfite conversion. For example, long-read sequencing technologies (Section 1.3.3) can detect a variety of nucleotide

modifications without special DNA treatment. However, prohibitively high coverage is required to detect certain

modifications such as 5mC, preventing its reliable detection in the absence of additional reagents or procedural

measures [55]. Alongside high-throughput sequencing methods, pyrosequencing [130], methylite [131, 132], and other

assays quantify DNAm at targeted loci with high resolution and granularity [92, 124, 133–135]. Each of these yields

phased methylation information at specific loci with high reliability. These assays are widely used to test promising

DNAm biomarkers, especially if those biomarkers were discovered by more high-throughput approaches. Experimental

validation is important to test the rigor of promising biomarker candidates prior to investigating their clinical

applications in greater depth.

1.2.5 Infinium BeadArray technology

Among the many platforms profile DNAm, the most popular to date are Illumina’s Infinium BeadArray platforms.

These include three generations of serialized BeadArray platforms released over the course of several decades. With

each new platform release, the amount of genome coverage has increased and further been expanded to new regions.

The earliest platform was called the HumanMethylome 27K, or “HM27K” array. This was followed by the HM450K,

and then the newest platform called EPIC or occasionally HM850K. The platform names roughly correspond to the

number of CpG loci they assay after quality control and preprocessing. Thus HM27K assays about 27,000 loci,

HM450K assays about 480,000 loci [45, 136], and HM850K assays about 850,000 loci [47]. Each platform assays
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regions throughout the human genome with concentration at genes and CpG islands. The EPIC platform notably

introduced new probes covering non-coding RNA and intergenic regulatory regions that had been absent from the

preceding HM27K and HM450K platforms [74].

Infinium BeadArray platforms assay CpG loci using one of two probe types, called Type 1 and Type 2. Both types

target 50 base pairs of DNA sequence adjacent to a target CpG. During array processing, fragmented bisulfite converted

DNA is hybridized to the array probe sequence and a single-base extension occurs to bind a fluorophore-bound

nucleotide which signals either red or green in the color detection channels. Type 1 probes utilize two beads, one each

for the Methylated (M) and Unmethylated (U) signals [27, 72]. In newer platform generations, Type 1 probes have been

replaced by the more compact Type 2 probes which use just a single bead and sequence that can yield either U or M

signal. This is accomplished with a 50bp sequence incorporating a special kind of synthetic and degenerate nucleotide

which binds equally well to either internal cytosines and 5mCs, allowing better DNAm quantification at CpG-rich

regions such as islands [74].

Certain BeadArray probes have been shown to have off-target effects. In other words, these probes bind one or

more genome regions besides the intended target, and off-target regions can even be on different chromosomes [47,

137]. Off-target effects can result if the 50bp probe sequence is insufficient to uniquely specify a genome region. This

issue is exacerbated for Type 2 probes in regions with greater tandem repeated sequences, including CpG islands.

Because of this, it is common practice to filter likely cross-reactive probes prior to analyses [49, 76, 92, 138].

Illumina’s Infinium BeadArray platforms quantify DNAm for bulk samples, or cell mixtures which may include

many distinct cell types [45, 47]. This yields an aggregate signal detected across DNA strands from cells throughout the

sample. Color signals are read by a dual-channel system that produces a pair of complementary raw intensity data

(IDAT) files corresponding to the red and green color channels, respectively. The paired IDATs are read and parsed into

either methylated (M) or unmethylated (U) signals, which are in turn used to compute a DNAm fraction or Beta-value.

Intuitively, the Beta-value reflects the fraction of signal from DNA strands containing 5mC at the targeted CpG probe,

divided by the total signal from all DNA at that site. While Infinium BeadArray platforms yield an aggregate signal

from a cell mixture, methods have been developed to deconvolve the particular cell content in a sample. Notable

examples can determine fractions of Natural Killer cells, B-cells, T-cell sub-populations, and so on from blood

samples [31, 139].

1.2.6 Preprocessing DNAm arrays

There is a considerable body of literature establishing normalization procedures for BeadArray probes. One of the most

widely used normalization techniques is called “noob-normalization,” whose name combines Normal-Exp, its

convolution method, and out-of-band signal, the type of Infinium probe signal it utilizes [140]. This technique

determines CpG probe assay quality and attempts to correct for systematic biases in detected color intensity levels prior

to downstream analyses. It was shown to reduce biases, increase the dynamic range, and improve recovery of biological

variation for both Type 1 and Type 2 probes [140]. Noob normalization is generally recommended as an initial
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preprocessing measure for DNAm array analyses, and it can be combined with other normalization types in a single

preprocessing workflow [141–146]. Another important feature of noob normalization is that it is performed within

rather than across samples. This makes it an ideal normalization method to be performed for distributed data

compilations, since it isn’t known what subsets of studies and samples the end user will analyze.

Several quality filters are routinely applied in DNAm array preprocessing. First, CpG probe signal can be directly

used in quality filters [3, 27]. As mentioned above, thousands of CpG probes may undergo cross-reactivity, and these

may be removed prior to analysis [47, 137]. Further, each probe has an associated detection p-value which reflects

signal confidence and is ultimately a function of the amount of M and U signal registered in each color channel. Thus

probes with low absolute signal intensity in both channels may be considered low confidence or as having failed [3, 27],

and removing this failed probes is a standard approach. In addition to probe signal, 17 BeadArray quality tests

published by Illumina are used to assess whether various steps in the array processing pipeline were successful [74]. In

Section 2, we evaluated the BeadArray test performance of tens of thousands of samples from HM450K arrays, and we

identified a subset of tests explaining most observed variation in outcomes across tests [3]. We also made these assay

tests available in the updated recountmethylation [38] Bioconductor package. Besides these standard quality

control and normalization procedures which are recommended for most DNAm array studies, methods for cross-study

analyses are comparatively sparse and not well defined. Because of this, we explored applications of linear adjustment

on study ID as a surrogate for unwanted variation such as from technical bias and batch effects (Sections 2.2.10

and 3.2.4).

1.3 NGS technologies and their applications

Much of modern computational biology has focused on analysis of sequencing data, especially sequencing data

produced by NGS technologies. With consistent decreases in the cost of producing sequencing datasets, a wealth of

public sequencing data is now available for a huge variety of populations, tissues, and conditions from a variety of

species [26]. As preprocessing and analysis methods for sequencing data mature, nuanced analyses of alternative

splicing, transcript isoform expression, and large structural variants are becoming more common. This section provides

crucial background about the platforms and technologies we employed to study the reliability of tools for calling

retained introns in short-read sequencing datasets [5] (Section 4).

1.3.1 NGS

NGS, sometimes called “massively parallel sequencing,” is a large class of sequencing technologies which can

simultaneously sequence millions of DNA fragments [147, 148]. First introduced in 2004, NGS has come to replace

alternative technologies such as Sanger sequencing, which is sometimes called the “first generation” sequencing

technology [149]. Unlike Sanger sequencing, microarrays, and other technologies, NGS doesn’t require pre-knowledge

of a gene sequence or genome target to be run. The reliability of NGS experiments can be fine-tuned either technically

by increasing sequencing depth, or experimentally by using control runs and replicates. Among its chief downsides,
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NGS technologies fail to reliably capture certain genome regions, especially repetitive sequence and large structural

variants. Further, NGS technologies require specialized equipment run by trained personnel, and that their analysis

demands technical knowledge and usually considerable computing power. These issues have been alleviated somewhat

as costs to generate NGS data have come down, as technical knowledge has become more widespread, and as

computational methods have matured and become widely available and readily usable. Thus NGS allows nuanced and

large-scale profiling of DNA or RNA in a sample, and it can now be used to profile millions of sequence variants or

sequence the entire human genome in a matter of hours. Of importance to this dissertation is the distinction between

NGS technologies which use short reads (Section 1.3.2) versus long reads (Section 1.3.3), as both data types are studied

below [5] (Section 4).

There is often an interplay between the development of new technologies for omics data and the development of

new methods to preprocess and analyze data from those technologies. Resources tracking tools for processing and

analyzing NGS data have become increasingly common, and significant resources now track specific tools for

single-cell sequencing [150], long-read sequencing [55, 151], and expression analyses [152]. Among newer analysis

tools, it is increasingly common to see novel applications of machine learning algorithms, reapplication and

appropriation of old methods for new data types, and transfer learning that leverages information from multiple

complementary sequencing data types [54–56].

1.3.2 Short-read RNA-seq

Short-read sequencing technologies describe platforms using reads of up to several hundred base pairs in length [149].

Short-read data is typically low cost per sample, with relatively low error rates compared to long-read sequencing [147].

Many platforms are available to produce short-read data, and short-read sequencing has been widely used to profile

many conditions and tissues across many species [44]. Short-read data typically has greater coverage at most genome

regions compared to long-read data. The availability of mature and robust computational methods for preprocessing

and analysis of short-read RNA-seq data enables many types of analyses, such as to quantify differential expression and

alternative splicing, detect genetic mutations and small nucleotide variants or structural variants, and more [153–155].

Short-read sequencing data has several chief limitations. First, it is usually difficult or impossible to phase more than

two genomic features due to the short read length. Further, coverage biases prevent reliable capture of structural

variants and repetitive regions. Finally, raw FASTQ files produced by short-read platforms are often very large and may

be difficult for private parties to host. Data from short-read platforms can be categorized as either single-end, meaning

including reads from only one DNA strand, or paired-end, meaning reads are generated for both the forward and reverse

DNA strands. Below, we analyzed public paired-end short-read sequencing produced for Illumina’s NextSeq and HiSeq

platforms, which we accessed from the public data archives of the SRA [5] (Section 4).
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1.3.3 Long-read RNA-seq

Long-read sequencing technologies use reads of up to tens of kilobases in length. Long-read sequencing has historically

been relatively high-cost to run, with relatively high error rate compared to short-read sequencing. While these

technologies have been available for years, or over a decade in the case of PacBio single molecule real-time (SMRT)

sequencing platforms, they have not seen widespread use until recently. This is mainly because of costs as well as the

need for specialized tool development to preprocess and analyze long-read sequencing data [55]]. During sequencing,

the PacBio long-read platform produces fluorophore flashes recorded as movie files, where the precise timing of

recorded flashes indicates the presence of specific nucleotides and even specific chemically modified nucleotides such

as 5m (Section 1.2.4). PacBio templates are circular molecules containing forward and reverse sequence joined with

so-called “SMRTbells,” or ligated hairpin adapter sequences that are bell-shaped. Polymerization proceeds continually

around this circular DNA template, producing a continuous strand of potentially many copies of the template sequence.

As bases are held by polymerase, they produce a light pulse that is stored as a movie, where the pulse duration is

specific to a particular base. These movie files are then processed into standard FASTQ format and analyzed [156].

Long-read sequencing has distinct advantages over short-read. First, long reads enable most or all of an entire

transcript isoform to be captured including multiple functional elements phased together, offering an unprecedented

look at isoform-level gene expression. Further, long reads can be better suited to capturing repetitive regions of the

genome which were previously intractable for short reads [157]. Related to this, long reads can better capture structural

variants, especially large and complex or multi-stage structural variants not reliably captured from short reads. This will

have growing importance over time as structural variances are being increasingly studied for their roles in normal gene

regulation and diseases including cancers [154]. Further, the cost of generating long-read data has decreased over time,

and the data produced from long read platforms can be more compact and much easier to host and obtain than for

short-read data. Despite these advantages over short-read data, long-read sequencing tends to be more error prone than

short-read from a technical standpoint. Further, the cost of producing long-read data is still prohibitive for large-scale

population profiling. Also, the low coverage of long-read data can confound transcriptome-level and differential

expression analyses. In short, as costs decrease, methods for preprocess and analysis continue to improve, and

applications continue to be introduced, long-read sequencing data is likely to become more popular and widely used in

the omics literature [55].

1.4 Computational methods for analyzing public omics data

Technologies and methods for omics data have developed in parallel for decades. Publication of preprints, provision of

runnable code examples in notebooks, and other key practices have been widely adopted in computational fields.

Further, it is common for methods previously developed for older data types to be appropriated for newer data types.

Alongside these tangible signs of progress there has also been an increasing push for open access code and

reproducibility in computational disciplines. This section provides an overview of the key methods and tools which we

used to conduct novel research and promote computational reproducibility in the work that follows.
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1.4.1 Importance of reference genome annotations

Much of omics data analysis depends on underlying assumptions made about the genome. For instance, array design is

defined by the identification of a marker that can be probed. While this benefits the design of a reliable probe assay to

quantify an established marker of interest, it typically prevents possible discovery of new markers. By contrast,

high-throughput sequencing technologies like NGS platforms can yield a more faithful snapshot of a biological system

because they aren’t targeted to a previously defined region. However, both sequencing data and array data commonly

rely on the use of reference genomes and genome annotations. Periodic revisions and updates to these references can

challenge us to consider when annotations might require revision in light of new evidence, and when analyses may

hinge too greatly on key assumptions about the genome.

For many sequencing data pipelines, reference genomes inform DNA library construction prior to sequencing runs

(upstream) and they enable read alignment prior to analysis (downstream). The reference human genome sequence and

its accompanying annotations are periodically updated to reflect new understandings of gene expression patterns,

protein products, transcript isoforms, intergenic regions, structural variants, and more [158]. For our efforts to analyze

RIs, updates to genome annotations can cause uncertainty in how we define an intron (e.g. when is an intron retained

sufficiently often that it needs to be considered an exon instead?). Further, the rise in available long-read sequencing

data has expanded our view of the spliceome by showing greater amounts of alternative splicing and diverse isoform

expression than was previously recognized from short-read data [5, 55] (Section 4).

The reference genome and its annotations are further used to determine which CpG loci to target and what target

sequence to use when probes are designed for DNAm array platforms. These annotations are included in the platform

manifests [159–161] which are in turn used to determine probe properties like whether it resides in a gene’s promoter or

body, whether it is in a CpG island or OpenSea region, and whether the probe sequence contains any high-frequency

single nucleotide variants. Unfortunately, a precise probe annotation is frequently confounded by overlapping

transcripts, as probes can simultaneously map to the promoter in one transcript isoform and the body in another.

Further, the most widely used DNAm array platforms were developed using the hg19 human genome version, first

released in 2009, but many newer omics technologies use the more recent hg38 genome version, first released in

2013 [162]. To address genome version discrepancies prior to integrative analyses, it is necessary to convert genome

coordinates from one version to the other in a process known as “lifting over.” Unfortunately, this process is not always

straightforward and can be subject to uncertainty with how exactly two regions across genome references relate to each

other [163]. Thus genome references and annotations inform not only how omics technologies are designed, applied,

and analyzed, but also how we think about the definition of functional genome regions.

1.4.2 Programmatic omics data downloads using equery

As mentioned above (Section 1.1.3), several software tools enable programmatic query and download from

NCBI-maintained public data repositories. These tools include Entrez Programming Utilities [18] for submitting

queries the GEO API and other databases, and the SRA-Toolkit [19] for managing downloads of FASTQs and other
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related files for sequencing experiments. In general, study and sample metadata could be obtained by piping calls to the

equery function from Entrez Programming Utilities, and these IDs could be used to construct URLs to download

supplemental data and metadata from GEO DataSets, or these IDs could be used in calls to fastq-dump to obtain

FASTQs from the SRA.

Despite the availability of excellent browser interfaces for querying NCBI databases, we avoided manually

downloading datasets and metadata unless absolutely necessary. This is because browser interfaces may change over

time, and manually interacting with a browser to download thousands of samples is not a viable option. Instead, we

wrote scripts to automate calls to query tools and manage downloaded data programmatically. We used filters with

queries looking up the GEO GPL IDs for DNAm array platforms in order to identify records with raw array image

IDAT files in their supplement fields (Appendix A.1). Scripting saved considerable time over manual data access, and is

reproducible so long as fundamental database schema and APIs aren’t drastically modified. In summary, programmatic

resources for accessing public omics data repositories can save time in querying and obtaining sample records and

datasets while further encouraging reproducible research (Section 1.1.10).

1.4.3 Normalization of DNAm arrays using the noob method

Preprocessing is a necessary and routine data manipulation step prior to omics data analysis. It often entails some

combination of quality assurance of assays and samples, normalization of assay signals, and explicit or implicit

measures to correct for batch and other potential sources of bias. Preprocessing DNAm array data in Sections 2 and 3

entailed all of these steps prior to cross-study analyses. We normalized DNAm arrays using out of band signal with a

technique called “noob-normalization” [140]. Unlike other normalizations for DNAm array data, noob-normalization is

performed within rather than across samples, and it can be effectively combined with other normalization

techniques [142, 144, 145]. This means noob normalization can be routinely performed on data compiled across studies

and conditions, regardless of which subset of the data is used in a particular analysis [3, 4].

We can describe noob-normalization in greater detail by paraphrasing from [140]. First, we define the background

signal Xb as:

Xb = N(µ, σ) . (1)

Where µ is the mean and σ is the variance, and each of these background parameters is estimated from the

distribution of available control probes. We then define the signal distribution XS :

XS = Exp(γ) . (2)

Where γ is the signal parameter remaining from subtracting mean background signal from foreground signal

(Xf − µ). Next, we define the foreground intensity Xf in terms of both Xb and XS :
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Xf = Xb +XS . (3)

We then calculate the conditional expectation for the Infinium probe signal, E[XS |Xf ], in terms of µS,f as

follows:

µS,f = Xf − µ− σ2

γ
. (4)

E[XS |Xf ] = µS,f + σ2 ϕs(0;µS , σ
2)

1− ϕc(0;µS,f , σ2)
. (5)

Where ϕs is the standard normal distribution and ϕc is the cumulative normal distribution. This estimation

borrows from prior work in [164]. Note [140] also used this calculation on the negative control probes to define the

“normexp” normalization method.

1.4.4 Overcoming the curse of dimensionality for association studies

For over a century it has been recognized that having many variables with relatively few observations is a specific

experimental circumstance causing a unique set of methodological issues. Among the most important of these issues is

that as the dimensionality of a dataset grows, the necessary computations to analyze that data may grow exponentially.

Related to this concern, the size of the dataset may grow exponentially even while the data themselves become

relatively sparse. Further, increasing dimensionality may introduce redundant, uninformative, or noisy measurements

which need to be filtered or otherwise dealt with through additional analyses. These issues collectively describe the

“curse of dimensionality” [165].

Several key issues arise from this curse. First, many studies use large association experiments that apply numerous

statistical tests to isolate highly significant variables from high-dimensional datasets. Unfortunately, as the test count

increases, so does the likelihood of drawing false conclusions from the evidence. The error types of principal concern

are called Type 1 errors (the case of falsely rejecting the null hypothesis when it’s true) and Type 2 errors (the case of

falsely accepting the null hypothesis when the alternative hypothesis is true). Further, the emphasis on identifying a

very few highly significant results may cause one to omit variables with marginal effects which may nonetheless be

explanatory or informative [166]. Finally, analyses handling high-dimensional data can entail the use of very large file

sizes and memory demands, and standard statistical functions may need to be strategically utilized in parallel

(Appendix A.9) or to reference stored data outside of active memory.

Of key importance for this paper are EWAS, or association studies that commonly use DNAm arrays. Similar to

genome-wide association studies, EWAS often include tests using hundreds of thousands of loci measurements as

variables, with observations drawn form perhaps tens or hundreds of samples. Commonly tested conditions include

tissue type, disease status, or condition subgroup, where the goal is to identify a subset of highly significant and robust
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molecular markers explaining or predicting the condition of interest. Many of the available DNAm array datasets are

accompanied by published EWAS analyses [3, 4]. Fortunately, many methods previously applied in previous

association studies can be effective for novel EWAS, including various types of P-value adjustments. P-value

adjustments are used increase the stringency of the significance threshold beyond which an outcome is considered

significant, and more stringent thresholds may be used when more tests are conducted. Below, we applied the

Benjamini-Hotchberg [167] false discovery rate (FDR)-based P-value adjustment when conducting cross-study EWAS.

In addition to increasing test stringency thresholds, the total tests can be reduced either by pre-filtering tested probes or

markers (e.g. based on high absolute effect sizes, etc.) or by other means known as dimensionality reduction techniques

(see below, Sections 1.4.5 and 1.4.6). Further, initial tests can use methods like ANOVA or penalized regression to

adjust for many markers simultaneously, and these can be followed up with more focused tests involving subsets of

only the most significant variables [168].

To better understand and interpret the results of large-scale association studies, several key assumptions need to be

mentioned. The first assumes test independence, or that each tested locus or assay can be treated as a truly independent

and not reliant on the status of other tested loci. This assumption is often weak or false if we consider information such

as gene co-expression networks, regionally correlated DNAm patterns, epigenetic loci which may mediate gene

expression in trans, and more. Another key assumption is that high test significance means the tested assay has greater

biological importance. In fact, a highly significant outcome for an assay may not have any causal relation to the studied

condition at all. To show causality, follow up tests called validations are needed, and these should be independent or

orthogonal to the original data used to discover a trend. There are many approaches to validation, and independent

validation or replication of published differentially methylated probes (DMPs) is of particular importance below

(Sections 3.6).

Finally, there is evidence that high dataset dimensionality is not always a bad thing, and may even be a blessing in

disguise [165, 169, 170]. The fact that most omics data is high-dimensional can mean the data is useful in the future for

testing new hypotheses with more effective and sophisticated analysis methods. Further, as the quantity of public omics

data continues its steady increase, future experiments can leverage greater sample quantities to improve statistical

power and conduct new analyses to, for instance, better detect the influences of loci with marginal effects on a

condition of interest [166]. These prospects underscore the importance of efforts to continue monitoring, summarizing,

and compiling available public omics datasets.

1.4.5 Principal component analysis helps to identify key variance sources

Principal component analysis (PCA) is a widely used dimensionality reduction method. It is non-parametric, meaning it

does not assume the properties and assumptions of parametric methods, and it is unsupervised, meaning all dataset

variables and observations are considered equally important [171]. These properties help PCA to be highly

generalizable and useful across a variety of analysis settings. PCA is closely related to the singular value decomposition

method, and occasionally the two methods are referred to interchangeably [172]. PCA is highly computationally
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efficient because of several key simplifying assumptions and conditions, namely that the dataset variance patterns can

be represented as linear functions, and that means and variances are sufficient to represent the meaningful information

contained in the data. Each of these assumptions has its drawbacks, as variance patterns may violate the assumption of

linearity, and the mean and variance may not be sufficient to explain the data [171].

Determining the principal components for a dataset in PCA chiefly involves centering the data then performing

singular value decomposition [172]. Centering involves subtracting the distribution means from each point separately

for each variable, which often helps the first component to be correctly identified. Centering is so ubiquitous that

functions for PCA, such as the prcomp() function in stats base R package, may perform data centering by default.

The specific application of singular value decomposition for PCA involves finding the set of dimensions, or

components, which explain the most linear variances in the data. This step usually entails specification of a unit vector

constraint that allows reformulation of the problem into an optimization problem with an unconstrained solution [173].

PCA yields a set of orthogonal, or non-correlated, dimensions consisting of eigenvectors, or the component directions,

and eigenvalues, or each observation’s value for each component. The component number is its presumed importance

and is assigned according to the magnitude of variance it explains. Thus the first and most important principal

component explains the most variance, the second component is the second most important and explains the second

largest amount of variances, and so on. Note that “importance” here strictly relates to the dataset variances rather than

any particular interpretation of the biological system or clinical setting. Often, follow up analyses help elucidate how

biological, clinical, and other important variables contribute to each principal component in an omics dataset.

It is common practice to study the top components from PCA using scree plots. These are a type of bar plot

showing the magnitude of variance explained by each of the top components and how sharply this variance drops off

after the first few components. Scree plot examples can be found in the chapters below (Sections C.3 and 3.3b). It is

also common to perform clustering analysis on scatter plots in the dimensions of the top few components. This is

intended to reveal underlying similarities across observations that may reflect the influence of variables of interest

and/or confounding factors. Example scatter plots and cluster analyses of top PCA components from autosomal DNAm

can be found below (Sections 2.3 and C.4).

1.4.6 Using feature hashing to analyze large datasets

In addition to PCA, less common dimension reduction methods include feature hashing. Feature hashing is otherwise

known as the “hashing trick” because it expands on prior data manipulations called kernel transformations or the

“kernel trick” [174]. The kernel-trick was previously applied for implicit comparison of high-dimensional objects,

without having to fully realize those objects in memory. Calculating a kernel matrix can have prohibitive memory costs

when datasets are very large and high-dimensional. Feature hashing, or calculation of the hashed kernel, enables k

matrix calculations in big data settings by projecting input vectors x with unmodified dimensional space Rd into the

low-dimensional space Rm with some hash function ϕ [175].
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Feature hashing functions, or “hash functions,” have the advantage of being very fast to implement even for

thousands of high-dimensional data points. Hash functions have several important characteristics. Among the most

important of these is they are deterministic where the same function applied to the same data will always produce the

same result. Further, hash functions evenly distribute similar values in a dataset across new values such that similar data

becomes widely separated. Hashing may further be effectively uni-directional where it is impossible to recover the

original data even if both output and function are known, a useful feature for cryptography. Finally, hash functions may

cause overlaps, or “collisions,” where the same value is assigned to distinct data points. Worthwhile hash functions take

precautions to mitigate or avoid collisions, such as by increasing the size of the hash table or the pool of possible hash

values.

Below, we implemented a signed hash function [174]. As mentioned, the introduction of a sign effectively

increases the hash table to discourage collisions. Details about this function are provided in Appendix A.10. We used

this signed hash function to reduce the dimensions of a large DNAm array dataset, and we performed PCA on the

hashed features to identify sample clusters as well as quantify the relative importance of biological, demographic, and

technical variables [3, 4].

1.4.7 HDF5-based file formats enable efficient use of large data compilations

Large datasets are now commonplace in omics disciplines. Not only are there data from tens or hundreds of thousands

of individuals, but the volume of data for even a single individual for RNA-seq platforms can amount to gigabytes

worth of information. This means a key issue for utilization of public omics data is how best to handle such large

datasets in a manner that conserves time and disk space. Early work on recountmethylation provided access to

large static database files containing uniformly processed public data. To store data in a format conducive to rapid

queries and filters, we used formats incorporating the Hierarchical Data Format 5 (HDF5) [176] file format. HDF5

combines data compression and data chunking to reduce occupied disk space enable rapid look-ups within subsets of

the data, respectively. The HDF5 data class has many other varied applications for omics data as well, including for

efficient storage of nanopore long-read sequencing data [55].

An important feature of the HDF5 data type is that it’s supported across many programming environments,

including Python and R. It is further augmented with other data types, including the SummarizedExperiment class,

for use with Bioconductor packages. SummarizedExperiment objects are specialized for storage and retrieval of

assays and related data for omics experiments, and it features multiple slots for various information like assay data,

platform manifests, hardware versions, and sample and experiment metadata. The hybrid object class

HDF5-SummarizedExperiment combines benefits from each of its constituent features. Backend support for this

hybrid object is provided by DelayedArray, a technology that uses caching to expedite certain summary operations

and delay certain memory intensive operations like filtering and normalization. This hybrid object class is also

optimized for handling sparse matrices, or highly-repetitive assay matrices containing many 0 or near-0 values, which
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are commonly encountered in omics fields. Support for DelayedArray-powered HDF5-SummarizedExperiment

objects is provided by the HDF5Array [177] and rhdf5 [178] R/Bioconductor packages.

1.4.8 Simulation-based power analyses of DNAm arrays

Statistical power is the ability to correctly reject the null hypothesis when the alternate hypothesis is true. Power

analysis, or the determination of the number of samples to collect to achieve some minimum power threshold (usually

80%), is an important initial step for experiment planning. Few studies have implemented power analyses for DNAm

arrays, and these did not present a generalizable method or computational tool for this purpose [168, 179, 180]. More

recently, the pwrEWAS [181, 182] R/Bioconductor package was written for generalizable DNAm array power analysis

across tissues. pwrEWAS allows for simulation-based power analyses informed by empirical DNAm means and

variances from CpG loci. While the original work was restricted to a set of pre-computed CpG means and variances, we

lightly modified it to run on new data including our de novo cross-study and -platform compilation of blood autosomal

DNAm data. We showed how to use this modified code in an update to the recountmethylation. In practice, the

CpG probe summary statistics can be calculated for a particular tissue, disease, condition, or organism to ensure the

power analysis is relevant to the conditions being studied in a new experiment.

The workflow for pwrEWAS starts with data generation from a set of empirical CpG summary statistics. Next,

differential DNAm analysis is carried out using test parameters specified by the user, including expectations for the

DNAm differences, the type of statistical test used, and the range in total samples involved. Finally, a power evaluation

is performed and a number of summary statistics as well as the N -to-power models for each delta value are

returned [181]. We employed the pwrEWAS method to compare power-to-sample size trade-offs across cross-study

compilations of DNAm from normal blood and prevalent blood sample types (Sections 3.2.7 and 3.5).

We can describe the simulation-based approach to power analysis from the pwrEWAS method by paraphrasing the

description in [181]. First, the population mean µ and variance σ are calculated for a CpG probe j across some set of

samples i ∈ {1...N} for a specific tissue and condition of study (e.g. normal whole blood from adults):

µ̂j =
1

N

N∑
i=1

βi,j . (6)

σ̂2
j =

1

N − 1

N∑
i=1

(βi,j − µ̂j)
2) . (7)

Next, P pairs of CpG means and variances, (µ̂j , σ̂2
j ), are sampled with replacement from the reference dataset

where P = 100, 000 by default. Some DNAm difference δβ is then imposed on K CpG probes, where K ≤ P . That is,

the δβ term is applied to the mean DNAm of one simulated comparator group but not the other. Since the technical

range of β is 0 ≤ β ≤ 1, the modified mean DNAm is drawn from a truncated normal distribution.
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The standard deviation of simulated differences τ is then calculated from the specified target δβ and the specified

target differentially methylated CpG probes. This is accomplished by stepwise simulation of P (δβ,k) 100 times while

adjusting τ such that τ falls within the intended absolute δβ distance within a detection limit ±0.005.

The value K is calculated in terms of T target total differentially methylated CpG probes, and F observed fraction

of probes which are differentially methylated:

K =
T

F
. (8)

The means and variances of both comparator groups are then used to calculate shape aj and bj of a

beta-distribution:

aj = µ2
j (
1− µj

σ2
j

− 1

µj
) . (9)

bj = aj(
1

µj
− 1) . (10)

Next, N1 and N2 observations corresponding to each comparator group for the individual simulated CpG are

generated from the beta-distributed observations. This yields two simulated β-value matrices, P ×N1 and P ×N2.

These simulated value matrices are then used in differential methylation tests with three possible outcomes:

A. No differential methylation, or zero difference (δβ,k = 0)

B. Differential methylation with negligible, non-zero difference (δβ,k < 0.01)

C. Differential methylation with meaningful difference (δβ,k ≥ 0.01)

Next, a chosen differential methylation test is applied to the simulated datasets. The outcome is compared to the

actual differential methylation status from the simulated value matrices above. This comparison is then used to

determine six categories.

Detected CpG probes fall into one of the following three categories:

1. True positive (TP) Probes with meaningful difference

2. Neutral positive (NP) Probes with negligible, non-zero difference

3. False positive (FP) Probes with zero difference

Undetected CpG probes fall into one of the following three categories:

4. True negative (TN) Probes with zero difference
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5. Neutral negative (NN) Probes with negligible, non-zero difference

6. False negative (FN) Probes with meaningful difference

For a given False Discovery Rate (FDR) threshold, the empirical marginal power is calculated as:

marPower =
TP

TP + FN
. (11)

The empirical classical power, calculated as the ratio of correctly detected probes to all differentially methylated

probes:

classicalPower =
NP + TP

NP +NN + TP + FN
. (12)

Further, the False Discovery Cost (FDC) is calculated as:

FDC =
FP

TP
. (13)

1.4.9 Resources and methods that promote computational reproducibility

As available computing power increases, analysis methods mature and improve, and available omics datasets become

larger and more complex, there are many tools one can employ to promote reproducibility in computational disciplines,

or simply “computational reproducibility.” Utilization of these tools in methods or supplement can promote methods

transparency while ensuring code can be repeatedly run either on the same dataset or extended for different data inputs.

An ideal for this pursuit is to include full open-access code along with the necessary data and metadata to repeat an

analysis. Where this is done successfully, methods developed for older data types have even seen new life through

novel applications with new data types. This section describes several of the tools and measures researchers use today

to ensure computational reproducibility.

Virtual environments provide a sequestered digital space where software dependencies can be tightly controlled.

Dependencies can be specified in a script and downloaded from a selection of hosts. Virtual environments can enable a

user to successfully run even old software that is no longer maintained. They also simplify computational tasks, since

the researcher can keep their preferred software shortcuts and versions on their main system while running an older tool

in its own environment. We used the conda [183] software to set up virtual environments for several RI-detection tools

(Appendix A.6), and we further exported these scripts in YML format (Appendix A.6) so they could be rapidly set up

again in the future. We further provided a conda script to obtain all the proper dependency versions to run the

recountmethylation_instance [61] workflow. Containers are another class of tools related to virtual

environments. By contrast to virtual environments, containers are treated as discrete and self-contained virtual drives.

This can lead to permission issues when running a container using a remote server where the user lacks admin
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privileges. Below, we were able to conveniently run the IRFinder-S [184] RI-detection tool from a Docker container.

In summary, while virtual environments and containers each has benefits and downsides, both resources enable

deployment of code or software with its dependencies.

As the complexity of omics datasets and analysis tasks increases, the need to carefully document and control

intermediate preprocessing steps has also increased. This can be accomplished with workflows, or abstract recipes

specifying specific inputs and outputs, and which may incorporate verbose automatic system logging. Workflows have

been used in omics disciplines for years, and they have been implemented for many tasks including whole genome

sequencing [185], differential RNA-seq expression [186, 187], variant calling [188], and more. They encourage

reproducibility through explicit declaration of dependencies and setting restrictions for the inputs and outputs of

pipeline steps, all of which helps to ensure code can be repeatedly run on the same data or adapted for new data [60].

Specific workflow definition standards and details have been laid out by the common workflow language project [189].

Deploying an analysis pipeline as a workflow enables a complex task to be broken into many smaller, well-defined

tasks which can be run individually, which can aid with troubleshooting and encourages repeated running of a pipeline

over time. Workflow development may be supported either by web-based platforms such as Galaxy [190] or specialized

workflow management engines [191].

Several workflow languages and systems are commonly used, of which Snakemake [192] is most relevant here.

Importantly, Snakemake implements conda [183] virtual environment support, and thus exemplifies how multiple tools

that promote computational reproducibility can be implemented together effectively. We wrote a Snakefile describing

the workflow for the recountmethylation_instance (Appendix A.7), which informs compilation of public DNAm

array datasets for use with the recountmethylation [38] Bioconductor package. This script provides rules which

utilize two specialized resources: recountmethylation_server [193] for server queries and downloads; and

recountmethylation.pipeline [194] for compiling and preprocessing large compilation files.

Among the key obstacles for computational reproducibility is interoperability, or the ability to run functions or

software across distinct systems and system configurations. Certain resources enable interoperability by making

methods and functions in one environment callable from another environment. For example, the R packages

basilisk [195] and reticulate [196] pair to provide a means of calling Python functions from an R environment in

a manner that is reproducible and predictable (Appendix A.8). The basilisk package enables management of conda

environments and Python dependencies, while the reticulate enables loading and calling Python functions from an

R session. These packages can be combined to dynamically manage code from R and Python in a single script. These

and other resources for interoperability can save time and effort by discouraging redundant redevelopment of effective

programming tools across multiple programming environments.

Parallel processing is when a process is run using multiple simultaneous subprocesses to save on time and memory

resources. For example, if the goal is to apply some function to every row in a large matrix, one could more rapidly

process subsets of rows simultaneously, or “in parallel,” rather than apply the function to each row in succession from a

single session. Parallel processing encourages computational reproducibility because it ensures complicated processes
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are broken down into smaller faster-running processes, as these can be more readily troubleshooted when problems

arise. The exercise of writing a script with parallelization can further challenge the programmer to compartmentalize

each step in a complex process, which leads to more legible code. While limited parallelization is possible using

modern personal computers, the full potential of parallelization is realized in remote server environments. Remote

server environments frequently enable the highly flexible specification of process compute parameters, including the

number of cores and amount of memory for a given process. We implemented parallelization for study ID bias

adjustment simulation experiments (Appendix A.9) and to conduct power analyses using pwrEWAS [181]

(Sections 3.2.4 and 3.3.2).

Runnable code examples can be conveniently provided as methods or supplement in the form of vignettes or

notebooks. Notebooks enable researchers to document code, data, and analyses, and they encourage implementation of

small runnable examples that spot check key steps in complex computational pipelines. For the

recountmethylation [38] Bioconductor package, we used R Markdown to produce vignettes on a variety of topics,

from reproducing analyses from the study [3], to showing how to perform power analysis with pwrEWAS [181, 182], to

showing how to infer genetic ancestry using the GLINT software [32], and more [4]. Several vignettes further use

basilisk [195] to manage a conda environment and reticulate to call Python code, all from the comfort of an R

session. Thus vignettes can simultaneously reproduce published analyses while showing operations in a transparent

way that can be more widely useful to the research community.

Progress on research projects should be tracked using version control systems like git, and should be periodically

backed up to the cloud with resources like GitHub [57, 197]. This not only ensures that valuable effort isn’t accidentally

lost, it also enables other researchers to quickly fork and modify a project while keeping changes contained and

preserving the original work. In summary, computational reproducibility is promoted through the use of virtual

environments, containers, workflows, and notebooks, and utilization of version control, cloud backups, and

interoperability measures can ensure a project is accessible and runnable in the future.

1.5 Chapter summaries

This sections provides abstracts that summarize the motivation, methods, and results for the three following chapters.

Chapter 1 (Section 2) describes work that was previously published in the journal NAR: Genomics and

Bioinformatics [3]. Chapter 2 (Section 3) describes work from the preprint [4], which has been submitted to the journal

Nature Communications. Chapter 3 (Section 4) describes work from the preprint [5], which is currently under peer

review for the journal Genome Biology.

1.5.1 Chapter 1: Human methylome variation across Infinium 450K data on the Gene Expression Omnibus

While DNA methylation (DNAm) is the most-studied epigenetic mark, few recent studies probe the breadth of publicly

available DNAm array samples. We collectively analyzed 35 360 Illumina Infinium HumanMethylation450K DNAm

array samples published on the Gene Expression Omnibus (GEO). We learned a controlled vocabulary of sample labels
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by applying regular expressions to metadata and used existing models to predict various sample properties including

epigenetic age. We found approximately two-thirds of samples were from blood, one-quarter were from brain and

one-third were from cancer patients. About 19% of samples failed at least one of Illumina’s 17 prescribed quality

assessments; signal distributions across samples suggest modifying manufacturer-recommended thresholds for failure

would make these assessments more informative. We further analyzed DNAm variances in seven tissues (adipose, nasal,

blood, brain, buccal, sperm and liver) and characterized specific probes distinguishing them. Finally, we compiled

DNAm array data and metadata, including our learned and predicted sample labels, into database files accessible via the

recountmethylation R/Bioconductor companion package [38]. Its vignettes walk the user through some analyses

contained in this paper.

1.5.2 Chapter 2: recountmethylation enables flexible analysis of public blood DNA methylation array data

Thousands of DNA methylation (DNAm) array samples from human blood are publicly available on the Gene

Expression Omnibus (GEO), but they remain underutilized for experiment planning, replication, and cross-study and

cross-platform analyses. To facilitate these tasks, we augmented our recountmethylation R/Bioconductor package

with 12,537 uniformly processed EPIC and HM450K blood samples on GEO as well as several new features [38]. We

subsequently used our updated package in several illustrative analyses, finding (1) study ID bias adjustment increased

variation explained by biological and demographic variables, (2) most variation in autosomal DNAm was explained by

genetic ancestry and CD4+ T-cell fractions, and (3) the dependence of power to detect differential methylation on

sample size was similar for each of peripheral blood mononuclear cells (PBMC), whole blood, and umbilical cord

blood. Finally, we used PBMC and whole blood to perform independent validations, and we recovered 40-46% of

differentially methylated probes (DMPs) between sexes from two previously published EWAS.

1.5.3 Chapter 3: Retained introns in long RNA-seq reads are not reliably detected in sample-matched short

reads

There is growing interest in retained introns in a variety of disease contexts including cancer and aging. Many software

tools have been developed to detect retained introns from short RNA-seq reads, but reliable detection is complicated by

overlapping genes and transcripts as well as the presence of unprocessed or partially processed RNAs. We compared

introns detected by 5 tools using short RNA-seq reads with introns observed in long RNA-seq reads from the same

biological specimens and found: (1) significant disagreement among tools (Fleiss’ κ = 0.231) such that 52.4% of all

detected intron retentions were not called by more than one tool; (2) that no tool achieved greater than 20% precision or

35% recall under generous conditions; and (3) that retained intron detectability was adversely affected by greater intron

length and overlap with annotated exons.
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2 Chapter 1: Human methylome variation across Infinium 450K data on the Gene

Expression Omnibus

2.1 Background

DNA methylation (DNAm) has been widely studied for its roles in normal tissue development [69, 198–200], biological

aging [30, 86, 113], and disease [70, 72, 201–203]. DNAm regulates gene expression, either in cis if it occurs in a

gene’s promoter, or in trans if it overlaps an enhancer or insulator [69–71]. Whole-genome DNAm (or “methylome")

analysis, especially in the form of an EWAS, is a common strategy to identify epigenetic biomarkers with potential for

clinical applications such as in prognostic or diagnostic panels [136, 168, 204].

Most investigations probe DNAm with array-based platforms. Published DNAm array data and sample metadata

are commonly available through several public resources. These include cross-study databases like the Gene Expression

Omnibus (GEO) [9, 205] and ArrayExpress [7], as well as landmark consortium studies like TCGA [15] and the

ENCODE [10, 11]. Recently published databases and interfaces provide access to samples from these sources [33–37].

While over 1,604 HM450K array studies and over 104,000 samples have been submitted to GEO since 2009

(Fig. B.1), there have been few attempts to rigorously characterize technical and biological variation across these studies.

In 2013, two studies independently compiled DNAm array samples from GEO and elsewhere, analyzing epigenetic age

across tissues and diseases [30], and investigating cross-study normalization [28]. More recent cross-study analyses

include [206] from 2018, which evaluated metadata and sample quality across 8,327 DNAm array samples, and [48]

from 2020, which validated sperm-specific DNAm patterns using 6,288 samples.

While the GEO website provides access to submitted experiment and sample metadata, the metadata are not

necessarily structured and require harmonization to facilitate cross-study analyses. There are currently no R/Bio-

conductor [207] packages providing access to uniformly normalized array data across GEO studies accompanied by

harmonized metadata. It should also be noted that most GEO studies do not include raw IDAT files, which are needed

to uniformly normalize samples and thus limits their utility for novel cross-study analyses.

The vast majority of GEO DNAm array data is composed of samples using Illumina’s HM450K BeadArray

platform. Restricting attention to HM450K samples with IDATs published on or before March 31, 2019, we identified

35,360 samples from 362 studies, over three times the number of samples studied by either [30], [28], or [206]. From

sample IDATs, we extracted raw signals and probe significance data, derived quality metrics from control probe data,

and performed normalization on out-of-band signal with the noob method [140]. We also learned a controlled vocabulary

of sample labels by applying regular expressions to metadata and used existing DNAm array-based models to predict

sex, epigenetic age, and blood cell fractions [27, 30, 31]. We conducted analyses investigating the performances of

standard quality assessments and identified studies with frequent failed samples. Finally, we characterized autosomal

DNAm variation in 7,484 samples from seven non-cancer tissue types. This analysis complements recent independent
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efforts to quantify tissue-specific DNAm patterns [48] and showcases several of the relatively rare sample types we

compiled from GEO (e.g. sperm, adipose, and nasal).

To aid other investigators interested in reanalyzing DNAm array data from GEO, we compiled raw and noob-

normalized DNAm array data with our learned and predicted metadata into HDF5-based databases accessible using

recountmethylation, a companion R/Bioconductor [207] package available at https://doi.org/doi:10.18129/

B9.bioc.recountmethylation. Use of this package is covered thoroughly in accompanying vignettes, which also

reproduce some of the results contained in this paper.

2.2 Methods

2.2.1 Discovery and download of DNAm array IDATs on GEO

We used the esearch function of Entrez Programming Utilities v10.9 to search for every HM450K sample published

to GEO as of March 31, 2019 for which two gzip-compressed IDAT download URLs were available (Appendix A.1

and A.2). We ultimately downloaded IDATs for 35,360 sample records. Search and download were performed using the

script https://github.com/metamaden/recountmethylation_server/blob/master/src/server.py. Note,

the HM450K platform accession ID, GPL13534, is specified in the script https://github.com/metamaden/

recountmethylation_server/blob/master/src/settings.py, and changing this will cause the server to target

a different array platform.

2.2.2 Preprocessing of DNAm array IDATs on GEO

We preprocessed DNAm array IDAT pairs for 35,360 HM450K samples on GEO using the R/Bioconductor package

minfi v1.29.3 [27], applying the normalized exponential out-of-band probe method (i.e., noob normalization) in the

analysis pipeline at https://github.com/metamaden/recountmethylation.pipeline. The noob normalization

technique mitigates run-specific technical biases and precedes batch- and/or study-level normalization steps [140].

2.2.3 Quality control results

We computed 19 quality metrics from red and green color channel signals for HM450K samples (Table 6.2). To obtain the

17 BeadArray controls, we referred to Illumina’s official documentation [74, 208] as well as methods in the ewastools

v1.7 package [206]. For our calculations, we used signal from the extension green control as background, and we used

a denominator offset of 1 where it would otherwise be 0 (Supplemental Information) [206]). These calculations were

done with the script https://github.com/metamaden/recountmethylationManuscriptSupplement/blob/

main/R/beadarray_cgctrlmetrics.R. We thereby obtained a binary matrix of outcomes across the 17 BeadAr-

ray controls, where pass = 1, and fail = 0, on which we performed principal component analysis (PCA) using

the “prcomp" R function from the stats v4.0.2 R package. We then used ANOVAs to determine the variances ex-

plained by each control for each component, and we obtained stacked barplots of component variances with ggplot2
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(Fig. B.4). The script https://github.com/metamaden/recountmethylationManuscriptSupplement/blob/

main/inst/scripts/figures/figS4.R reproduces our steps.

We subsequently computed array-wide log2 median methylated (M)) and log2 median unmethylated (U) signals, as

reproduced in the recountmethylation data analysis vignette at https://www.bioconductor.org/packages/

release/bioc/vignettes/recountmethylation/inst/doc/recountmethylation_data_analyses.pdf.

2.2.4 Obtaining sample metadata

Sample metadata was downloaded from GEO as study-level SOFT files using the script https://github.com/

metamaden/recountmethylation_server/blob/master/src/dl.py. From SOFT files, sample-level meta-

data were extracted as JSON-formatted files. Study-specific metadata fields were filtered prior to learning sam-

ple annotations (2.2.5). These steps were performed using the scripts at https://github.com/metamaden/

recountmethylationManuscriptSupplement/tree/main/inst/scripts/metadata (Appendix A.3 and A.4).

2.2.5 Learning sample annotations

We took a partially automated approach to learn sample annotations from mined metadata. Our annotations were

inspired by those in marmal-aid [28] and included disease/experiment group, age, and sex. To learn labels, we first

coerced SOFT-derived metadata into annotation terms, then used manually constructed regular expressions to extract

new labels (Supplemental Materials).

2.2.6 Learning sample type predictions

We learned additional metadata using the MetaSRA-pipeline (https://github.com/deweylab/

MetaSRA-pipeline [17] , Table 6.1, [29]). This pipeline uses natural language processing to map sample

metadata to curated ontology terms from the ENCODE project. It returns mapped terms and sample type confidences

for each of six categories. We retained categories with the highest-confidence predictions as the most-likely sample

types (Supplemental Materials, Fig. B.2, and Supplemental Information).

2.2.7 Model-based metadata predictions from DNAm

After noob normalization, we performed model-based predictions of sample age [30], sex [27], and blood

cell type fractions [31] using the minfi (v1.29.3) and wateRmelon (v1.28.0) R/Bioconductor packages

in our script https://github.com/metamaden/recountmethylationManuscriptSupplement/blob/main/

inst/scripts/metadata/metadata_model_predictions.R. We tested concordance of mined and predicted

sex and age to inform the use of these predictions and reliability of learned annotations (2.3).
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2.2.8 Principal component analyses of autosomal DNAm

We performed array-wide approximate PCA with the stats v3.6.0 R package, using noob-normalized autosomal

DNAm from all samples and a subset of filtered samples from seven non-cancer tissues (Beta-values, Fig. 2.3 and

Fig. B.6). Missing values were imputed by array-wide DNAm medians (Beta-value scale) within samples. To improve

computational efficiency, we first applied feature hashing (also known as the hashing trick, Appendix A.10) [174, 209] to

project the normalized Beta-value arrays into an intermediate reduced space before performing PCA. PCA results were

visually almost identical whether we invoked an intermediate dimension of 1,000 or 10,000 (results not shown). We

used the 1,000-dimension mapping for analyses in Fig. 2.3 (data provided in Supplemental Files). The above analysis

steps are shown in the script https://github.com/metamaden/recountmethylationManuscriptSupplement/

blob/main/inst/scripts/analyses/pca_analysis_fig3.R.

2.2.9 Annotation of studies for cross-tissue DNAm variability analyses

We identified samples of seven distinct tissues (adipose, blood, brain, buccal, liver, nasal, and sperm), where each

tissue included at least 100 samples across at least 2 study records (Supplemental Materials). While we noted sufficient

samples from placenta (study accessions GSE100197, GSE71678, and GSE74738), these were omitted due to high

differences between mined and predicted ages, which prevented imputation using epigenetic age as for other tissues

(below). We summarized study characteristics, including phenotype or disease of interest (Supplemental Materials).

Targeted samples were from a variety of studies targeting various diseases, syndromes, disorders, and exposures. Patient

demographics spanned all life stages, including fetal, infant, child, and young and old adult, and several studies focused

on ethnic groups not commonly studied (e.g. Gambian children from GSE100563;GSE100561).

2.2.10 Preprocessing and analyzing seven non-cancer tissues for DNAm variability analyses

We studied samples in seven tissue types, including adipose, blood, brain, buccal, nasal, liver, and sperm (Supplemental

Materials, Fig. B.7a and Fig. B.7b). We removed likely low-quality samples that showed low study-specific (< 5th

quantile) methylated and unmethylated signal, or showed signal below manufacturer-prescribed quality thresholds for

at least one BeadArray control. We also removed putative replicates according to genotype-based identity predictions

from ewastools [206].

We preprocessed noob-normalized DNAm for each tissue separately. First, we performed linear model adjustment

on study IDs using DNAm M-values, defined as logit(β), with the limma v3.39.12 package. We then converted the

adjusted DNAm to Beta-value scale. To account for the impact of confounding variables, we removed probes whose

DNAm variances showed significant (p-adjusted < 0.01) and substantial (percent variance ≥ 10%) contributions from

model-based predictions of age, sex, and cell type fractions, which removed 39,000 to 194,000 (8% to 40% of) probes

across tissues (ANOVAs, Fig. B.7c).

After preprocessing, we identified probes with recurrent low variance and low mean intervals (max - min, mean

tissue-wise DNAm, <0.01 or 1%) across seven distinct tissues. We also identified probes with high and tissue-
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specific variance. For each analysis we used a two-step probe selection process in each tissue where we selected (i)

probes in the highest or lowest 10th quantile of variance (e.g. an absolute quantile variance filter), and (ii) probes

in the highest or lowest 10th quantile variance across mean DNAm bins (e.g. a binned quantile variance filter, 10

bins of magnitude 0.1 or 10% DNAm, Fig. B.7a). The recountmethylation Data Analyses vignette reproduces

these analyses for two tissues, and the full analysis scripts are contained at https://github.com/metamaden/

recountmethylationManuscriptSupplement/tree/main/inst/scripts/analyses.

2.2.11 Statistical analyses and visualizations

Statistical analyses and visualizations were conducted with the R and Python programming languages. We used

the numpy v1.15.1, scipy v1.1.0, and pandas v0.23.0 Python packages to manage jobs and downloads, perform

data extraction, and calculate summary statistics. We used the minfi v1.29.3 and limma v3.39.12 R/Bioconductor

packages for downstream quality control, preprocessing, and analyses. Plots were generated using base R functions,

ggplot2 v3.1.0, and ComplexHeatmap v1.99.5 [210, 211]. To reproduce analyses, see Supplemental Methods

online, files at https://github.com/metamaden/recountmethylationManuscriptSupplement, and the Data

Analyses vignette in the recountmethylation [38] R/Bioconductor package.

2.2.12 Supplemental Information

Supplemental Information, including methods, code, scripts, and data files are accessible at https://github.com/

metamaden/recountmethylationManuscriptSupplement. Large supplemental data files are accessible at https:

//recount.bio/data/recountmethylation_manuscript_supplement/.

2.2.13 Companion R/Bioconductor package

Databases of the samples compiled and analyzed in this manuscript are accessible, along with comprehensive instructions

and analysis examples, in the recountmethylation [38] R/Bioconductor package at http://bioconductor.org/

packages/devel/bioc/html/recountmethylation.html.

2.3 Results

2.3.1 Recent growth in GEO DNAm array samples is linear

We obtained sample IDATs and metadata for studies from the GEO. GEO is the largest public database for human

DNAm array studies, and the majority of GEO’s DNAm array samples use one of three of Illumina’s BeadArray

platforms: the HM27K, the HM450K, and HM850K or “EPIC”. On GEO, we identified 104,746 unique sample

accession numbers (a.k.a. GSM IDs) from 1,605 study accession numbers (a.k.a. GSE IDs) published using one of the

three major Illumina DNAm array platforms (Fig. 2.1a and B.1). Among 1,605 published studies, 74% used HM450K,

21% used HM27K, and 5% used EPIC. Among 104,746 published samples, 79% were on HM450K, 18% on HM27K,

and 3% on EPIC. All three platforms showed increasing publication rates of samples and studies over the first three
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Figure 2.1: Cross-study summaries of DNAm array samples from GEO. (a) Cumulative samples by year using one of
three major Illumina BeadArray DNAm array platforms (HM27K, HM450K, and EPIC, point shapes), showing either
all samples or subsets with available IDAT files for each platform (line colors). Samples with IDATs using the HM450K
platform (dark green line, circle shape) were compiled and analyzed (Section 2.2 and 2.3). (b) Scatter plot of mined
chronological (x-axis) and epigenetic (y-axis) ages, in years, with linear model fit (blue line), for 6,019 non-cancer
tissues run using the HM450K platform (Section 2.3). Chronological age was mined from sample metadata. Epigenetic
age was calculated using the model in [30] (2.2.7).

years of their availability. Few new studies and samples from 2013-2018 used the HM27K platform, while samples and

studies using HM450K have grown linearly through 2018.

2.3.2 Fewer than half of DNAm array studies on GEO include raw data

Raw data for a DNAm array sample is comprised of two IDAT files, one for each of the red and green color channels.

Accessible raw data is important for uniform normalization of samples across studies, yet not all samples on GEO come

with these data. In total, 37,919 samples (36% of total) included sample IDATs, where 93% were run on HM450K,

5% on EPIC, and 2% on HM27K. By platform, EPIC included the largest percentage of sample records with available

IDATs at 63%, followed by HM450K at 43%, and HM27K at just 3%. The more frequent availability of IDATs for

newer arrays seems to reflect a significant shift in data submission norms well after the inception of the HM27K

platform.

2.3.3 Most annotated GEO HM450K samples with available raw data are from blood or brain

There were enough study and sample metadata for us to annotate 27,027 samples, 76% of the 35,360 we analyzed. We

annotated these samples by applying regular expressions to the mined metadata. Our vocabulary for annotations was

composed of 72 distinct terms (2.2.5) strongly inspired by those used in the methylation array resource marmal-aid [28].

Tissue terms for blood accounted for the majority (18,212 samples, 67% of total), followed by brain (6,690 samples,

25% of total), tumor (1,977 samples, 7% of total), breast (1,525 samples, 6% of total), and placenta (1,338 samples,

5% of total). We further annotated disease and experiment group for 22,790 samples (64% of total) using 38 distinct

disease- and group-related terms. Among these, disease terms for cancer were assigned to over half (13,131, 58% of

total) of samples, while terms for normal, control, or healthy were assigned to 10,808 samples (47% of total). The most
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frequently annotated cancers included leukemia (2,585 samples, 20% of total), breast cancer (511 samples, 4% of total),

colorectal cancer (314 samples, 2% of total), and prostate cancer (196 samples, 1% of total). We compared disease and

tissue characteristics to distinguish between tumor and normal samples from cancer patients, estimating that a third of

samples were from tumor (2.2.9, Supplemental Materials).

2.3.4 Chronological age is accurately predicted from epigenetic age in non-cancer tissues

Prior work showed chronological age can be predicted with high accuracy from DNAm among non-cancer tissues [30,

113]. We calculated model-based age predictions (a.k.a. “epigenetic ages") from IDATs for 35,360 samples using the

clock from [30], and we were able to mine chronological ages from metadata (a.k.a “chronological ages") for a subset

of 16,510 samples (47% of total, Table 6.1, Section 2.2). We investigated variance sources and differences between

these ages, and determined whether missing chronological ages could be imputed using the epigenetic ages for certain

types of samples.

In the 16,510 samples for which we were able to mine chronological ages from metadata, ANOVA showed most

epigenetic age variation was explained by chronological age (52% of variances, p < 2.2e-16), followed by study

(i.e. GSE ID; 24%, p < 2.2e-16), cancer status (7e-2%, p = 1.3e-9), and predicted sample type (8e-3%, p = 1.6e-2).

Compared to variances attributed to the study variable, the relative low variances attributed to the cancer status and

predicted sample type variables may be due to high study-specific variance in metadata completeness or availability.

High age differences (12.9 years mean absolute difference, or MAD) and errors (R-squared = 0.76) likely resulted

from either metadata inaccuracies, age label misattributions from our mining strategy, or inclusion of cancers and

non-tissue samples (e.g. cell lines, 2.2). In the subset of 6,019 likely non-cancer tissue samples across 37 study records

with study-wise MADs ≤ 10 years, epigenetic age variance contribution from mined age increased to 93% (ANOVA,

P-value < 2.2e-16) and contribution from study decreased to 2% (P-value < 2.2e-16, Figure 2.1b). Unsurprisingly,

the non-cancer tissue samples showed lower age differences (MAD = 4.5 years) and errors (R-squared = 0.94), and

ages were highly correlated (Spearman Rho = 0.96, P-value < 2.2e-16), supporting the well-established finding that

chronological age is accurately predicted from epigenetic age in non-cancer tissues [30, 113]. We therefore imputed

missing chronological ages using the epigenetic age for non-cancer tissue analyses below.

We next studied age acceleration [30, 113] by probing the differences between epigenetic and chronological ages

among the 6,019 previously identified samples with low study-wise age differences. Among the 68 samples with

outlying positive age acceleration (≥ 15 years), the most frequently represented study accounted for 18 adipose samples

from severely obese patients (accession ID: GSE61454 [212]). We observed 86 negative age acceleration outliers (≤

-15 years), including 14 saliva samples from control subjects in a study of Parkinson’s disease (GSE111223 [213]),

and 19 whole blood samples from patients with genetic syndromes (GSE97362 [214]). In the latter study, we suspect

reported ages are inaccurate and older than actual ages (private correspondence, investigation ongoing).
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2.3.5 Almost a fifth of samples fail at least one of 17 BeadArray quality control assessments

Illumina prescribes 17 quality assessments for its 450K array, each measuring the performance of a different step

in a methylation assay such as extension or hybridization [74, 208]. A given assessment comprises a quality metric

and a minimum threshold value below which the assessment is failed. We call these assessments BeadArray controls.

We used the 17 BeadArray controls and their minimum quality thresholds to evaluate assay qualities in 35,360

samples (Supplemental Materials). Results are summarized in Fig. 2.2a. The highest proportions of samples failed

the non-polymorphic green and biotin staining green controls, with about 6.7% failing each (2,381 and 2,368 samples,

respectively). By contrast, there are six BeadArray controls, each failed by fewer than 100 samples. A substantial

number of samples (6,813, 19% of total) failed at least one control. Of samples that failed at least one control, 4,456

samples (66%) failed exactly one control, while 2,357 samples (34%) failed more than one control. Of samples that

failed more than one control, 634 failed both biotin staining controls and 648 failed both non-polymorphic controls.

Samples failing at least one control were significantly enriched for certain labels including “cord blood,” “brain cancer”,

“prostate cancer”, “arthritis”, and “obese” (binomial test, BH-adjusted P-value < 1e-3).

2.3.6 The intrinsic dimension of the 17 BeadArray controls is small

We studied signals and outcomes to determine how best to use the BeadArray controls for sample quality assessments.

Cross-sample signal distributions for five BeadArray controls were bimodal, with distinct low- and high-signal modes;

minimum quality thresholds fell near low-signal modes (Fig. B.3). For these controls, modifying minimum thresholds

to more robustly capture low-signal samples could improve their utility. PCA of sample control performances showed

the top five components explained 84% of overall variances. Component-wise ANOVAs showed that just five of the

17 controls explained the majority of sum of squared variances across these top five components (minimum = 67%,

maximum = 99%, median = 97%). This suggests that the intrinsic dimension of sample quality is around 5. We

conclude that sample quality is adequately captured by the performance of only 5 of the Illumina control probes (both

biotin staining controls, both non-polymorphic controls and bisulfite conversion I red, Figure B.4).

2.3.7 FFPE samples fail at least one BeadArray control almost twice as often as fresh frozen samples

We investigated the impact of storage conditions on sample quality across 28 studies by comparing 3,467 FFPE and

5,729 FF samples (Table 6.4 and Figure 2.2b). FFPE samples showed greater variance than FF samples in both

methylated (0.36 for FFPE vs. 0.27 for FF) and unmethylated (0.50 for FFPE vs. 0.21 for FF) signal channels. The

trend could be driven either by condition-related sample characteristics (e.g. increased DNA deamination and/or lower

DNA yield in FFPE, etc.) or differing preparation protocols (e.g., addition of the DNA restoration step for FFPE,

[215–217]). Enriched labels also varied by storage condition among low-signal samples (binomial test, BH-adjusted p

< 1e-3), where “colorectal,” “intestine,” and “mucosa” were enriched among FFPE, while “nasal,” “pancreas,” and

“epithelial” were enriched among FF samples.
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Figure 2.2: Quality analyses across samples, storage conditions, and studies. (a) Barplots counting samples (y-axis)
falling above(blue) or below (gold) manufacturer-prescribed thresholds across the 17 BeadArray controls (x-axis). Full
view is on right, and magnification is on left. (b) Scatter plots (left) and 95% confidence intervals (right) for log2
median methylated (x-axis) and log2 median unmethylated (y-axis) signal of 3,467 FFPE (orange) and 5,729 fresh
frozen samples (purple). (c) Percentages of FFPE (orange) and fresh frozen (purple) samples failing BeadArray controls.
(d) Heatmaps depicting fraction (fst in legends) of samples in a study failing quality assessments across 28 studies with
high failure rates (fst > 60%) and >10 samples. BeadArray fst values are shown on the left, where blue is low, orange
is intermediate, and red is high. Signal fst values for three methylated (M, “meth") and unmethylated (U, “unmeth")
signal levels (10, 11, and 12) are shown in the middle, where black is low, dark green intermediate, and light green is
high. The log2 study sizes are shown on the right.

37



Across the 12 of 17 total BeadArray controls each with at least one failing sample, 228 FFPE samples (8.31%

of total FFPE sample count) and 241 FF samples (4.21% of total FF sample count) failed at least one control. These

failure rates are much lower than the failure rate across all samples (19%) and point to a correlation between study

metadata completeness (e.g., inclusion of storage procedure details) and sample quality. FFPE samples failed 10 of the

12 metrics between 0.1-3.2% more often than FF, including all three bisulfite conversion metrics (Figure 2.2c). FF

samples had higher failure rates for two BeadArray controls (extension red and specificity I red; Table 6.4). While

no samples failed the restoration BeadArray control, increasing the minimum threshold for failure from the default

manufacturer-prescribed value of 0 to 1, which is recommended as an alternative in Illumina documentation [74, 208],

failed 69 FFPE samples (2%) and one FF sample (2e-3%). In summary, while FFPE samples were of lower quality than

FF samples across assessments, the differences were modest, and the vast majority of FFPE samples passed all controls

considered.

2.3.8 10% of studies each have greater than 60% samples failing quality assessments

Across 362 studies, we evaluated the fraction fst of failed samples per study, defining a failed sample as one that either

(i) fails at least one BeadArray control, or (ii) has log2 median methylated and log2 median unmethylated signals each

<11 as described in [27] (Supplemental Materials, Fig. B.5). Of the 36 studies each with fst > 60%, samples fail in

each of 23 studies due only to (i), samples fail in each of five studies due only to (ii), and samples fail in each of the

remaining eight studies due to either (i) or (ii). These 36 studies ranged in size from 6 to 692 samples and comprised

a total of 2,020 samples, with a median study size of 23 samples. Of the 320 studies that remained after removing

those with ≤10 samples, 28 showed fst > 60% (8.8% of remaining studies, Fig. 2.2d). One of these was a study of

condition-specific DNAm data reliability (GSE59038, [216]) and included several stress tests of the assay, so many

failed samples are not unexpected. Another study was GSE62219 [218] and included blood from 10 young individuals.

We further noted the previous study [219] also determined these samples were of low quality.

2.3.9 DNAm principal component analysis shows clustering by tissue with greater variances among cancers

We studied DNAm variance using PCAs of autosomal DNAm (Fig. 2.3) as measured by noob-normalized Beta-values

(Section 2.2). The first two components from PCA of 35,360 samples explained 35% of total variance, with PC1’s

contribution 25% and PC2’s contribution 10% (Fig. 2.3a). Four outlying blood samples (PC1 > -10) included two from

whole blood, one of T-cells, and one stem cell sample from umbilical cord blood (left plot of Fig. B.6a). For the top two

components, leukemia samples showed greater variances than blood samples: the ratio of variance in PC1 for leukemia

samples to variance in PC1 for blood samples was 1.25 (F-test P-value < 1e-2), and the ratio of variance in PC2 for

leukemia samples to variance in PC2 in blood samples was 6.18 (F-test P-value < 1e-2). This is consistent with how (1)

leukemia samples have greater variance than blood samples at each of the majority of probes (311,127, or 66%), and (2)

leukemia samples have greater median variance than blood samples across probes (median Beta-value variance for

blood samples = 1e-3, median Beta-value variance for leukemia samples = 5e-3; Fig. B.6b).
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Figure 2.3: Scatter plots of top 2 components from PCA of autosomal DNAm (2.2.8). Each axis label also contains
percent of total variance explained by the component. (a) PCA of 35,360 samples, with color labels for non-cancer
blood (N = 6, 001 samples, red points) and leukemias (780, purple), and remaining samples (28,579, black). (b) PCA
of 28,579 samples remaining after exclusion of blood and leukemias from (a), highlighting non-cancer brain (N = 602
samples, blue), brain tumors (221, dark cyan), and remaining samples (27,756, black points). Facet plots of sample
subsets in (a) and (b) are shown in Fig. B.6. (c) and (d) display samples from seven non-cancer tissues for which at
least 100 samples were available from at least two studies (Section 2.2). (c) PCA of 7,484 samples from all seven
tissue types, including sperm (N = 230 samples, blue), adipose (104, dark red), blood (6,001, red), brain (602, purple),
buccal (244, orange), nasal (191, light green), and liver (112, dark green). (d) PCA of 7,254 non-cancer tissue samples
remaining from (c) after exclusion of sperm, with color labels as in (c).

39



From PCA of the 28,579 samples remaining after blood and leukemia samples were removed (Fig. 2.3b), the

first two components explained 30% of total variance, with PC1’s contribution 19% and PC2’s contribution 11%.

Seven outlying (PC1 > 0, PC2 < -5) brain tumor samples included two primary tumors and one metastasis each from

medulloblastoma cases, as well as four brain metastases from uncertain primary tumors, from the studies GSE108576

[220, 221] and GSE63669 [222] (Figure B.6c). For the top two components, brain tumors showed greater variances

than non-cancer brain samples: the ratio of variance in PC1 for brain tumors to variance in PC1 for non-cancer brain

samples was 12.05 (F-test p < 1e-5), and the ratio of variance in PC2 for brain tumors to the variance in PC2 for

non-cancer brain samples was 22.40 (F-test P-value < 1e-5). This is consistent with how (1) brain tumors have greater

variance than non-cancer brain samples at each of the majority of probes (444,304, or 94%), and (2) brain tumors have

greater median variance than non-cancer brain samples across probes (median Beta-value variance for non-cancer brain

samples = 1e-3, median Beta-value variance for brain tumors = 1e-2; Fig. B.6d). Our findings are consistent with

previous evidence of higher DNAm variances in cancers compared to non-cancer samples [223, 224].

PCA of 7,484 samples from seven non-cancer tissues (adipose, nasal, blood, brain, buccal, sperm, and liver), which

we also used to study DNAm variability (below), showed clear clustering by tissue. The first two components explained

57% of total variance, with PC1’s contribution 38% and PC2’s contribution 19%. Sperm samples clustered far apart

from the six somatic tissues (Fig. 2.3c). After repeating PCA with sperm samples excluded, the first two components

still explained over half (54%) of total variance, with PC1’s contribution 42% and PC2’s contribution 12% (Fig. 2.3d).

2.3.10 Over two-thirds of CpG probes that do not distinguish tissues map to gene promoters near CpG islands

CpG probes with low DNAm variation and low mean DNAm differences across experimental groups are less informative

for quantifying group-specific DNAm differences. We analyzed autosomal DNAm variation in seven distinct tissues

(adipose, nasal, blood, brain, buccal, sperm, and liver), as measured by noob-normalized, study-corrected Beta-values

(see 2.2.10). We identified 4,577 probes each with consistently low variance (≤10th quantile) in each tissue and low

difference between highest and lowest mean Beta-value (<0.01) across tissues (Fig. B.7a and B.8, and Supplemental

Materials). Among probes with consistently low variance, 4,111 (90% of total) mapped to genes in CpG islands,

typically at promoter regions of CpG island-overlapping genes (2,203 probes), and these fractions represented significant

increases compared to the background of all autosomal CpG probes (binomial tests, P-values < 1e-3). It is likely the

4,577 probes are of low utility for quantifying DNAm differences across tissues, and their removal prior to performing

an EWAS across non-cancer tissues could help increase statistical power.

2.3.11 Over two-thirds of CpG probes that distinguish tissues map to genes

We identified 2,000 CpG probes in each of seven distinct non-cancer tissues (adipose, nasal, blood, brain, buccal, sperm,

and liver) with high and tissue-specific variation in autosomal DNAm, as measured by noob-normalized, study-corrected

Beta-values (Section 2.2, Supplemental Materials, and Fig. 2.4 and B.7a). Distinctive patterns in DNAm across these

probe sets may point to tissue-specific factors such as differences in environment exposure, cellular signaling, and
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Figure 2.4: DNAm and genome mapping patterns among 14,000 CpG probes showing tissue-specific high variance in
7 tissues (2,000 probes per tissue, tissues: adipose, blood, brain, buccal, liver, nasal, and sperm). (a) and (b) Violin plots
of (a) means and (b) variances of normalized Beta-values across tissue-specific probes. (c) Stacked barplots of genome
region mappings (Number of CpG probes, y-axis) across tissue-specific probes (x-axis). Color fills depict (left) island
and gene overlap, (center) gene region overlap, and (right) CpG island region overlap.

cell division rates. Compared to the background of all autosomal CpG probes, adipose and sperm had significantly

lower fractions of gene-mapping probes, and all tissues except for blood had significantly greater fractions of both open

sea-mapping probes and gene body-mapping probes (binomial tests, BH-adjusted P-value < 1e-3). Of the 14,000 total

high-variance probes, 10,016 (71%) mapped to a gene region, typically at the gene body (8,006 probes, Supplemental

Materials). The highest mean Beta-values were observed for nasal and adipose tissues (Fig. 2.4a), and the highest

variances were observed for sperm and adipose tissues (Fig. 2.4b), while probes in blood had relative low means and

variances. While most probes mapped to open seas in liver (1,014 probes), nasal (1,100), adipose (1,280), and sperm

(1,063), greater fractions of open sea probes mapped to genes in liver (70% of open sea probes), nasal (74%), and

adipose (71%) than in sperm (52%, Fig. 2.4c). This observed sparsity of CpG island regions and enrichment of open

sea, intergenic, and gene body regions among CpG probes with tissue-specific DNAm was recently corroborated in

an independent study comparing DNAm in matched sperm and blood samples directly [48]. This corroboration was

especially striking because the discovery set samples in [48] were processed on the newer EPIC rather than the HM450K

platform.
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2.3.12 Normalized Beta-values for GEO DNAm array studies are rapidly accessed via the

recountmethylation package

To accommodate a wide range of analysis strategies, DNAm assays and sample metadata were compiled into databases

in two distinct formats, including HDF5 and HDF5-SummarizedExperiment. HDF5-SummarizedExperiment

compilations are tailored for rapidly executing data summaries and query operations in the R/Bioconductor

framework via DelayedArray objects. Raw red and green signals are provided as HDF5 (120 GB) and

HDF5-SummarizedExperiment (119 GB) files, and raw methylated and unmethylated signals and noob-normalized

Beta-values are provided as HDF5-SummarizedExperiment files (94 GB and 133 GB, respectively). The

recountmethylation [38] R/Bioconductor package facilitates database access as described in the User’s Man-

ual. It allows full database utilization with rapid queries on the provided sample metadata, including model-based

estimates for sex, epigenetic age, and blood cell types [27, 30, 31]. The package Data Analyses vignette further

provides code to reproduce our comparisons of mined and epigenetic ages, sample storage type quality comparisons,

and tissue-specific DNAm variability analyses described above.

2.4 Discussion

2.4.1 Limitations of this study

We conducted a cross-study analysis of methylation array samples comprising a large subset of available HM450K

samples on GEO. While we omitted studies using the HM27K and EPIC platforms, our compilation strategy could also

be generalized to these platforms (Section 2.2, below). Further, while our results suggest BeadArray controls could

be improved by applying different quantitative thresholds for failure, it remains unclear whether a single universal

threshold or multiple experiment-specific thresholds is desirable for each (2.3.5, Fig. B.3). Nonetheless, five of 17

BeadArray controls (both Biotin Staining controls, both Non-polymorphic controls, and Bisulfite Conversion I Red) are

demonstrably useful for assessing the quality of an experiment. This finding also means a stringent quality threshold

of ≥ 1 failed controls, which we used for cross-study analyses, mainly filtered samples due to failure in at least

one of these five principal controls. We further lacked a definitive gold standard set of well-described DNAm array

samples, which could allow for more detailed estimations of metadata errors beyond direct concordances, or for more

informative assessments of quality metric behaviors. Our metadata mapping and annotation strategy can also be

improved to better capture available metadata for certain samples, such as gestational and maternal ages for placenta

samples (Section 2.2). Finally, our DNAm variability study across seven distinct non-cancer tissues used a within-tissue

preprocessing approach (Section 2.2). We were constrained this way because study-specific variation was high relative

to tissue-specific variation, and effective study-and-tissue normalization would have required considerably more data

from studies of multiple tissues than were available at the time of analysis.
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2.4.2 Recommendations for metadata reporting

Thoroughly characterizing samples submitted to public archives with accurate metadata makes them easier to repurpose

for new studies. After manually inspecting hundreds of DNAm array studies on GEO, we formulated some best

practices for the submitter who is labeling samples in a study to facilitate their discoverability and improve their utility

for other investigators:

1. Include key attributes (sex, age, tissue, disease, etc.) even when any one is the same across a sample set, since

that attribute may vary in a cross-study analysis.

2. Repeat study-level metadata in sample-level metadata. This includes sample types (e.g., tissue, cell line, etc.)

and characteristics (e.g., storage conditions, preparation steps, etc.).

3. Include units of numerical variables to ensure their proper interpretation.

4. Clarify circumstances under which attributes were obtained where appropriate. Examples: age at diagnosis,

tumor-adjacent normal tissue, blood from leukemia patient.

2.4.3 Next steps

We have several methodological changes planned that will improve the DNAm array databases accessible with the

recountmethylation [38] R/Bioconductor package. First, future compilations will add samples run on the newer

EPIC platform, allowing for novel cross-platform analyses. Further, our metadata handling pipeline will be revised

to be fully automated by using regular expressions to recognize key metadata. This will replace the manual variable

aggregation step (2.2). Finally, we will support regular compilation updates by enabling rapid setup and better

dependency handling (e.g., with virtual environments). These improvements will empower the researcher to maintain a

comprehensive compilation of DNAm array IDATs from GEO in a wide array of computing environments.

2.5 Conclusion

We performed extensive analyses of 35,360 HM450K samples with IDATs from 362 studies in GEO, approximately

three times the number of samples considered in prior cross-study analyses [28, 30, 48, 206]. We further released

the R/Bioconductor package recountmethylation including our new tissue and disease state labels, model-based

predictions for age, sex, and blood cell composition, as well as noob-normalized Beta-values for array samples. This

resource should prove valuable for reusing publicly available methylation data.

2.6 Acknowledgements and funding

This research was funded in part by NIH 5R01GM121459-02 to KH. KH was further supported by NIH U01AG060908.

We are especially grateful to John Greally for supportive comments and helpful suggestions as this work progressed.

43



We also thank Julianne David, Mary Wood, Ben Weeder, Austin Nguyen, and Chris Loo for early feedback on our

manuscript.

2.7 Copywrite statement

This chapter reproduces content from [3], which was published in Nucleic Acids Research Genomics and Bioinformatics

under the CC BY-NC license agreement.

44



3 Chapter 2: recountmethylation enables flexible analysis of public blood DNA

methylation array data

3.1 Background

DNA methylation (DNAm) is the most commonly studied epigenetic mark, and most public DNAm array samples

are generated from blood [3]. In prior work [3], we conducted comprehensive cross-study analyses of human DNAm

array studies with raw data deposited on the Gene Expression Omnibus (GEO) [8, 9], the largest archive of publicly

available array data. We confined attention to the HumanMethylation450K (HM450K) platform introduced by Illumina

in 2012. HM450K arrays profile 485,577 CpG loci concentrated in protein-coding genes and CpG island regions [45,

46]. We found that: (1) a subset of Illumina’s prescribed BeadArray controls explained most quality variances; (2)

samples clustered by tissue and cancer status in a principal component analysis (PCA) of autosomal DNAm; and (3)

subsets of CpG probes showed high tissue-specific DNAm variation among 7 normal tissues. We further released the

recountmethylation Bioconductor package [39] along with uniformly processed data compilations pairing DNAm

with harmonized metadata labels for age, sex, tissue, and disease state.

The initial recountmethylation release left open several important issues. First, the delay between data

compilation and reporting meant our initial release of data compiled in March 2019 was over a year out of date at

the time of publication. Second, the prevalence of raw data from the newer EPIC platform [47] is rapidly increasing

while our initial data compilation included only samples run on the older HM450K platform. Finally, several practical

research concerns were not accommodated in the initial package release, including how to leverage public array data

compilations to determine the required number of samples to test a new hypothesis, how to account for confounding

factors in cross-study analyses, and how to leverage public data to independently validate previously published DMPs

and identify subsets of high-confidence biomarker candidates.

We address these outstanding issues in the present paper using novel cross-study and cross-platform analyses,

confining attention to normal human blood samples. Blood DNAm is often probed in epigenome-wide association

studies (EWAS) to discover, test, and validate biomarkers [21–23] for diseases such as type II diabetes [24, 89, 90],

obesity [91], non-alcoholic fatty liver disease [225], asthma [226], and dementia [227], as well as colorectal [96–99],

esophageal [92], breast [93], pancreatic [95], and head-and-neck [94] cancers. It is widely used to study biological

aging [30, 49, 113, 119] and normal tissue epigenetics [48, 228], including development and function of the immune

system [229]. Recent work studied how gestational age-related differential DNAm relates to fetal health and disease

risk [119, 230]. Further, cord blood DNAm is increasingly used to precisely quantify fetal gestational age [49, 115–117],

which may lead to improvement in the efficacy of prenatal screening [118]. In addition, many software tools were

trained and designed for use with blood DNAm data; these included methods for cell-type deconvolution [31, 139, 231],

inference of population genetic structure and shared genetic ancestry [32], and power analyses [181].
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DNAm differences between sexes have been observed in mouse [232] and multiple human tissues including

brain [232], pancreas [233], nasal epithelium [234], cord blood [235], and whole blood [138, 236]. These DNAm

differences can impact insulin secretion [233], risk of disease [234, 235], and biological age [232]. Using cross-study

and cross-platform compilations of whole blood and PBMC, we performed novel independent validation of previously

published sets of probes with differential methylation between the sexes (a.k.a. “sex DMPs”) from two previous studies

in whole blood [138, 236].

3.2 Methods

3.2.1 Compiling recent public DNAm array data across platforms

DNAm array data were identified, downloaded, and processed using the recountmethylation_instance

v0.0.1 [61] [61] Snakemake workflow (Appendix A.7). It comprises the recountmethylation_server v1.0.0 [193]

and recountmethylation.pipeline v1.0.0 [194] tools, which we used previously to compile HM450K data [3]. We

uniformly processed samples into cross-study and cross-platform data compilations. Data were from samples run on the

HM450K [45] and EPIC [47] DNAm array platforms and available on GEO by March 31, 2021. Compilations paired

noob-normalized [140] DNAm fractions, or Beta-values, with harmonized sample metadata for 68,758 cumulative

samples for which raw image data files, or IDATs, were available as gzip-compressed supplementary files.

Compilations were stored as HDF5-based SummarizedExperiment files generated using the HDF5Array v1.18.0

and rhdf5 v2.34.0 R/Bioconductor packages [177, 178]. These formats used DelayedArray v0.18.0 [237] to support

rapid access, summaries, and filters. For most analyses, DNAm data were merged across platforms for the 453,093 CpG

probes [47] they shared. We made compiled data available online at https://recount.bio/data/gr-gseadj_

h5se_hm450k-epic-merge_0-0-3/.

3.2.2 Prediction and harmonization of sample metadata

We generated harmonized sample metadata from heterogeneous metadata mined from SOFT files accompanying GEO

studies. This involved writing regex to detect keywords in the files that we then mapped to controlled vocabularies

under “tissue”, “disease,” and other categories, as described in [3] and [28]. We also predicted sample types from mined

metadata using the method from [17]. To add sex annotations, we used the minfi v1.37.1 [27, 238]) R package; to

add six blood type cell fractions, we used the method from [31]); and to add age annotations, we used the pan-tissue

epigenetic clock model from [30]. Finally, we calculated the top components of genetic ancestry using the method

from [32] (Tables C.1 and C.2).

3.2.3 Sample QC filters

We used metadata filters to find the 3 most prevalent blood sample types (whole blood, cord blood, and PBMCs), and

the aggregate type “all,” which includes the above types and samples of whose type was indeterminate from mined

metadata. We then performed QC with reference to prior findings from [3]. We removed samples for which either:
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(1) log2 median M and U signals were both <10; or (2) the sample failed ≥2/5 most informative BeadArray metrics.

These criteria removed 245 samples, and all but one was run on the HM450K platform.

3.2.4 Simulation of study bias adjustments

We used simulations to show the impact of study ID adjustment on explained variance. As detailed in Fig. C.1,

simulations consisted of 4 steps: (1) calculate sample DNAm M-values from 500 CpG probes and 5 studies, selected

randomly; (2) adjust study ID across all 5 selected studies (i.e. “adjustment 1”) or subsets of 2-4 studies (i.e. “adjustment

2”); (3) perform ANOVA for 3 models; (4) get Fraction Explained Variance (FEV) for each variable across 3 models. In

total, simulations used 29,028 unique CpG probes and 62 unique studies (Table C.3).

Multiple regression models accounted for sample type, platform, study ID, DNAm-based predictions for age, sex,

and six cell type fractions, and two genetic ancestry components, which were determined as described above. Variables

were grouped as one of biological (i.e. six blood cell type fractions), demographic (i.e. age, sex, and two genetic ancestry

components), and technical (i.e. platform). Study bias adjustments were performed using the removeBatchEffect()

function from the limma v3.46.0 [239] R package. Parallel sessions were deployed using the parallel v4.1.1 R

package (Appendix A.9).

3.2.5 PCA of autosomal DNAm

We performed autosomal DNAm PCA on compiled blood samples using a reduced 1,000-dimensional representation of

the normalized and bias-corrected Beta-values [209, 240] obtained via feature hashing. (See [3] and Appendix A.10

for details on this approach.) For the top 10 components, we calculated FEV from ANOVA using multiple regression

models containing the 13 variables from the 3 categories described above.

3.2.6 Blood autosomal DNAm search index construction

We used the hnswlib v0.5.2 Python library to make a DNAm-based search index [241] (Appendix A.8). The

Hierarchical Navigable Small Worlds (HNSW) algorithm implemented in hnswlib was among the top search

index algorithms in a recent benchmark [242]. With the mmh3 v3.0.0 and numpy v1.20.1 [243] Python li-

braries, we applied feature hashing to generate a reduced 1,000-dimensional representation of each sample

[174, 209] of each blood sample’s noob-normalized Beta-values. The search index files are available online

at https://recount.bio/data/sindex-hnsw_bval-gseadj-fh10k_all-blood-2-platforms.pickle and

https://recount.bio/data/sidict-hnsw__bval-gseadj-fh10k__all-blood-2-platforms.pickle.

3.2.7 Power analyses using pwrEWAS

We used the method provided in the pwrEWAS v1.4.0 R/Bioconductor library to perform power analyses across DNAm

array platforms [181]. Parameters for these analyses included 100 total simulations varying the total samples N from
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50 to 850. We targeted 500 Differentially Methylated Probes (DMPs) and assessed test group Beta-value differences δ

of 0.05, 0.1, and 0.2.

3.2.8 Replication of whole blood sex DMPs

We replicated sex DMPs from [138], a study of whole blood from Japanese individuals, using independent compilations

of whole blood and PBMC samples in recountmethylation. After filtering out sex chromosome and cross-reactive

probes [137], there were 375,244 CpG probes in whole blood and 375,244 CpG probes in PBMCs. After filtering

for sample quality, we used data from 5,980 whole blood samples (3,942 females and 2,924 males) and 642 PBMC

samples (397 females and 230 males). Ages tended towards young adult and middle-aged for whole blood (age,

mean±SD, 39±21 years) and samples from [138] (46±12 years), but were more frequently from adolescents and

young adults among PBMC (25±19 years). We preprocessed DNAm M-values using Surrogate Variables Analysis

(SVA) with the sva v3.4.0 R package [244]. We determined sex DMPs using coefficient P-values for the sex variable in

multiple regressions, where regression models used biological, demographic, and technical variables described above

(Table C.4).

3.2.9 Statistical analyses and visualizations

Data processing and analyses were performed using the R v4.1.0 and Python v3.7.1 programming languages [245,

246]. Statistical summaries and tests were performed using base R libraries. DNAm array processing, normalization,

analysis, and prediction of sex and six blood cell type fractions was performed using the minfi, minfiData, and

minfiDataEPIC R packages. Workflow diagrams were created using BioRender.com. Visualizations in Results made

us of the ggplot2 v3.3.2, grid v4.1.3, gridExtra v2.3, UpSetR v1.4.0, ggpubr v0.4.0, ggforce v0.3.3, and png

v0.1-7 R packages [211, 247]. P-value adjustments used either the Bonferroni method or the Benjamini-Hotchberg

method [167]. Enrichment tests used the binom.test() base R function with the background of 453,093 total probes

overlapping both array platforms [245]. Supplemental scripts and functions recreating our results are available online

at https://www.github.com/metamaden/recountmethylation_v2_manuscript.

3.2.10 Supplemental data, files, and code

The following resources have been provided to reproduce results, figures, and tables in this paper:

1. The updated recountmethylation Bioconductor package is now available (https://doi.org/doi:

10.18129/B9.bioc.recountmethylation). It features new functions supporting analysis of large data

compilations, and new vignettes showing how to perform novel power analysis, infer genetic ancestry, and

more using DNAm array data.

2. Supplemental code and scripts for this paper, including support for creating and querying a search in-

dex of DNAm array samples, are available in the manuscript GitHub repository (https://github.com/

metamaden/recountmethylation_v2_manuscript).
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3. The recountmethylation_instance Snakemake workflow is available on GitHub [61]. This will be useful

for researchers hoping to make and update new compilations of public DNAm array data from GEO.

3.3 Results

3.3.1 12,537 normal blood samples spanning 3 sample types were incorporated into recountmethylation

We uniformly processed raw intensity data generated on the HM450K or EPIC platforms for 68,758 samples available

on GEO before March 31, 2021 (Fig. 3.1, Section 3.2, [27, 140]). We narrowed focus to 12,537 normal human blood

samples from 63 studies, each of which had ≥ 10 samples after quality control. After harmonizing metadata across

studies, we found these samples were predominantly of three types (Fig. 3.2a): whole blood, umbilical cord blood

(a.k.a. “cord blood”), and Peripheral Blood Mononuclear Cell (PBMC). Whole blood was distinguished from PBMC by

the presence of erythrocyte and granulocyte DNA, as these cell types are removed during PBMC preparation [248]

(Fig. 3.2a). Each blood sample type included ≥ 245 samples from ≥ 2 studies per respective platform (Fig. 3.2b,

Tables C.1 and C.2).

We subsequently updated our Bioconductor package recountmethylation [3] to facilitate cross-study and

cross-platform analyses of the blood samples. The package’s new features permit search for samples with DNAm

profiles similar to a query sample [241], inference of shared genetic ancestry [32], and novel power analyses [181].

These features are explained in package vignettes. Further, a new recountmethylation_instance Snakemake

workflow available on GitHub [61] allows users to create their own compilations of public DNAm array data on

GEO [192], with the functionality to customize output data types and attributes predicted from GEO metadata. As

shown below, our resources enable identification of biomarker candidates, independent validation and replication of

previous research, experiment planning, and more.

3.3.2 Study ID adjustment increased variation explained by biological and demographic variables

We conducted simulations investigating the impact of bias correction by study ID, a surrogate for technical con-

founders [3]. Three DNAm values were modeled in multiple regressions: (1) unadjusted DNAm, (2) uniform adjustment

on 5 randomly selected studies (a.k.a. “adjustment 1”), and (3) exact adjustment on 2-4 randomly selected studies

(a.k.a. “adjustment 2”). Regression models 2 and 3 were compared to test whether two distinct study ID bias adjustment

strategies had comparable outcomes. We determined the fraction of explained variance (FEV) for each of 13 variables

from ANOVA, yielding 3 results per variable per simulation rep (Section 3.2). Total non-residual variances almost

invariably decreased after applying either of the 2 study ID adjustment strategies (Fig. C.2a, median fractions of

non-residual variances, adjusted over unadjusted, adj. 1 = 6.88e-1, adj. 2 = 6.84e-1). Variance reduction magnitudes

were identical across adjustment strategies, with the exception of a few outlying models from adjustment 1 simulations

(Fig. C.2b).
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Figure 3.1: Workflow to obtain public DNAm array data from GEO. Collection, preparation, and processing of
array samples (top left) as well as publication of GEO datasets were performed by other investigators (top right).
We downloaded raw intensity data (IDATs) and metadata (SOFTs; top right), processed GEO metadata (middle) and
DNAm signals (bottom right) into HDF5-based data formats (bottom middle), and finally updated our server and the
recountmethylation Bioconductor package (bottom left). Color outlines indicate data access and processing using
tools we developed (green = recountmethylation_server [193], blue = recountmethylation_pipeline [194],
green = recountmethylation_instance [61]). Diagrams were created with BioRender.com.

We categorized variables as biological (e.g., six predicted blood cell type fractions), demographic (e.g., predicted

sex, age, and genetic ancestry), or technical (e.g., platform, where applicable). Across all 3 variable categories, FEV

increased relative to unadjusted models after either adjustment strategy, and FEV distributions were far more similar

among adjusted models than between adjusted and unadjusted models (Fig. 3.3a). The largest median FEV differences

were observed for demographic variables, while the smallest were observed for technical variables. Among individual

variables, median FEV was < 0.1 across most models and variables, where study ID showed the maximum median

FEV of 0.47 for unadjusted DNAm. After either adjustment, study median FEV decreased drastically to ≤ 2e-3, while

median FEV for all remaining variables increased (Table C.3).

Because performing compilation-wide corrections on study ID substantially increased variation explained by

biological and demographic variables, we included Beta-values under our adjusted models in recountmethylation

for reuse in cross-study analyses.

3.4 Most explained DNAm variation is from predicted genetic ancestry and predicted cell composition

To better understand key sources of variation in compiled blood data, we performed principal component analysis (PCA)

on normalized [140], study ID-corrected autosomal DNAm, followed by ANOVA on regressions with 13 variables

categorized as either biological, demographic, or technical (Section 3.2). While most variation was residual across most

components, explained variation was mainly from demographic variables at components 1 and 3, biological variables at

components 4,5,6, and 10, and from technical variables at component 8, and split between demographic and biological

variables at component 2 (Fig. 3.3b). Most explained variation from demographic variables was from genetic ancestry in

the first component, and while CD4+ T-cell fraction explained substantial biological across remaining top components
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Figure 3.2: Blood specimen collection and DNAm array data availability by sample type. (a) Blood sample collection
and handling prior to upload to the GEO. (b) Barplot summaries of available samples (left) and studies (right), showing
counts (top) and percentages (bottom) of blood sample types (black = Not Otherwise Specified [NOS], gray = whole
blood, red = PBMC, yellow = cord blood). Bar heights indicate the aggregate sample group “all.” Diagrams were
created with BioRender.com.
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(Fig. C.3). The top two principal components showed samples clustered largely independent from sample type and

platform labels, but showed distinct gradient patterns for genetic ancestry, CD8+ T-cells, CD4+ T-cells, and B-cells

(Fig. C.4).

3.5 Dependence of statistical power on sample size was similar across blood sample types

We conducted power analyses on the blood samples included in recountmethylation by applying the simulation-

based pwrEWAS approach [181] (Section 3.2). To attain ≥ 80% power to detect DMPs between two groups of roughly

equal size, the N estimated total samples required were similar across sample types, where N ≈ 300 samples at mean

Beta-value difference between groups δ = 0.05, N ≈ 150 samples at δ = 0.1, and N ≈ 80 samples at δ = 0.2. We

assumed an FDR threshold of 5%. Outcomes were similar within each of the whole blood, cord blood, and PBMC

groups, but they were worse when including all blood samples, likely due to greater sample heterogeneity (Fig. 3.4).

Our results suggest fewer samples are necessary than the results of [181], where adult PBMCs showed ≥80%

power with N = 220 samples at δ = 0.1. Further, an independent power analysis using whole-blood EPIC arrays [249]

found 85% of probes had >80% power with N = 200 and δ = 0.1, although their FDR cutoff value of 15% was less

stringent than our cutoff value of 5%.

3.6 40% of sex DMPs from a previously published EWAS study were replicated in either whole blood or PBMC

We queried a search index of blood autosomal CpG DNAm, which is included in the updated recountmethylation

resource, for each of the 113 whole blood samples from [138]. In the process, we quantified the similarity of queried

sample methylation profiles to other samples by analyzing the k nearest neighbors returned (Section 3.2). Among the

1,000 nearest neighbors returned per queried sample, the whole blood label was common while the PBMC label was

rare (Fig. 3.5a), in agreement with Methods in [138] describing the queried samples as “peripheral whole blood.” This

greater similarity to compiled whole blood may reflect greater similarity in subject ages, cell composition [248], and/or

genetic ancestry (Figs C.6a and C.5b), and we corrected for these potential confounders in regressions for identifying

sex DMPs from either compilation (Section 3.2).

We next considered the threshold of the top 1,000 most significant DMPs from whole blood and PBMC. We set this

threshold because these DMPs captured the long tail of between-sex DNAm differences for each tissue (Fig. C.5a- C.5d),

and because there was less replication divergence between tissues compared to less stringent thresholds observed from

concordance at the top analysis (Fig. 3.5b). Among these whole blood and PBMC DMPs, (117/292 =) 40% replicated

sex DMPs from [138] (Fig. 3.5b). Of these, 95 were only replicated in whole blood, 80 were only replicated in PBMC,

and 58 were replicated in both tissues (Fig. C.6b). Further, (248/544 =) 46% of whole-blood sex DMPs independently

reported in [236] overlapped DMPs in whole blood or PBMC. However, just 26 sex DMPs appeared in all of PBMC,

whole blood, [138], and [236]. Mean (normalized) Beta-value was typically higher in females than males in whole blood

(64-81% of DMPs) but not PBMC (35% of DMPs). There was high agreement in mean Beta-value differences between

males and females, with slightly greater agreement among whole blood than PBMC (99% > 96% direction agreement)
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Figure 3.3: Variance analyses of study bias adjustments and principal components. (a) Distributions of FEV. Violin
plots show results grouped by 3 variable categories (plot titles, one of biological on left, demographic in middle, or
technical on right), and color fills show model type (pink = adjustment 1 or adjustment on 5 studies, green = adjustment
2 or adjustment on 2-4 studies, and blue = unadjusted). (b) Autosomal DNAm PCA results across normal blood samples.
Stacked barplot y axes show the eigenvalue magnitudes at left and percentages at right for the top ten components on
the x axes. Fill colors indicate magnitudes of component sum of squared variances explained by variable categories (red
= biological, green = demographic, blue = technical, purple = residuals).
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Figure 3.5: Replication of sex DMPs from [138] (a.k.a “Inoshita et al 2015”) using cross-study compilations of whole
blood and PBMC. (a) Sample label distributions among the 1,000 nearest neighbors from querying [138] samples,
where density and box plots show returned frequencies of 3 sample labels (red = PBMCs, black = other/NOS, gray =
whole blood). (b) Concordance of [138] DMPs on the y-axis among the top significant compilation DMPs on the x-axis,
ranked on P-values, for whole blood in gray and PBMCs in red. The zoom shows the top 1,000 DMPs, and colored
dotted lines and colored numbers indicate total DMPs from [138] (3.2.8). (c and d) Mean Beta-value differences (male -
female) at [138] DMPs on y axes and in (c) whole blood and (d) PBMC compilations. Region colors show direction
agreement in gold and disagreement in blue, and insets show DMP counts by region.
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across sex DMPs from [138], and 100% agreement among the subset of replicated DMPs in each compilation (Figs 3.5c

and 3.5d). DNAm proximal to cytosine- and guanine-rich regions, known as CpG islands, can functionally regulate

gene expression [73, 75, 77, 250, 251], and most replicated sex DMPs mapped to CpG islands (65/117, 56%). The most

significant of these DMPs mapped to a variety of gene regions, including two body DMPs at RFTN1 and LOC644649,

and one promoter DMP at SLC6A4 (P-adjusted < 5.1e-47, Bonferroni method, Table C.4).

3.7 Discussion

We analyzed DNAm array data from the three most prevalent blood sample types in the GEO database and updated

the recountmethylation Bioconductor package to make reproducible [252, 253] cross-study and cross-platform

analyses of these data easier. Since HM450K and EPIC data continue to accumulate rapidly on GEO, we further

developed the recountmethylation_instance Snakemake workflow to enable semi-automated compilation of the

DNAm array data on GEO [61].

We replicated 40% of sex DMPs from [138] and 46% of sex DMPs from [236] using independent whole blood and

PBMC compilations. These rates were similar to prior studies of sex DNAm differences, including a 38% validation rate

of cord blood sex DMPs between two independent cohorts [235], and 44% validation rate of genes in nasal epithelium

with DNAm differences by sex [234]. These results could represent a baseline expectation for replication or independent

validation rate of DMPs for sex, and potentially other variables, across independent EWAS.

Our work has several limitations. First, we excluded blood spots from our analyses due to insufficient raw DNAm

array data available from GEO, although this blood sample type accounts for a substantial fraction of publicly available

data from younger subjects. Another limitation related to data availability is that far fewer blood samples were available

for the EPIC platform compared to HM450K as of March 31, 2021. The larger EPIC platform could help expand

analyses to new genome regions and clarify regional DNAm signals at CpG islands and genes. The pwrEWAS method

assumes a technical detection threshold of Beta-value = 0.01 by default, and using this threshold ensures our findings

are relevant for both single-study and cross-study analyses. However, this technical threshold likely should be lowered if

the study being planned involves cross-study analyses using study ID bias correction, because we found this correction

reduced explained variances (Section 3.3.2) and resulted in lower between-group differences in our sex DMP cross-study

analysis compared to the single-study discovery EWAS (Section 3.6). Finally, we did not conduct orthogonal or wet-lab

validation of replicated DMPs. Such steps would be essential to narrow biomarker candidates and elucidate biological

mechanisms explaining differential DNAm.

Our cross-study and cross-platform approach could be applied to other highly prevalent tissues such as brain [3] or

expanded to include public bisulfite-sequencing samples from the SRA [16], which could clarify the genome region

specificity of high-confidence biomarkers from DNAm arrays [47, 254, 255]. A future update of recountmethylation

may include such samples.
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3.8 Conclusion

Our cross-study and cross-platform approach could be applied to other highly prevalent tissues such as brain [3] or

expanded to include public bisulfite-sequencing samples from the SRA [16], which could clarify the genome region

specificity of high-confidence biomarkers from DNAm arrays [47, 254, 255]. A future update of recountmethylation

may include such samples.
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4 Chapter 3: Retained introns in long RNA-seq reads are not reliably detected in

sample-matched short reads

4.1 Background

During RNA transcription, multiple spliceosomes may act on the same transcript in parallel to remove segments of

sequence called introns and splice together flanking exons [256]. Most splicing occurs stochastically [257] during

transcription [258–260], although up to 20% of splicing may occur after transcription and polyadenylation [260,

261] (Fig. D.1). Introns are spliced by several known spliceosome types, of which the most-studied are called U2

and U12 [262]. Splicing is known to occur primarily in the nucleus [263], though there is evidence of cytoplasmic

splicing [264–267].

Intron retention (IR) is a form of alternative splicing where an intron normally spliced out during transcript

processing remains after processing is complete. IR occurs in up to 80% of protein-coding genes in humans [268]

and may affect gene expression regulation [269–275] as well as response to stress [276–278]. Transcripts containing

introns may also be stably detained in the nucleus before undergoing delayed splicing (“intron detention,” or ID), with

implications for temporal gene expression [279]. In cancers, high levels of IR [280–282] can generate aberrant splicing

products with known and potential biological consequences for gene expression and cell survival [283]. IR rarely

gives rise to a protein product [284, 285], but novel peptides derived from transcripts with retained introns (RIs) are

increasingly being studied in disease contexts such as cancer [286–290].

Despite its biological relevance, detection of IR from bulk RNA sequencing (RNA-seq) data remains challenging

for two principal reasons: (1) A short RNA-seq read (e.g., from Illumina’s HiSeq, NovaSeq, or MiSeq platforms) is

almost never long enough to resolve a full intron or its context in a transcript, particularly in genome regions with

multiple overlapping transcripts; (2) RNA-seq data may contain intronic sequence from unprocessed or partially

processed transcripts, DNA contamination, and non-messenger RNA such as Circular RNA (cRNA) [259, 291],

potentially yielding spurious IR calls, independent of read length.

Existing tools designed specifically for RI detection make simplifying assumptions to address the above is-

sues. These tools include Keep Me Around (KMA) [292], IntEREst [293], iREAD [294], superintronic [295], and

IRFinder [268] and its most recent implementation as IRFinder-S [184]. Some mitigate challenge (1) by ignoring from

consideration any intronic regions that overlap other features (KMA, IntEREst, iREAD), leaving biological blindspots in

RI detection [292–294]. Some attempt to mitigate challenge (2) by recommending that a user provides poly(A)-selected

data as their input [268, 292, 294, 295], assuming that poly(A) selected data represents fully processed, mature RNA.

However, poly(A) selection during library preparation has been shown not to remove all immature post-transcriptionally

spliced RNA molecules, and intronic sequences are commonly found in poly(A)-selected RNA-sequencing data [296,

297]. To clarify the quality of and best practices for RI detection, we performed tests on poly(A)-selected, sample-

57



matched long- and short-read sequencing runs for two biological specimens, with processed long-read data providing a

standard against which we evaluated short read-based RI detection.

4.2 Methods

4.2.1 Identification of paired short- and long-read data

Two advanced-search queries were performed on the SRA (https://www.ncbi.nlm.nih.gov/sra) on July 13, 2021,

and all experiment accession numbers were collected from the query results by downloading the resulting RunInfo CSV

files. For both searches, the query terms included organism “human,” source “transcriptomic,” strategy “rna seq,” and

access “public” with platform varying between the two searches: “pacbio smrt” for the long-read query and “illumina”

for the short-read query. The RunInfo files were merged and projects with both Illumina and PacBio sequencing

performed on the same NCBI biosample were identified. Due to relatively low sequencing depth of PacBio experiments,

all projects with fewer than 20 PacBio sequencing runs were eliminated. PacBio experiments conducted on any PacBio

platform earlier than RS II were also removed. Two remaining biosamples were chosen as data on which to test RI

detection: 1) biosample SAMN07611993, an iPS cell line collected and processed by bioproject PRJNA475610, study

SRP098984, with 1 short-read and 27 long-read runs [298], and 2) biosample SAMN04251426 (HX1), a whole blood

sample collected and processed by bioproject PRJNA301527, study SRP065930, with 1 short-read and 46 long-read

runs [299]. (See the project repository at https://github.com/pdxgx/ri-tests for accession numbers.)

4.2.2 Long-read data collection, initial processing, and alignment

Raw Iso-Seq RS II data were downloaded from the SRA trace site (https://trace.ncbi.nlm.nih.gov/Traces/

sra), via the “Original format” links under the “Data access’ tab for each run. These comprised three .bax.h5 files

for both samples, with an additional .bas.h5 and metadata file for each HX1 run. For both samples, individual

runs were processed separately as follows, with differences in handling of the two samples as noted. Subreads were

extracted to BAM files from the raw movie files using bax2bam (v0.0.8). Circular Consensus Sequences (CCS)

were extracted using ccs (v3.4.0) with –minPasses 1 set to 1 and –minPredictedAccuracy 0.90. Barcodes were

removed from CCS reads and samples were demultiplexed with lima (v2.2.0). For HX1, the input barcode FASTA

files were generated from the Clontech_5p and NEB_Clontech_3p lines from “Example 1” primer.fasta (https:

//github.com/PacificBiosciences/IsoSeq/blob/master/isoseq-deduplication.md). For iPSC, forward

and reverse barcode fasta files were downloaded from the study’s GitHub page (https://github.com/EichlerLab/

isoseq_pipeline/tree/master/data) and merged into a single FASTA file per the lima input requirements. Since

lima generates an output file for each 5’-3’ primer set, these were merged using samtools merge (samtools and

htslib v1.9). Demultiplexed reads were refined and poly(A) tails removed using isoseq3 refine (isoseq v3.4.0)

to generate Full-Length Non-Concatemer (FLNC) reads. FLNC reads were extracted to FASTQ files using bedtools

bamtofastq (bedtools v2.30.0), and aligned to GRCh38 with minimap2 (v2.20-r1061) using the setting -ax

splice:hq. Sequence download and processing scripts are available at https://github.com/pdxgx/ri-tests.
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After processing, the 46 HX1 Iso-Seq runs yielded 945,180 aligned long reads covering 32,837 transcripts of 11,813

genes for HX1, with 13,560 of these transcripts covered by at least 5 long reads and 4409 unique 5+ read transcripts

showing evidence of possible intron retention. In the iPSC sample, we obtained 839,558 aligned long reads covering

31,546 transcripts of 11,992 genes. 12,676 of these transcripts were covered by at least 5 long reads, with 3137 unique

5+ read transcripts showing evidence of possible intron retention.

4.2.3 Assignment of long reads to transcripts

The long-read alignment files were parsed as follows. GENCODE v.35 annotated transcripts’ introns, strand, and

start/end positions were extracted from the GENODE v35 GTF file. Then for each aligned long read, spliced-out

introns, strand and start/end positions were extracted using pysam (v0.16.0.1, using samtools v1.10) [300, 301]. A

set of possible annotated transcripts was generated, comprising transcripts for which the read’s set of introns exactly

matched the annotated transcripts’ introns sets (“all introns”), or if no such transcripts were found, transcripts for which

the read’s introns were a subset of the transcripts’ intron sets (“skipped splicing”). Then the best transcript match was

chosen from the shortlist of potential matches as the transcript whose length most closely matched the read length.

Some reads did not cover the full lengths of their best-matched transcripts, defined by the read alignment start and end

position encompassing all introns in the annotated transcript (“full length”); in the case where not all intron coordinates

were covered, these were labeled “partial” reads.

4.2.4 Intron persistence calculation

Intron persistence was calculated only for every transcript that was assigned as the best match for at least 5 reads.

We calculated persistence for each intron within these transcripts as the information density of the intron di (i.e., the

proportion of reads assigned to the transcript that cover intron i) multiplied by the mean of the product of three terms

across all long reads assigned to that isoform:

1. The retention, or presence, Rr,i of a given intron i is 1 if the read wholly contains i or 0 if it is absent/spliced

out as annotated in read r.

2. The spliced fraction (SFr,i) for a given intron i and read r is defined as

SFr,i =
|{i′ ∈ I : Rr,i′ = 0}|+Rr,i − 1

|I| − 1
, (14)

where I is the set of introns spanned by r and Rr,i is defined above. This fraction of spliced introns in a

read, with the target intron excluded, represents the splicing progression of the read. A mature RNA molecule

should tend to have fewer unspliced introns present than an RNA from the same transcript at an earlier point in

splicing progression.

3. The scaled Hamming similarity (Hr,i) for a given read r and intron i is defined as the average number of

spliced or unspliced introns that match between the target read and other reads assigned to the transcript that
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have intron i spliced the same as in read r, scaled to the number of introns in the isoform:

Hr,i =
1

|{r′ ∈ M t : Rr′,i = Rr,i}|

×
∑

{r′∈Mt:Rr′,i=Rr,i}

|{i′ ∈ Ir′ ∩ Ir : Rr′,i = Rr,i′}|
|Ir′ ∩ Ir|

, (15)

where Ir is the set of introns spanned by r, Ir′ ∩ Ir is the set of introns covered by both r and r′, M t is the set

of reads assigned as best matches to the same transcript as r and span the target intron i, and Rr,i′ is as defined

above. Any partial reads that are assigned to the transcript as a best match but do not span the target intron are

not included in this calculation, and the scaled Hamming similarity between two reads is only calculated for

introns covered by both reads. This term accounts for the stochasticity of splicing initiation and progression,

since a collection of reads would be more likely to have a dissimilar pattern of unspliced introns if the splicing

process remained incomplete.

Persistence Pi,t was calculated for each intron i in a given transcript isoform t as information density of the intron

di times the mean of the product of the three terms above per Equation 16. Since short reads are not assignable to

specific transcripts or isoforms, and certain introns fully or partially recur across multiple transcripts, we set the intron

persistence Pi for a given intron i as the maximum Pi,t found for that intron across all transcripts in which it occurs per

Equation 17.

4.2.5 Alignment and BAM generation for short-read data

FASTQs were previously generated by other groups using either Illumina’s NextSeq 500 (iPSC [298], run id:

SRR6026510) or HiSeq 2000 (HX1 [299], run id: SRR2911306), and files were obtained from the SRA using

the fastq-dump command from the SRA Toolkit (v2.10.8). A STAR (v2.7.6a) [153] index was generated based on the

GRCh38 primary assembly genome FASTA (ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/

release_35/GRCh35.primary_assembly.genome.fa.gz) and GTF (ftp://ftp.ebi.ac.uk/pub/databases/

gencode/Gencode_human/release_35/gencode.v35.primary_assembly.annotation.gtf.gz) files from

GENCODE v35 [158]. Reads were aligned with STAR to this index using the –outSAMstrandField intronMotif

option. Primary alignments were retained for reads mapping to multiple genome regions. SAM files output by STAR

were converted to both sorted and unsorted BAM files using samtools sort and view (samtools v1.3.1), respec-

tively.

Additionally, for use with KMA [292], bowtie2 (v2.3.4.3) [302] alignments were performed. Alignment statistics

may be found in the project repository (https://github.com/pdxgx/ri-tests) and are summarized in Fig. D.18.

A FASTA file with intron sequences was generated based on the GRCh38 primary assembly genome FASTA and

GTF files from GENCODE version 35 using the generate_introns.py script from the KMA package setting 0 bp

for the extension flag. These intron sequences were combined with the GRCh38 transcript sequence FASTA file

from GENCODE version 35 (ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_35/

60

ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_35/GRCh35.primary_assembly.genome.fa.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_35/GRCh35.primary_assembly.genome.fa.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_35/gencode.v35.primary_assembly.annotation.gtf.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_35/gencode.v35.primary_assembly.annotation.gtf.gz
https://github.com/pdxgx/ri-tests
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_35/gencode.v35.transcripts.fa.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_35/gencode.v35.transcripts.fa.gz


gencode.v35.transcripts.fa.gz), and this combined FASTA was used to create a Bowtie 2 index. Reads were

aligned to this index using bowtie2 according to specifications from KMA [303]. To quantify expression from the

Bowtie 2 alignments, eXpress (v1.5.1) [304, 305] was used.

4.2.6 Selection of target gene subset

Due to variable short- and long-read coverage across the genome, we selected a subset of genes to use for our test

dataset to ensure adequate sequencing coverage for RI detection on both platforms. For the short-read data, we chose a

coverage cutoff based on the requirements of the short-read RI detection tools used. The two tools with clear coverage

requirements are iREAD, which requires coverage of 20 reads across an intron for RI detection, and superintronic,

which requires 3 reads per region. Since these are short-reads (126 bases for iPSC and 90 for HX1) required over

potentially long intronic regions, we chose a median gene-wide coverage (including both intronic and exonic regions)

of 2 reads per base, ensuring either consistent coverage across the gene or high coverage in some areas. For the PacBio

data, we selected 5 long reads per gene, and a further filter of at least 5 reads aligned to a single transcript of the gene,

as giving enough information for comparing splicing progression and splicing patterns between reads. The target gene

sets, 4,639 genes for iPSC and 4,369 for HX1, were chosen from the aligned data, naive to potential RI detection, and

then for both short- and long- read data, the gene subset was applied as a filter after running metric calculations or RI

detection by short read tools. Within these genes, only transcripts with at least 5 long reads were studied.

4.2.7 Intron feature annotation

For the set of target genes, transcripts with at least 5 long reads were selected for analysis. Features of each intron in

these transcripts including intron lengths, splice motif sequences, relative transcript position, spliceosome category,

and transcript feature overlap properties were extracted as follows. Length was calculated as the difference between

the right and left genomic coordinates of the intron ends. Relative position within the transcript is an intron-count

normalized fraction where 0 represents the transcript’s 5’ end and 1 represents the 3’ end. Splice motifs were assigned

to each intron by querying the GRCh38 reference genome with samtools faidx (samtools v1.10) for the two

coordinate positions at each end of the intron, and assigned to one of three canonical motif sequences (GT-AG, GC-AG,

and AT-AC, and their reverse complements for − strand genes) or labeled as “other” for noncanonical motifs. Three

feature overlap properties were studied: the total number of exons from other transcripts with any overlap of the intron

region; the percent of intron bases with at least one overlapping exon from another transcript; and the maximum

number of exons overlapping a single base in the intron. These were calculated by extracting all exon coordinates from

the GENCODE v35 annotation file, and using an interval tree to query each intron base position against the set of

annotated exon coordinates. Spliceosome category was determined from recent U2 and U12 intron annotations [262].

BED files of U2 and U12 introns for GRCh38 were downloaded from the Intron Annotation and Orthology Database

(https://introndb.lerner.ccf.org/) on 1/25/22. Introns were labeled “U2” or “U12” if they only overlapped

ranges from one of either spliceosome category, and remaining introns were labeled “other.”
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4.2.8 Selection of short-read RI detection algorithms and identification of likely RIs

We successfully downloaded and ran five IR-detection tools for short-read data on our remote server using the CentOS

v7 operating system. To run superintronic, KMA, IntEREst, and iREAD, we used conda virtual environments (see

https://github.com/pdxgx/ri-tests, Appendix A.5 and A.6). We ran IRFinder-S from a fully self-contained

Dropbox image per the tool’s instructions (see below). IntEREst and superintronic are provided as R libraries which we

ran from interactive R sessions, while iREAD, IRFinder-S, and KMA were run from command line, and a separate R

package was used for RI detection for KMA. Outputs from all tools were read into R and harmonized to a single set of

intron ranges after applying minimum coverage filters based on both short-read and long-read data. After running tools

according to their provided documentation, we consulted literature and documentation on a tool-by-tool basis to devise

starting filter criteria based on expression magnitude and other properties. We used these starting criteria to find the

subset of most likely RIs, then we modified filter criteria to ensure filtered intron quantities were roughly one order of

magnitude lower than unfiltered introns in both iPSC and HX1.

4.2.9 IR quantification with IntEREst

To run IntEREst (v1.6.2) [293], the referencePrepare function from the package was used to generate a reference

from the GENCODE v35 primary assembly GTF file [158]. This reference was used along with the sorted STAR BAM

alignment from each sample to detect intron retention with the interest function, considering all reads and not just

those that map to junctions. We used the interest function with the IntRet setting, which takes into account both

intron-spanning and intron-exon junction reads and returns expression as a normalized Fragments Per Kilobase Million

(FPKM). The filter FPKM ≥ 3, recommended for iREAD, left > 90% of introns in both samples, so we increased the

minimum filter to FPKM ≥ 45, and this retained 5038/32544 ≈ 15% of introns in HX1 and 6832/21820 ≈ 31% of

introns in iPSC (Fig. D.11).

4.2.10 IR quantification with keep me around (KMA)

To run KMA [292], we used devtools to install a patched version of the software which resolves a bug unaddressed

by the authors, available at https://github.com/adamtongji/kma. The read_express function was used to load

expression quantification data output from eXpress, and the newIntronRetention function was used to detect intron

retention. Returned intron expression was scaled as Transcripts Per Million (TPM). We noted the recommended filters of

unique counts ≥ 3 and TPM ≥ 1 left just 7.2% of introns in iPSC versus 19% in HX1, so we used a less stringent filter

of unique counts ≥ 10 for both samples, which left 6437/14155 ≈ 45% of introns in iPSC and 5089/20484 ≈ 25% of

introns in HX1 (Fig. D.11).

4.2.11 IR quantification with iREAD

To run iREAD (v0.8.5) [294], a custom intron BED file was made from the GENCODE v35 primary assembly GTF file

using GTFtools (v0.6.9) [306]. The total number of mapped reads in each sorted STAR BAM alignment was determined
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using samtools, and used as input to the iREAD python script to detect intron retention. Intron expression was returned

scaled as FPKM. To identify the most likely RIs, we applied previously published filter recommendations for entropy

score (≥ 0.9) and junction reads (≥ 1). Since there were relatively few introns remaining after applying published

filters to the iPSC short-read data (313/19316 ≈ 1.6% vs. 583/7748 ≈ 7.5% in HX1), we applied lower filters for

FPKM (≥ 1 vs. ≥ 3) and read fragments (≥ 10 vs. ≥ 20) (Fig. D.11).

4.2.12 IR quantification with superintronic

To run superintronic (v0.99.4) [295], intronic and exonic regions were gathered from the GENCODE v35 primary

assembly GTF file [158] using the collect_parts function. The compute_coverage function was used to compute

coverage scores for each sample from sorted STAR BAM alignments, and the join_parts function was used to convert

these scores to per-feature coverage scores. Intron expression was returned as log2-scaled coverage, and we identified

retained intron ranges as those overlapping long read-normalized ranges with LWM ≥ 3, per the expressed introns filter

described in [295] (Fig. D.11).

4.2.13 IR quantification with IRFinder-S

We ran IRFinder-S v2.0-beta using the Docker image obtained from https://github.com/RitchieLabIGH/

IRFinder. We prepared the IRFinder reference files using the GENCODE v35 genome sequence reference and

intron annotations [158]. Our analyses focused on the coverage and IRratio metrics, and the intron expression profile

flags returned under warnings. Intron expression was returned as an IRratio, which is similar to Percent Spliced In (PSI),

and we identified likely retained introns as having IRratio ≥ 0.5 without any flags per the methods in [184] (Fig. D.11).

4.2.14 Harmonization of intron retention metrics across algorithms and runs

Prior to analysis, we harmonized algorithm outputs on intron ranges returned by analysis of available long read runs.

We harmonized intron expressions from short read RI detection tools to intron ranges remaining after long reads were

uniquely mapped to transcript isoforms. For each short-read RI detection tool, we calculated the region median intron

expression value after weighting values on overlapping range lengths (a.k.a. Length Weigthed Medians or “LWMs”).

Calculation of LWMs is shown for an example intron in Fig. D.17. Inter-rater agreement among the output from

different short-read algorithms was assessed by Fleiss’ kappa [307] using the R package irr v0.84.1.67 [308].

4.2.15 Calculation of performances by intron length bins

We calculated called RI performance metrics across five short-read tools for a series of overlapping intron length bins.

In total, 41 bins were calculated for each sample by sliding 300 bp-wide windows from 0 to 4300 bp lengths at 100 bp

intervals. Plots were generated by computing LOESS smooths of the binned performance results.
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4.2.16 Calculation of normalized binned coverages

We evaluated binned intron characteristics across intron truth metric categories for each sample. We assigned introns to

truth categories if they were recurrent in that category for ≥ 4 of 5 short-read tools (e.g., an intron that was recurrent TP

for four tools in iPSC, etc.). We then calculated the log10 median short-read coverage for 1,000 evenly spaced bins

per intron for each truth category. We further calculated percent of introns overlapping an exon for each bin by using

annotations from the GENCODE v35 GTF. Plots were generated by computing the LOESS smooths of the binned

results.

4.2.17 Comparison of detected RIs with circular RNA and validated RIs

We downloaded a database of human circular RNAs from circbase [309] (http://www.circbase.org/download/

hsa_hg19_circRNA.txt), most recently updated in 2017. We extracted all cRNA labeled with the “intronic” flag

in the annotation column and performed a liftover of genomic coordinates for these cRNAs from hg19 to GRCh38

using the UCSC Genome Browser liftover tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver). For each

sample, we determined the percent of introns overlapping at least one cRNA for the 4+ consensus truth metric groups

TP, FP, and FN (e.g., intron was TP in ≥ 4 tools, etc.)

In order to test introns in this study against experimentally validated RIs, we identified wet-lab studies in the

literature that had first predicted, and then validated intron retention. We identified 4 such studies [272, 310–312] that

validated a total of 9 RIs in our sets of target genes as defined above (5 and 7 in HX1 and iPSC respectively) (Table D.3).

(The above four plus an additional ten studies [264, 285, 313–320] experimentally validated RIs in an additional 6 and

9 genes that were found in our target gene sets for in HX1 and iPSC respectively, but without evidence of IR in our

samples, and 41 and 36 genes, respectively, that did not pass our sample coverage thresholds for inclusion in this study.)

The validated intron coordinates (Table D.3) were extracted either from the published intron number [272, 310, 311],

assuming a count from the gene’s 5’ to 3’ end, or via BLAT queries of the target sequence [312]. In each sample and

tool, we determined the truth status (TP, FP, TN, or FN) of all introns of all transcripts in the target gene for transcripts

with ≥ 5 long reads. Adequate intron expression information was available in both samples for the genes LBR, CELF1,

AB1G2, but only one sample each for remaining genes.

4.3 Results

4.3.1 Testing RI detection using sample-paired short- and deep long-read RNA-seq data

To generate a dataset to test RI detection, we identified two human biological specimens on the SRA with RNA-seq

data from both Illumina short-read and PacBio Iso-Seq RS II long-read platforms (Fig. 4.1). These were a HX1 [299]

and iPSC [298], with, respectively, 46 and 27 Iso-Seq runs, 24.4 and 91.3 million aligned short reads, and 945 and 840

thousand aligned long reads (Table D.1). To confine attention to robustly represented loci, we identified a set of 4,369
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and 4,639 target genes in HX1 and iPSC samples, respectively, each with ≥ 2 short reads per base median coverage

across the full gene length and ≥ 5 long reads assigned to at least one isoform of the gene (Fig. D.2).

We sought to quantify IR in each biological specimen using long-read data, accounting for random splicing

and sample contamination that may lead to noisy splicing patterns. For a given intron i and transcript t, we defined

persistence Pi,t as

Pi,t = di ·
∑
r∈Mt

Rr,i · SFr,i ·Hr,i

|M t|
, (16)

where r is a read among the set of all reads M t assigned as best matches to transcript t, information density di is the

proportion of M t covering intron i, the binary variable Rr,i is 1 if and only if r provides evidence for the retention of i,

and the spliced fraction SFr,i and scaled Hamming similarity Hr,i are defined in Section 4.2 (see Equations 14 and 15).

In brief, the intron persistence Pi,t incorporates the extent and similarity of splicing across transcript reads, accounting

for stochastic splicing initiation and progression (Fig. D.1). Finally, to address ambiguity in transcripts of origin in

short-read data, we defined intron i’s persistence Pi as the maximum persistence across all isoforms Ti that contain i:

Pi = max
t∈Ti

Pi,t . (17)

Going forward, we define a “persistent intron” as an intron for which Pi ≥ 0.1.

Across all transcripts studied in both samples, a substantial majority (83.7%) of introns were fully spliced out

(Pi,t = 0), and a small minority (0.15%) of introns were always unspliced within a transcript (Pi,t = 1) (Figs. D.5a

and D.3). These extreme values are in keeping with our qualitative understanding of splicing patterns; however, the

range of intermediate persistence values appears to represent a spectrum with varying extents of inconsistent splicing

across and between reads. While we tested short-read RI detection on a per-sample basis, we also compared intron

persistence patterns between HX1 and iPSC samples and found significant similarity in splicing patterns across matched

transcripts (Figs. D.3 and D.4).

4.3.2 Similarities of intron properties across short-read RI detection tool outputs

We compared RIs called by five tools for short-read data (Table 4.1). While most introns were consistently spliced

out, 39.9% (1,743/4,369) and 31.4% (1,457/4,639) of target genes in HX1 and iPSC, respectively, had at least one

RI identified in either short- or long-read data. Expression of called RIs varied substantially between tools in both

HX1 (Fleiss’ κ = 0.282) and iPSC (Fleiss’ κ = 0.162), though we did observe moderate overall correlation between

the output of IntEREst, superintronic, and KMA (Fig. D.6). Further, using circBase [309] to probe whether cRNA

contamination may have affected RI detection, we identified only a small percent (< 5%) of called RIs that appeared to

overlap intronic cRNAs (Fig. D.7).

We next examined the distributions of several intron properties (length, relative position in transcript, and annotated

exon overlap) and their relationships with the set of RIs called by each short-read tool and their relative expression levels

(Figs. D.5b and D.8). Unsurprisingly, tools that exclude introns with overlapping genomic features (i.e. KMA, IntEREst,
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Figure 4.1: Overview of experimental plan. Long and short read RNA-seq data from the same biological specimen [298,
299] were downloaded from the SRA and subject to processing and analysis. Short reads (left path) were aligned and
quantified according to the requirements of five short-read RI detection tools [184, 292–295], and retained introns were
called by each of these. The raw long Iso-Seq reads (right path) were processed to the stage of FLNC reads, but left
unclustered. After long reads were aligned to the reference genome, each aligned read was assigned to a best match
transcript or discarded, and intron persistence was calculated. The called RI output of each short read detection tool
was compared against the set of persistent introns identified in the long read data (where Pi ≥ 0.1). Created with
BioRender.com.
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Tool IRFinder-S
[184]

superintronic
[295]

iREAD [294] KMA [292] IntEREst [293]

Year 2021 2020 2020 2015 2018

IR measurea IRratio log coverage FPKM TPM FPKM or PSI

Language C++ R Python Python, R R

Host website GitHub GitHub GitHub GitHub Bioconductor

Sample data
format

BAM
or FASTQ

BAM BAM FASTQ BAM

Reference
format

GTF GTF/GFF3 BED FASTA,
GTF/GFF3

GTF/GFF3

Intron defini-
tion

All introns All introns Independent
intronsb

Independent
intronsb

Independent
intronsb

aSee Section 4.2 for measure definitions.
bIndependent introns are intron regions not overlapping features from other transcript isoforms.

Table 4.1: Short-read tools studied.

iREAD; Table 4.1) had exceedingly low overlap between exons and the IRs they reported. We also note that KMA and

IntEREst called extremely long RIs (up to > 297 kilobases), compared to those called by other short-read tools or the

persistent introns identified from long read data (maximum 6,275 and 5,926 bases in HX1 and iPSC). We observed a

slight overall 3’ bias among persistent introns from long-read data, as well as the set of RIs from several short-read

tools (Fig. D.5b), potentially reflecting the relatively shorter duration of exposure of 3’ introns to the cotranscriptional

splicing machinery and/or implicit 3’ bias of the Clontech sample prep [321] used in both samples [298, 299]. Despite

this slight 3’ tendency, there was no appreciable association between intron persistence and intron position in transcript

(Fig. D.9). Among all tools, IRFinder-S called a set of RIs with characteristics most similar to persistent introns from

long-read data (Fig. D.5b).

4.3.3 Precision and recall are poor across short-read RI detection tools

We tested performance (precision, recall, and F1-score) of RI detection by five short-read tools, comparing sets of

called RIs against persistent introns identified from long read data (defined as Pi ≥ 0.1). Overall tool performance

was poor in all cases (Fig. 4.2a, Table D.2). Many persistent introns (55% and 48% in iPSC and HX1, respectively,

Fig. D.10) were not called by any short-read tool, and the majority of called RIs were neither identified among persistent

introns in long-read data nor consistently called between short-read tools (Figs. 4.2c and D.10). In HX1 and iPSC,

respectively, 54% and 49% of called RIs were not called by more than one tool (52.4% overall). IRFinder-S had the best

performance across most metrics, possibly due to the similarity between the properties of its called RIs and properties

of persistent introns. By contrast, iREAD demonstrated the lowest recall across all tools, likely due to its sparse calling

of RIs (Fig. D.11). Performance metrics for IntEREst and KMA were very similar across both samples (Fig. 4.2b).
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Figure 4.2: (a) Short-read tool performance across different thresholds of intron persistence. Each panel displays tool
performance along the y-axis (measured by one of precision, recall, or F1-score as labeled) for a set of introns defined
by the indicated threshold for intron persistence along the x-axis. Data for HX1 and iPSC are shown at left and right,
respectively, with each tool’s per-sample performance depicted in a different color (IRFinder-S [red], superintronic
[yellow], iREAD [green], IntEREst [purple], and KMA [blue]). (b) Variation in short-read tool performance across
intron persistence thresholds for potential vs. called RIs. Each panel displays tool performance as measured by precision
(left), recall (middle), and F1-score (right) for HX1 (top) and iPSC (bottom) samples. The performances for each tool’s
potential RIs and called RIs are shown along the x- and y-axes, respectively, with centroid and whiskers denoting,
respectively, the median and interquartile range of tool performance across intron persistence thresholds. Each tool’s
performance is depicted in a different color (IRFinder-S [red], superintronic [yellow], iREAD [green], IntEREst [purple],
and KMA [blue]). Reference lines are shown with slope of 1. (c) Varying degrees of consensus of retained intron
calls among short-read tools. Bar plots depict the number of TP (green), FP (pink), and FN (blue) intron calls (y-axis)
consistent across a specified number of short-read tools (x-axis). Upper and lower panels depict HX1 and iPSC data,
respectively. LR denotes long-read data, SR denotes short-read data.
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To address sensitivity in persistent intron identification, we also considered short-read tool performance on subsets

of long-read introns with increasing minimum thresholds of intron persistence (Pi ≥ 0.1 to 0.9 in increments of 0.1).

We found that overall performance remained poor across all levels of intron persistence, with uniformly worse precision,

recall and F1-score as intron persistence increased (Figs. 4.2a and D.12). While individual tool performance varied

significantly, IRFinder-S and superintronic were consistently best performers, albeit interchangeably depending on the

sample, metric assessed, and intron persistence threshold. For instance, IRFinder-S demonstrated highest recall in HX1

at the lowest cutoff values (Pi ≥ 0.1 to 0.4), while superintronic demonstrated higher recall across higher thresholds in

HX1 and for all cutoffs in iPSC (Table D.2).

Finally, since each tool is capable of calling RIs with different levels of stringency, we evaluated tool performance

on a raw set of all potential RIs (all expressed introns detected by that tool) vs. the corresponding subset of introns

called as RIs by that tool. Rather than improving overall performance by retaining persistent RIs and removing false

positive ones, stringency filters improved precision at the expense of recall, with a slight corresponding improvement in

F1-score across tools (Fig. 4.2b, Supplementary File [supplementary_performance_data.xlsx]).

4.3.4 Short introns and introns that do not overlap exons are more reliably called

We next compared the distributions of six intronic properties (length, position, exonic overlap, splice site motifs, U2-

vs. U12-type spliceosomes, and uniformity of coverage by mapped reads) between the sets of TP, FP, and FN RIs

for each tool. Every tool except IRFinder-S had difficulty identifying shorter RIs (< 600 bases) (Figs. 4.3a and 4.3b).

FPs tended to be longer than either TPs or FNs, and were distributed more centrally within a transcript compared to

persistent introns (both TPs and FNs) across all tools (Figs. 4.3a and D.14). Further, there was a relative 3’ bias for the

small subset of FPs that were shared across all short-read tools, potentially reflective of the minimum coverage filters

for most tools combined with sequencing coverage bias [322] (Fig. D.14). As expected, the overwhelming majority of

introns across all tools had canonical GT-AG splice motifs and splicing by the U2 spliceosome, while FNs showed

increased frequencies of other motifs and spliceosome types relative to FPs and TPs (Fig. D.15).

We also probed how much distributional uniformity of mapped read coverage across an intron (coverage “flat-

ness” [184, 294]) and incidence of overlapping exons differed among TPs, FPs, and FNs. Coverage of FPs and to

a greater degree FNs was nonuniform, where coverage decreased roughly monotonically from 5’ to 3’ intron ends.

Coverage of TPs was comparatively uniform, where coverage was in general substantially lower than for FPs and

FNs (Fig. 4.3c, top two plots). Closer to their 5’ ends, FNs were distinguished by their tendency to overlap exons

(Fig. 4.3c, bottom two plots). Indeed, for superintronic, iREAD, KMA, and IntEREst, the majority of FNs appear to be

accounted for by overlapping exons (Fig. 4.3a). Overlapping exons may thus be a key obstacle to improving recall of

many short-read RI detection tools.
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Figure 4.3: (a) Distributions of properties of TP, FP, and FN RIs across short-read detection tools. Each panel displays
the boxplot distributions of intron length (top, log scale), relative position in transcript (middle), and % of intron
bases with overlapping annotated exons (bottom) for the output from each of five short-read tools (from left to right:
IRFinder-S, superintronic, iREAD, KMA, IntEREst). Y-axes correspond to intron properties as labeled, with each
boxplot along the x-axis corresponding to the TP (green, left boxes), FP (pink, middle boxes), and FN (blue, right
boxes) calls for HX1 (left) and iPSC (right). (b) Short-read tool performance as a function of intron length. Each panel
depicts the LOESS-smoothed precision (top), recall (middle), or F1-score (bottom) in either the HX1 (left) or iPSC
(right) sample across overlapping, sliding window intron length ranges (Section 4.2). Smooths are grouped and colored
by five short-read tools (red = IRFinder-S, yellow = superintronic, green = iREAD, purple = IntEREst, blue = KMA).
(c) Read coverage and exon overlap as a function of position within an intron. LOESS-smoothed short-read data (see
Section 4.2) show the median log10-scaled coverage (top row, y-axes) and fractions of introns with overlapping exons
(bottom row, y-axes) as a function of position (x-axis, 5’ → 3’ on positive strand) for HX1 (left column) and iPSC (right
column). Introns were grouped by truth category membership for at least 4/5 tools (colors, blue = FN, pink = FP, green
= TP).
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Figure 4.4: Short-read tool performance across nine genes with experimentally validated RIs. Comparison of short-read
tool called RIs with introns detected in long-read data are shown as a pair of matrices for each of nine genes (AP1G2,
CELF1, LBR, CLASRP, CTSD, SRSF7, IGSF8, FAHD2A, and FAHD2B). The rows in each matrix correspond to the
results from each of five short-read tools (from top to bottom: 1: IntEREst, 2: iREAD, 3:IRFinder-S, 4: superintronic, 5:
KMA) applied to either HX1 (top) or iPSC (bottom) data; columns correspond to all introns found across all annotated
transcript isoforms of the indicated gene, ordered by left and then right genomic coordinates. Each cell in the matrix
depicts the presence or absence of an intron in short-read and/or long-read data as a TP (green), FN (blue), FP (pink),
and TN (peach) assessment; white boxes indicate introns found only in transcripts with < 5 assigned long reads. Black
outlines indicate the experimentally validated RI(s) in each gene.
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4.3.5 Persistent introns or called RIs occur in genes with experimentally validated IR

Finally, we searched the literature and third-party resources for independent evidence of persistent introns appearing in

the HX1 and iPSC samples studied here. We examined RI presence in 9 genes (5 in HX1 and 7 in iPSC) that have

experimentally validated IR from a variety of cell types and tissues (Table D.3) [272, 310–312]. We found that intron

retention across these 9 genes varied substantially by sample (no TP introns were observed in both HX1 and iPSC)

(Fig. 4.4). We also found significant variation between the set of RIs in these genes called by different short-read

tools, with only a single TP intron in IGSF8 identified across all tools for iPSC (Fig. D.16). Interestingly, the genes

SRSF7 [279, 323] and AP1G253 [324] appear to be generally enriched for persistent introns, potentially consistent with

post-transcriptional splicing [261, 325].

4.4 Discussion and Conclusion

This is the first study to evaluate the quality of short-read RI detection using short- and long-read RNA-seq data from

the same biological specimen. This study also establishes a novel metric capturing the persistence of an intron in a

transcript as it is processed using deep long read RNA-seq, and it is the first to interrogate the potential effects of

splicing progression during transcript processing and spurious sources of intronic sequence. We find that short-read

tools detect IR with poor recall and even worse precision, calling into question the completeness and validity of a large

percentage of putatively retained introns called by commonly used methods. While our results indicate that it may be

possible to improve precision slightly by applying expression filters to potential RIs, this appears to come at significant

expense to recall.

This work raises fundamental questions regarding how results from short-read RI detection tools should be

interpreted. We have taken IR to mean the persistence of an intron in a transcript after processing is complete, in

alignment with the biological literature on IR. Short-read RI detection tools are commonly thought to identify such

retained introns, with the assumption that poly(A) selection is sufficient to guarantee fully spliced and mature transcripts

for sequencing; however, these tools are not inherently designed to distinguish intron retention from contaminating

events such as partial transcript processing. This disconnect between how tool developers and tool users employ the

same language may be responsible for false assertions in the published literature about which introns are retained. We

note, for instance, that the prediction of putative neoepitopes arising from IR [286–290] requires confidence in the

detection of stable, persistent IR with a high likelihood of translation and a low likelihood of undergoing NMD, none of

which is assured by short-read RI detection tools.

Limitations of this work include the small number of biological specimens with matched short and deep long

read RNA-seq available in the public domain, the lack of replicates of short-read RNA-seq data in this setting, and the

limited depth of the long read sequencing data. As a result, we were unable to study the patterns of IR across tissue type

and other distinguishing sample characteristics. We confined attention to introns that occur in genes with high coverage

in both short and long read data, and did not address either confidence in IR as a function of read depth or systematic
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biases in gene coverage as a function of sequencing platform. While an improvement, our intron persistence metric only

partially accounts for admixed splicing patterns from different cell types in a mixed-cell sample such as HX1. Like other

RI detection studies [270–272, 280, 286, 289, 297], our approach is explicitly linked to annotation (here, GENCODE

v35) and therefore reports IR only relative to annotated transcripts, ignoring potential unannotated transcripts. We

also did not explore the entanglement of biological and technical effects in the length of persistent introns: shorter

introns are more likely to be retained [297, 326, 327], but the length limit of PacBio Iso-Seq reads of up to 10 kilobases

means that any molecules with longer persistent introns were not considered in this study. Furthermore, we calculated

length-weighted median expression to harmonize short-read tool outputs to long-read intron ranges (Fig. D.17), and this

stringent approach may have inflated false negative rates in regions returning high expression magnitudes and variances.

Finally, we were only able to evaluate a small subset of the tools available for short read-based RI detection, as many of

these tools harbor substantial software implementation and reproducibility challenges.

While there is evidence for cytoplasmic splicing, the phenomenon is rare in many tissues and cell types [264–267].

It may be worth exploring the extent to which sequencing only cytoplasmic RNAs focuses attention on fully processed

RNA transcripts in future work.
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5 Conclusions and future directions

5.1 Key findings from analyses of public omics data

We analyzed public DNAm array data and RNA-seq data in novel cross-study analyses, and this lead us to several useful

insights. In Section 2.3.10 we reported CpG probes with low DNAm variances across tissues, and these could be filtered

to boost power in future EWAS studying differential DNAm across seven normal tissues. Further, in Section 2.3.11

we reported CpG probes with high tissue-specific variances, and these could be important for showing tissue-specific

DNAm patterns in future EWAS. Further, Section 3.3.2 studied the impact of two types of linear adjustments on study

ID bias across tens of thousands of simulations. We found a uniform study ID bias adjustment across all available

studies is justified, reduced total explained variance, and increased fractional explained variances from biological and

demographic variables.

We used public sample-matched short-read and long-read RNA-seq data to study the reliability of RI’s called

from short-read data. We developed and published conda [183] environments (Appendix A.5) which allowed us to

run five tools for RI detection: IntEREst, KMA, iREAD, superintronic, and IRFinder-S. We further described intron

characteristics which help explain whether they are reliably called in both short-read and long-read data, including

length and exon overlap (Section 4.3.2). These findings can inform the fine-tuning and design of RI detection tools for

short-read data in the future. In summary, the above findings show applications of omics data from the SRA and GEO,

which can inform future experiment planning and provide and novel cross-study analyses.

5.2 Resources for future analyses

This dissertation presents several resources which can aid experiment design and future analyses of public omics

datasets. First, for DNAm arrays, we compiled and uniformly processed all public samples with available raw data

for HM450K and EPIC, the two most prevalent DNAm array platform types. These compilations feature uniformly

processed and harmonized sample metadata with DNAm array data provided as raw color intensity signals, normalized

M and U signals, and normalized Beta-value fractions, respectively. We provided compiled data in the HDF5 file

format, which uses chunking and compression and has broad support across many programming environments. We also

provided compiled data as HDF5-SummarizedExperiment hybrid objects, which combined the benefits of HDF5 and

SummarizedExperiment filetypes for the benefit of R/Bioconductor users.

We supported use of these comprehensive DNAm array data compilations with the recountmethylation [38]

Bioconductor package. Early versions of this package provided key functions to download and query large DNAm array

data compilation files. We initially compiled data from tens of thousands of samples run using the HM450K platform.

With periodic updates over the course of almost two years, we expanded compiled data to include more recent samples

and to add samples processed using the newer EPIC platform. We provided vignettes showing key cross-study analyses,

how to perform simulation-based power analyses using the pwrEWAS [181, 182] method, how to infer genetic ancestry

from DNAm data using the GLINT [32] software, and more. We also added support for preprocessing, including
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functions supporting Illumina’s BeadArray tests [74] as well as signal threshold cutoffs [27], and we made several lists

of cross-reactive probes available to use in probe quality filters [47, 328].

5.3 Analysis extensions

While we identified high-confidence biomarker candidates of differential DNAm for sex and gestational age, these

remain to be experimentally and orthogonally validated such as with targeted methylite or pyrosequencing assays [130–

132]. These integrative analyses can help elucidate the underlying mechanisms and potential biological impact of these

differentially methylated sites [92].

The recountmethylation Bioconductor package and associated data compilations can be expanded on in several

ways. First, key analyses from Section 3 performed in blood samples can be explored for other prevalent tissues such

as brain. These analyses should also be pursued for disease tissues such as cancer, for which specific normalization

and quality assurance practices likely necessary. Further, support for DNAm array data compilations can be extended

to include WGBS and other bisulfite sequencing data types made available in the SRA. Bisulfite sequencing data is

typically higher-resolution than DNAm array platforms, and it has the added benefit of showing the phased states of

CpGs sharing a single DNA strand. Bisulfite sequencing data could either be analyzed asynchronously with arrays (e.g.

with separate discovery and validation experiments) or harmonized with arrays and analyzed together as a larger data

compilation.

The reliability of RI detection tools can be further studied with new sample-matched RNA-seq data as it becomes

available in the SRA. It is possible that additional sample-matched data is available in the SRA but not adequately

identifiable from metadata, and thus improved methods of mapping, harmonizing, and querying SRA metadata could

lead to expanded sample sizes for future analyses. Further, our results and approach to analyze sample-matched data

could be used to fine-tune and improve the capabilities of existing RI detection tools or to inform development of

altogether new tools. If recent progress developing the IRFinder-S algorithm is any indication, future resources will

make greater use of machine learning methods [184].

5.4 Future applications

It will be important for future cross-study analyses to approach hypothesis testing systematically and with a mind

to prior work. While it may appear at the outset that there is an extremely large set of possible studies that can be

performed, a small subset of possible approaches are probably useful in practice. This is partly because it can be

challenging to correct for noise, artifacts, and technical bias across studies, and there is need for expanded efforts to

benchmark bias correction practices for cross-study analyses. It will further be important to weigh the relative cost

and benefit of more numerous samples from heterogeneous sources, although it seems likely that cross-study analyses

should be considered as an alternative to meta-analyses as more raw data becomes available, methods for metadata

harmonization improve, and awareness of the utility of public omics data becomes more widespread.
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The concept of reproducible research is central to science. As with other computational endeavors, future analyses

of public omics data will continue to benefit from tools and practices that promote reproducibility. Tools such as virtual

environments, containers, workflows, and programming notebooks will be used to ensure code is runnable by computers.

Thorough methods reporting, transparent methods, open-access code, and verbose comments and docstrings will further

help to ensure code is parsable by humans. More dynamic ways of approaching computational problems are likely to

save considerable time and effort between projects. The concept of continuous results was recently proposed as a novel

research approach [329]. Continuous results is a dynamic idea that considers hypothesis testing as continual process

rather than static practice. This shift in focus could be key to driving new insights in a more automated, and therefore

reproducible, manner. Thus reproducible research will endure as a useful standard to strive for and formalize to the

ultimate benefit of researchers and the greater community alike.
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[82] O. Bogdanović and R. Lister, “DNA methylation and the preservation of cell identity,” eng, Current Opinion in

Genetics & Development, vol. 46, pp. 9–14, Oct. 2017, ISSN: 1879-0380. DOI: 10.1016/j.gde.2017.06.

007.

[83] Y. Zeng and T. Chen, “DNA Methylation Reprogramming during Mammalian Development,” en, Genes,

vol. 10, no. 4, p. 257, Apr. 2019, ISSN: 2073-4425. DOI: 10.3390/genes10040257. [Online]. Available:

https://www.mdpi.com/2073-4425/10/4/257 (visited on 04/23/2022).

[84] C. Ambrosi, M. Manzo, and T. Baubec, “Dynamics and Context-Dependent Roles of DNA Methylation,”

eng, Journal of Molecular Biology, vol. 429, no. 10, pp. 1459–1475, May 2017, ISSN: 1089-8638. DOI:

10.1016/j.jmb.2017.02.008.

[85] C. Tomasetti and B. Vogelstein, “Variation in cancer risk among tissues can be explained by the number of

stem cell divisions,” Science (New York, N.Y.), vol. 347, no. 6217, pp. 78–81, Jan. 2015, ISSN: 0036-8075. DOI:

84

https://doi.org/10.1101/gad.2037511
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093116/
https://doi.org/10.1186/s13148-017-0409-4
https://doi.org/10.1186/s13148-017-0409-4
https://doi.org/10.1073/pnas.052410099
https://doi.org/10.1073/pnas.81.9.2806
https://doi.org/10.1101/cshperspect.a019406
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355265/
https://doi.org/10.1038/2413
https://doi.org/10.1038/298623a0
https://www.nature.com/articles/298623a0
https://doi.org/10.1016/j.gde.2017.06.007
https://doi.org/10.1016/j.gde.2017.06.007
https://doi.org/10.3390/genes10040257
https://www.mdpi.com/2073-4425/10/4/257
https://doi.org/10.1016/j.jmb.2017.02.008


10.1126/science.1260825. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC4446723/ (visited on 04/23/2022).

[86] Z. Yang et al., “Correlation of an epigenetic mitotic clock with cancer risk,” Genome Biology, vol. 17, Oct.

2016, ISSN: 1474-7596. DOI: 10.1186/s13059-016-1064-3. [Online]. Available: https://www.ncbi.

nlm.nih.gov/pmc/articles/PMC5046977/ (visited on 03/15/2018).

[87] C. G. Bell et al., “DNA methylation aging clocks: Challenges and recommendations,” Genome Biology,

vol. 20, p. 249, Nov. 2019, ISSN: 1474-7596. DOI: 10.1186/s13059-019-1824-y. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6876109/ (visited on 04/23/2022).

[88] E. M. Michalak, M. L. Burr, A. J. Bannister, and M. A. Dawson, “The roles of DNA, RNA and histone

methylation in ageing and cancer,” eng, Nature Reviews. Molecular Cell Biology, vol. 20, no. 10, pp. 573–589,

Oct. 2019, ISSN: 1471-0080. DOI: 10.1038/s41580-019-0143-1.

[89] K. Bacos et al., “Blood-based biomarkers of age-associated epigenetic changes in human islets associate

with insulin secretion and diabetes,” Nature Communications, vol. 7, p. 11 089, Mar. 2016, ISSN: 2041-1723.

DOI: 10.1038/ncomms11089. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC4821875/ (visited on 01/12/2022).

[90] T. Dayeh et al., “DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated

with future type 2 diabetes risk,” Epigenetics, vol. 11, no. 7, pp. 482–488, May 2016, ISSN: 1559-2294. DOI:

10.1080/15592294.2016.1178418. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC4939923/ (visited on 01/12/2022).

[91] M. Samblas, F. I. Milagro, and A. Martínez, “DNA methylation markers in obesity, metabolic syndrome, and

weight loss,” Epigenetics, vol. 14, no. 5, pp. 421–444, Mar. 2019, ISSN: 1559-2294. DOI: 10.1080/15592294.

2019.1595297. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6557553/

(visited on 01/12/2022).

[92] M. Yu et al., “Subtypes of Barrett’s oesophagus and oesophageal adenocarcinoma based on genome-wide

methylation analysis,” eng, Gut, Jun. 2018, ISSN: 1468-3288. DOI: 10.1136/gutjnl-2017-314544.

[93] Z. Guan, H. Yu, K. Cuk, Y. Zhang, and H. Brenner, “Whole-Blood DNA Methylation Markers in Early

Detection of Breast Cancer: A Systematic Literature Review,” en, Cancer Epidemiology and Prevention

Biomarkers, vol. 28, no. 3, pp. 496–505, Mar. 2019, ISSN: 1055-9965, 1538-7755. DOI: 10.1158/1055-

9965.EPI-18-0378. [Online]. Available: https://cebp.aacrjournals.org/content/28/3/496

(visited on 01/12/2022).

[94] C. S. Danstrup, M. Marcussen, I. S. Pedersen, H. Jacobsen, K. Dybkær, and M. Gaihede, “DNA methylation

biomarkers in peripheral blood of patients with head and neck squamous cell carcinomas. A systematic

review,” en, PLOS ONE, vol. 15, no. 12, e0244101, Dec. 2020, ISSN: 1932-6203. DOI: 10.1371/journal.

pone.0244101. [Online]. Available: https://journals.plos.org/plosone/article?id=10.1371/

journal.pone.0244101 (visited on 01/12/2022).

85

https://doi.org/10.1126/science.1260825
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446723/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446723/
https://doi.org/10.1186/s13059-016-1064-3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5046977/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5046977/
https://doi.org/10.1186/s13059-019-1824-y
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6876109/
https://doi.org/10.1038/s41580-019-0143-1
https://doi.org/10.1038/ncomms11089
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821875/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821875/
https://doi.org/10.1080/15592294.2016.1178418
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939923/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939923/
https://doi.org/10.1080/15592294.2019.1595297
https://doi.org/10.1080/15592294.2019.1595297
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6557553/
https://doi.org/10.1136/gutjnl-2017-314544
https://doi.org/10.1158/1055-9965.EPI-18-0378
https://doi.org/10.1158/1055-9965.EPI-18-0378
https://cebp.aacrjournals.org/content/28/3/496
https://doi.org/10.1371/journal.pone.0244101
https://doi.org/10.1371/journal.pone.0244101
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244101
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244101


[95] S. D. Henriksen and O. Thorlacius-Ussing, “Cell-Free DNA Methylation as Blood-Based Biomarkers for

Pancreatic Adenocarcinoma—A Literature Update,” en, Epigenomes, vol. 5, no. 2, p. 8, Jun. 2021. DOI:

10.3390/epigenomes5020008. [Online]. Available: https://www.mdpi.com/2075- 4655/5/2/8

(visited on 01/12/2022).

[96] S. Ø. Jensen et al., “Novel DNA methylation biomarkers show high sensitivity and specificity for blood-based

detection of colorectal cancer—a clinical biomarker discovery and validation study,” Clinical Epigenetics,

vol. 11, no. 1, p. 158, Nov. 2019, ISSN: 1868-7083. DOI: 10.1186/s13148-019-0757-3. [Online]. Available:

https://doi.org/10.1186/s13148-019-0757-3 (visited on 01/12/2022).

[97] L. Dong and H. Ren, “Blood-based DNA Methylation Biomarkers for Early Detection of Colorectal Cancer,”

Journal of proteomics & bioinformatics, vol. 11, no. 6, pp. 120–126, 2018, ISSN: 0974-276X. DOI: 10.4172/

jpb.1000477. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6054487/

(visited on 01/12/2022).

[98] M. Alizadeh-Sedigh, M. S. Fazeli, H. Mahmoodzadeh, S. B. Sharif, and L. Teimoori-Toolabi, “Methylation of

FBN1, SPG20, ITF2, RUNX3, SNCA, MLH1, and SEPT9 genes in circulating cell-free DNA as biomarkers of

colorectal cancer,” eng, Cancer Biomarkers: Section A of Disease Markers, Dec. 2021, ISSN: 1875-8592. DOI:

10.3233/CBM-210315.

[99] W.-H. Lin et al., “Circulating tumor DNA methylation marker MYO1-G for diagnosis and monitoring of

colorectal cancer,” eng, Clinical Epigenetics, vol. 13, no. 1, p. 232, Dec. 2021, ISSN: 1868-7083. DOI: 10.

1186/s13148-021-01216-0.

[100] “Discovery of methylated circulating DNA biomarkers for comprehensive non-invasive monitoring of treatment

response in metastatic colorectal cancer,” vol. 67, pp. 1995–2005, 2018, ISSN: 0017-5749. DOI: 10.1136/

gutjnl-2016-313372. [Online]. Available: https://gut.bmj.com/content/67/11/1995.

[101] Y. N. Lamb and S. Dhillon, “Epi proColon® 2.0 CE: A Blood-Based Screening Test for Colorectal Cancer,” en,

Molecular Diagnosis & Therapy, vol. 21, no. 2, pp. 225–232, Apr. 2017, ISSN: 1179-2000. DOI: 10.1007/

s40291-017-0259-y. [Online]. Available: https://doi.org/10.1007/s40291-017-0259-y (visited

on 04/07/2022).

[102] T. Nagasaka et al., “Analysis of fecal DNA methylation to detect gastrointestinal neoplasia,” eng, Journal of

the National Cancer Institute, vol. 101, no. 18, pp. 1244–1258, Sep. 2009, ISSN: 1460-2105. DOI: 10.1093/

jnci/djp265.

[103] Y. Hashimoto, T. J. Zumwalt, and A. Goel, “DNA methylation patterns as noninvasive biomarkers and targets of

epigenetic therapies in colorectal cancer,” Epigenomics, vol. 8, no. 5, pp. 685–703, May 2016, ISSN: 1750-1911.

DOI: 10.2217/epi-2015-0013. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC4928499/ (visited on 04/07/2022).

[104] B. Planterose Jiménez, M. Kayser, and A. Vidaki, “Revisiting genetic artifacts on DNA methylation microarrays

exposes novel biological implications,” Genome Biology, vol. 22, no. 1, p. 274, Sep. 2021, ISSN: 1474-760X.

86

https://doi.org/10.3390/epigenomes5020008
https://www.mdpi.com/2075-4655/5/2/8
https://doi.org/10.1186/s13148-019-0757-3
https://doi.org/10.1186/s13148-019-0757-3
https://doi.org/10.4172/jpb.1000477
https://doi.org/10.4172/jpb.1000477
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6054487/
https://doi.org/10.3233/CBM-210315
https://doi.org/10.1186/s13148-021-01216-0
https://doi.org/10.1186/s13148-021-01216-0
https://doi.org/10.1136/gutjnl-2016-313372
https://doi.org/10.1136/gutjnl-2016-313372
https://gut.bmj.com/content/67/11/1995
https://doi.org/10.1007/s40291-017-0259-y
https://doi.org/10.1007/s40291-017-0259-y
https://doi.org/10.1007/s40291-017-0259-y
https://doi.org/10.1093/jnci/djp265
https://doi.org/10.1093/jnci/djp265
https://doi.org/10.2217/epi-2015-0013
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4928499/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4928499/


DOI: 10.1186/s13059-021-02484-y. [Online]. Available: https://doi.org/10.1186/s13059-021-

02484-y (visited on 04/18/2022).

[105] H. Pohl, B. Sirovich, and H. G. Welch, “Esophageal adenocarcinoma incidence: Are we reaching the peak?”

eng, Cancer Epidemiology, Biomarkers & Prevention: A Publication of the American Association for Cancer

Research, Cosponsored by the American Society of Preventive Oncology, vol. 19, no. 6, pp. 1468–1470, Jun.

2010, ISSN: 1538-7755. DOI: 10.1158/1055-9965.EPI-10-0012.

[106] M. F. Buas and T. L. Vaughan, “Epidemiology and risk factors for gastroesophageal junction tumors: Under-

standing the rising incidence of this disease,” eng, Seminars in Radiation Oncology, vol. 23, no. 1, pp. 3–9, Jan.

2013, ISSN: 1532-9461. DOI: 10.1016/j.semradonc.2012.09.008.

[107] C.-A. J. Ong, P. Lao-Sirieix, and R. C. Fitzgerald, “Biomarkers in Barrett’s esophagus and esophageal

adenocarcinoma: Predictors of progression and prognosis,” World Journal of Gastroenterology : WJG, vol. 16,

no. 45, pp. 5669–5681, Dec. 2010, ISSN: 1007-9327. DOI: 10.3748/wjg.v16.i45.5669. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2997982/ (visited on 04/18/2022).

[108] H. Chettouh et al., “Methylation panel is a diagnostic biomarker for Barrett’s oesophagus in endoscopic

biopsies and non-endoscopic cytology specimens,” eng, Gut, vol. 67, no. 11, pp. 1942–1949, Nov. 2018, ISSN:

1468-3288. DOI: 10.1136/gutjnl-2017-314026.

[109] M. A. Alvi et al., “DNA methylation as an adjunct to histopathology to detect prevalent, inconspicuous

dysplasia and early-stage neoplasia in Barrett’s esophagus,” eng, Clinical Cancer Research: An Official Journal

of the American Association for Cancer Research, vol. 19, no. 4, pp. 878–888, Feb. 2013, ISSN: 1557-3265.

DOI: 10.1158/1078-0432.CCR-12-2880.

[110] Z. Wang et al., “Methylation Biomarker Panel Performance in EsophaCap Cytology Samples for Diagnosing

Barrett’s Esophagus: A Prospective Validation Study,” eng, Clinical Cancer Research: An Official Journal of

the American Association for Cancer Research, vol. 25, no. 7, pp. 2127–2135, Apr. 2019, ISSN: 1557-3265.

DOI: 10.1158/1078-0432.CCR-18-3696.

[111] P. G. Iyer et al., “Highly Discriminant Methylated DNA Markers for the Non-endoscopic Detection of Barrett’s

Esophagus,” eng, The American Journal of Gastroenterology, vol. 113, no. 8, pp. 1156–1166, Aug. 2018, ISSN:

1572-0241. DOI: 10.1038/s41395-018-0107-7.

[112] H. R. Moinova et al., “Identifying DNA methylation biomarkers for non-endoscopic detection of Barrett’s

esophagus,” eng, Science Translational Medicine, vol. 10, no. 424, eaao5848, Jan. 2018, ISSN: 1946-6242. DOI:

10.1126/scitranslmed.aao5848.

[113] G. Hannum et al., “Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates,”

English, Molecular Cell, vol. 49, no. 2, pp. 359–367, Jan. 2013, ISSN: 1097-2765. DOI: 10.1016/j.molcel.

2012.10.016. [Online]. Available: https://www.cell.com/molecular-cell/abstract/S1097-

2765(12)00893-3 (visited on 02/07/2020).

87

https://doi.org/10.1186/s13059-021-02484-y
https://doi.org/10.1186/s13059-021-02484-y
https://doi.org/10.1186/s13059-021-02484-y
https://doi.org/10.1158/1055-9965.EPI-10-0012
https://doi.org/10.1016/j.semradonc.2012.09.008
https://doi.org/10.3748/wjg.v16.i45.5669
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2997982/
https://doi.org/10.1136/gutjnl-2017-314026
https://doi.org/10.1158/1078-0432.CCR-12-2880
https://doi.org/10.1158/1078-0432.CCR-18-3696
https://doi.org/10.1038/s41395-018-0107-7
https://doi.org/10.1126/scitranslmed.aao5848
https://doi.org/10.1016/j.molcel.2012.10.016
https://doi.org/10.1016/j.molcel.2012.10.016
https://www.cell.com/molecular-cell/abstract/S1097-2765(12)00893-3
https://www.cell.com/molecular-cell/abstract/S1097-2765(12)00893-3


[114] T. Wang et al., “Dysfunctional epigenetic aging of the normal colon and colorectal cancer risk,” Clinical

Epigenetics, vol. 12, no. 1, p. 5, Jan. 2020, ISSN: 1868-7083. DOI: 10.1186/s13148-019-0801-3. [Online].

Available: https://doi.org/10.1186/s13148-019-0801-3 (visited on 02/07/2020).

[115] A. K. Knight et al., “An epigenetic clock for gestational age at birth based on blood methylation data,” Genome

Biology, vol. 17, no. 1, p. 206, Oct. 2016, ISSN: 1474-760X. DOI: 10.1186/s13059-016-1068-z. [Online].

Available: https://doi.org/10.1186/s13059-016-1068-z (visited on 03/01/2022).

[116] J. Bohlin et al., “Prediction of gestational age based on genome-wide differentially methylated regions,”

Genome Biology, vol. 17, no. 1, p. 207, Oct. 2016, ISSN: 1474-760X. DOI: 10.1186/s13059-016-1063-4.

[Online]. Available: https://doi.org/10.1186/s13059-016-1063-4 (visited on 03/01/2022).

[117] Y. Lee et al., “Placental epigenetic clocks: Estimating gestational age using placental DNA methylation levels,”

Aging (Albany NY), vol. 11, no. 12, pp. 4238–4253, Jun. 2019, ISSN: 1945-4589. DOI: 10.18632/aging.

102049. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628997/ (visited

on 03/01/2022).

[118] R. Fung et al., “Achieving accurate estimates of fetal gestational age and personalised predictions of fetal growth

based on data from an international prospective cohort study: A population-based machine learning study,” The

Lancet. Digital Health, vol. 2, no. 7, e368–e375, Jun. 2020, ISSN: 2589-7500. DOI: 10.1016/S2589-7500(20)

30131-X. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7323599/ (visited

on 03/10/2022).

[119] S. K. Merid et al., “Epigenome-wide meta-analysis of blood DNA methylation in newborns and children

identifies numerous loci related to gestational age,” Genome Medicine, vol. 12, Mar. 2020, ISSN: 1756-994X.

DOI: 10.1186/s13073-020-0716-9. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC7050134/ (visited on 08/25/2020).

[120] Z. V. Ogneva, A. S. Dubrovina, and K. V. Kiselev, “Age-associated alterations in DNA methylation and

expression of methyltransferase and demethylase genes in Arabidopsis thaliana,” en, Biologia Plantarum,

vol. 60, no. 4, pp. 628–634, Dec. 2016, ISSN: 1573-8264. DOI: 10.1007/s10535-016-0638-y. [Online].

Available: https://doi.org/10.1007/s10535-016-0638-y (visited on 04/18/2022).

[121] G. S. Wilkinson et al., “DNA methylation predicts age and provides insight into exceptional longevity of bats,”

en, Nature Communications, vol. 12, no. 1, p. 1615, Mar. 2021, ISSN: 2041-1723. DOI: 10.1038/s41467-

021-21900-2. [Online]. Available: https://www.nature.com/articles/s41467-021-21900-2

(visited on 04/18/2022).

[122] M. Frommer et al., “A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues

in individual DNA strands.,” Proceedings of the National Academy of Sciences of the United States of America,

vol. 89, no. 5, pp. 1827–1831, Mar. 1992, ISSN: 0027-8424. [Online]. Available: https://www.ncbi.nlm.

nih.gov/pmc/articles/PMC48546/ (visited on 04/25/2022).

88

https://doi.org/10.1186/s13148-019-0801-3
https://doi.org/10.1186/s13148-019-0801-3
https://doi.org/10.1186/s13059-016-1068-z
https://doi.org/10.1186/s13059-016-1068-z
https://doi.org/10.1186/s13059-016-1063-4
https://doi.org/10.1186/s13059-016-1063-4
https://doi.org/10.18632/aging.102049
https://doi.org/10.18632/aging.102049
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628997/
https://doi.org/10.1016/S2589-7500(20)30131-X
https://doi.org/10.1016/S2589-7500(20)30131-X
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7323599/
https://doi.org/10.1186/s13073-020-0716-9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050134/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050134/
https://doi.org/10.1007/s10535-016-0638-y
https://doi.org/10.1007/s10535-016-0638-y
https://doi.org/10.1038/s41467-021-21900-2
https://doi.org/10.1038/s41467-021-21900-2
https://www.nature.com/articles/s41467-021-21900-2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC48546/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC48546/


[123] C. A. Leontiou, M. D. Hadjidaniel, P. Mina, P. Antoniou, M. Ioannides, and P. C. Patsalis, “Bisulfite Conversion

of DNA: Performance Comparison of Different Kits and Methylation Quantitation of Epigenetic Biomarkers

that Have the Potential to Be Used in Non-Invasive Prenatal Testing,” PLoS ONE, vol. 10, no. 8, e0135058,

Aug. 2015, ISSN: 1932-6203. DOI: 10.1371/journal.pone.0135058. [Online]. Available: https://www.

ncbi.nlm.nih.gov/pmc/articles/PMC4527772/ (visited on 04/25/2022).

[124] F. K. Crary-Dooley, M. E. Tam, K. W. Dunaway, I. Hertz-Picciotto, R. J. Schmidt, and J. M. LaSalle, “A

comparison of existing global DNA methylation assays to low-coverage whole-genome bisulfite sequencing

for epidemiological studies,” Epigenetics, vol. 12, no. 3, pp. 206–214, Jan. 2017, ISSN: 1559-2294. DOI:

10.1080/15592294.2016.1276680. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC5406214/ (visited on 04/18/2022).

[125] S. G. Zhao et al., “The DNA methylation landscape of advanced prostate cancer,” eng, Nature Genetics, vol. 52,

no. 8, pp. 778–789, Aug. 2020, ISSN: 1546-1718. DOI: 10.1038/s41588-020-0648-8.

[126] M. J. Ziller, K. D. Hansen, A. Meissner, and M. J. Aryee, “Coverage recommendations for methylation analysis

by whole-genome bisulfite sequencing,” eng, Nature Methods, vol. 12, no. 3, 230–232, 1 p following 232, Mar.

2015, ISSN: 1548-7105. DOI: 10.1038/nmeth.3152.

[127] Q. Li, P. J. Hermanson, and N. M. Springer, “Detection of DNA Methylation by Whole-Genome Bisulfite

Sequencing,” eng, Methods in Molecular Biology (Clifton, N.J.), vol. 1676, pp. 185–196, 2018, ISSN: 1940-

6029. DOI: 10.1007/978-1-4939-7315-6_11.

[128] J. Guo et al., “Dysregulation of CXCL14 promotes malignant phenotypes of esophageal squamous carcinoma

cells via regulating SRC and EGFR signaling,” eng, Biochemical and Biophysical Research Communications,

vol. 609, pp. 75–83, Apr. 2022, ISSN: 1090-2104. DOI: 10.1016/j.bbrc.2022.03.144.

[129] M. Good et al., “Selective hypermethylation is evident in small intestine samples from infants with necrotizing

enterocolitis,” eng, Clinical Epigenetics, vol. 14, no. 1, p. 49, Apr. 2022, ISSN: 1868-7083. DOI: 10.1186/

s13148-022-01266-y.

[130] J. Tost and I. G. Gut, “DNA methylation analysis by pyrosequencing,” eng, Nature Protocols, vol. 2, no. 9,

pp. 2265–2275, 2007, ISSN: 1750-2799. DOI: 10.1038/nprot.2007.314.

[131] C. A. Eads et al., “MethyLight: A high-throughput assay to measure DNA methylation,” Nucleic Acids Research,

vol. 28, no. 8, e32, Apr. 2000, ISSN: 0305-1048. [Online]. Available: https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC102836/ (visited on 04/18/2022).

[132] H.-C. Wu, Q. Wang, L. Delgado-Cruzata, R. M. Santella, and M. B. Terry, “Genomic Methylation Changes

Over Time in Peripheral Blood Mononuclear Cell DNA: Differences by Assay Type and Baseline Values,”

Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer

Research, cosponsored by the American Society of Preventive Oncology, vol. 21, no. 8, pp. 1314–1318,

Aug. 2012, ISSN: 1055-9965. DOI: 10.1158/1055- 9965.EPI- 12-0300. [Online]. Available: https:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC4032622/ (visited on 04/18/2022).

89

https://doi.org/10.1371/journal.pone.0135058
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4527772/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4527772/
https://doi.org/10.1080/15592294.2016.1276680
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5406214/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5406214/
https://doi.org/10.1038/s41588-020-0648-8
https://doi.org/10.1038/nmeth.3152
https://doi.org/10.1007/978-1-4939-7315-6_11
https://doi.org/10.1016/j.bbrc.2022.03.144
https://doi.org/10.1186/s13148-022-01266-y
https://doi.org/10.1186/s13148-022-01266-y
https://doi.org/10.1038/nprot.2007.314
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC102836/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC102836/
https://doi.org/10.1158/1055-9965.EPI-12-0300
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032622/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032622/


[133] A. Martisova, J. Holcakova, N. Izadi, R. Sebuyoya, R. Hrstka, and M. Bartosik, “DNA Methylation in

Solid Tumors: Functions and Methods of Detection,” International Journal of Molecular Sciences, vol. 22,

no. 8, p. 4247, Apr. 2021, ISSN: 1422-0067. DOI: 10.3390/ijms22084247. [Online]. Available: https:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC8073724/ (visited on 04/18/2022).

[134] S. Li and T. O. Tollefsbol, “DNA methylation methods: Global DNA methylation and methylomic analyses.,”

Methods (San Diego, Calif.), vol. 187, pp. 28–43, Mar. 2021, ISSN: 1046-2023. DOI: 10.1016/j.ymeth.

2020.10.002. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914139/

(visited on 04/18/2022).

[135] R. Halabian, V. Arshad, A. Ahmadi, P. Saeedi, S. Azimzadeh Jamalkandi, and M. R. Alivand, “Laboratory

methods to decipher epigenetic signatures: A comparative review,” Cellular & Molecular Biology Letters,

vol. 26, p. 46, Nov. 2021, ISSN: 1425-8153. DOI: 10.1186/s11658-021-00290-9. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582164/ (visited on 04/18/2022).

[136] K. D. Siegmund, “Statistical approaches for the analysis of DNA methylation microarray data,” eng, Human

Genetics, vol. 129, no. 6, pp. 585–595, Jun. 2011, ISSN: 1432-1203. DOI: 10.1007/s00439-011-0993-x.

[137] Y.-a. Chen et al., “Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium Human-

Methylation450 microarray,” Epigenetics, vol. 8, no. 2, pp. 203–209, Feb. 2013, ISSN: 1559-2294. DOI: 10.

4161/epi.23470. [Online]. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592906/

(visited on 07/11/2015).

[138] M. Inoshita et al., “Sex differences of leukocytes DNA methylation adjusted for estimated cellular proportions,”

Biology of Sex Differences, vol. 6, no. 1, p. 11, Jun. 2015, ISSN: 2042-6410. DOI: 10.1186/s13293-015-

0029-7. [Online]. Available: https://doi.org/10.1186/s13293-015-0029-7 (visited on 07/08/2021).

[139] L. A. Salas et al., “Enhanced cell deconvolution of peripheral blood using DNA methylation for high-resolution

immune profiling,” en, Nature Communications, vol. 13, no. 1, p. 761, Feb. 2022, ISSN: 2041-1723. DOI:

10.1038/s41467-021-27864-7. [Online]. Available: https://www.nature.com/articles/s41467-

021-27864-7 (visited on 02/22/2022).

[140] T. J. Triche, D. J. Weisenberger, D. Van Den Berg, P. W. Laird, and K. D. Siegmund, “Low-level processing of

Illumina Infinium DNA Methylation BeadArrays,” en, Nucleic Acids Research, vol. 41, no. 7, e90–e90, Apr.

2013, ISSN: 0305-1048. DOI: 10.1093/nar/gkt090. [Online]. Available: https://academic.oup.com/

nar/article/41/7/e90/1070878 (visited on 02/15/2019).

[141] J.-P. Fortin et al., “Functional normalization of 450k methylation array data improves replication in large cancer

studies,” Genome biology, vol. 15, no. 11, p. 503, 2014.

[142] L. M. McEwen et al., “Systematic evaluation of DNA methylation age estimation with common preprocessing

methods and the Infinium MethylationEPIC BeadChip array,” Clinical Epigenetics, vol. 10, p. 123, Oct. 2018,

ISSN: 1868-7075. DOI: 10.1186/s13148-018-0556-2. [Online]. Available: https://www.ncbi.nlm.

nih.gov/pmc/articles/PMC6192219/ (visited on 04/18/2022).

90

https://doi.org/10.3390/ijms22084247
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073724/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073724/
https://doi.org/10.1016/j.ymeth.2020.10.002
https://doi.org/10.1016/j.ymeth.2020.10.002
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914139/
https://doi.org/10.1186/s11658-021-00290-9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582164/
https://doi.org/10.1007/s00439-011-0993-x
https://doi.org/10.4161/epi.23470
https://doi.org/10.4161/epi.23470
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592906/
https://doi.org/10.1186/s13293-015-0029-7
https://doi.org/10.1186/s13293-015-0029-7
https://doi.org/10.1186/s13293-015-0029-7
https://doi.org/10.1038/s41467-021-27864-7
https://www.nature.com/articles/s41467-021-27864-7
https://www.nature.com/articles/s41467-021-27864-7
https://doi.org/10.1093/nar/gkt090
https://academic.oup.com/nar/article/41/7/e90/1070878
https://academic.oup.com/nar/article/41/7/e90/1070878
https://doi.org/10.1186/s13148-018-0556-2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192219/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192219/


[143] Z. Xu, L. Niu, and J. A. Taylor, “The ENmix DNA methylation analysis pipeline for Illumina BeadChip and

comparisons with seven other preprocessing pipelines,” Clinical Epigenetics, vol. 13, p. 216, Dec. 2021, ISSN:

1868-7075. DOI: 10.1186/s13148-021-01207-1. [Online]. Available: https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC8662917/ (visited on 04/18/2022).

[144] J. Liu and K. D. Siegmund, “An evaluation of processing methods for HumanMethylation450 BeadChip data,”

eng, BMC genomics, vol. 17, p. 469, Jun. 2016, ISSN: 1471-2164. DOI: 10.1186/s12864-016-2819-7.

[145] M. Knoll, J. Debus, and A. Abdollahi, “cnAnalysis450k: An R package for comparative analysis of 450k/EPIC

Illumina methylation array derived copy number data,” eng, Bioinformatics (Oxford, England), vol. 33, no. 15,

pp. 2266–2272, Aug. 2017, ISSN: 1367-4811. DOI: 10.1093/bioinformatics/btx156.

[146] C. Jiao et al., “Positional effects revealed in Illumina methylation array and the impact on analysis,” eng,

Epigenomics, vol. 10, no. 5, pp. 643–659, May 2018, ISSN: 1750-192X. DOI: 10.2217/epi-2017-0105.

[147] S. Behjati and P. S. Tarpey, “What is next generation sequencing?” Archives of Disease in Childhood. Education

and Practice Edition, vol. 98, no. 6, pp. 236–238, Dec. 2013, ISSN: 1743-0585. DOI: 10.1136/archdischild-

2013-304340. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841808/

(visited on 04/23/2022).

[148] R. Kamps et al., “Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer

Classification,” International Journal of Molecular Sciences, vol. 18, no. 2, p. 308, Jan. 2017, ISSN: 1422-0067.

DOI: 10.3390/ijms18020308. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC5343844/ (visited on 04/23/2022).

[149] Y. O. Alekseyev et al., “A Next-Generation Sequencing Primer—How Does It Work and What Can It

Do?” Academic Pathology, vol. 5, p. 2 374 289 518 766 521, May 2018, ISSN: 2374-2895. DOI: 10.1177/

2374289518766521. [Online]. Available: https : / / www . ncbi . nlm . nih . gov / pmc / articles /

PMC5944141/ (visited on 04/23/2022).

[150] S. Davis, Awesome-single-cell, Apr. 2022. [Online]. Available: https://github.com/seandavi/awesome-

single-cell (visited on 04/21/2022).

[151] Long-read-tools, en. [Online]. Available: https://long-read-tools.org/ (visited on 04/21/2022).

[152] F. Marini, Awesome-expression-browser, Apr. 2022. [Online]. Available: https : / / github . com /

federicomarini/awesome-expression-browser (visited on 04/21/2022).

[153] Dobin, Alexander and Davis, Carrie A and Schlesinger, Felix and Drenkow, Jorg and Zaleski, Chris and Jha,

Sonali and Batut, Philippe and Chaisson, Mark and Gingeras, Thomas R, “STAR: Ultrafast universal RNA-seq

aligner,” Bioinformatics, vol. 29, no. 1, pp. 15–21, 2013.

[154] M. Mahmoud, N. Gobet, D. I. Cruz-Dávalos, N. Mounier, C. Dessimoz, and F. J. Sedlazeck, “Structural variant

calling: The long and the short of it,” Genome Biology, vol. 20, no. 1, p. 246, Nov. 2019, ISSN: 1474-760X. DOI:

10.1186/s13059-019-1828-7. [Online]. Available: https://doi.org/10.1186/s13059-019-1828-7

(visited on 04/21/2022).

91

https://doi.org/10.1186/s13148-021-01207-1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662917/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662917/
https://doi.org/10.1186/s12864-016-2819-7
https://doi.org/10.1093/bioinformatics/btx156
https://doi.org/10.2217/epi-2017-0105
https://doi.org/10.1136/archdischild-2013-304340
https://doi.org/10.1136/archdischild-2013-304340
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841808/
https://doi.org/10.3390/ijms18020308
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343844/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343844/
https://doi.org/10.1177/2374289518766521
https://doi.org/10.1177/2374289518766521
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944141/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944141/
https://github.com/seandavi/awesome-single-cell
https://github.com/seandavi/awesome-single-cell
https://long-read-tools.org/
https://github.com/federicomarini/awesome-expression-browser
https://github.com/federicomarini/awesome-expression-browser
https://doi.org/10.1186/s13059-019-1828-7
https://doi.org/10.1186/s13059-019-1828-7


[155] A. Nellore et al., “Human splicing diversity and the extent of unannotated splice junctions across human RNA-

seq samples on the Sequence Read Archive,” en, Genome Biology, vol. 17, no. 1, p. 266, Dec. 2016, ISSN: 1474-

760X. DOI: 10.1186/s13059-016-1118-6. [Online]. Available: https://doi.org/10.1186/s13059-

016-1118-6 (visited on 04/26/2022).

[156] A. Rhoads and K. F. Au, “PacBio Sequencing and Its Applications,” Genomics, Proteomics & Bioinformatics,

vol. 13, no. 5, pp. 278–289, Oct. 2015, ISSN: 1672-0229. DOI: 10.1016/j.gpb.2015.08.002. [Online].

Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4678779/ (visited on 04/20/2022).

[157] R. I. Kuo et al., “Illuminating the dark side of the human transcriptome with long read transcript sequencing,”

BMC Genomics, vol. 21, p. 751, Oct. 2020, ISSN: 1471-2164. DOI: 10.1186/s12864-020-07123-7. [Online].

Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596999/ (visited on 04/20/2022).

[158] Frankish, Adam and Diekhans, Mark and Ferreira, Anne-Maud and Johnson, Rory and Jungreis, Irwin and

Loveland, Jane and Mudge, Jonathan M and Sisu, Cristina and Wright, James and Armstrong, Joel and others,

“GENCODE reference annotation for the human and mouse genomes,” Nucleic Acids Research, vol. 47, no. D1,

pp. D766–D773, 2019.

[159] IlluminaHumanMethylationEPICmanifest, en-US. [Online]. Available: http : / / bioconductor . org /

packages/IlluminaHumanMethylationEPICmanifest/ (visited on 04/21/2022).

[160] IlluminaHumanMethylation450kmanifest, en-US. [Online]. Available: http : / / bioconductor . org /

packages/IlluminaHumanMethylation450kmanifest/ (visited on 04/21/2022).

[161] Infinium MethylationEPIC BeadChip Product Files. [Online]. Available: https://support.illumina.

com/array/array_kits/infinium-methylationepic-beadchip-kit/downloads.html (visited on

04/21/2022).

[162] J. Navarro Gonzalez et al., “The UCSC Genome Browser database: 2021 update,” Nucleic Acids Research,

vol. 49, no. D1, pp. D1046–D1057, Jan. 2021, ISSN: 0305-1048. DOI: 10.1093/nar/gkaa1070. [Online].

Available: https://doi.org/10.1093/nar/gkaa1070 (visited on 04/21/2022).

[163] A. S. Hinrichs et al., “The UCSC Genome Browser Database: Update 2006,” Nucleic Acids Research, vol. 34,

no. suppl_1, pp. D590–D598, Jan. 2006, ISSN: 0305-1048. DOI: 10.1093/nar/gkj144. [Online]. Available:

https://doi.org/10.1093/nar/gkj144 (visited on 04/21/2022).

[164] M. E. Ritchie et al., “A comparison of background correction methods for two-colour microarrays,” Bioinformat-

ics, vol. 23, no. 20, pp. 2700–2707, Oct. 2007, ISSN: 1367-4803. DOI: 10.1093/bioinformatics/btm412.

[Online]. Available: https://doi.org/10.1093/bioinformatics/btm412 (visited on 04/25/2022).

[165] A. N. Gorban and I. Y. Tyukin, “Blessing of dimensionality: Mathematical foundations of the statistical physics

of data,” Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, vol. 376,

no. 2118, p. 20 170 237, Apr. 2018, ISSN: 1364-503X. DOI: 10.1098/rsta.2017.0237. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869543/ (visited on 04/18/2022).

92

https://doi.org/10.1186/s13059-016-1118-6
https://doi.org/10.1186/s13059-016-1118-6
https://doi.org/10.1186/s13059-016-1118-6
https://doi.org/10.1016/j.gpb.2015.08.002
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4678779/
https://doi.org/10.1186/s12864-020-07123-7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596999/
http://bioconductor.org/packages/IlluminaHumanMethylationEPICmanifest/
http://bioconductor.org/packages/IlluminaHumanMethylationEPICmanifest/
http://bioconductor.org/packages/IlluminaHumanMethylation450kmanifest/
http://bioconductor.org/packages/IlluminaHumanMethylation450kmanifest/
https://support.illumina.com/array/array_kits/infinium-methylationepic-beadchip-kit/downloads.html
https://support.illumina.com/array/array_kits/infinium-methylationepic-beadchip-kit/downloads.html
https://doi.org/10.1093/nar/gkaa1070
https://doi.org/10.1093/nar/gkaa1070
https://doi.org/10.1093/nar/gkj144
https://doi.org/10.1093/nar/gkj144
https://doi.org/10.1093/bioinformatics/btm412
https://doi.org/10.1093/bioinformatics/btm412
https://doi.org/10.1098/rsta.2017.0237
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869543/


[166] B. Verhulst, J. N. Pritikin, J. Clifford, and E. Prom-Wormley, “Using Genetic Marginal Effects to Study

Gene-Environment Interactions with GWAS Data,” en, Behavior Genetics, vol. 51, no. 3, pp. 358–373, May

2021, ISSN: 1573-3297. DOI: 10.1007/s10519-021-10058-8. [Online]. Available: https://doi.org/10.

1007/s10519-021-10058-8 (visited on 04/19/2022).

[167] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: A practical and powerful approach to

multiple testing,” JSRRB, vol. 57, pp. 289–300, 1995.

[168] K. B. Michels et al., “Recommendations for the design and analysis of epigenome-wide association studies,”

eng, Nature Methods, vol. 10, no. 10, pp. 949–955, Oct. 2013, ISSN: 1548-7105. DOI: 10.1038/nmeth.2632.

[169] A. N. Gorban, V. A. Makarov, and I. Y. Tyukin, “High-Dimensional Brain in a High-Dimensional World:

Blessing of Dimensionality,” Entropy, vol. 22, no. 1, p. 82, Jan. 2020, ISSN: 1099-4300. DOI: 10.3390/

e22010082. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516518/

(visited on 04/18/2022).

[170] V. Kreinovich and O. Kosheleva, “Limit Theorems as Blessing of Dimensionality: Neural-Oriented Overview,”

Entropy, vol. 23, no. 5, p. 501, Apr. 2021, ISSN: 1099-4300. DOI: 10.3390/e23050501. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145334/ (visited on 04/18/2022).

[171] S. Holmes and W. Huber, Modern Statistics for Modern Biology. Cambridge, UK; New York, NY: Cambridge

University Press, 2019.

[172] J. Shlens, “A Tutorial on Principal Component Analysis,” arXiv:1404.1100 [cs, stat], Apr. 2014. [Online].

Available: http://arxiv.org/abs/1404.1100 (visited on 04/20/2022).

[173] C. R. Shalizi, Advanced data analysis from an elementary point of view, Aug. 2014. [Online]. Available:

https://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ADAfaEPoV.pdf.

[174] K. Weinberger, A. Dasgupta, J. Attenberg, J. Langford, and A. Smola, “Feature Hashing for Large Scale

Multitask Learning,” arXiv:0902.2206 [cs], Feb. 2010. [Online]. Available: http://arxiv.org/abs/0902.

2206 (visited on 10/29/2019).

[175] Q. Shi et al., “Hash kernels,” in Proceedings of the Twelth International Conference on Artificial Intelligence

and Statistics, D. van Dyk and M. Welling, Eds., ser. Proceedings of Machine Learning Research, vol. 5, Hilton

Clearwater Beach Resort, Clearwater Beach, Florida USA: PMLR, 2009, pp. 496–503.

[176] The HDF Group. “Hierarchical data format version 5.” (2010), [Online]. Available: http://www.hdfgroup.

org/HDF5.

[177] H. Pagès, Hdf5array: Hdf5 backend for delayedarray objects, 2021. [Online]. Available: https : / /

bioconductor.org/packages/HDF5Array.

[178] B. Fischer, M. Smith, and G. Pau, Rhdf5: R interface to hdf5, 2020. [Online]. Available: https://github.

com/grimbough/rhdf5.

[179] A. Saffari et al., “Estimation of a significance threshold for epigenome-wide association studies,” eng, Genetic

Epidemiology, vol. 42, no. 1, pp. 20–33, Feb. 2018, ISSN: 1098-2272. DOI: 10.1002/gepi.22086.

93

https://doi.org/10.1007/s10519-021-10058-8
https://doi.org/10.1007/s10519-021-10058-8
https://doi.org/10.1007/s10519-021-10058-8
https://doi.org/10.1038/nmeth.2632
https://doi.org/10.3390/e22010082
https://doi.org/10.3390/e22010082
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516518/
https://doi.org/10.3390/e23050501
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145334/
http://arxiv.org/abs/1404.1100
https://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ADAfaEPoV.pdf
http://arxiv.org/abs/0902.2206
http://arxiv.org/abs/0902.2206
http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5
https://bioconductor.org/packages/HDF5Array
https://bioconductor.org/packages/HDF5Array
https://github.com/grimbough/rhdf5
https://github.com/grimbough/rhdf5
https://doi.org/10.1002/gepi.22086


[180] P.-C. Tsai and J. T. Bell, “Power and sample size estimation for epigenome-wide association scans to detect

differential DNA methylation,” International Journal of Epidemiology, vol. 44, no. 4, pp. 1429–1441, Aug.

2015, ISSN: 0300-5771. DOI: 10.1093/ije/dyv041. [Online]. Available: https://doi.org/10.1093/

ije/dyv041 (visited on 04/24/2022).

[181] S. Graw, R. Henn, J. A. Thompson, and D. C. Koestler, “pwrEWAS: A user-friendly tool for comprehensive

power estimation for epigenome wide association studies (EWAS),” BMC Bioinformatics, vol. 20, no. 1,

p. 218, Apr. 2019, ISSN: 1471-2105. DOI: 10.1186/s12859-019-2804-7. [Online]. Available: https:

//doi.org/10.1186/s12859-019-2804-7 (visited on 03/07/2021).

[182] S. Graw, pwrEWAS: A user-friendly tool for comprehensive power estimation for epigenome wide association

studies (EWAS), 2022. DOI: 10.18129/B9.bioc.pwrEWAS. [Online]. Available: https://bioconductor.

org/packages/pwrEWAS/ (visited on 04/24/2022).

[183] Anaconda software distribution, version Vers. 2-2.4.0, 2020. [Online]. Available: https://docs.anaconda.

com/.

[184] Lorenzi, Claudio and Barriere, Sylvain and Arnold, Katharina and Luco, Reini F and Oldfield, Andrew J

and Ritchie, William, “IRFinder-S: A comprehensive suite to discover and explore intron retention,” Genome

Biology, vol. 22, no. 1, pp. 1–13, 2021.

[185] S. Baichoo et al., “Developing reproducible bioinformatics analysis workflows for heterogeneous computing

environments to support African genomics,” BMC Bioinformatics, vol. 19, p. 457, Nov. 2018, ISSN: 1471-2105.

DOI: 10.1186/s12859-018-2446-1. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC6264621/ (visited on 04/24/2022).

[186] S. Orjuela, R. Huang, K. M. Hembach, M. D. Robinson, and C. Soneson, “ARMOR: An Automated

Reproducible MOdular Workflow for Preprocessing and Differential Analysis of RNA-seq Data,” G3:

Genes|Genomes|Genetics, vol. 9, no. 7, pp. 2089–2096, May 2019, ISSN: 2160-1836. DOI: 10.1534/g3.119.

400185. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643886/ (visited

on 04/24/2022).

[187] X. Zhang and I. Jonassen, “RASflow: An RNA-Seq analysis workflow with Snakemake,” BMC Bioinformatics,

vol. 21, p. 110, Mar. 2020, ISSN: 1471-2105. DOI: 10.1186/s12859-020-3433-x. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079470/ (visited on 04/24/2022).

[188] A. E. Ahmed et al., “Design considerations for workflow management systems use in production genomics

research and the clinic,” Scientific Reports, vol. 11, p. 21 680, Nov. 2021, ISSN: 2045-2322. DOI: 10.1038/

s41598- 021- 99288- 8. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC8569008/ (visited on 04/24/2022).

[189] P. Amstutz et al., Portable workflow and tool descriptions with the cwl (common workflow language), 2015.

DOI: 10.7490/f1000research.1110021.1. [Online]. Available: http://dx.doi.org/10.7490/

f1000research.1110021.1.

94

https://doi.org/10.1093/ije/dyv041
https://doi.org/10.1093/ije/dyv041
https://doi.org/10.1093/ije/dyv041
https://doi.org/10.1186/s12859-019-2804-7
https://doi.org/10.1186/s12859-019-2804-7
https://doi.org/10.1186/s12859-019-2804-7
https://doi.org/10.18129/B9.bioc.pwrEWAS
https://bioconductor.org/packages/pwrEWAS/
https://bioconductor.org/packages/pwrEWAS/
https://docs.anaconda.com/
https://docs.anaconda.com/
https://doi.org/10.1186/s12859-018-2446-1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264621/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264621/
https://doi.org/10.1534/g3.119.400185
https://doi.org/10.1534/g3.119.400185
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643886/
https://doi.org/10.1186/s12859-020-3433-x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079470/
https://doi.org/10.1038/s41598-021-99288-8
https://doi.org/10.1038/s41598-021-99288-8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8569008/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8569008/
https://doi.org/10.7490/f1000research.1110021.1
http://dx.doi.org/10.7490/f1000research.1110021.1
http://dx.doi.org/10.7490/f1000research.1110021.1


[190] E. Afgan et al., “The Galaxy platform for accessible, reproducible and collaborative biomedical analyses:

2018 update,” Nucleic Acids Research, vol. 46, no. W1, W537–W544, Jul. 2018, ISSN: 0305-1048. DOI:

10.1093/nar/gky379. [Online]. Available: https://doi.org/10.1093/nar/gky379 (visited on

04/24/2022).

[191] L. de la Garza et al., “From the desktop to the grid: Scalable bioinformatics via workflow conversion,” BMC

Bioinformatics, vol. 17, p. 127, Mar. 2016, ISSN: 1471-2105. DOI: 10.1186/s12859-016-0978-9. [Online].

Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788856/ (visited on 04/24/2022).

[192] F. Mölder et al., “Sustainable data analysis with Snakemake,” en, F1000Research, vol. 10, no. 10:33, 33 Jan.

2021. DOI: 10.12688/f1000research.29032.1. [Online]. Available: https://f1000research.com/

articles/10-33 (visited on 11/24/2021).

[193] S. Maden, R. Thompson, K. Hansen, and A. Nellore, Recountmethylation_server, 2021. [Online]. Available:

https://github.com/metamaden/recountmethylation%5C_server.

[194] ——, Recountmethylation.pipeline, 2021. [Online]. Available: https : / / github . com / metamaden /

recountmethylation.pipeline.

[195] A. Lun and V. Carey, Basilisk: Freezing python dependencies inside bioconductor packages, 2022. DOI: 10.

18129/B9.bioc.basilisk. [Online]. Available: https://bioconductor.org/packages/basilisk/

(visited on 04/22/2022).

[196] K. Ushey et al., Reticulate: Interface to ’python’, 2022. [Online]. Available: https://CRAN.R-project.

org/package=reticulate (visited on 04/22/2022).

[197] X. Du, J. J. Aristizabal-Henao, T. J. Garrett, M. Brochhausen, W. R. Hogan, and D. J. Lemas, “A Checklist for

Reproducible Computational Analysis in Clinical Metabolomics Research,” Metabolites, vol. 12, no. 1, p. 87,

Jan. 2022, ISSN: 2218-1989. DOI: 10.3390/metabo12010087. [Online]. Available: https://www.ncbi.

nlm.nih.gov/pmc/articles/PMC8779534/ (visited on 04/07/2022).

[198] A. P. Feinberg and B. Tycko, “The history of cancer epigenetics,” eng, Nature Reviews. Cancer, vol. 4, no. 2,

pp. 143–153, 2004, ISSN: 1474-175X. DOI: 10.1038/nrc1279.

[199] M. J. Ziller et al., “Charting a dynamic DNA methylation landscape of the human genome,” en, Nature, vol. 500,

no. 7463, pp. 477–481, Aug. 2013, ISSN: 1476-4687. DOI: 10.1038/nature12433. [Online]. Available:

https://www.nature.com/articles/nature12433 (visited on 11/30/2018).

[200] K. Lokk et al., “DNA methylome profiling of human tissues identifies global and tissue-specific methylation

patterns,” Genome Biology, vol. 15, no. 4, r54, 2014, ISSN: 1465-6906. DOI: 10.1186/gb-2014-15-4-r54.

[Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053947/ (visited on

06/10/2019).

[201] H.-M. Byun et al., “Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue-

and individual-specific DNA methylation patterns,” eng, Human Molecular Genetics, vol. 18, no. 24, pp. 4808–

4817, Dec. 2009, ISSN: 1460-2083. DOI: 10.1093/hmg/ddp445.

95

https://doi.org/10.1093/nar/gky379
https://doi.org/10.1093/nar/gky379
https://doi.org/10.1186/s12859-016-0978-9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788856/
https://doi.org/10.12688/f1000research.29032.1
https://f1000research.com/articles/10-33
https://f1000research.com/articles/10-33
https://github.com/metamaden/recountmethylation%5C_server
https://github.com/metamaden/recountmethylation.pipeline
https://github.com/metamaden/recountmethylation.pipeline
https://doi.org/10.18129/B9.bioc.basilisk
https://doi.org/10.18129/B9.bioc.basilisk
https://bioconductor.org/packages/basilisk/
https://CRAN.R-project.org/package=reticulate
https://CRAN.R-project.org/package=reticulate
https://doi.org/10.3390/metabo12010087
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779534/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779534/
https://doi.org/10.1038/nrc1279
https://doi.org/10.1038/nature12433
https://www.nature.com/articles/nature12433
https://doi.org/10.1186/gb-2014-15-4-r54
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053947/
https://doi.org/10.1093/hmg/ddp445


[202] H. Heyn et al., “Epigenomic analysis detects aberrant super-enhancer DNA methylation in human cancer,”

Genome Biology, vol. 17, 2016, ISSN: 1474-7596. DOI: 10.1186/s13059-016-0879-2. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728783/ (visited on 03/09/2018).

[203] J.-P. Issa, “CpG island methylator phenotype in cancer,” eng, Nature Reviews. Cancer, vol. 4, no. 12, pp. 988–

993, Dec. 2004, ISSN: 1474-175X. DOI: 10.1038/nrc1507.

[204] T. J. Peters et al., “De novo identification of differentially methylated regions in the human genome,” Epigenetics

& Chromatin, vol. 8, Jan. 2015, ISSN: 1756-8935. DOI: 10.1186/1756-8935-8-6. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429355/ (visited on 04/25/2018).

[205] R. Edgar, M. Domrachev, and A. E. Lash, “Gene expression omnibus: Ncbi gene expression and hybridization

array data repository,” Nucleic acids research, vol. 30, no. 1, pp. 207–210, 2002.

[206] J. A. Heiss and A. C. Just, “Identifying mislabeled and contaminated DNA methylation microarray data: An

extended quality control toolset with examples from GEO,” Clinical Epigenetics, vol. 10, Jun. 2018, ISSN:

1868-7075. DOI: 10.1186/s13148-018-0504-1. [Online]. Available: https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC5984806/ (visited on 09/12/2019).

[207] W. Huber et al., “Orchestrating high-throughput genomic analysis with Bioconductor,” Nature Methods, vol. 12,

no. 2, pp. 115–121, 2015. [Online]. Available: http://www.nature.com/nmeth/journal/v12/n2/full/

nmeth.3252.html.

[208] Illumina, BeadArray Controls Reporter Software Guide, Oct. 2015. [Online]. Available: https://support.

illumina . com / content / dam / illumina - support / documents / documentation / chemistry _

documentation/infinium_assays/infinium_hd_methylation/beadarray-controls-reporter-

user-guide-1000000004009-00.pdf (visited on 08/20/2019).

[209] D. M. Kane and J. Nelson, “Sparser johnson-lindenstrauss transforms,” Journal of the ACM (JACM), vol. 61,

no. 1, pp. 1–23, 2014.

[210] Z. Gu, R. Eils, and M. Schlesner, “Complex heatmaps reveal patterns and correlations in multidimensional

genomic data,” en, Bioinformatics, vol. 32, no. 18, pp. 2847–2849, Sep. 2016, ISSN: 1367-4803. DOI: 10.

1093/bioinformatics/btw313. [Online]. Available: https://academic.oup.com/bioinformatics/

article/32/18/2847/1743594 (visited on 11/01/2020).

[211] H. Wickham, ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016, ISBN: 978-3-319-

24277-4. [Online]. Available: https://ggplot2.tidyverse.org.

[212] M. J. Bonder et al., “Genetic and epigenetic regulation of gene expression in fetal and adult human livers,”

BMC Genomics, vol. 15, no. 1, p. 860, Oct. 2014, ISSN: 1471-2164. DOI: 10.1186/1471-2164-15-860.

[Online]. Available: https://doi.org/10.1186/1471-2164-15-860 (visited on 09/07/2020).

[213] S. Horvath and B. R. Ritz, “Increased epigenetic age and granulocyte counts in the blood of Parkinson’s disease

patients,” eng, Aging, vol. 7, no. 12, pp. 1130–1142, Dec. 2015, ISSN: 1945-4589. DOI: 10.18632/aging.

100859.

96

https://doi.org/10.1186/s13059-016-0879-2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728783/
https://doi.org/10.1038/nrc1507
https://doi.org/10.1186/1756-8935-8-6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429355/
https://doi.org/10.1186/s13148-018-0504-1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5984806/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5984806/
http://www.nature.com/nmeth/journal/v12/n2/full/nmeth.3252.html
http://www.nature.com/nmeth/journal/v12/n2/full/nmeth.3252.html
https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/infinium_assays/infinium_hd_methylation/beadarray-controls-reporter-user-guide-1000000004009-00.pdf
https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/infinium_assays/infinium_hd_methylation/beadarray-controls-reporter-user-guide-1000000004009-00.pdf
https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/infinium_assays/infinium_hd_methylation/beadarray-controls-reporter-user-guide-1000000004009-00.pdf
https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/infinium_assays/infinium_hd_methylation/beadarray-controls-reporter-user-guide-1000000004009-00.pdf
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1093/bioinformatics/btw313
https://academic.oup.com/bioinformatics/article/32/18/2847/1743594
https://academic.oup.com/bioinformatics/article/32/18/2847/1743594
https://ggplot2.tidyverse.org
https://doi.org/10.1186/1471-2164-15-860
https://doi.org/10.1186/1471-2164-15-860
https://doi.org/10.18632/aging.100859
https://doi.org/10.18632/aging.100859


[214] D. T. Butcher et al., “Charge and kabuki syndromes: Gene-specific dna methylation signatures identify

epigenetic mechanisms linking these clinically overlapping conditions,” English, The American Journal of

Human Genetics, vol. 100, no. 5, pp. 773–788, May 2017, ISSN: 0002-9297, 1537-6605. DOI: 10.1016/j.

ajhg.2017.04.004. (visited on 09/07/2020).

[215] A. C. Espinal et al., “A methodological study of genome-wide DNA methylation analyses using matched

archival formalin-fixed paraffin embedded and fresh frozen breast tumors,” Oncotarget, vol. 8, no. 9, pp. 14 821–

14 829, Jan. 2017, ISSN: 1949-2553. DOI: 10.18632/oncotarget.14739. [Online]. Available: https:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC5362446/ (visited on 01/07/2020).

[216] E. M. Siegel et al., “Expanding Epigenomics to Archived FFPE Tissues: An Evaluation of DNA Repair

Methodologies,” en, Cancer Epidemiology and Prevention Biomarkers, vol. 23, no. 12, pp. 2622–2631, Dec.

2014, ISSN: 1055-9965, 1538-7755. DOI: 10.1158/1055- 9965.EPI- 14- 0464. [Online]. Available:

https://cebp.aacrjournals.org/content/23/12/2622 (visited on 01/07/2020).

[217] T. Kling, A. Wenger, S. Beck, and H. Carén, “Validation of the MethylationEPIC BeadChip for fresh-frozen and

formalin-fixed paraffin-embedded tumours,” Clinical Epigenetics, vol. 9, no. 1, p. 33, Apr. 2017, ISSN: 1868-

7083. DOI: 10.1186/s13148-017-0333-7. [Online]. Available: https://doi.org/10.1186/s13148-

017-0333-7 (visited on 01/07/2020).

[218] N. Acevedo et al., “Age-associated DNA methylation changes in immune genes, histone modifiers and

chromatin remodeling factors within 5 years after birth in human blood leukocytes,” eng, Clinical Epigenetics,

vol. 7, p. 34, 2015, ISSN: 1868-7075. DOI: 10.1186/s13148-015-0064-6.

[219] G. C. Sharp et al., “Distinct DNA methylation profiles in subtypes of orofacial cleft,” Clinical Epigenetics,

vol. 9, no. 1, p. 63, Jun. 2017, ISSN: 1868-7083. DOI: 10.1186/s13148-017-0362-2. [Online]. Available:

https://doi.org/10.1186/s13148-017-0362-2 (visited on 10/31/2019).

[220] J. I. Orozco, A. O. Manughian-Peter, M. P. Salomon, and D. M. Marzese, “Epigenetic classifiers for precision

diagnosis of brain tumors,” Epigenetics Insights, vol. 12, p. 2 516 865 719 840 284, 2019.

[221] M. P. Salomon et al., “Brain metastasis dna methylomes, a novel resource for the identification of biological

and clinical features,” Scientific data, vol. 5, no. 1, pp. 1–8, 2018.

[222] X. Wang et al., “Medulloblastoma subgroups remain stable across primary and metastatic compartments,” eng,

Acta Neuropathologica, vol. 129, no. 3, pp. 449–457, Mar. 2015, ISSN: 1432-0533. DOI: 10.1007/s00401-

015-1389-0.

[223] K. D. Hansen et al., “Increased methylation variation in epigenetic domains across cancer types,” Nature

genetics, vol. 43, no. 8, p. 768, 2011.

[224] A. E. Teschendorff et al., “Epigenetic variability in cells of normal cytology is associated with the risk of

future morphological transformation,” eng, Genome Medicine, vol. 4, no. 3, p. 24, 2012, ISSN: 1756-994X.

DOI: 10.1186/gm323.

97

https://doi.org/10.1016/j.ajhg.2017.04.004
https://doi.org/10.1016/j.ajhg.2017.04.004
https://doi.org/10.18632/oncotarget.14739
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5362446/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5362446/
https://doi.org/10.1158/1055-9965.EPI-14-0464
https://cebp.aacrjournals.org/content/23/12/2622
https://doi.org/10.1186/s13148-017-0333-7
https://doi.org/10.1186/s13148-017-0333-7
https://doi.org/10.1186/s13148-017-0333-7
https://doi.org/10.1186/s13148-015-0064-6
https://doi.org/10.1186/s13148-017-0362-2
https://doi.org/10.1186/s13148-017-0362-2
https://doi.org/10.1007/s00401-015-1389-0
https://doi.org/10.1007/s00401-015-1389-0
https://doi.org/10.1186/gm323


[225] J. Hyun and Y. Jung, “DNA Methylation in Nonalcoholic Fatty Liver Disease,” International Journal of

Molecular Sciences, vol. 21, no. 21, p. 8138, Oct. 2020, ISSN: 1422-0067. DOI: 10.3390/ijms21218138.

[Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662478/ (visited on

01/12/2022).

[226] A.-A. Hudon Thibeault and C. Laprise, “Cell-Specific DNA Methylation Signatures in Asthma,” Genes,

vol. 10, no. 11, p. 932, Nov. 2019, ISSN: 2073-4425. DOI: 10.3390/genes10110932. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896152/ (visited on 01/12/2022).

[227] P. D. Fransquet et al., “Blood DNA methylation signatures to detect dementia prior to overt clinical symptoms,”

en, Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, vol. 12, no. 1, e12056, 2020, ISSN:

2352-8729. DOI: 10.1002/dad2.12056. [Online]. Available: https://onlinelibrary.wiley.com/doi/

abs/10.1002/dad2.12056 (visited on 01/12/2022).

[228] Y.-T. Huang et al., “Epigenome-wide profiling of DNA methylation in paired samples of adipose tissue and

blood,” Epigenetics, vol. 11, no. 3, pp. 227–236, Mar. 2016, ISSN: 1559-2294. DOI: 10.1080/15592294.

2016.1146853. [Online]. Available: https://doi.org/10.1080/15592294.2016.1146853 (visited on

08/25/2020).

[229] N. Parveen and S. Dhawan, “DNA Methylation Patterning and the Regulation of Beta Cell Homeostasis,”

Frontiers in Endocrinology, vol. 12, p. 651 258, May 2021, ISSN: 1664-2392. DOI: 10.3389/fendo.2021.

651258. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8137853/ (visited

on 01/12/2022).

[230] B. T. Mayne, S. Y. Leemaqz, A. K. Smith, J. Breen, C. T. Roberts, and T. Bianco-Miotto, “Accelerated

placental aging in early onset preeclampsia pregnancies identified by DNA methylation,” Epigenomics, vol. 9,

no. 3, pp. 279–289, Mar. 2017, ISSN: 1750-1911. DOI: 10.2217/epi-2016-0103. [Online]. Available:

https://www.futuremedicine.com/doi/full/10.2217/epi-2016-0103 (visited on 03/01/2022).

[231] D. C. Koestler et al., “Improving cell mixture deconvolution by identifying optimal DNA methylation libraries

(IDOL),” BMC Bioinformatics, vol. 17, Mar. 2016, ISSN: 1471-2105. DOI: 10.1186/s12859-016-0943-7.

[Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4782368/ (visited on

10/26/2018).

[232] D. R. Masser et al., “Sexually divergent DNA methylation patterns with hippocampal aging,” Aging Cell,

vol. 16, no. 6, pp. 1342–1352, Dec. 2017, ISSN: 1474-9718. DOI: 10.1111/acel.12681. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676057/ (visited on 01/14/2022).

[233] E. Hall et al., “Sex differences in the genome-wide DNA methylation pattern and impact on gene expression,

microRNA levels and insulin secretion in human pancreatic islets,” Genome Biology, vol. 15, no. 12, p. 522,

Dec. 2014, ISSN: 1474-760X. DOI: 10.1186/s13059-014-0522-z. [Online]. Available: https://doi.

org/10.1186/s13059-014-0522-z (visited on 01/14/2022).

98

https://doi.org/10.3390/ijms21218138
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662478/
https://doi.org/10.3390/genes10110932
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896152/
https://doi.org/10.1002/dad2.12056
https://onlinelibrary.wiley.com/doi/abs/10.1002/dad2.12056
https://onlinelibrary.wiley.com/doi/abs/10.1002/dad2.12056
https://doi.org/10.1080/15592294.2016.1146853
https://doi.org/10.1080/15592294.2016.1146853
https://doi.org/10.1080/15592294.2016.1146853
https://doi.org/10.3389/fendo.2021.651258
https://doi.org/10.3389/fendo.2021.651258
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8137853/
https://doi.org/10.2217/epi-2016-0103
https://www.futuremedicine.com/doi/full/10.2217/epi-2016-0103
https://doi.org/10.1186/s12859-016-0943-7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4782368/
https://doi.org/10.1111/acel.12681
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676057/
https://doi.org/10.1186/s13059-014-0522-z
https://doi.org/10.1186/s13059-014-0522-z
https://doi.org/10.1186/s13059-014-0522-z


[234] C. L. Nino, G. F. Perez, N. Isaza, M. J. Gutierrez, J. L. Gomez, and G. Nino, “Characterization of Sex-Based

Dna Methylation Signatures in the Airways During Early Life,” Scientific Reports, vol. 8, p. 5526, Apr. 2018,

ISSN: 2045-2322. DOI: 10.1038/s41598-018-23063-5. [Online]. Available: https://www.ncbi.nlm.

nih.gov/pmc/articles/PMC5882800/ (visited on 01/14/2022).

[235] M. Maschietto et al., “Sex differences in DNA methylation of the cord blood are related to sex-bias psy-

chiatric diseases,” en, Scientific Reports, vol. 7, no. 1, p. 44 547, Mar. 2017, ISSN: 2045-2322. DOI: 10.

1038/srep44547. [Online]. Available: https://www.nature.com/articles/srep44547 (visited on

01/14/2022).

[236] O. A. Grant, Y. Wang, M. Kumari, N. R. Zabet, and L. Schalkwyk, “Characterising sex differences of autosomal

DNA methylation in whole blood using the Illumina EPIC array,” en, bioRxiv, p. 2021.09.02.458717, Sep.

2021. DOI: 10.1101/2021.09.02.458717. (visited on 01/14/2022).

[237] H. Pagès, P. Hickey, and A. Lun, Delayedarray: A unified framework for working transparently with on-disk

and in-memory array-like datasets, 2021. [Online]. Available: https://bioconductor.org/packages/

DelayedArray.

[238] J.-P. Fortin, T. J. Triche, and K. D. Hansen, “Preprocessing, normalization and integration of the illumina hu-

manmethylationepic array with minfi,” Bioinformatics, vol. 33, no. 4, 2017. DOI: 10.1093/bioinformatics/

btw691.

[239] M. E. Ritchie et al., “limma powers differential expression analyses for RNA-sequencing and microarray

studies,” Nucleic Acids Research, vol. 43, no. 7, e47, 2015. DOI: 10.1093/nar/gkv007.

[240] R. Williams, “A new algorithm for optimal constraint satisfaction and its implications,” en, p. 13,

[241] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approximate nearest neighbor search using Hierarchical

Navigable Small World graphs,” arXiv:1603.09320 [cs], Aug. 2018. [Online]. Available: http://arxiv.

org/abs/1603.09320 (visited on 03/23/2021).

[242] M. Aumüller, E. Bernhardsson, and A. Faithfull, “ANN-Benchmarks: A Benchmarking Tool for Approximate

Nearest Neighbor Algorithms,” arXiv:1807.05614 [cs], Jul. 2018. [Online]. Available: http://arxiv.org/

abs/1807.05614 (visited on 03/28/2021).

[243] C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020. DOI:

10.1038/s41586-020-2649-2. [Online]. Available: https://doi.org/10.1038/s41586-020-2649-2.

[244] J. T. Leek et al., Sva: Surrogate variable analysis, 2021.

[245] R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing,

Vienna, Austria, 2021. [Online]. Available: https://www.R-project.org/.

[246] Python Core Team, Python: A dynamic, open source programming language, Python version 3.7, Python

Software Foundation, 2019. [Online]. Available: https://www.python.org/.

[247] N. Gehlenborg, Upsetr: A more scalable alternative to venn and euler diagrams for visualizing intersecting

sets, 2019. [Online]. Available: https://CRAN.R-project.org/package=UpSetR.

99

https://doi.org/10.1038/s41598-018-23063-5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882800/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882800/
https://doi.org/10.1038/srep44547
https://doi.org/10.1038/srep44547
https://www.nature.com/articles/srep44547
https://doi.org/10.1101/2021.09.02.458717
https://bioconductor.org/packages/DelayedArray
https://bioconductor.org/packages/DelayedArray
https://doi.org/10.1093/bioinformatics/btw691
https://doi.org/10.1093/bioinformatics/btw691
https://doi.org/10.1093/nar/gkv007
http://arxiv.org/abs/1603.09320
http://arxiv.org/abs/1603.09320
http://arxiv.org/abs/1807.05614
http://arxiv.org/abs/1807.05614
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://www.R-project.org/
https://www.python.org/
https://CRAN.R-project.org/package=UpSetR


[248] J. R. Murray and M. S. Rajeevan, “Evaluation of DNA extraction from granulocytes discarded in the separation

medium after isolation of peripheral blood mononuclear cells and plasma from whole blood,” BMC Research

Notes, vol. 6, p. 440, Nov. 2013, ISSN: 1756-0500. DOI: 10.1186/1756-0500-6-440. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3818442/ (visited on 02/07/2022).

[249] G. Mansell et al., “Guidance for DNA methylation studies: Statistical insights from the Illumina EPIC array,”

BMC Genomics, vol. 20, May 2019, ISSN: 1471-2164. DOI: 10.1186/s12864-019-5761-7. [Online].

Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6518823/ (visited on 04/04/2021).

[250] Field Guide to Methylation Methods, Jun. 2016. [Online]. Available: https://www.illumina.com/

content/dam/illumina-marketing/documents/products/other/field_guide_methylation.pdf

(visited on 11/23/2021).

[251] A. Bird, “DNA methylation patterns and epigenetic memory,” en, Genes & Development, vol. 16, no. 1,

pp. 6–21, Jan. 2002, ISSN: 0890-9369, 1549-5477. DOI: 10.1101/gad.947102. (visited on 11/23/2021).

[252] B. J. Heil, M. M. Hoffman, F. Markowetz, S.-I. Lee, C. S. Greene, and S. C. Hicks, “Reproducibility standards

for machine learning in the life sciences,” en, Nature Methods, vol. 18, no. 10, pp. 1132–1135, Oct. 2021,

ISSN: 1548-7105. DOI: 10.1038/s41592-021-01256-7. [Online]. Available: https://www.nature.com/

articles/s41592-021-01256-7 (visited on 11/24/2021).

[253] B. K. Beaulieu-Jones and C. S. Greene, “Reproducibility of computational workflows is automated using

continuous analysis,” Nature biotechnology, vol. 35, no. 4, pp. 342–346, Apr. 2017, ISSN: 1087-0156. DOI: 10.

1038/nbt.3780. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6103790/

(visited on 03/12/2021).

[254] A. J. Noble et al., “A validation of Illumina EPIC array system with bisulfite-based amplicon sequencing,” eng,

PeerJ, vol. 9, e10762, 2021, ISSN: 2167-8359. DOI: 10.7717/peerj.10762.

[255] T. Wang et al., “A systematic study of normalization methods for Infinium 450K methylation data using

whole-genome bisulfite sequencing data,” eng, Epigenetics: official journal of the DNA Methylation Society,

vol. 10, no. 7, pp. 662–669, Jul. 2015, ISSN: 1559-2308. DOI: 10.1080/15592294.2015.1057384.

[256] Herzel, Lydia and Ottoz, Diana SM and Alpert, Tara and Neugebauer, Karla M, “Splicing and transcription

touch base: co-transcriptional spliceosome assembly and function,” Nature Reviews Molecular Cell Biology,

vol. 18, no. 10, pp. 637–650, 2017.

[257] Wan, Yihan and Anastasakis, Dimitrios G and Rodriguez, Joseph and Palangat, Murali and Gudla, Prabhakar

and Zaki, George and Tandon, Mayank and Pegoraro, Gianluca and Chow, Carson C and Hafner, Markus and

others, “Dynamic imaging of nascent RNA reveals general principles of transcription dynamics and stochastic

splice site selection,” Cell, vol. 184, no. 11, pp. 2878–2895, 2021.

[258] Ameur, Adam and Zaghlool, Ammar and Halvardson, Jonatan and Wetterbom, Anna and Gyllensten, Ulf

and Cavelier, Lucia and Feuk, Lars, “Total RNA sequencing reveals nascent transcription and widespread

100

https://doi.org/10.1186/1756-0500-6-440
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3818442/
https://doi.org/10.1186/s12864-019-5761-7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6518823/
https://www.illumina.com/content/dam/illumina-marketing/documents/products/other/field_guide_methylation.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/other/field_guide_methylation.pdf
https://doi.org/10.1101/gad.947102
https://doi.org/10.1038/s41592-021-01256-7
https://www.nature.com/articles/s41592-021-01256-7
https://www.nature.com/articles/s41592-021-01256-7
https://doi.org/10.1038/nbt.3780
https://doi.org/10.1038/nbt.3780
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6103790/
https://doi.org/10.7717/peerj.10762
https://doi.org/10.1080/15592294.2015.1057384


co-transcriptional splicing in the human brain,” Nature Structural & Molecular Biology, vol. 18, no. 12,

pp. 1435–1440, 2011.

[259] Alpert, Tara and Herzel, Lydia and Neugebauer, Karla M, “Perfect timing: Splicing and transcription rates in

living cells,” Wiley Interdisciplinary Reviews: RNA, vol. 8, no. 2, e1401, 2017.

[260] Reimer, Kirsten A and Mimoso, Claudia and Adelman, Karen and Neugebauer, Karla M, “Rapid and efficient

co-transcriptional splicing enhances mammalian gene expression,” bioRxiv, pp. 2020–02, 2020.

[261] Girard, Cyrille and Will, Cindy L and Peng, Jianhe and Makarov, Evgeny M and Kastner, Berthold and Lemm,

Ira and Urlaub, Henning and Hartmuth, Klaus and Lührmann, Reinhard, “Post-transcriptional spliceosomes are

retained in nuclear speckles until splicing completion,” Nature Communications, vol. 3, no. 1, pp. 1–12, 2012.

[262] Moyer, Devlin C and Larue, Graham E and Hershberger, Courtney E and Roy, Scott W and Padgett, Richard A,

“Comprehensive database and evolutionary dynamics of U12-type introns,” Nucleic Acids Research, vol. 48,

no. 13, pp. 7066–7078, 2020.

[263] Zhang, Guohong and Taneja, Krishan L and Singer, Robert H and Green, Michael R, “Localization of pre-

mRNA splicing in mammalian nuclei,” Nature, vol. 372, no. 6508, pp. 809–812, 1994.

[264] Denis, Melvin M and Tolley, Neal D and Bunting, Michaeline and Schwertz, Hansjörg and Jiang, Huimiao

and Lindemann, Stephan and Yost, Christian C and Rubner, Frederick J and Albertine, Kurt H and Swoboda,

Kathryn J and others, “Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate

platelets,” Cell, vol. 122, no. 3, pp. 379–391, 2005.

[265] König, Harald and Matter, Nathalie and Bader, Rüdiger and Thiele, Wilko and Müller, Ferenc, “Splicing

segregation: The minor spliceosome acts outside the nucleus and controls cell proliferation,” Cell, vol. 131,

no. 4, pp. 718–729, 2007.

[266] Buckley, Peter T and Khaladkar, Mugdha and Kim, Junhyong and Eberwine, James, “Cytoplasmic intron

retention, function, splicing, and the sentinel RNA hypothesis,” Wiley Interdisciplinary Reviews: RNA, vol. 5,

no. 2, pp. 223–230, 2014.

[267] Uemura, Aya and Oku, Masaya and Mori, Kazutoshi and Yoshida, Hiderou, “Unconventional splicing of XBP1

mRNA occurs in the cytoplasm during the mammalian unfolded protein response,” Journal of Cell Science,

vol. 122, no. 16, pp. 2877–2886, 2009.

[268] Middleton, Robert and Gao, Dadi and Thomas, Aubin and Singh, Babita and Au, Amy and Wong, Justin JL

and Bomane, Alexandra and Cosson, Bertrand and Eyras, Eduardo and Rasko, John EJ and others, “IRFinder:

assessing the impact of intron retention on mammalian gene expression,” Genome Biology, vol. 18, no. 1,

pp. 1–11, 2017.

[269] Yap, Karen and Lim, Zhao Qin and Khandelia, Piyush and Friedman, Brad and Makeyev, Eugene V, “Coordi-

nated regulation of neuronal mRNA steady-state levels through developmentally controlled intron retention,”

Genes & Development, vol. 26, no. 11, pp. 1209–1223, 2012.

101



[270] Edwards, Christopher R and Ritchie, William and Wong, Justin J-L and Schmitz, Ulf and Middleton, Robert

and An, Xiuli and Mohandas, Narla and Rasko, John EJ and Blobel, Gerd A, “A dynamic intron retention

program in the mammalian megakaryocyte and erythrocyte lineages,” Blood, The Journal of the American

Society of Hematology, vol. 127, no. 17, e24–e34, 2016.

[271] Pimentel, Harold and Parra, Marilyn and Gee, Sherry L and Mohandas, Narla and Pachter, Lior and Conboy,

John G, “A dynamic intron retention program enriched in RNA processing genes regulates gene expression

during terminal erythropoiesis,” Nucleic Acids Research, vol. 44, no. 2, pp. 838–851, 2016.

[272] Wong, Justin J-L and Ritchie, William and Ebner, Olivia A and Selbach, Matthias and Wong, Jason WH

and Huang, Yizhou and Gao, Dadi and Pinello, Natalia and Gonzalez, Maria and Baidya, Kinsha and others,

“Orchestrated intron retention regulates normal granulocyte differentiation,” Cell, vol. 154, no. 3, pp. 583–595,

2013.

[273] Lareau, Liana F and Inada, Maki and Green, Richard E and Wengrod, Jordan C and Brenner, Steven E,

“Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements,”

Nature, vol. 446, no. 7138, pp. 926–929, 2007.

[274] Ge, Ying and Porse, Bo T, “The functional consequences of intron retention: alternative splicing coupled to

NMD as a regulator of gene expression,” Bioessays, vol. 36, no. 3, pp. 236–243, 2014.

[275] Naro, Chiara and Jolly, Ariane and Di Persio, Sara and Bielli, Pamela and Setterblad, Niclas and Alberdi,

Antonio J and Vicini, Elena and Geremia, Raffaele and De la Grange, Pierre and Sette, Claudio, “An orchestrated

intron retention program in meiosis controls timely usage of transcripts during germ cell differentiation,”

Developmental Cell, vol. 41, no. 1, pp. 82–93, 2017.

[276] Memon, Danish and Dawson, Keren and Smowton, Christopher SF and Xing, Wei and Dive, Caroline and

Miller, Crispin J, “Hypoxia-driven splicing into noncoding isoforms regulates the DNA damage response,” npj

Genomic Medicine, vol. 1, no. 1, pp. 1–7, 2016.

[277] Mauger, Oriane and Lemoine, Frédéric and Scheiffele, Peter, “Targeted intron retention and excision for rapid

gene regulation in response to neuronal activity,” Neuron, vol. 92, no. 6, pp. 1266–1278, 2016.

[278] Ni, Ting and Yang, Wenjing and Han, Miao and Zhang, Yubo and Shen, Ting and Nie, Hongbo and Zhou,

Zhihui and Dai, Yalei and Yang, Yanqin and Liu, Poching and others, “Global intron retention mediated gene

regulation during CD4+ T cell activation,” Nucleic Acids Research, vol. 44, no. 14, pp. 6817–6829, 2016.

[279] Boutz, Paul L and Bhutkar, Arjun and Sharp, Phillip A, “Detained introns are a novel, widespread class of

post-transcriptionally spliced introns,” Genes & Development, vol. 29, no. 1, pp. 63–80, 2015.

[280] Dvinge, Heidi and Bradley, Robert K, “Widespread intron retention diversifies most cancer transcriptomes,”

Genome Medicine, vol. 7, no. 1, pp. 1–13, 2015.

[281] Zhang, Qu and Li, Hua and Jin, Hong and Tan, Huibiao and Zhang, Jun and Sheng, Sitong, “The global

landscape of intron retentions in lung adenocarcinoma,” BMC Medical Genomics, vol. 7, no. 1, pp. 1–9, 2014.

102



[282] Eswaran, Jeyanthy and Horvath, Anelia and Godbole, Sucheta and Reddy, Sirigiri Divijendra and Mudvari,

Prakriti and Ohshiro, Kazufumi and Cyanam, Dinesh and Nair, Sujit and Fuqua, Suzanne AW and Polyak,

Kornelia and others, “RNA sequencing of cancer reveals novel splicing alterations,” Scientific Reports, vol. 3,

no. 1, pp. 1–12, 2013.

[283] Monteuuis, Geoffray and Wong, Justin JL and Bailey, Charles G and Schmitz, Ulf and Rasko, John EJ, “The

changing paradigm of intron retention: Regulation, ramifications and recipes,” Nucleic Acids Research, vol. 47,

no. 22, pp. 11 497–11 513, 2019.

[284] de Lima Morais, David A and Harrison, Paul M, “Large-scale evidence for conservation of NMD candidature

across mammals,” PLoS One, vol. 5, no. 7, e11695, 2010.

[285] Buckley, Peter T and Lee, Miler T and Sul, Jai-Yoon and Miyashiro, Kevin Y and Bell, Thomas J and Fisher,

Stephen A and Kim, Junhyong and Eberwine, James, “Cytoplasmic intron sequence-retaining transcripts can

be dendritically targeted via ID element retrotransposons,” Neuron, vol. 69, no. 5, pp. 877–884, 2011.

[286] Smart, Alicia C and Margolis, Claire A and Pimentel, Harold and He, Meng Xiao and Miao, Diana and

Adeegbe, Dennis and Fugmann, Tim and Wong, Kwok-Kin and Van Allen, Eliezer M, “Intron retention is a

source of neoepitopes in cancer,” Nature Biotechnology, vol. 36, no. 11, pp. 1056–1058, 2018.

[287] Kahles, André and Lehmann, Kjong-Van and Toussaint, Nora C and Hüser, Matthias and Stark, Stefan G and

Sachsenberg, Timo and Stegle, Oliver and Kohlbacher, Oliver and Sander, Chris and Caesar-Johnson, Samantha

J and others, “Comprehensive analysis of alternative splicing across tumors from 8,705 patients,” Cancer Cell,

vol. 34, no. 2, pp. 211–224, 2018.

[288] Trincado, Juan L and Reixachs-Sole, Marina and Pérez-Granado, Judith and Fugmann, Tim and Sanz, Ferran

and Yokota, Jun and Eyras, Eduardo, “ISOTOPE: ISOform-guided prediction of epiTOPEs in cancer,” PLoS

Computational Biology, vol. 17, no. 9, e1009411, 2021.

[289] Dong, Chuanpeng and Cesarano, Annamaria and Bombaci, Giuseppe and Reiter, Jill L and Yu, Christina

Y and Wang, Yue and Jiang, Zhaoyang and Zaid, Mohammad Abu and Huang, Kun and Lu, Xiongbin and

others, “Intron retention-induced neoantigen load correlates with unfavorable prognosis in multiple myeloma,”

Oncogene, vol. 40, no. 42, pp. 6130–6138, 2021.

[290] Dong, Chuanpeng and Reiter, Jill L and Dong, Edward and Wang, Yue and Lee, Kelvin P and Lu, Xiongbin

and Liu, Yunlong, “Intron-Retention neoantigen load predicts favorable prognosis in pancreatic cancer,” JCO

Clinical Cancer Informatics, vol. 6, e2100124, 2022.

[291] Szabo, Linda and Salzman, Julia, “Detecting circular RNAs: Bioinformatic and experimental challenges,”

Nature Reviews Genetics, vol. 17, no. 11, pp. 679–692, 2016.

[292] Pimentel, Harold and Conboy, John G and Pachter, Lior, “Keep me around: Intron retention detection and

analysis,” arXiv preprint arXiv:1510.00696, 2015.

[293] Oghabian, Ali and Greco, Dario and Frilander, Mikko J, “IntEREst: Intron-exon retention estimator,” BMC

Bioinformatics, vol. 19, no. 1, pp. 1–10, 2018.

103



[294] Li, Hong-Dong and Funk, Cory C and Price, Nathan D, “iREAD: a tool for intron retention detection from

RNA-seq data,” BMC Genomics, vol. 21, no. 1, pp. 1–11, 2020.

[295] Lee, Stuart and Zhang, Albert Y and Su, Shian and Ng, Ashley P and Holik, Aliaksei Z and Asselin-Labat,

Marie-Liesse and Ritchie, Matthew E and Law, Charity W, “Covering all your bases: Incorporating intron

signal from RNA-seq data,” NAR Genomics and Bioinformatics, vol. 2, no. 3, lqaa073, 2020.

[296] Tilgner, Hagen and Knowles, David G and Johnson, Rory and Davis, Carrie A and Chakrabortty, Sudipto and

Djebali, Sarah and Curado, João and Snyder, Michael and Gingeras, Thomas R and Guigó, Roderic, “Deep

sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human

genome but inefficient for lncRNAs,” Genome Research, vol. 22, no. 9, pp. 1616–1625, 2012.

[297] Braunschweig, Ulrich and Barbosa-Morais, Nuno L and Pan, Qun and Nachman, Emil N and Alipanahi, Babak

and Gonatopoulos-Pournatzis, Thomas and Frey, Brendan and Irimia, Manuel and Blencowe, Benjamin J,

“Widespread intron retention in mammals functionally tunes transcriptomes,” Genome Research, vol. 24, no. 11,

pp. 1774–1786, 2014.

[298] Kronenberg, Zev N and Fiddes, Ian T and Gordon, David and Murali, Shwetha and Cantsilieris, Stuart and

Meyerson, Olivia S and Underwood, Jason G and Nelson, Bradley J and Chaisson, Mark JP and Dougherty,

Max L and others, “High-resolution comparative analysis of great ape genomes,” Science, vol. 360, no. 6393,

eaar6343, 2018.

[299] Shi, Lingling and Guo, Yunfei and Dong, Chengliang and Huddleston, John and Yang, Hui and Han, Xiaolu

and Fu, Aisi and Li, Quan and Li, Na and Gong, Siyi and others, “Long-read sequencing and de novo assembly

of a Chinese genome,” Nature Communications, vol. 7, no. 1, pp. 1–10, 2016.

[300] Li, Heng and Handsaker, Bob and Wysoker, Alec and Fennell, Tim and Ruan, Jue and Homer, Nils and Marth,

Gabor and Abecasis, Goncalo and Durbin, Richard, “The sequence alignment/map format and SAMtools,”

Bioinformatics, vol. 25, no. 16, pp. 2078–2079, 2009.

[301] Bonfield, James K and Marshall, John and Danecek, Petr and Li, Heng and Ohan, Valeriu and Whitwham,

Andrew and Keane, Thomas and Davies, Robert M, “HTSlib: C library for reading/writing high-throughput

sequencing data,” Gigascience, vol. 10, no. 2, giab007, 2021.

[302] Langmead, Ben and Salzberg, Steven L, “Fast gapped-read alignment with Bowtie 2,” Nature Methods, vol. 9,

no. 4, pp. 357–359, 2012.

[303] pachterlab/kma: Keep Me Around: Intron retention detection, https://github.com/pachterlab/kma.

[304] Roberts, Adam and Pachter, Lior, “Streaming fragment assignment for real-time analysis of sequencing

experiments,” Nature Methods, vol. 10, no. 1, pp. 71–73, 2013.

[305] Roberts, Adam and Trapnell, Cole and Donaghey, Julie and Rinn, John L and Pachter, Lior, “Improving

RNA-Seq expression estimates by correcting for fragment bias,” Genome Biology, vol. 12, no. 3, pp. 1–14,

2011.

104

https://github.com/pachterlab/kma


[306] Li, Hong-Dong, “GTFtools: A Python package for analyzing various modes of gene models,” bioRxiv,

p. 263 517, 2018.

[307] Fleiss, Joseph L, “Measuring nominal scale agreement among many raters,” Psychological Bulletin, vol. 76,

no. 5, p. 378, 1971.

[308] irr: Various Coefficients of Interrater Reliability and Agreement, https://CRAN.R-project.org/package=

irr.

[309] Glažar, Petar and Papavasileiou, Panagiotis and Rajewsky, Nikolaus, “circBase: A database for circular RNAs,”

RNA, vol. 20, no. 11, pp. 1666–1670, 2014.

[310] Jeong, Ji-Eun and Seol, Binna and Kim, Han-Seop and Kim, Jae-Yun and Cho, Yee-Sook, “Exploration of

alternative splicing events in mesenchymal stem cells from human induced pluripotent stem cells,” Genes,

vol. 12, no. 5, p. 737, 2021.

[311] Lejeune, Fabrice and Cavaloc, Yvon and Stevenin, James, “Alternative splicing of intron 3 of the serine/arginine-

rich protein 9G8 gene: Identification of flanking exonic splicing enhancers and involvement of 9G8 as a

trans-acting factor,” Journal of Biological Chemistry, vol. 276, no. 11, pp. 7850–7858, 2001.

[312] Li, Hong-Dong and Funk, Cory C and McFarland, Karen and Dammer, Eric B and Allen, Mariet and Car-

rasquillo, Minerva M and Levites, Yona and Chakrabarty, Paramita and Burgess, Jeremy D and Wang, Xue and

others, “Integrative functional genomic analysis of intron retention in human and mouse brain with Alzheimer’s

disease,” Alzheimer’s & Dementia, vol. 17, no. 6, pp. 984–1004, 2021.
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6 Appendices

A Introduction

A.1 Example esearch query

Example query using the esearch function provided in the Entrez Programming Utilities [18] software. This queries
the GEO Data Sets API for records containing data from the EPIC array (database ID: GPL21145) platform, for which
the supplemental files include raw IDAT images. The query uses esearch, which returns IDs for samples containing
EPIC IDATs. The sample IDs are then piped to efetch and xtract to determine the number of unique IDs available.

1 esearch -db gds -query ’GPL21145 ’[ACCN] AND idat[suppFile] AND gsm[ETYP] |
2 efetch -format docsum |
3 xtract -pattern DocumentSummary -element ID Accession > ./

A.2 Example Python script using esearch utilities

This Python script calls esearch, provided in the Entrez Programming Utilities [18] software, in order to determine
sample IDs and study IDs for specific platform IDs. It determines the total IDs and IDs for which an IDAT supplement
is available. Note, this script calls settings, which defines several global variables including the platform ID,
settings.platformid, which can be any valid platform ID. Thus this script is modular and can be applied to
either of the Illumina Infinium BeadArray platforms. This script appears in the recountmethylation_server [193]
resource, which is used in recountmethylation_instance to access data compiled in the data compilations for
recountmethylation.

1 #!/usr/bin/env python3
2

3 """ edirect_query.py
4

5 Authors: Sean Maden , Abhi Nellore
6

7 Get files of GSE and GSM ids from GEO via edirect query (NCBI entrez
8 utlities function). IDs correspond to valid HM450k array experiments and
9 samples.

10

11 Notes:
12 * Scheduling: New edirect queries should be scheduled periodically to
13 check for latest experiment/sample/file info and to detect novel
14 uploaded experiments/samples/files.
15 * Filters: The edirect queries (GSE , GSM , and filtered query file) work
16 together to form a filter on valid sample and experiment ids whose
17 files are to be downloaded and preprocessed.
18

19 Functions:
20 * gse_query_diffs: Quickly detect and return differences between two
21 edirect query files.
22 * gsm_query: Get valid HM450k sample (GSM) IDs , based on presence of
23 HM450k platform and availability of raw idat array files in
24 supplement.
25 * gse_query: Get valid HM450k experiment (GSE) IDs , based on
26 specification of the correct platform accession (GPL13534) in the
27 experiment annotation. Note , many experiments combine multiple
28 platform ids , so it is necessary to filter out non -HM450k array
29 samples from experiment GSM ID lists.
30 * gsequery_filter: Generate a new edirect query filter file , containing
31 valid GSE and GSM IDs for HM450k array experiments/samples with
32 idats available in sample supplemental files.
33 """
34

35 import subprocess , os, socket , struct , sys , time , tempfile , atexit , shutil
36 import glob , filecmp; from itertools import chain
37 sys.path.insert(0, os.path.join("recountmethylation_server","src"))
38 from utilities import gettime_ntp , querydict , getlatest_filepath
39 import settings
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40 settings.init()
41

42 def gse_query_diffs(query1 , query2 , rstat=False):
43 """ gse_query_diffs
44

45 Compares two GSE query results , returning query file diffs or boolean.
46

47 Arguments:
48 * query1 (str) : first edirect query , filename
49 * query2 (str) : second edirect query , filename
50 * rstat (True/False , bool.) : whether to return boolean only ,
51 or else return list (default)
52

53 Returns:
54 * boolean (T/F) or query diffs (list of GSE IDs). Boolean is ’True’
55 if query objects are the same , ’False ’ otherwise
56 """
57 difflist = []
58 qd1 = querydict(query1) # eg. for first value: qd1[list(qd1.keys())[0]]
59 qd2 = querydict(query2)
60 # if gse doesn’t exist in qd2
61 for key in qd1:
62 evalkey = ’’
63 if key in list(qd2.keys()):
64 if not qd1[key ]== qd2[key]:
65 for item in qd1[key]:
66 if not item in qd2[key]:
67 evalkey = False
68 for item in qd2[key]:
69 if not item in qd1[key]:
70 evalkey = False
71 else:
72 evalkey = None
73 if not evalkey:
74 difflist.append(key)
75 for key in qd2:
76 if not key in list(qd1.keys()):
77 difflist.append(key)
78 if rstat:
79 if len(difflist) >0:
80 return False
81 else:
82 return True
83 else:
84 return difflist
85

86 def gsm_query(validate=True , timestamp=gettime_ntp ()):
87 """ gsm_query
88 Get GSM level query object , from edirect query.
89 Arguments:
90 * validate (True/False , bool.) : whether to validate the file after
91 ownload.
92 * timestamp (str) : NTP timestamp or function to retrieve it.
93 Returns:
94 * Error (str) or download object (dictionary).
95 """
96 # timestamp = str(gettime_ntp ())
97 eqdestpath = settings.equerypath
98 temppath = settings.temppath
99 os.makedirs(eqdestpath , exist_ok=True)

100 os.makedirs(temppath , exist_ok=True)
101 temp_make = tempfile.mkdtemp(dir=temppath)
102 atexit.register(shutil.rmtree , temp_make)
103 dldict = {}
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104 dldict[’gsmquery ’] = []
105 dlfilename = ".".join([’gsm_edirectquery ’,timestamp ])
106 dldict[’gsmquery ’]. append(dlfilename)
107 subp_strlist1 = ["esearch","-db","gds","-query",
108 "’"+settings.platformid+"[ACCN] AND idat[suppFile] AND gsm[ETYP]’"
109 ]
110 subp_strlist2 = ["efetch","-format","docsum"]
111 subp_strlist3 = ["xtract","-pattern","DocumentSummary",
112 "-element","Id Accession",">",
113 os.path.join(temp_make ,dlfilename)
114 ]
115 args = " | ".join([" ".join(subp_strlist1),
116 " ".join(subp_strlist2),
117 " ".join(subp_strlist3)])
118 output=subprocess.check_output(args , shell=True)
119 dldict[’gsmquery ’]. append(output)
120 if validate:
121 gsmquery_filewritten = os.path.join(temp_make ,dlfilename)
122 gsmquery_old = glob.glob(’.’.join([os.path.join(eqdestpath , ’

gsm_edirectquery ’), ’*’ ,]))
123 if gsmquery_old:
124 if len(gsmquery_old) >1:
125 gsmquery_old.sort(key=lambda x: int(x.split(’.’)[1]))
126 gsmquery_old_mostrecent = gsmquery_old [-1]
127 else:
128 gsmquery_old_mostrecent = gsmquery_old [0]
129 # filecmp should work (equesry file order preserved on reps)
130 if filecmp.cmp(gsmquery_old_mostrecent ,gsmquery_filewritten):
131 print("Downloaded gsm query file same as most recent stored."+
132 " Removing ..."
133 )
134 os.remove(gsmquery_filewritten)
135 dldict[’gsmquery ’]. append(False)
136 else:
137 print("Downloaded file is new , moving to dest ...")
138 shutil.move(gsmquery_filewritten , os.path.join(
139 eqdestpath , os.path.basename(gsmquery_filewritten)

)
140 )
141 dldict[’gsmquery ’]. append(True)
142 else:
143 print("Downloaded file is new , moving ...")
144 shutil.move(gsmquery_filewritten , os.path.join(
145 eqdestpath , os.path.basename(gsmquery_filewritten))
146 )
147 dldict[’gsmquery ’]. append(True)
148 return dldict
149

150 def gse_query(validate=True , timestamp=gettime_ntp ()):
151 """ gse_query
152

153 Get GSE level query object from edirect query.
154

155 Arguments:
156 * validate (True/False , bool) : Whether to validate the file after
157 download.
158 * timestamp (str) : NTP timestamp or function to retrieve it.
159

160 Returns:
161 * Error (str) or download object (dictionary).
162 """
163 eqdestpath = settings.equerypath
164 os.makedirs(eqdestpath , exist_ok=True)
165 temppath = settings.temppath
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166 os.makedirs(temppath , exist_ok=True)
167 temp_make = tempfile.mkdtemp(dir=temppath)
168 atexit.register(shutil.rmtree , temp_make)
169 dldict = {}
170 dldict[’gsequery ’] = []
171 dlfilename = ".".join([’gse_edirectquery ’,timestamp ])
172 dldict[’gsequery ’]. append(dlfilename)
173 subp_strlist1 = ["esearch","-db","gds","-query",
174 "’"+settings.platformid+"[ACCN] AND idat[suppFile] AND gse[ETYP]’"
175 ]
176 subp_strlist2 = ["efetch","-format","docsum"]
177 subp_strlist3 = ["xtract","-pattern","DocumentSummary",
178 "-element","Id Accession",">",
179 os.path.join(temp_make ,dlfilename)
180 ]
181 args = " | ".join([" ".join(subp_strlist1),
182 " ".join(subp_strlist2),
183 " ".join(subp_strlist3)])
184 output=subprocess.check_output(args , shell=True)
185 dldict[’gsequery ’]. append(output)
186 if validate:
187 gsequery_filewritten = os.path.join(temp_make ,dlfilename)
188 gsequery_old = glob.glob(’.’.join([os.path.join(eqdestpath , ’

gse_edirectquery ’), ’*’ ,]))
189 if gsequery_old:
190 if len(gsequery_old) >1:
191 gsequery_old.sort(key=lambda x: int(x.split(’.’)[1]))
192 gsequery_old_mostrecent = gsequery_old [-1]
193 else:
194 gsequery_old_mostrecent = gsequery_old [0]
195 # get diffs manually (edirect can return id’s in different order)
196 diffs = gse_query_diffs(query1=gsequery_old_mostrecent ,
197 query2=gsequery_filewritten ,
198 rstat=True)
199 if diffs:
200 print("Downloaded gse query file same as most recent stored."+
201 " Removing ..."
202 )
203 os.remove(gsequery_filewritten)
204 dldict[’gsequery ’]. append(False)
205 else:
206 print("Downloaded file is new , moving to dest ...")
207 shutil.move(gsequery_filewritten , os.path.join(
208 eqdestpath , os.path.basename(gsequery_filewritten)

)
209 )
210 dldict[’gsequery ’]. append(True)
211 else:
212 print("Downloaded file is new , moving ...")
213 shutil.move(gsequery_filewritten , os.path.join(
214 eqdestpath , os.path.basename(gsequery_filewritten))
215 )
216 dldict[’gsequery ’]. append(True)
217 return dldict
218

219 def gsequery_filter(splitdelim=’\t’, timestamp=gettime_ntp ()):
220 """ gsequery_filter
221

222 Prepare an edirect query file. Filter a GSE query file on its GSM
223 membership.
224

225 Arguments:
226 * splitdelim (str) : Delimiter to split ids in querydict () call.
227 * timestamp (str) : NTP timestamp or function to retrieve it.
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228

229 Returns:
230 * gsequeryfiltered (list): Filtered GSE query object (list), writes
231 filtered query file as side effect.
232 """
233 eqpath = settings.equerypath
234 gsequerystr = settings.gsequerystr
235 gsmquerystr = settings.gsmquerystr
236 # get GSM list from gsm query file
237 gsmqueryf_latestpath = getlatest_filepath(filepath=eqpath ,
238 filestr=gsmquerystr , embeddedpattern=True , tslocindex =1,
239 returntype=’returnlist ’
240 )
241 if gsmqueryf_latestpath:
242 print("Latest gsmquery file detected: "+str(gsmqueryf_latestpath))
243 else:
244 print("Error detecting latest gsmquery file! Returning ...")
245 return
246 gsmlines = [line.rstrip(’\n’) for line in open(gsmqueryf_latestpath [0])]
247 gsmlist = [line.split(’\t’)[1::][0] for line in gsmlines]
248 # get GSE dictionary object
249 gsequeryf_latestpath = getlatest_filepath(filepath=eqpath , filestr=gsequerystr

,
250 embeddedpattern=True , tslocindex =1, returntype=’returnlist ’
251 )
252 if gsequeryf_latestpath:
253 print("Latest gsequery file detected: "+str(gsequeryf_latestpath))
254 else:
255 print("Error detecting latest gsequery file! Returning ...")
256 return
257 gsed_obj = querydict(querypath=gsequeryf_latestpath [0], splitdelim=’\t’)
258 gsefiltl = []
259 for gsekey in list(gsed_obj.keys()):
260 samplelist_original = gsed_obj[gsekey]
261 samplelist_filt = [sample for sample in samplelist_original
262 if sample in gsmlist
263 ]
264 if samplelist_filt and len(samplelist_filt) >0:
265 gsefiltl.append(’ ’.join([gsekey ,’ ’.join(samplelist_filt)]))
266 print(’writing filt file ...’)
267 if eqpath:
268 filtfn = ".".join(["gsequery_filt",timestamp ])
269 with open(os.path.join(eqpath , filtfn), ’w’) as filtfile:
270 for item in gsefiltl:
271 filtfile.write("%s\n" % item)
272 return gsefiltl
273

274 if __name__ == "__main__":
275 """ Run a new EDirect query
276

277 Query the GEO DataSets API for valid data run using the target platform.
278

279 """
280 print("Beginning EDirect query ...")
281 equery_dest = settings.equerypath; temppath = settings.temppath
282 gse_query (); gsm_query (); gsequery_filter ()

A.3 Example metadata preprocessing script

This R script preprocesses metadata obtained from GEO prior metadata mapping using the postprocessing script
(Appendix A.4). Briefly, this script recognizes key-value pairs from JSON-formatted files containing sample metadata
extracted from downloaded SOFT-formatted files. This script is run as part of the metadata harmonization process for
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recountmethylation data compilation files. It is implemented in the recountmethylation.pipeline [194] R
package.

1 #!/usr/bin/env Rscript
2

3 # Author: Sean Maden
4 #
5 # Preprocess available sample metadata
6 #
7

8 #------------------------
9 # md preprocess functions

10 #------------------------
11

12 # define strings to search for variables
13

14 #’ Terms vector for variable tissue
15 #’
16 #’ Terms to seed regex pattern matching for md_preprocess ().
17 #’ @seealso md_preprocess (); md_postprocess ()
18 #’ @return Terms vector
19 #’ @export
20 mdpre_vars_tissue <- function (){
21 cname.tissue <- c("tissue", "tissu", "sample type", "sample_type",
22 "sample.type", "cell line", "cell_line", "cell.line",
23 "cell type", "cell_type", "cell.type", "tissue type",
24 "tissue_type", "tissue.type", "tissue region",
25 "tissue_region", "tissue.region", "histology",
26 "region", "brnum", "location")
27 return(cname.tissue)
28 }
29

30 #’ Terms vector for variable disease
31 #’
32 #’ Terms to seed regex pattern matching for md_preprocess ().
33 #’ @seealso md_preprocess (); md_postprocess ()
34 #’ @return Terms vector
35 #’ @export
36 mdpre_vars_disease <- function (){
37 cname.disease_state <- c("disease state", "disease_state", "disease.state",
38 "subject status", "subject_status",
39 "subject.status", "sample group", "sample_group",
40 "sample.group", "diagnosis", "group", "condition",
41 "disease", "subgroup", "status")
42 return(cname.disease_state)
43 }
44

45 #’ Terms vector for variable info
46 #’
47 #’ Terms to seed regex pattern matching for md_preprocess ().
48 #’ @seealso md_preprocess (); md_postprocess ()
49 #’ @return Terms vector
50 #’ @export
51 mdpre_vars_info <- function (){
52 cname.info <- c("state", "passages", "race", "individual",
53 "race", "stage", "condition", "risk", "twinid", "smok",
54 "cigarette", "pack year", "pack_year", "pack.year",
55 "pack yr", "pack_yr", "pack.yr", "drinks", "drink year",
56 "drink_year", "drink.year", "drink yr", "drink_yr",
57 "drink.yr", "drug use", "drug_use", "drug.use",
58 "alcohol", "treatment", "material", "run", "batch",
59 "plate", "developmental stage", "developmental_stage",
60 "developmental.stage", "source", "storage", "zygosity",
61 "family", "weight", "bmi", "drug", "intervention")
62 return(cname.info)
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63 }
64

65 #’ Terms vector for variable sex
66 #’
67 #’ Terms to seed regex pattern matching for md_preprocess ().
68 #’ @seealso md_preprocess (); md_postprocess ()
69 #’ @return Terms vector
70 #’ @export
71 mdpre_vars_sex <- function (){cname.sex <- c("sex", "gender");return(cname.sex)}
72

73 #’ Terms vector for variable age
74 #’
75 #’ Terms to seed regex pattern matching for md_preprocess ().
76 #’ @seealso md_preprocess (); md_postprocess ()
77 #’ @return Terms vector
78 #’ @export
79 mdpre_vars_age <- function (){
80 cname.age <- c("age", "passage", "age (years)", "age_(years)", "age.(years)")
81 return(cname.age)
82 }
83

84 # get list of search strings
85

86 #’ Get the regex patterns for variable mappings
87 #’
88 #’ Gets the regex patterns from vectors of seed terms for each variable mapped
89 #’ by md_preprocess ().
90 #’ @seealso md_preprocess (); md_postprocess ()
91 #’ @return Returns list containing regex patterns for each mapped variable.
92 #’ @export
93 mdpre_vars <- function (){
94 cl <- lapply(list(mdpre_vars_tissue (), mdpre_vars_disease (),
95 mdpre_vars_sex(), mdpre_vars_age(),
96 mdpre_vars_info()), get_pstr);
97 names(cl) <- c("sample_type", "disease_state", "sex", "age", "info")
98 return(cl)
99 }

100

101 #’ Preprocess sample metadata
102 #’
103 #’ Preprocess sample metadata by coercing JSON -formatted metadata files
104 #’ into a flat matrix , with regex pattern matching to identify and
105 #’ categorize various variable types. Additional data such as the sample
106 #’ titles contained in the file declared by the titles.fn argument.
107 #’
108 #’ @param ts Timestamp for the preprocessed metadata table to output
109 #’ (integer or character).
110 #’ @param mdpre.fn Name of preprocessed metadata table file to output
111 #’ ("md_preprocess ").
112 #’ @param md.dname Name of directory , in files.dname , containing the instance
113 #’ metadata files (" metadata).
114 #’ @param titlesfn.str Name of sample/GSM titles file ("gsm_jsontitledf).
115 #’ @param atablefn.str Name of study annotation tables file
116 #’ ("geo_gse -atables_list")
117 #’ @param files.dname Main recountmethylation instance files directory
118 #’ ("recount -methylation -files ").
119 #’ @param verbose Whether to show status messages (TRUE).
120 #’ @return NULL , produces the mdpre preprocessed metadata table.
121 #’ @seealso md_postprocess ()
122 #’ @export
123 md_preprocess <- function(ts , mdpre.fn = "md_preprocess",
124 md.dname = "metadata",
125 titlesfn.str = "gsm_jsontitledf",
126 atablefn.str = "geo_gse -atables_list",
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127 files.dname = "recount -methylation -files",
128 verbose = TRUE){
129 if(verbose){message("Loading GSM data files ...")}
130 md.dpath <- file.path(files.dname , md.dname)
131 md.lf<-list.files(md.dpath);md.lf<-md.lf[grepl(paste0(".*",ts,".*"),md.lf)]
132 at.fname <- md.lf[grepl(paste0(atablefn.str , ".*"), md.lf)][1]
133 titles.fname <- md.lf[grepl(paste0(titlesfn.str , ".*"), md.lf)][1]
134 if(!file.exists(file.path(md.dpath , at.fname))){
135 stop("Study anno. tables file not found at ", at.fpath)}
136 if(!file.exists(file.path(md.dpath , titles.fname))){
137 stop("GSM titles file not found at ",titles.fpath)}
138 tls <- get(load(file.path(md.dpath , at.fname)))
139 tdf <- get(load(file.path(md.dpath , titles.fname)))
140 message("Processing GSE flat files ...")
141 colv <- c("gsm","gse","sample_type","disease_state","sex","age")
142 gat.all <- matrix(nrow = 0, ncol = length(colv));colnames(gat.all) <- colv
143 cl <- mdpre_vars(); message("Appending tables data ...")
144 for(gseid in names(tgse.list)){
145 gsedat <- tgse.list[[gseid ]]
146 gati <- data.frame(gsm = gsedat[,1], gse=gsedat[,2], stringsAsFactors=FALSE)
147 for(cn in names(cl)){
148 cnvar <- rep("NA", nrow(gsedat))
149 cn.dat <- rep("NA", nrow(gsedat));gsedat.rep <- gsedat;cn.cv <- cl[[cn]]
150 cname.filt <- grepl(cn.cv , colnames(gsedat.rep))
151 if(length(which(cname.filt)) > 0){
152 if(cn %in% c("age", "info")){ # parse age mapping logic , excluding fp’s
153 cmv <- colnames(gsedat.rep)[cname.filt]
154 if(verbose){message("Removing info matches (e.g. stage columns ...)")}
155 if(cn == "age"){
156 cmv.info <- grepl(cl[["info"]], colnames(gsedat.rep))
157 cmv <- colnames(gsedat.rep)[cname.filt & !cmv.info]}
158 if(verbose){message("Appending colnames to row entries ...")}
159 for(colnamei in cmv){
160 gsedat.rep[,colnamei]<-paste0(colnamei ,":",gsedat.rep[,colnamei ])}
161 };gf <- gsedat.rep[, cname.filt , drop = FALSE]
162 cnvar <- as.character(apply(gf ,1,paste ,collapse = ";"))
163 };gati[,ncol(gati) + 1] <- cnvar; colnames(gati)[ncol(gati)] <- cn
164 };gat.all <- rbind(gat.all , gati);message("Finished study: ", gseid)
165 };gat.all <- gat.all[!duplicated(gat.all[,1]) ,]
166 message("Appending GSM titles ...")
167 d1 <- gat.all; d2 <- gsmtitledf;gsm.all <- unique(c(d1[,1], d2[,1]))
168 gsm1 <- gsm.all[!gsm.all %in% d1[,1]]; gsm2 <- gsm.all[!gsm.all %in% d2[,1]]
169 if(length(gsm1) > 0){
170 nav <- rep(rep("NA", length(gsm1)), ncol(d1) - 1)
171 mna <- matrix(c(gsm1 , nav), nrow = length(gsm1), ncol = ncol(d1))
172 colnames(mna) <- colnames(d1); d1 <- rbind(d1, mna)}
173 if(length(gsm2) > 0){
174 nav <- rep(rep("NA", length(gsm2)), ncol(d2) - 1)
175 mna <- matrix(c(gsm2 , nav), nrow = length(gsm2), ncol = ncol(d2))
176 d2 <- rbind(d2 , mna)}
177 if(nrow(d2) > nrow(d1)){d2 <- d2[d2[,1] %in% d1[,1] & !duplicated(d2[,1]) ,]}
178 match.gsm1 <- match(as.character(d1[,1]), as.character(d2[,1]))
179 order.gsm1 <- order(match.gsm1);d1 <- d1[order.gsm1 ,]
180 match.gsm2 <- match(as.character(d2[,1]), as.character(d1[,1]))
181 order.gsm2 <- order(match.gsm2);d2 <- d2[order.gsm2 ,]
182 cond <- identical(as.character(d2[,1]), as.character(d1[,1]))
183 if(cond){
184 d1 <- as.data.frame(d1, stringsAsFactors = FALSE)
185 d1$gsm_title <- as.character(d2[,2])}
186 mdpre.fpath <- file.path(md.dpath , paste0(mdpre.fn, "_", ts , ".rda"))
187 message("Saving mdpre at ", mdpre.fpath , "...")
188 mdpre <- d1; save(mdpre , file = mdpre.fpath); return(NULL)
189 }
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A.4 Example metadata postprocessing script

This R script postprocesses metadata obtained from GEO after metadata preprocessing (Appendix A.3). Briefly, this
script maps uniformly formatted terms under informative variables for tissue, disease, etc. It takes as input the flat
files produced from preprocessing JSON files containing sample metadata. In addition to pattern recognition, there
are several sections using logic to map specific attributes such as time units for mined ages. This script is run as part
of the metadata harmonization process for recountmethylation data compilation files. It is implemented in the
recountmethylation.pipeline [194] R package.

1 #!/usr/bin/env Rscript
2

3 # Author: Sean Maden
4 #
5 # Preprocess available sample metadata
6 #
7

8 # require(data.table); require(rjson)
9

10 #-------------------------
11 # md postprocess functions
12 #-------------------------
13 # disease terms (general , non -cancer)
14 #’ Disease terms for disease variable
15 #’
16 #’ List containing search terms and string queries for regex pattern matching.
17 #’
18 #’ @return List of terms (names) and string queries (values).
19 #’ @export
20 md_post_disease <- function (){
21 dxl <- list("acute" = c("acute"), "syndrome" = c("syndrome"),
22 "disorder" = c("disorder"), "inflam"= c("inflammation"),
23 "cancer" = c("cancer"), "case" = c("case"),
24 "normal" = c("normal"),
25 "healthy" = c("healthy"), "replicate" = c("replicate"),
26 "control" = c("control", "CONTROL", "ctl", "CTL", "ctrl",
27 "CTRL"),
28 "psychosis" = c("psychosis", "psychotic"),
29 "schizophrenia" = c("schizophrenia"),
30 "arthritis" = c("osteoarthritis", "arthritis", "rheumatoid",
31 "psoriatic", "fibromyalgia", "gout"),
32 "rheumatoid_arthritis" = c("rheumatoid arthritis"),
33 "osteoarthritis" = c("osteoarthritis"),
34 "psoriatic_arthritis" = c("psoriatic arthritis"),
35 "genetic_disorder" = c("fragile x", "cystic fibrosis", "duane",
36 "polycystic", "chrons", "hemophelia",
37 "haemophelia", "hemochromatosis",
38 "huntington ’s", "huntingtons",
39 "thalassemia", "tay sachs", "tay sach",
40 "parkinson ’s", "parkinsons",
41 "sickle cell", "marfan"),
42 "parkinsons" = c("parkinsons", "parkinson ’s"),
43 "sickle_cell" = c("sickle cell"),
44 "anemia" = c("anemia", "sickle cell"),
45 "alzheimers" = c("alzheimer", "alzheimer"),
46 "dementia" = c("dementia"), "lewy_body" = c("lewy bod"),
47 "cystic_fibrosis" = c("cystic fibrosis"),
48 "scoliosis" = c("scoliosis"),
49 "obese" = c("obese"),
50 "irritable_bowel_disease" = c("IBD", "ibd", "irritable bowel"),
51 "lesions" = c("lesions"),
52 "insulin_resistance" = c("insulin resist"),
53 "autism" = c("autism", "autistic"), "patient" = c("patient"))
54 return(dxl)
55 }
56
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57 # cancer tissue terms/generic cancer terms
58 #’ Cancer terms for tissue variable
59 #’
60 #’ List containing search terms and string queries for regex pattern matching.
61 #’
62 #’ @return List of terms (names) and string queries (values).
63 #’ @export
64 md_post_cancer <- function (){
65 cxl <- list("cancer" = c("tumor", "tumour", "metasta", "carcinoma",
66 "sarcoma", "neoplas", "adenoma", "cancroid"),
67 "tumor" = c("tumor", "tumour"),"metastasis" = c("metasta"),
68 "carcinoma" = c("carcinoma"),"sarcoma" = c("sarcoma"),
69 "neoplasia" = c("neoplas"), "adenoma" = c("adenoma"),
70 "adenocarcinoma" = c("adenocarcinoma"), "lepidic" = c("lepidic"),
71 "blastoma" = c("blastoma"), "benign" = c("benign"))
72 return(cxl)
73 }
74

75 # cancer types by tissue/location
76 #’ Cancer terms list for tissue variable
77 #’
78 #’ List containing search terms and string queries for regex pattern matching.
79 #’
80 #’ @return List of terms (names) and string queries (values).
81 #’ @export
82 md_post_cancertype <- function (){
83 cxsubl <- list("skin_cancer" = c("melanoma", "skin cancer"),
84 "brain_cancer" = c("glioblastoma", "astrocytoma",
85 "brain cancer",
86 "medulloblastoma"),
87 "medulloblastoma" = c("medulloblastoma"),
88 "glioblastoma" = c("glioblastoma"),
89 "breast_cancer" = c("breast lobular carcinoma",
90 "breast ductal carcinoma",
91 "breast cancer", "triple negative"),
92 "colorectal_cancer" = c("colorectal adeno", "colon cancer",
93 "colorectal cancer", "rectal cancer"),
94 "stomach_cancer" = c("stomach adeno", "stomach cancer",
95 "gastric cancer", "gastric adeno"),
96 "esophageal_cancer" = c("esophageal carcinoma",
97 "esophageal adeno",
98 "esophageal squamous cell carcinoma",
99 "oesophageal carcinoma",

100 "oesophageal adeno",
101 "oesophageal squamous cell carcinoma",
102 "esophageal cancer",
103 "oesophageal cancer",
104 " EAC$"),
105 "nerve_cell_cancer" = c("paraganglioma", "ependymoma",
106 "nerve cancer",
107 "nerve cell cancer",
108 "schwannoma"),
109 "paraganglioma" = c("paraganglioma"),
110 "ovarian_cancer" = c("ovarian serous carcinoma",
111 "ovarian cancer",
112 "endometrioid",
113 "ovarian epithelial cancer"),
114 "uterine_cancer" = c("uterine carcinosarcoma",
115 "uterine cancer",
116 "uterine corpus endometrial carcinoma",
117 "endometrial carcinoma",
118 "uterine serous carcinoma",
119 "uterine papillary serous carcinoma"),
120 "kidney_cancer" = c("oncocytoma",

117



121 "clear cell renal cell carcinoma",
122 "chromophobe renal cell carcinoma",
123 "renal cancer", "kidney cancer",
124 "kidney papillary carcinoma"),
125 "thyroid_cancer" = c("thyroid carcinoma", "thyroid cancer"),
126 "lung_cancer" = c("lung adenocarcinoma",
127 "lung squamous cell carcinoma",
128 "lung cancer",
129 "non -mucinous bronchoalveolar carcinoma",
130 "lepidic -predominant adenocarcinoma",
131 "LPA"),
132 "bladder_cancer" = c("invasive urothelial bladder cancer",
133 "bladder cancer"),
134 "prostate_cancer" = c("prostate adenocarcinoma",
135 "prostate cancer"),
136 "liver_cancer" = c("liver hepatocellular carcinoma",
137 "hepatoblastoma",
138 "cholangiocarcinoma",
139 "liver angiosarcoma",
140 "liver cancer"),
141 "thymus_gland_cancer" = c("thymoma", "thymus cancer",
142 "thymus gland cancer",
143 "thymic cancer"),
144 "testicular_cancer" = c("testicular germ cell cancer",
145 "testicular cancer"),
146 "pancreatic_cancer" = c("pancreatic ductal adenocarcinoma",
147 "pancreatic cancer"),
148 "cervical_cancer" = c("cervical squamous cell carcinoma",
149 "cervical cancer",
150 "cervical squamous cell adenocarcinoma"
151 ),
152 "eye_cancer" = c("uveal melanoma", "uveal lymphoma",
153 "intraocular cancer", "retinoblastoma",
154 "retinal cancer"))
155 return(cxsubl)
156 }
157

158 # leukemia disease terms
159 #’ Leukemia terms list for disease variable
160 #’
161 #’ List containing search terms and string queries for regex pattern matching.
162 #’
163 #’ @return List of terms (names) and string queries (values).
164 #’ @export
165 md_post_leukemia <- function (){
166 leukl <- list("leukemia" = c("leukemia", "chronic leuk", "chronic myelo",
167 "acute leuk", "acute lympho", "acute myel",
168 "cml", "CML", "aml", "AML", "ALL"),
169 "acute_leukemia" = c("acute leuk","acute lympho", "acute myel",
170 "aml", "AML", "ALL"),
171 "acute_myeloid_leukemia" = c("acute myel", "aml", "AML"),
172 "acute_lymphoblastic_leukemia" = c("acute lympho", "ALL"))
173 return(leukl)
174 }
175

176 # tissue terms , blood and related
177 #’ Blood terms list for tissue variable
178 #’
179 #’ List containing search terms and string queries for regex pattern matching.
180 #’
181 #’ @return List of terms (names) and string queries (values).
182 #’ @export
183 md_post_tissue_blood <- function (){
184 txl <- list("blood" = c("blood", "hematopoiet", "haematopoiet","lymphoid",
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185 "myeloid", "natural killer", "( |^)nk( |$)",
186 "( |^)NK( |$)", "erythrocyte", "mast cell",
187 "myeloblast", "plasma","monocyte", "lymphocyte",
188 "eosinophil", "neutrophil","basophil", "macrophage",
189 "megakaryocyte", "thrombocyte","wbc", "WBC", "rbc",
190 "RBC","bcell", "b cell", "tcell", "t cell", "cd4",
191 "cd5", "cd8", "cd34", "CD4", "CD5", "CD8", "CD34",
192 "cytotoxic", "helper", "peripheral blood leukocytes",
193 "( |^) PBL( |$|:)", "pbmc", "( |^) PBMC( |$|:)",
194 "buffy", "blood spot", "blood punch", "granulocyte",
195 "white blood cell"),
196 "buffy_coat" = c("buffy"),
197 "whole_blood" = c("whole blood"),
198 "peripheral_blood" = c("peripheral blood"),
199 "cord_blood" = c("cord blood"), "blood_spot" = c("blood spot"),
200 "white_blood_cell" = c("wbc", "WBC", "white blood cell",
201 "monocyte", "lymphocyte", "eosinophil",
202 "neutrophil", "basophil","bcell",
203 "b cell", "tcell", "t cell", "cd4",
204 "cd5", "cd8", "cd34", "granulocyte",
205 "CD4", "CD5", "CD8", "CD34", "cytotoxic",
206 "helper", "pbmc", "PBMC"),
207 "peripheral_blood_mononuclear_cells" = c("pbmc", "PBMC"),
208 "peripheral_blood_leukocytes" = c("peripheral blood leukocytes",
209 "( |^) PBL( |$|:)"),
210 "cd4" = c("cd4", "CD4"), "cd5" = c("cd5", "CD5"),
211 "cd8" = c("cd8", "CD8"), "cd34" = c("cd34", "CD34"),
212 "granulocyte" = c("granulocyte"), "monocyte" = c("monocyte"),
213 "lymphocyte" = c("lymphocyte"), "neutrophil" = c("neutrophil"),
214 "eosinophil" = c("eosinophil"), "basophil" = c("basophil"),
215 "t_cell" = c("tcell", "t cell", "cd4", "cd5", "cd8",
216 "cd34", "cytotoxic", "helper"))
217 return(txl)
218 }
219

220 # tissue terms , general , not blood
221 #’ Non -blood terms list for tissue variable
222 #’
223 #’ List containing search terms and string queries for regex pattern matching.
224 #’
225 #’ @return List of terms (names) and string queries (values).
226 #’ @export
227 md_post_tissue <- function (){
228 which.var <- c("gsm_title", "sample_type")
229 txl <- list("adjacent" = c("adjacent"), "matched" = c("match"),
230 "distal" = c("distal"), "medullary" = c("medullary"),
231 "cultured" = c("cultured"), "paired" = c("paired"),
232 "explant" = c("explant"), "biopsy" = c("biopsy"),
233 "clone" = c("clone", "clonal"),
234 "subclone" = c("subclone", "subclonal"),
235 "resection" = c("resection"), "xenograft" = c("xenograft"),
236 "cells" = c("cells"), "cell_line" = c("cell line"),
237 "peripheral" = c("peripheral"), "whole" = c("whole"),
238 "organoid" = c("organoid"),
239 "parenchyma" = c("parenchyma", "parenchyme"),
240 "mesenchyme" = c("mesenchyme", "mesoderm"),
241 "mesoderm" = c("mesoderm"),
242 "ectoderm" = c("ectoderm"), "endoderm" = c("endoderm"),
243 "gland" = c("gland"), "acinus" = c("acinus", "acinary"),
244 "muscle" = c("muscle", "brachii", "ulnaris", "minimus",
245 "gemellus", "gluteus", "bicep", "rhomboids",
246 "tongue", "splenius", "capitis"),
247 "smooth_muscle" = c("smooth muscle", "smoothe muscle"),
248 "skeletal_muscle" = c("skeletal muscle"),
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249 "bone" = c("bone", "femur", "patella", "tibia", "fibula",
250 "clavicle", "scapula", "humeral", "flexor",
251 "supinator", "radius", "ulna", "humerus",
252 "carpus", "metacarpus", "phalanges", "marrow"),
253 "marrow" = c("marrow"), "knee" = c("knee"), "head" = c("head"),
254 "leg" = c("leg"), "arm" = c("arm"),
255 "thorax" = c("thorax"), "chest" = c("chest"),
256 "spine" = c("spine", "spinal"), "foot" = c("foot"),
257 "hand" = c("hand"),
258 "skin" = c("cutaneous", "skin", "melanocyte"),
259 "kidney" = c("kidney", "renal", "abdominal gland", "nephron"),
260 "corpuscule" = c("corpuscule"), "tubule" = c("tubule"),
261 "gallbladder" = c("gallbladder", "gall bladder", "gall -bladder"),
262 "saliva" = c("saliva", "sputum"), "sputum" = c("sputum"),
263 "mucus" = c("mucus"), "mucinous" = c("mucinous"),
264 "fiber" = c("fiber", "fibrous"), "cartilage" = c("cartilage"),
265 "joint" = c("joint"),
266 "heart" = c("cardiac", "heart", "superior vena cava", "aorta",
267 "pulmonary artery", "pulmonary vein", "atrium",
268 "pulmonary valve", "ticuspid valve",
269 "inferior vena cava", "mitral valve",
270 "aortic valve", "ventricle"),
271 "esophagus" = c("esophag", "oesophag"),
272 "stomach" = c("stomach", "gastric"),
273 "barretts" = c("( |^)BE( |$|:)", "barretts", "barrett ’s"),
274 "dysplasia" = c("( |^)(H|L)GD( |$|:)", "dysplasia"),
275 "low_grade" = c("low grade"), "high_grade" = c("high_grade"),
276 "squamous" = c("( |^)SQ( |$|:)", "squamous"),
277 "colorectal" = c("colorec"), "intestine" = c("colorec"),
278 "colon" = c("colon", "colorec", "large intestine", "cecum"),
279 "intestine" = c("colon", "colorec", "large intestine", "cecum"),
280 "rectum" = c("colorec", "rectal", "rectum", "anus"),
281 "respiratory_system" = c("lung", "bronchi", "alveol",
282 "interstiti", "pleura",
283 "trachea", "windpipe", "wind pipe",
284 "bronchi", "airway"),
285 "lung" = c("lung", "bronchi", "alveol", "interstiti", "pleura"),
286 "alveolar" = c("alveolar"), "lepidic" = c("lepidic"),
287 "windpipe" = c("trachea", "windpipe", "wind pipe", "bronchi",
288 "airway"),
289 "nervous_system" = c("astrocyte", "oligodendrocyte", "ependymal",
290 "schwann", "satellite cell", "glia"),
291 "liver" = c("liver", "hepato", "kupff"),
292 "bladder" = c("bladder", "urothel"),
293 "brain" = c("brain", "cerebrum", "cerebral", "cerebellum",
294 "cerebelli", "dorsolat", "medulla", "lobe",
295 "prefront", "occipital", "falx", "meningeal",
296 "supratentorial", "fossa", "sellar", "grey matter",
297 "gray matter", "white matter", "tentorium",
298 "tentorial", "cortex", "hippocampus"),
299 "frontal_lobe" = c("frontal lobe"),
300 "frontal_cortex" = c("frontal cortex"),
301 "parietal_lobe" =c("parietal lobe"),
302 "occipital_lobe" = c("occipital lobe"),
303 "prefrontal_lobe" = c("prefront"),
304 "brainstem" = c("brain stem", "brainstem"),
305 "hippocampus" =c("hippocampus"),
306 "cerebellum" = c("cerebellum"),
307 "cerebrum" = c("cerebrum", "cerebral"),
308 "cortex" = c("cortex"), "white_matter" = c("white matter"),
309 "gray_matter" = c("gray matter", "grey matter"),
310 "cortex" = c("cortex"),
311 "occipital" = c("occipital"),
312 "placenta" = c("chorion", "villus", "placent"),
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313 "umbilical_cord" = c("umbilical", "cord blood"),
314 "uterus" = c("uterus", "uteri", "endometr"),
315 "ovary" = c("ovary", "ovari", "endometrium", "endometrioid"),
316 "fallopian_tube" = c("fallop"), "prostate" = c("prostate"),
317 "neck" = c("neck", "thyroid"), "thyroid_gland" = c("thyroid"),
318 "adrenal" = c("adrenal"),
319 "eye" = c("eye", "uvea", "optic nerve", "cone", "rod", "retina"),
320 "endocrine_system" = c("endocrine", "pineal", "pituitary",
321 "pancreas", "pancreat", "adren",
322 "thyroid", "hypothalamus",
323 "adrenal cortex", "adreno",
324 "paraganglioma", "paraganglioma",
325 "pheochromocytoma", "zona",
326 "glomerulosa", "fasciculata",
327 "reticularis", "ovary", "ovari",
328 "testic", "teste"),
329 "pancreas" = c("pancreas", "pancreat"),
330 "skin" = c("skin", "epidermis", "keratinocyt"),
331 "keratinocyte" = c("keratinocyt"), "breast" = c("breast"),
332 "lymphatic_system" = c("lymph", "spleen", "thymus"),
333 "oral" = c("mouth", "buccal", "labial", "lip", "tongue",
334 "lingual", "throat", "masticatory"),
335 "throat" = c("throat"),
336 "buccal" = c("buccal", "cheek swab", "mouth swab"),
337 "neuron" = c("neuro", "neural", "nerve", "dendrite", "axon"),
338 "glia" = c("glia"), "epithelial" = c("epithel"),
339 "endothelium" = c("endothel"),
340 "stem_cell" = c("stem cell", "pluripot", "ipsc", "iPSC"),
341 "induced_pluripotent_stem_cell" = c("ipsc", "iPSC"),
342 "fibroblast" = c("fibroblast"),
343 "crypt" = c("crypt"),"ectoderm" = c("ectoderm"),
344 "mucosa" = c("mucosa"),
345 "primed" = c("primed"),
346 "nasal" = c("nasal", "nose", "septum", "sinus"),
347 "sperm" = c("sperm", "semen"), "gamete" = c("gamete"),
348 "adipose" = c("adipose", "fat", "visceral")); return(txl)
349 }
350

351 # storage condition terms
352 #’ Storage condition terms for storageinfo variable
353 #’
354 #’ List containing search terms and string queries for regex pattern matching.
355 #’
356 #’ @return List of terms (names) and string queries (values).
357 #’ @export
358 md_post_storage <- function (){
359 sll <- list("frozen" = c("FF$", "frozen", "frzn", "fzn"),
360 "fresh_frozen" = c("FF$", "frozen", "frzn", "fzn"),
361 "FF" = c("FF$", "frozen", "frzn", "fzn"),
362 "formalin_fixed_paraffin_embedded" = c("FFPE", "formalin"),
363 "FFPE" = c("FFPE", "formalin")); return(sll)
364 }
365

366 #’ Age terms to seed regex queries
367 #’
368 #’ Age terms to seed regex queries , called by md_post_handle_age().
369 #’
370 #’ @return List of terms (names) and string queries (values).
371 #’ @export
372 md_age_infol <- function (){
373 ageinfol <- list("adult" = c("adult", "old", "senior"),
374 "young" = c("neonatal", "pediatric", "prepubescent",
375 "youth","young","child","infant","postnate"),
376 "prenatal"=c("embryo","embryonic","prenatal","prenate"),
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377 "fetal" = c("fetal", "foetal", "fetus"),
378 "neonatal" = c("neonate", "neonatal"),
379 "maternal" = c("maternal", "mother"));return(ageinfol)
380 }
381

382 #’ Age unit terms to seed regex queries
383 #’
384 #’ Age unit terms to seed regex queries , called by md_post_handle_age().
385 #’
386 #’ @return List of unit term labels (names) and string query seed terms
387 #’ (values).
388 #’ @export
389 md_age_unitl <- function (){
390 ageunitl <- list("years" = c("year", "yr", "y ", "(0-9)y.*"),
391 "months" = c("month", "mo"), "weeks" = c("week", "wk"),
392 "days" = c("day", "dy"), "passage" = c("passage"))
393 return(ageunitl)
394 }
395

396 # age terms and logic handling
397 #’ Handle age term mappings for metadata postprocessing
398 #’
399 #’ This function is called by md_postprocess () in order to handle the logic of
400 #’ age term mappings from preprocessed metadata.
401 #’
402 #’ @param mdpre Table of preprocessed metadata.
403 #’ @param mdpost Table of postprocessed metadata.
404 #’ @param mdpost.vl List mapping term categories (names) to column
405 #’ names in the mdpost postprocessed metadata matrix to be generated.
406 #’ @param mdpre.vl List mapping term categories (names) to column
407 #’ names in the mdpre preprocessed metadata matrix.
408 #’ @param verbose Whether to show status messages (TRUE).
409 #’ @seealso md_postprocess (); md_preprocess ()
410 #’ @return Postprocessed metadata table with a new column of mapped age
411 #’ info , values.
412 #’ @export
413 md_post_handle_age <- function(mdpre , mdpost , mdpost.vl = list("age" = "age"),
414 mdpre.vl = list("sample_id" = "gsm",
415 "sample_title" = "gsm_title",
416 "info" = "info","age" = "age",
417 "age_temp" = "age_temp"),
418 verbose = TRUE){
419 ap <- mdpre[,mdpre.vl[["age"]]]
420 if(verbose){message("Getting filtered , formatted ages ...")}
421 av <- unlist(lapply(ap, function(x){
422 xsplit.num.form <- "NA"
423 if(!x == "NA"){
424 xval <- unlist(strsplit(x, ";")) # split values
425 xvf <- xval[grepl("[0-9]", xval)][1] # catch first numeric value
426 xsplit = unlist(strsplit(xvf , "[a-zA-Z]+"))
427 xsplit.num <- xsplit[grepl("[0-9]+", xsplit)][1] # catch 1st numeric
428 symv <- "[a-zA -Z]| |:|\\) |\\(|/|!|?|\\_|+|," # replace remaining symbols
429 xsplit.num.form <- gsub(symv , "", xsplit.num)}; return(xsplit.num.form)
430 })); av[av == ""] <- "NA"
431 mdpost[,mdpost.vl[["age"]]] <- paste0("age_val:", as.character(av))
432 if(verbose){message("Getting filtered age data as new variable ...")}
433 age.val.filt <- unlist(lapply(ap, function(x){
434 xvf <- "NA"
435 if(!x == "NA"){
436 xval <- unlist(strsplit(x, ";")); cond1 <- grepl("[0-9]", xval)
437 cond2 <- grepl("age", xval) & !grepl("stage", xval) # catch age tag
438 xvf <- paste(xval[( cond1|cond2)], collapse = ";")}; return(xvf)}))
439 agetemp.cname <- mdpre.vl[["age_temp"]]; mdpre[,ncol(mdpre) + 1] <- "NA"
440 colnames(mdpre)[ncol(mdpre)] <- agetemp.cname
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441 if(!is.null(age.val.filt)){mdpre[,agetemp.cname] <- age.val.filt}
442 if(verbose){message("Adding age metadata ...")}; ageunitl <- md_age_unitl()
443 gf.run <- rep(FALSE , nrow(mdpre))
444 for(term in names(ageunitl)){ # allows first units match
445 gf.rep <- get_filt(v = get_pstr(v = ageunitl [[term ]]), m = mdpre ,
446 varl = agetemp.cname)
447 mdpost[,mdpost.vl[["age"]]] <- appendvar(var=mdpost.vl[["age"]],
448 val=paste0("age_units:",term),
449 filtv=gf.rep & !gf.run ,
450 m = mdpost)
451 gf.run <- gf.run|gf.rep};if(verbose){message("Adding age group info ...")}
452 ageinfol <- md_age_infol(); lgf = list()
453 age.cname <- mdpre.vl[["age"]]; title.cname <- mdpre.vl[["sample_title"]]
454 which.var <- c(mdpre.vl[["age"]], mdpre.vl[["sample_title"]])
455 for(term in names(ageinfol)){
456 age.var <- get_pstr(v = ageinfol [[term ]])
457 lgf[[term ]][[ age.cname]]<-get_filt(v=age.var ,m=mdpre ,varl=which.var)
458 title.var <- get_pstr(v = ageinfol [[term ]])
459 lgf[[term ]][[ title.cname]]<-get_filt(v=title.var ,m=mdpre ,varl=which.var)}
460 if(verbose){message("Handling age info map logic ...")};termv <-names(ageinfol)
461 for(r in seq(nrow(mdpost))){
462 sv.term <- "NA"; bool.term.age <- bool.term.title <- c()
463 for(t in termv){
464 bool.term.age <- c(bool.term.age , lgf[[t]][[ age.cname ]][r])
465 bool.term.title <- c(bool.term.title , lgf[[t]][[ title.cname ]][r])}
466 tf.age <-termv[which(bool.term.age)];tf.title <-termv[which(bool.term.title)]
467 sv.term <- ifelse(length(tf.age) == 1, tf.age ,
468 ifelse(length(tf.title) == 1, tf.title , "NA"))
469 info.val <- paste0("age_info:", sv.term)
470 mdpost[,mdpost.vl[["age"]]][r] <- paste0(mdpost[,mdpost.vl[["age"]]][r],
471 ";", info.val)}
472 return(mdpost)
473 }
474

475 # main postprocess function
476

477 #’ Postprocess metadata prepared using md_preprocess ()
478 #’
479 #’ Perform postprocessing of previously prepreocessed sample metadata. This
480 #’ produces the new harmonized variables (specified by arg mdpost.vl),
481 #’ where harmonization means terms are mapped , lowercase , and "_" separated.
482 #’ Variable entries can include multiple terms separated by ";". The args
483 #’ mdpre.vl and mdpost.vl specify the various variable titles in
484 #’ the preprocess and postprocess dataset. The vars disease.search.vars ,
485 #’ tissue.search.vars , and storage.info.vars specify the mdpre variables to
486 #’ search for disease , tissue , and storage info mappings.
487 #’
488 #’ @param ts The timestamp for this run.
489 #’ @param mdpre The matrix containing preprocessed metadata (returned from
490 #’ md_preprocess ()).
491 #’ @param mdpost.fname Filename for newly mapped postprocessed metadata.
492 #’ @param md.dpath Path to the directory containing the preprocessed
493 #’ metadata matrix , where newly postprocessed metadata will be stored.
494 #’ @param mdpre.vl List mapping term categories (names) to column
495 #’ names in the mdpre preprocessed metadata matrix.
496 #’ @param mdpost.vl List mapping term categories (names) to column
497 #’ names in the mdpost postprocessed metadata matrix to be generated.
498 #’ @param disease.search.vars Term categories to search in preprocessed
499 #’ metadata for the disease term mappings
500 #’ @param tissue.search.vars Term categories in preprocessed metadata to
501 #’ search for tissue term mappings.
502 #’ @param storage.info.vars Term categories in preprocessed metadata to
503 #’ search for storage information term mappings.
504 #’ @param verbose Whether to show status messages (TRUE).
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505 #’ @seealso md_preprocess ()
506 #’ @return Postprocessed metadata table.
507 #’ @export
508 md_postprocess <- function(ts , mdpre , mdpost.fname = "md_postprocess",
509 md.dpath = file.path("recount -methylation -files",
510 "metadata"),
511 mdpre.vl=list("study_id"="gse","sample_id"="gsm",
512 "sample_title" = "gsm_title",
513 "disease" = "disease_state",
514 "sample_type" = "sample_type",
515 "sex" = "sex", "info" = "info",
516 "age" = "age",
517 "age_temp" = "age_temp"),
518 mdpost.vl = list("tissue" = "tissue",
519 "disease" = "disease",
520 "age" = "age", "sex" = "sex",
521 "storageinfo" = "storageinfo"),
522 disease.search.vars = c("sample_title", "disease"),
523 tissue.search.vars = c("sample_type",
524 "sample_title"),
525 storage.info.vars = c("sample_type",
526 "sample_title", "info"),
527 verbose = TRUE){
528 mdpost.fn <- paste0(mdpost.fname , "_", ts, ".rda")
529 mdpost.fpath <- file.path(md.dpath , mdpost.fn)
530 if(verbose){message("Will save mdpost data to ", mdpost.fpath , "...")}
531 mdpost <- mdpre[,c(mdpre.vl[["sample_id"]], mdpre.vl[["study_id"]],
532 mdpre.vl[["sample_title"]])]
533 mdpost[,mdpost.vl[["tissue"]]] <- mdpost[,mdpost.vl[["disease"]]] <- "NA"
534 mdpost[,mdpost.vl[["age"]]] <- mdpost[,mdpost.vl[["sex"]]] <- "NA"
535 mdpost[,mdpost.vl[["storageinfo"]]] <- "NA"
536 if(verbose){message("Getting disease status ...")}; dxl <- md_post_disease ()
537 which.var <- unlist(mdpre.vl[names(mdpre.vl) %in% disease.search.vars])
538 for(dx in names(dxl)){
539 ssv <- dxl[[dx]]; pstr <- get_pstr(v = ssv)
540 gfilt <- get_filt(v = pstr , m = mdpre , ntfilt = ssv , varl = which.var)
541 dx.var <- appendvar(var = mdpost.vl[["disease"]], val = dx,
542 filtv = gfilt , m = mdpost)
543 mdpost[,mdpost.vl[["disease"]]] <- dx.var}
544 if(verbose){message("Getting disease terms for cancers by type/location ...")}
545 which.var <- unlist(mdpre.vl[names(mdpre.vl) %in% disease.search.vars])
546 cxsubl <- md_post_cancertype ()
547 for(cxsub in names(cxsubl)){
548 ssv <- cxsubl [[ cxsub ]]; pstr <- get_pstr(v = ssv)
549 gfilt <- get_filt(v = pstr , m = mdpre , varl = which.var)
550 dxvar1 <- appendvar(var = mdpost.vl[["disease"]], val = cxsub ,
551 filtv = gfilt , m = mdpost)
552 mdpost[,mdpost.vl[["disease"]]] <- dxvar1
553 dxvar2 <- appendvar(var = mdpost.vl[["disease"]], val = "cancer",
554 filtv = gfilt , m = mdpost)
555 mdpost[,mdpost.vl[["disease"]]] <- dxvar2}
556 if(verbose){message("Getting leukemia disease terms ...")};leukl <- md_post_

leukemia ()
557 which.var <- unlist(mdpre.vl[names(mdpre.vl) %in% disease.search.vars])
558 for(leuk in names(leukl)){
559 pstr <- suppressMessages(get_pstr(v = leukl [[leuk ]]))
560 gfilt <- suppressMessages(get_filt(v = pstr , m = mdpre , ntfilt = pstr ,
561 varl = which.var))
562 dxvar1 <- appendvar(var = mdpost.vl[["disease"]], val = leuk ,
563 filtv = gfilt , m = mdpost)
564 mdpost[,mdpost.vl[["disease"]]] <- dxvar1
565 dxvar2 <- appendvar(var = mdpost.vl[["disease"]], val = "cancer",
566 filtv = gfilt , m = mdpost)
567 mdpost[,mdpost.vl[["disease"]]] <- dxvar2}
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568 if(verbose){message("Getting tissue and disease for cancer subtypes ...")}
569 which.var <- c(mdpre.vl[["sample_title"]], mdpre.vl[["sample_type"]],
570 mdpre.vl[["disease"]]);cxl <- md_post_cancer ()
571 for(cx in names(cxl)){
572 ssv <- cxl[[cx]]; pstr <- get_pstr(v = ssv)
573 gfilt <-suppressMessages(get_filt(v=pstr ,m=mdpre ,ntfilt=ssv ,varl=which.var))
574 txvar <- appendvar(var = mdpost.vl[["tissue"]], val = cx ,
575 filtv = gfilt , m = mdpost)
576 mdpost[,mdpost.vl[["tissue"]]] <- txvar
577 dxvar <- appendvar(var = mdpost.vl[["disease"]], val = "cancer",
578 filtv = gfilt , m = mdpost)
579 mdpost[,mdpost.vl[["disease"]]] <- dxvar}
580 if(verbose){message("Getting tissue terms for cancers by type/location ...")}
581 which.var <- unlist(mdpre.vl[names(mdpre.vl) %in% tissue.search.vars])
582 for(cxsub in names(cxsubl)){
583 ssv <- cxsubl [[ cxsub ]]; pstr <- get_pstr(v = ssv)
584 gfilt <- get_filt(v = pstr , m = mdpre , varl = which.var);
585 txvar1 <- appendvar(var = mdpost.vl[["tissue"]], val = cxsub ,
586 filtv = gfilt , m = mdpost)
587 mdpost[,mdpost.vl[["tissue"]]] <- txvar1
588 txvar2 <- appendvar(var = mdpost.vl[["tissue"]], val = "cancer",
589 filtv = gfilt , m = mdpost)
590 mdpost[,mdpost.vl[["tissue"]]] <- txvar2}
591 if(verbose){message("Getting leukemia tissue terms ...")}
592 which.var <- unlist(mdpre.vl[names(mdpre.vl) %in% tissue.search.vars])
593 for(leuk in names(leukl)){
594 pstr <- get_pstr(v = leukl[[leuk ]])
595 gfilt <- get_filt(v = pstr , m = mdpre , varl = which.var)
596 txvar <- appendvar(var = mdpost.vl[["tissue"]], val = leuk ,
597 filtv = gfilt , m = mdpost)
598 mdpost[,mdpost.vl[["tissue"]]] <- txvar}
599 if(verbose){message("Getting tissue annotations ...")}
600 which.var <- unlist(mdpre.vl[names(mdpre.vl) %in% tissue.search.vars])
601 txl <- list();txl[["blood"]] <- md_post_tissue_blood()
602 txl[["other"]] <- md_post_tissue ()
603 for(sublist in txl){
604 for(tx in names(sublist)){
605 pstr <- get_pstr(v = sublist [[tx]])
606 gfilt <- get_filt(v = pstr , m = mdpre , varl = which.var)
607 txvar <- appendvar(var = mdpost.vl[["tissue"]], val = tx ,
608 filtv = gfilt , m = mdpost)
609 mdpost[,mdpost.vl[["tissue"]]] <- txvar }}
610 if(verbose){message("Getting storage info ...")}
611 which.var <- unlist(mdpre.vl[names(mdpre.vl) %in% storage.info.vars])
612 lstorage <- md_post_storage ()
613 for(sn in names(lstorage)){
614 pstr <- get_pstr(v = lstorage [[sn]])
615 gfilt <- get_filt(v = pstr , m = mdpre , varl = which.var)
616 sinfovar <- appendvar(var = mdpost.vl[["storageinfo"]], val = sn,
617 filtv = gfilt , m = mdpost)
618 mdpost[,mdpost.vl[["storageinfo"]]] <- sinfovar}
619 if(verbose){message("Getting age info ...")}
620 mdpost <-suppressMessages(md_post_handle_age(mdpre=mdpre ,mdpost=mdpost ,
621 mdpre.vl=mdpre.vl,
622 mdpost.vl = mdpost.vl,
623 verbose = verbose))
624 if(verbose){message("Getting sex info ...")}
625 mdpre.sex.cname <- mdpre.vl[["sex"]]; mdpost.sex.cname <- mdpost.vl[["sex"]]
626 femv <- get_pstr(v = c("female", "f", "FEMALE"))
627 malev <- get_pstr(v = c("male", "MALE", "m"))
628 mdpost[,mdpost.sex.cname] <- ifelse(grepl(femv , mdpre[,mdpre.sex.cname]),"F",
629 ifelse(grepl(malev , mdpre[,mdpre.sex.cname ]),"M", "NA"))
630 if(verbose){message("Saving mdpost to ", mdpost.fpath)}
631 save(mdpost , file = mdpost.fpath);return(NULL)
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632 }

A.5 Example conda shell script

An example conda [183] shell script, conda.sh. This script creates virtual environments to run one of five RI detection
tools for short-read RNA-seq data (Section 4). New environments are created using conda create .... Dependencies
with specific versions are downloaded using conda install .... Note that many download calls also specify a
repository such as bioconda. Certain calls also specify a group of commonly downloaded dependencies such as
r-base.

1 #!/usr/bin/bash
2

3 # Author: Sean Maden
4 #
5 # Programmatic setup of conda environments for retained intron detection
6 # tools. Setup is expedited by installing shared dependencies once and
7 # cloning the consensus environment for specific tools. At any time , use
8 # ‘conda info --envs ‘ to show all available environments.
9 #

10 # Run setup programmatically , either by running this script , or by
11 # running ‘conda env create -f <env_yml_path >‘, replacing <env_yml_path >
12 # with the path to one of the env .*. yml files at ./inst/yml/.
13 #
14 # On Windows , you may need to use ‘source activate <env_name >‘ and
15 # ‘source deactivate <env_name >‘ rather than ‘conda activate <env_name >‘
16 # and ‘conda deactivate <env_name >‘.
17 #
18

19 conda update conda
20 conda install python =3.7.0
21 conda install python =2.7.18
22 conda install r=3.5.1
23 conda install -c bioconda bioconductor -biocinstaller
24

25 #-------------------
26 # manage python envs
27 #-------------------
28

29 # python3 envs
30 conda create -n py370 python =3.7.0
31 # clone for preprocessing
32 conda create --name py370_preprocess --clone py370
33

34 # python 2 envs
35 conda create -n py2718 python =2.7.18
36 # clone for iread
37 conda create --name py2718_iread --clone py2718
38

39 #--------------
40 # manage r envs
41 #--------------
42

43 # make r v4### env
44 conda create -n r403; conda activate r403
45 conda install -c conda -forge r-base
46 conda install -c conda -forge/label/gcc7 r-base
47 conda deactivate
48 # clone r v4### env for interest and superintronic
49 conda create --name r403_interest --clone r403
50 conda create --name r403_superintronic --clone r403
51 # 2 tools can share the same env
52 conda create --name r403_interest_superintronic --clone r403
53

54 # make r v3### env
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55 conda create -n r351 r=3.5.1; conda attach r351
56 conda install -c conda -forge/label/gcc7 r-devtools =2.0.1
57 conda install -c conda -forge/label/gcc7 r-data.table =1.14.0
58 # clone r v3### env for sirfinder , kma
59 conda create --name r351_sirfinder --clone r351
60 conda create --name r351_kma --clone r351
61

62 #---------------------
63 # preprocess env setup
64 #---------------------
65 conda activate py370_preprocess
66 # dependencies
67 conda install -c bioconda samtools =1.3.1
68 conda install -c bioconda bowtie2 =2.3.4.3
69 conda install -c bioconda star =2.7.6a
70

71 conda env export > env_preprocess.yml
72

73 conda deactivate
74

75 #-------------------
76 # interest env setup
77 #-------------------
78 conda activate r403_interest
79 # install dependencies
80 conda install -c bioconda r-seqinr =4.2_5 # for IntEREst
81 conda install -c bioconda bioconductor -edgeR =3.32.1 # for IntEREst
82 conda install -c bioconda bioconductor -DEXSeq =1.36.0 # for IntEREst
83 # install interest
84 conda install -c bioconda bioconductor -interest
85

86 conda env export > env_interest.yml # export yml file
87

88 conda deactivate
89

90 #------------------------
91 # superintronic env setup
92 #------------------------
93 conda activate r403_superintronic
94 # dependencies
95 conda install -c bioconda bioconductor -plyranges =1.10.0
96 conda install -c bioconda bioconductor -genomicfeatures =1.42.2
97 conda install -c conda -forge r-devtools =2.4.0
98 conda install -c conda -forge r-patchwork =1.1.1
99 conda install -c conda -forge r-ggplot2 =3.3.3

100

101 conda install -c anaconda gxx_linux -64
102

103 # install superintronic
104 R
105 devtools :: install_github("sa -lee/superintronic", build_vignette = FALSE)
106

107 conda env export > env_superintronic.yml # export yml file
108

109 conda deactivate
110

111 #----------------
112 # iread env setup
113 #----------------
114 conda activate py2718_iread
115 conda install perl =5.26.2
116 git clone https :// github.com/genemine/iread/
117 # iread dependencies
118 conda install -c bioconda samtools =1.2
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119 conda install -c bioconda bedops =2.4.20
120 conda install -c conda -forge argparse =1.4.0
121 conda install -c bioconda perl -parallel -forkmanager =2.02
122

123 conda env export > env_iread.yml # export yml file
124

125 conda deactivate
126

127 #--------------------
128 # sirfinder env setup
129 #--------------------
130 conda activate r351_sirfinder
131 # dependencies
132 # conda install -c conda -forge/label/gcc7 r-devtools # to install from github
133 conda install -c conda -forge/label/gcc7 r-rfast =1.9.5
134 conda install -c conda -forge/label/gcc7 r-rlang =0.4.10
135

136 R
137 devtools :: install_github("lbroseus/SIRFindeR", build_vignette = TRUE)
138

139 conda env export > env_sirfinder.yml # export yml file
140

141 conda deactivate
142

143 #--------------
144 # kma env setup
145 #--------------
146 conda activate r351_kma
147 # dependencies
148 conda install -c conda -forge/label/gcc7 r-reshape2 =1.4.3
149 conda install -c conda -forge/label/gcc7 r-dplyr =0.7.8
150

151 # get fastq -dump to obtain sample fastqs
152 conda install -c bioconda/label/cf201901 sra -tools
153

154 # preprocessing dependencies
155 python -m pip install pyfasta
156 python -m pip install pysam
157 python -m pip install biopython ==1.76
158 conda install -c bioconda bowtie2 =2.3.4.3
159

160 # quantification dependencies
161 conda install -c bioconda express
162

163 # get kma
164 R
165 devtools :: install_github("https :// github.com/adamtongji/kma")
166

167 conda env export > env_kma.yml # export yml file
168

169 conda deactivate

A.6 Example conda YML script

An example YML script, env_kma.yml, is shown. This was automatically generated for the virtual environment
specified in the above script conda.sh (Section A.5). It exactly reproduces a virtual environment supporting the KMA
RI-detection tool for short-read RNA-seq data, which was used to test the reliability of called introns (Section 4).

1 name: r351_kma
2 channels:
3 - conda -forge/label/gcc7
4 - conda -forge
5 - bioconda
6 - defaults
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7 dependencies:
8 - _r-mutex =1.0.1= anacondar_1
9 - bwidget =1.9.14= h694c41f_0

10 - bzip2 =1.0.8= h0d85af4_4
11 - ca-certificates =2018.10.15= ha4d7672_0
12 - cairo =1.16.0= hec6a9b0_1003
13 - cctools =949.0.1= h22b1bf0_0
14 - cctools_osx -64=949.0.1= h5ba7a2e_0
15 - certifi =2020.12.5= py39h6e9494a_1
16 - clang =9.0.1= default_ha9b4ba2_1
17 - clang -9=9.0.1= default_heda16ac_1
18 - clang_osx -64=9.0.1= h05bbb7f_0
19 - clangxx =9.0.1= default_he082bbe_1
20 - clangxx_osx -64=9.0.1= h05bbb7f_2
21 - compiler -rt =9.0.1= h6a512c6_3
22 - compiler -rt_osx -64=9.0.1= h99342c6_3
23 - curl =7.68.0= h8754def_0
24 - fontconfig =2.13.1= h10f422b_1005
25 - freetype =2.10.4= h4cff582_1
26 - fribidi =1.0.10= hbcb3906_0
27 - gettext =0.19.8.1= h7937167_1005
28 - gfortran_impl_osx -64=7.5.0= hae4d780_7
29 - gfortran_osx -64=7.5.0= h044cb63_8
30 - glib =2.68.1= he49afe7_0
31 - glib -tools =2.68.1= he49afe7_0
32 - gmp =6.2.1= h2e338ed_0
33 - graphite2 =1.3.13= h2e338ed_1001
34 - gsl =2.5= ha2d443c_1
35 - harfbuzz =2.4.0= hd8d2a14_3
36 - icu =64.2= h6de7cb9_1
37 - isl =0.22.1= hb1e8313_2
38 - jpeg=9d=hbcb3906_0
39 - krb5 =1.16.4= h1752a42_0
40 - ld64 =530=0
41 - ld64_osx -64=530= h3c32e8a_0
42 - libblas =3.9.0=8 _openblas
43 - libcblas =3.9.0=8 _openblas
44 - libclang -cpp9 =9.0.1= default_heda16ac_1
45 - libcurl =7.68.0= h709d2b2_0
46 - libcxx =11.1.0= habf9029_0
47 - libedit =3.1.20191231= h0678c8f_2
48 - libffi =3.3= h046ec9c_2
49 - libgfortran =4.0.0=7 _5_0_h1a10cd1_22
50 - libgfortran4 =7.5.0= h1a10cd1_22
51 - libglib =2.68.1= hd556434_0
52 - libiconv =1.16= haf1e3a3_0
53 - libllvm9 =9.0.1= h223d4b2_3
54 - libopenblas =0.3.12= openmp_h63d9170_1
55 - libpng =1.6.37= h7cec526_2
56 - libssh2 =1.9.0= h52ee1ee_6
57 - libtiff =4.2.0= h7c11950_1
58 - libwebp -base =1.2.0= h0d85af4_2
59 - libxml2 =2.9.10= h53d96d6_0
60 - llvm -openmp =11.1.0= hda6cdc1_1
61 - lz4 -c=1.9.3= h046ec9c_0
62 - make =4.3= h22f3db7_1
63 - mpc =1.1.0= ha57cd0f_1009
64 - mpfr =4.0.2= h72d8aaf_1
65 - ncurses =6.2= h2e338ed_4
66 - openssl =1.1.1k=h0d85af4_0
67 - pango =1.42.4= haa940fe_4
68 - pcre =8.44= hb1e8313_0
69 - pip =21.1.1= pyhd8ed1ab_0
70 - pixman =0.38.0= h01d97ff_1003
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71 - python =3.9.2= h2502468_0_cpython
72 - python_abi =3.9=1 _cp39
73 - r=3.5.1= r35_1003
74 - r-askpass =1.1= r35h17f1fa6_1
75 - r-assertthat =0.2.0= r351h6115d3f_1001
76 - r-backports =1.1.3= r351h46e59ec_1000
77 - r-base =3.5.1= hc03ab29_1012
78 - r-bh =1.66.0 _1=r351_2001
79 - r-bindr =0.1.1= r351h6115d3f_1001
80 - r-bindrcpp =0.2.2= r351h466af19_1001
81 - r-boot =1.3 _25=r35h6115d3f_0
82 - r-callr =3.1.1= r351h6115d3f_1000
83 - r-class =7.3 _17=r35h17f1fa6_0
84 - r-cli =1.0.1= r351h6115d3f_1000
85 - r-clipr =0.4.1= r351h6115d3f_1001
86 - r-clisymbols =1.2.0= r351h6115d3f_1001
87 - r-cluster =2.1.0= r35h384270c_2
88 - r-codetools =0.2 _16=r35h6115d3f_1001
89 - r-crayon =1.3.4= r351h6115d3f_1001
90 - r-curl =3.2= r351h46e59ec_1002
91 - r-desc =1.2.0= r351h6115d3f_1001
92 - r-devtools =2.0.1= r351h6115d3f_1000
93 - r-digest =0.6.18= r351h46e59ec_1000
94 - r-dplyr =0.7.8= r351h466af19_1000
95 - r-fansi =0.4.0= r351h46e59ec_1000
96 - r-foreign =0.8 _76=r35h17f1fa6_0
97 - r-fs =1.2.6= r351h466af19_1000
98 - r-gh =1.0.1= r351h6115d3f_1001
99 - r-git2r =0.26.1= r35h8d49edc_1

100 - r-glue =1.3.0= r351h1de35cc_1002
101 - r-httr =1.4.0= r351h6115d3f_1000
102 - r-ini =0.3.1= r351h6115d3f_1001
103 - r-jsonlite =1.6= r351h46e59ec_1000
104 - r-kernsmooth =2.23 _17=r35h3830744_0
105 - r-lattice =0.20 _41=r35h17f1fa6_1
106 - r-magrittr =1.5= r351h6115d3f_1001
107 - r-mass =7.3 _51 .6= r35h17f1fa6_1
108 - r-matrix =1.2 _18=r35h17f1fa6_1
109 - r-memoise =1.1.0= r351h6115d3f_1001
110 - r-mgcv =1.8 _31=r35h17f1fa6_0
111 - r-mime =0.6= r351h46e59ec_1000
112 - r-nlme =3.1 _147=r35h384270c_0
113 - r-nnet =7.3 _14=r35h17f1fa6_0
114 - r-openssl =1.4.1= r35h9d0ceee_0
115 - r-pillar =1.3.1= r351h6115d3f_1000
116 - r-pkgbuild =1.0.3= r35h6115d3f_1
117 - r-pkgconfig =2.0.2= r351h6115d3f_1001
118 - r-pkgload =1.0.2= r351h466af19_1000
119 - r-plogr =0.2.0= r351h6115d3f_1001
120 - r-plyr =1.8.4= r351h466af19_1002
121 - r-prettyunits =1.0.2= r351h6115d3f_1001
122 - r-processx =3.2.1= r351h46e59ec_1000
123 - r-ps =1.3.0= r351h46e59ec_1000
124 - r-purrr =0.2.5= r351h46e59ec_1002
125 - r-r6 =2.3.0= r351h6115d3f_1000
126 - r-rcmdcheck =1.3.2= r351h6115d3f_1000
127 - r-rcpp =1.0.0= r351h466af19_1000
128 - r-recommended =3.5.1= r35_1003
129 - r-remotes =2.0.2= r351h6115d3f_1000
130 - r-reshape2 =1.4.3= r351h466af19_1002
131 - r-rlang =0.3.0.1= r351h1de35cc_1000
132 - r-rpart =4.1 _15=r35h17f1fa6_1
133 - r-rprojroot =1.3_2=r351h6115d3f_1001
134 - r-rstudioapi =0.8= r351h6115d3f_1001
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135 - r-sessioninfo =1.1.1= r351h6115d3f_1000
136 - r-spatial =7.3 _12=r35h17f1fa6_0
137 - r-stringi =1.2.4= r351h466af19_1001
138 - r-stringr =1.3.1= r351h6115d3f_1001
139 - r-survival =3.1 _12=r35h17f1fa6_0
140 - r-sys =2.1= r351h46e59ec_1000
141 - r-tibble =2.0.0= r351h46e59ec_1000
142 - r-tidyselect =0.2.5= r351h466af19_1000
143 - r-usethis =1.4.0= r351h6115d3f_1000
144 - r-utf8 =1.1.4= r351h46e59ec_1000
145 - r-whisker =0.3_2=r351h6115d3f_1001
146 - r-withr =2.1.2= r351h6115d3f_1000
147 - r-xopen =1.0.0= r351h6115d3f_1000
148 - readline =8.1= h05e3726_0
149 - setuptools =49.6.0= py39h6e9494a_3
150 - sqlite =3.35.5= h44b9ce1_0
151 - tapi =1000.10.8= h879752b_4
152 - tk =8.6.10= h0419947_1
153 - tktable =2.10= h49f0cf7_3
154 - tzdata =2021a=he74cb21_0
155 - wheel =0.36.2= pyhd3deb0d_0
156 - xz =5.2.5= haf1e3a3_1
157 - zlib =1.2.11= h7795811_1010
158 - zstd =1.4.9= h582d3a0_0
159 prefix: /Users/maden/miniconda3/envs/r351_kma

A.7 Example Snakefile script used by recountmethylation_instance

This Snakefile was used to define rules for recountmethylation_instance [61]. These rules
reference functions defined in two respective dependencies, recountmethylation_server [193] and
recountmethylation.pipeline [194] resources. Running this script automatically produces status logs that track
progress and store console messages, warnings, and errors.

1 #!/usr/bin/env snakemake
2

3 # Author: Sean Maden
4 #
5 # Description:
6 # This script describes the workflow processes to create and manage an
7 # instance of recountmethylation with logging. This includes management of the
8 # target platform accession ID, the ‘recount -methylation -files ‘ directory tree ,
9 # acquision/download of files from GEO , reporting on the status of various file

10 # types , compilation of DNAm data into databases , and mapping sample metadata.
11 #
12 # Setup:
13 # There are 2 principal ways to start and manage a recountmethylation instance:
14 #
15 # * Containerization : Use the docker image and docker compose to rapidly set up
16 # an instance , with automatic download and install of major dependencies
17 #
18 # * Local use : Manage a local instance without containerization. This entails
19 # that you follow the setup instructions and manage dependency access for your
20 # particular system.
21 #
22 # Quick start:
23 # You may optionally set the platform accession ID as follows. Otherwise , the
24 # instance defaults to targeting all available samples for the HM450K platform:
25 #
26 # > snakemake --cores 1 set_acc
27 #
28 # From a nix console , you may start the instance by running ‘server.py‘ using:
29 #
30 # > snakemake --cores 1 run_server
31 #
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32 # You may now monitor the progress of the server from a new terminal. To aid
33 # with instance monitoring , run the script ‘serverdash.py‘ to initialize a
34 # dashboard:
35 #
36 # > snakemake --cores 1 server_dash
37 #
38 # This will update automatically with current information about files in the
39 # instance.
40 #
41

42 #------------------------------
43 # Set dependencies , paths , etc.
44 #------------------------------
45 import os, sys , random , string
46 # Set scripts path
47 server_repo_name = "recountmethylation_server"
48 server_repo_path = os.path.join(server_repo_name)
49 if os.path.isdir(server_repo_path):
50 print("Found server repo path.")
51 srcpath = os.path.join(server_repo_path , "src")
52 if os.path.isdir(srcpath):
53 print("Found server src path.")
54 else:
55 print("Error , couldn ’t find server src dir at path "+srcpath)
56 else:
57 print("Error , couldn ’t find server repo at path "+server_repo_path)
58 # add server src to path
59 sys.path.insert(0, srcpath); from utilities import gettime_ntp
60 # pipeline repo
61 rmp_path = os.path.join("recountmethylation.pipeline", "inst", "snakemake")
62 # research synth resources repo
63 # rsynth_path = os.path.join(" recount.synth", "inst", "scripts", "snakemake ")
64 # logs info
65 logsfn = "snakemakelogs"; logspath = os.path.join(logsfn)
66

67 #---------------
68 # Manage logging
69 #---------------
70 if not os.path.isdir(logsfn):
71 os.mkdir(logsfn)
72 if len(os.listdir(logspath)) > 0:
73 print("Found "+str(len(os.listdir(logspath)))+" files in logs dir "+
74 logspath)
75 accopt = str(input("(Y/N) Do you want to clear existing logs from the "+
76 "logs dir?\n"))
77 if accopt in ["y", "Y", "yes", "Yes", "YES"]:
78 print("Removing old log files ...")
79 for file in os.listdir(logspath):
80 os.remove(os.path.join(logspath , file))
81 elif accopt in ["n", "N", "no", "No", "NO"]:
82 print("Skipping logs dir cleanup ...")
83 else:
84 print("Error , invalid input. Skipping logs dir cleanup ...")
85

86 #---------------
87 # Get timestamps
88 #---------------
89 ts = gettime_ntp (); print("New timestamp for run: "+ts)
90

91 #-------------------
92 # Workflow processes
93 #-------------------
94 # Server processes
95 # NOTE: Rules to handle file acquisition and formatting from GEO.
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96

97 # Set the target platform accession for the instance
98 rule set_acc:
99 input: os.path.join(srcpath , "set_acc.py")

100 log: os.path.join(logspath , "set_acc_"+ts+".log")
101 shell: "python3 {input} > {log}"
102

103 # Query the GEO DataSets API for samples , studies for the indicated platform
104 rule new_eqd:
105 input: os.path.join(srcpath , "edirect_query.py")
106 log: os.path.join(logspath , "eqd_"+ts+".log")
107 shell: "python3 {input} > {log}"
108

109 # Exclude samples included in the most recent freeze located at
110 # ./inst/freeze_gsmv
111 rule exclude_gsm:
112 input: os.path.join(srcpath , "gsm_exclude.py")
113 log: os.path.join(logspath , "gsm_exclude_"+ts+".log")
114 shell: "python3 {input} > {log}"
115

116 # Run the server process to download study SOFT files and sample IDAT files
117 rule run_server:
118 input: os.path.join(srcpath , "server.py")
119 log: os.path.join(logspath , "run_server_"+ts+".log")
120 shell: "python3 {input} > {log}"
121

122 # Run the server dashboard utility. View by opening a browser window at the
123 # indicated IP address
124 rule server_dash:
125 input: os.path.join(srcpath , "serverdash.py")
126 log: os.path.join(logspath , "serverdash_"+ts+".log")
127 shell: "python3 {input} > {log}"
128

129 # Unzip .gz compressed IDAT files
130 rule unzip_idats:
131 input: os.path.join(srcpath , "process_idats.py")
132 log: os.path.join(logspath , "unzip_idats_"+ts+".log")
133 shell: "python3 {input} > {log}"
134

135 # Make new IDAT hardlinks with identical basenames (e.g. same timestamps)
136 rule make_idat_hlinks:
137 input: os.path.join(srcpath , "rsheet.py")
138 log: os.path.join(logspath , "rsheet_"+ts+".log")
139 shell: "python3 {input} > {log}"
140

141 # Expand study SOFT files , extract sample metadata , and store as
142 # sample -specific files
143 rule process_soft:
144 input: os.path.join(srcpath , "process_soft.py")
145 log: os.path.join(logspath , "process_soft_"+ts+".log")
146 shell: "python3 {input} > {log}"
147

148 # Convert SOFT -derived sample metadata to JSON format , then further sample JSON
149 # data to remove any study -specific metadata fields
150 rule apply_jsonfilt:
151 input: os.path.join(srcpath , "jsonfilt.R")
152 log: os.path.join(logspath , "apply_jsonfilt_"+ts+".log")
153 shell: "Rscript {input} >& {log}"
154

155 #rule soft_cleanup:
156 # input: os.path.join(srcpath , "process_soft.py")
157 # log: os.path.join(logspath , "soft_cleanup_ "+ts+".log")
158 # shell: "python3 {input} --cleanup True > {log}"
159
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160 # Generate a report summarizing the current instance files
161 rule report:
162 input: os.path.join(srcpath , "report.py")
163 log: os.path.join(logspath , "report_"+ts+".log")
164 shell: "python3 {input} > {log}"
165

166 #---------------------------
167 # DNAm database compilations
168 #---------------------------
169 # NOTE: Rules to form the initial compilation files
170

171 # Gets input for instance version , timestamp , etc.
172 rule new_instance_md:
173 input: os.path.join(rmp_path , "new_instance_md.R")
174 log: os.path.join(logspath , "new_instance_md_"+ts+".log")
175 shell: "Rscript {input} >& {log}"
176

177 # Run the full pipeline (makes h5 and h5se files in 3 formats)
178 rule run_dnam_pipeline:
179 input: os.path.join(rmp_path , "run_dnam_pipeline.R")
180 log: os.path.join(logspath , "run_dnam_pipeline_"+ts+".log")
181 shell: "Rscript {input} >& {log}"
182

183 # Compile the red/green signal data table files
184 rule get_rg_compilations:
185 input: os.path.join(rmp_path , "get_rg_compilations.R")
186 log: os.path.join(logspath , "get_rg_compilations_"+ts+".log")
187 shell: "Rscript {input} >& {log}"
188

189 # Make the h5 rg database
190 rule get_h5db_rg:
191 input: os.path.join(rmp_path , "get_h5db_rg.R")
192 log: os.path.join(logspath , "get_h5db_rg_"+ts+".log")
193 shell: "Rscript {input} >& {log}"
194

195 # Make the h5se rg database
196 rule get_h5se_rg:
197 input: os.path.join(rmp_path , "get_h5se_rg.R")
198 log: os.path.join(logspath , "get_h5se_rg_"+ts+".log")
199 shell: "Rscript {input} >& {log}"
200

201 # Make the h5 gm database
202 rule get_h5db_gm:
203 input: os.path.join(rmp_path , "get_h5db_gm.R")
204 log: os.path.join(logspath , "get_h5db_gm_"+ts+".log")
205 shell: "Rscript {input} >& {log}"
206

207 # Make the h5 gm database
208 rule get_h5se_gm:
209 input: os.path.join(rmp_path , "get_h5se_gm.R")
210 log: os.path.join(logspath , "get_h5se_gm_"+ts+".log")
211 shell: "Rscript {input} >& {log}"
212

213 # Make the h5 gr database
214 rule get_h5db_gr:
215 input: os.path.join(rmp_path , "get_h5db_gr.R")
216 log: os.path.join(logspath , "get_h5db_gr_"+ts+".log")
217 shell: "Rscript {input} >& {log}"
218

219 # Make the h5se gr database
220 rule get_h5se_gr:
221 input: os.path.join(rmp_path , "get_h5se_gr.R")
222 log: os.path.join(logspath , "get_h5se_gr_"+ts+".log")
223 shell: "Rscript {input} >& {log}"
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224

225 #------------------------
226 # Process sample metadata
227 #------------------------
228 # NOTE: Rules to extract and map sample metadata
229

230 # Run the MetaSRA -pipeline
231 rule run_msrap:
232 input: os.path.join(srcpath , "run_msrap.R")
233 log: os.path.join(logspath , "run_msrap_"+ts+".log")
234 shell: "Rscript {input} >& {log}"
235

236 # Map and harmonize metadata from filtered JSON files
237 rule do_mdmap:
238 input: os.path.join(rmp_path , "do_mdmap.R")
239 log: os.path.join(logspath , "do_mdmap_"+ts+".log")
240 shell: "Rscript {input} >& {log}"
241

242 # Get DNAm -derived md and qc metrics
243 rule do_dnam_md:
244 input: os.path.join(rmp_path , "do_dnam_md.R")
245 log: os.path.join(logspath , "do_dnam_md_"+ts+".log")
246 shell: "Rscript {input} >& {log}"
247

248 # Get composite md from mdfinal , mdpred , mdqc
249 rule make_md_final:
250 input: os.path.join(rmp_path , "make_md_final.R")
251 log: os.path.join(logspath , "make_md_final_"+ts+".log")
252 shell: "Rscript {input} >& {log}"
253

254 # Append updated md to available compilation files
255 rule append_md:
256 input: os.path.join(rmp_path , "append_md.R")
257 log: os.path.join(logspath , "append_md_"+ts+".log")
258 shell: "Rscript {input} >& {log}"

A.8 Example interoperability script

The following code from the script dnam_search_index.R shows how a conda virtual environment is set up and
a Python script, dnam_search_index.py, is sourced and used from an R environment with the reticulate and
basilisk R packages.

1 #!/usr/bin/env R
2

3 # Author: Sean Maden
4 #
5 # Functions to manage search index construction from DNAm array data , including
6 # dimension reduction with feature hashing and support for k nearest neighbors
7 # search lookup. The HNSW implementation in the hnswlib Python library is used
8 # for search index construction.
9 #

10 # Due to the varying availability of the Python package depedencies across
11 # operating systems , to ensure package build success these functions aren ’t
12 # exported and must be called with "recountmethylation :::". For background and
13 # instructions about workign with search indices for DNAm arrays , see the package
14 # vignette "Nearest neighbors analysis for DNAm arrays ."
15 #
16

17 #’ setup_sienv
18 #’
19 #’ Set up a new virtual environment for search index construction using
20 #’ the basilisk package.
21 #’
22 #’ @param env.name Name of the new virtual environment (required ,
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23 #’ "dnam_si-hnswlib ")
24 #’ @param pkgv Vector of the dependencies and their versions for the new
25 #’ virtual environment (required , format: "packagename == versionnum ").
26 #’ @returns New basilisk environment object.
27 setup_sienv <- function(env.name = "dnam_si_hnswlib",
28 pkgv = c("python ==3.7.1", "hnswlib ==0.5.1", "pandas ==1.2.2

",
29 "numpy ==1.20.1", "mmh3 ==3.0.0", "h5py ==3.2.1")){
30 message("Defining the virtual env dependencies ...")
31 my_env <- basilisk :: BasiliskEnvironment(envname = env.name ,
32 pkgname = "recountmethylation",
33 packages = pkgv)
34 message("Running virtual environment setup ...")
35 proc <- basilisk :: basiliskStart(my_env) # define env process
36 on.exit(basilisk :: basiliskStop(proc)) # set exit process
37 return(proc)
38 }
39

40 #’ get_fh
41 #’
42 #’ Get the hashed features for a data table. Uses reticulate package to
43 #’ call the Python script to do feature hashing on a table of data. It is
44 #’ assumed the input table has sample data in rows , with probe data in
45 #’ columns. The input data table should have row names but not column names.
46 #’
47 #’ @param csv_savepath Name/path of hashed features table to write (required ,
48 #’ string , writes new csv where rows = samples , cols = hashed features).
49 #’ @param csv_openpath Name/path of table to hash (required , string , assumes
50 #’ a csv where rows = samples , cols = probes).
51 #’ @param ndim Number of hashed features (integer , 1000).
52 #’ @param lstart Line index to start on (0-based for Python , required , int , 0).
53 #’ @returns Path to new hashed featuers table.
54 #’ @examples
55 #’ # get example bval csv
56 #’ # of_fpath <- system.file(" extdata", "fhtest",
57 #’ # package = "recountmethylation ")
58 #’ # of_fpath <- file.path(of_fpath , "tbval_test.csv")
59 #’ # write new hashed features results
60 #’ # get_fh(csv_savepath = "bval_fn.csv", csv_openpath = of_fpath , ndim = 100)
61 get_fh <- function(csv_savepath , csv_openpath , ndim = 1000, lstart = 1){
62 message("Starting basilisk process ...")
63 proc <- recountmethylation ::: setup_sienv ()
64 pyscript.path <- system.file("python", package = "recountmethylation")
65 pyscript.path <- file.path(pyscript.path , "dnam_search_index.py")
66 message("Doing feature hashing ...")
67 ncol <- length(unlist(strsplit(readLines(csv_openpath , 1), ",")))
68 message("Target features will reduce dimensions from ", ncol ,
69 " to ", ndim , "...")
70 basilisk :: basiliskRun(proc , function(pyscript.path , csv_savepath ,
71 csv_openpath , ndim , lstart){
72 message("Sourcing Python functions ...")
73 reticulate :: source_python(pyscript.path)
74 make_fhmatrix_autolabel(wf_name = csv_savepath , of_name = csv_openpath ,
75 ndim = as.integer(ndim), lstart = lstart)
76 }, pyscript.path = pyscript.path , csv_savepath = csv_savepath ,
77 csv_openpath = csv_openpath , ndim = ndim , lstart = lstart)
78 if(file.exists(csv_savepath)){return(csv_savepath)} else{return(FALSE)}
79 return(NULL)
80 }
81

82 #’ make_si
83 #’
84 #’ Make search index from table of hashed features. Additional details about
85 #’ the hnswlib search index parameters (e..g ‘space_val ‘, ‘efc_val ‘, ‘m_val ‘,
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86 #’ and ‘ef_val ‘) can be found in the Python package docstrings and ReadMe.
87 #’
88 #’ @param fh_csv_fpath Name/path of csv (e.g. a table of hashed features)
89 #’ containing data for the index (required , string , "bvaltest.csv", where
90 #’ rows = samples , cols = features).
91 #’ @param si_fname Name of new search index file to save (required , string ,
92 #’ "new_search_index.pickle ")
93 #’ @param si_dict_fname Name of new index dictionary , with string labels , to
94 #’ save (required , string , "new_index_dict.pickle ").
95 #’ @param threads Number of threads for processing new index (required , int , 4).
96 #’ @param space_val Space value for new search index (required , valid string ,
97 #’ l2 ’).
98 #’ @param efc_val EFC value for the index (required , int , 2000).
99 #’ @param m_val M value for the index (required , int , 1000).

100 #’ @param ef_val EF value for the index (required , int , 2000).
101 #’ @returns Boolean , TRUE if new search index and dictionary created , FALSE if
102 #’ creating the new search index and dictionary files failed , otherwise NULL.
103 #’ @examples
104 #’ # fh_csv_fpath <- system.file(" extdata", "fhtest",
105 #’ # package = "recountmethylation ")
106 #’ # fh_csv_fpath <- file.path(fh_csv_fpath , "bval_fn.csv")
107 #’ # make_si(fh_csv_fpath)
108 make_si <- function(fh_csv_fpath , si_fname = "new_search_index.pickle",
109 si_dict_fname = "new_index_dict.pickle", threads = 4,
110 space_val = ’l2’, efc_val = 2000, m_val = 1000, ef_val = 2000)

{
111 message("Starting basilisk process ...")
112 proc <- recountmethylation ::: setup_sienv ()
113 pyscript.path <- system.file("python", package = "recountmethylation")
114 pyscript.path <- file.path(pyscript.path , "dnam_search_index.py")
115 basilisk :: basiliskRun(proc , function(pyscript.path , fh_csv_fpath , si_fname ,
116 si_dict_fname , threads , space_val ,
117 efc_val , m_val , ef_val){
118 message("Sourcing Python functions ...")
119 reticulate :: source_python(pyscript.path)
120 message("Making search index ...")
121 make_hnsw_si(fname = fh_csv_fpath , index_name = si_fname ,
122 dindex_name = si_dict_fname , threads = as.integer(threads),
123 efc_val = as.integer(efc_val), m_val = as.integer(m_val),
124 ef_val = as.integer(ef_val))
125 },
126 pyscript.path = pyscript.path , fh_csv_fpath = fh_csv_fpath ,
127 si_fname = si_fname , si_dict_fname = si_dict_fname , threads = threads ,
128 space_val = space_val , efc_val = efc_val , m_val = m_val , ef_val = ef_val
129 )
130 if(file.exists(si_fname) & file.exists(si_dict_fname)){
131 message("Made new search index ’",si_fname ,
132 "’ and search index dict ’", si_dict_fname ,"’")
133 return(TRUE)
134 } else{
135 return(FALSE)
136 }
137 return(NULL)
138 }
139

140 #’ query_si
141 #’
142 #’ Query an HNSW search index. Does K Nearest Neighbors lookup on a previously
143 #’ saved search index object , returning the K nearest neighbors of the queried
144 #’ sample(s). The ‘query_si()‘ function returns verbose output , which can be
145 #’ silenced with suppressMessages () ‘.
146 #’
147 #’ @param sample_idv Vector of valid sample IDs , or GSM IDs , which are included
148 #’ in the rownames of the hashed features table at fh_csv_fpath (requried ,
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149 #’ vector of char strings).
150 #’ @param fh_csv_fpath Path to the hashed features table , which includes rownames
151 #’ corresponding to sample ID strings in the sample_idv vector (required , char).
152 #’ @param si_fname Base filename of the search index object , used to find the
153 #’ search index and index dict files , which are expected to be located at
154 #’ si_fapth (required , char).
155 #’ @param si_fpath Path to the directory containing the search index and index
156 #’ dict files (required , char).
157 #’ @param lkval Vector of K nearest neighbors to return per query (optional ,
158 #’ int , c(1,2)).
159 #’ @returns
160 #’ @examples
161 #’ # file paths
162 #’ # fh table
163 #’ # fh_csv_fname <- system.file(" extdata", "fhtest",
164 #’ # package = "recountmethylation ")
165 #’ # fh_csv_fname <- file.path(fh_csv_fname , "bval_fh10.csv")
166 #’ # si dict
167 #’ # index_dict_fname <- system.file(" extdata", "sitest",
168 #’ # package = "recountmethylation ")
169 #’ # index_dict_fname <- file.path(index_dict_fname , "new_index_dict.pickle ")
170 #’
171 #’ # set sample ids to query
172 #’ # sample_idv <- c(" GSM1038308 .1548799666. hlink.GSM1038308_5958154021_R01C01",
173 #’ # "GSM1038309 .1548799666. hlink.GSM1038309_5958154021_R02C01 ")
174 #’ # set a list of k nearest neighbors to query
175 #’ # lkval <- c(1,2,3)
176 #’
177 #’ # get query results as a data frame (with verbose results messaging)
178 #’ # dfk <- query_si(sample_idv = sample_idv , lkval = lkval ,
179 #’ # fh_csv_fname = "bval_fn.csv",
180 #’ # index_dict_fname = "new_index_dict.pickle ")
181 #’ # returns:
182 #’ # Starting basilisk process ...
183 #’ # Defining the virtual env dependencies ...
184 #’ # Running virtual environment setup ...
185 #’ # Sourcing Python functions ...
186 #’ # Querying the search index ...
187 #’ # Getting hashed features data for samples ...
188 #’ # Getting index data for sample:
189 #’ # GSM1038308 .1548799666. hlink.GSM1038308_5958154021_R01C01 ’
190 #’ # Getting index data for sample:
191 #’ # GSM1038309 .1548799666. hlink.GSM1038309_5958154021_R02C01 ’
192 #’ # Beginning queries of k neighbors from lk...
193 #’ # ii = 0 , ki = 1
194 #’ # Loading search index ...
195 #’ # Querying 2 elements in data with k = 1 nearest neighbors ...
196 #’ # Query completed , time: 0.0007359981536865234
197 #’ # Applying labels to query results ...
198 #’ # Returning data (sample id, k index , and distance)...
199 #’ # ii = 1 , ki = 2
200 #’ # Loading search index ...
201 #’ # Querying 2 elements in data with k = 2 nearest neighbors ...
202 #’ # Query completed , time: 0.0006208419799804688
203 #’ # Applying labels to query results ...
204 #’ # Returning data (sample id, k index , and distance)...
205 #’ # ii = 2 , ki = 3
206 #’ # Provided k ’3’ > n si samples , skipping ...
207 #’ # Returning query results ...
208 query_si <- function(sample_idv , fh_csv_fpath ,
209 si_fname = "new_search_index",
210 si_fpath = ".", lkval = c(1,2)){
211 message("Checking index and table locations ...")
212 if(!file.exists(fh_csv_fpath)){
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213 stop("Error: didn ’t find fh table at location :\n’",fh_csv_fpath ,"’")}
214 si_hnsw_fpath <- file.path(si_fpath , paste0(si_fname , ".pickle"))
215 if(!file.exists(si_hnsw_fpath)){
216 stop("Error: didn ’t find search index at location :\n’",v,"’")}
217 si_dict_fpath <- file.path(si_fpath , paste0(si_fname , "_dict.pickle"))
218 if(!file.exists(si_dict_fpath)){
219 stop("Error: didn ’t find index dict at location :\n’",si_dict_fpath ,"’")}
220 message("Starting basilisk process ...")
221 proc <- recountmethylation ::: setup_sienv ()
222 lkval <- lapply(lkval , as.integer) # format query k values list
223 pyscript.path <- system.file("python", package = "recountmethylation")
224 pyscript.path <- file.path(pyscript.path , "dnam_search_index.py")
225 query_result <- basilisk :: basiliskRun(proc , function(pyscript.path ,
226 sample_idv , lkval , si_dict_fpath , fh_csv_fpath){
227 message("Sourcing Python functions ...")
228 reticulate :: source_python(pyscript.path)
229 message("Querying the search index ...")
230 dfk <- make_dfk_sampleid(sample_idv = sample_idv , lk = lkval ,
231 index_dict_fname = si_dict_fpath , fh_csv_fname = fh_csv_fpath)
232 return(dfk)}, pyscript.path = pyscript.path , sample_idv = sample_idv ,
233 lkval = lkval , si_dict_fpath = si_dict_fpath , fh_csv_fpath = fh_csv_fpath)
234 return(query_result)
235 }

The follow code shows the Python script dnam_search_index.py which is called by the above R script.

1 #!/usr/bin/env python3
2

3 # Author: Sean Maden
4 #
5 # Manage DNAm array search indexes. Options to make an HNSW -based
6 # search index from hashed features tables of DNAm array data.
7 #
8

9 import mmh3
10 import numpy as np
11 import pandas as pd
12 import hnswlib , sys , os, re , pickle , random
13 from time import time
14 import faulthandler
15 faulthandler.enable ()
16

17 def feature_hash(arr , target_dim =10000):
18 """ Perform feature hashing on an array of data
19

20 Perform feature hashing on the data in arr , into a vector of target_dim
21 total hashed features.
22

23 Arguments:
24 * arr: An array of values to be hashed.
25 * target_dim: The target number of hashed values.
26 Returns:
27 * low_d_rep , or an array of hashed values of len == target_dim
28

29 """
30 low_d_rep = [0.0 for _ in range(target_dim)]
31 for i, el in enumerate(arr):
32 hashed = mmh3.hash(str(i))
33 if hashed > 0.0:
34 low_d_rep[hashed % target_dim] += arr[i]
35 else:
36 low_d_rep[hashed % target_dim] -= arr[i]
37 return low_d_rep
38

39 def make_fhmatrix_autolabel(wf_name , of_name , lnotfloat = [’’,’NA’,’NaN’],
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40 ndim = 10000, lstart = 0):
41 """
42

43 Get the hashed features table from an input data table. This function
44 automatically sets row labels as the first column of data in the input data
45 table at ‘of_name.‘
46

47 Arguments:
48 * wf_name: Name/path of hashed features table to write (required ,
49 string , rows = samples , cols = hashed features).
50 * of_name: Name/path of table to hash (required , tring , rows = samples ,
51 cols = probes).
52 * lnotfloat: List of expected missing value symbols (required , [’’,’NA’,
53 ’NaN ’]). These are replaced by the row -wise meidans of non -missing
54 values.
55 * ndim: Number of hashed features (integer , 1000).
56 * lstart: Line to start reading (required , int , 0).
57 Returns:
58 * None , saves new hashed features table to ‘wf_name ‘.
59

60 """
61 with open(of_name , "r") as fr:
62 with open(wf_name , "w") as fw:
63 for li, line in enumerate(fr):
64 line_format = line.replace(’\n’, ’’).split(’,’)
65 newrow = line_format [0]; lli = line_format [1::]
66 if li >= lstart:
67 # replace NAs with median values
68 lli_median = np.median ([ float(ii) for ii in lli
69 if not ii in lnotfloat ])
70 lli_format = [float(ii) if not ii in lnotfloat
71 else lli_median for ii in lli]
72 lli_fh = feature_hash(lli_format , target_dim = ndim)
73 newrow = newrow + ’,’ + ’,’.join([str(ii) for ii in lli_fh ])
74 newrow = newrow + ’\n’
75 print(’Found new sample: ’+newrow [0:100])
76 fw.write(newrow)
77 print("Finished with line number "+str(li))
78 return None
79

80 def make_fhmatrix_specifylabels(labels_list , wf_name , of_name ,
81 lnotfloat = [’’,’NA’,’NaN’], ndim = 10000):
82 """ Make the hashed feaures matrix a Beta -values table
83

84 Saves a .csv table of ndim total hashed features (columns) by elements ,
85 where the number of elements is equal to the row count in the of_name table.
86 Missing/NA values are replaced by the row median. New rows are processively
87 written to the file wf_name.
88

89 Arguments:
90 * labels_list : Column names of the output table
91 * wf_name : Name of the output table
92 * of_name : Name of table to be hashed. Rows will be hashed. First line
93 is colnames and thus skipped.
94 Returns:
95 * None , produces a new hashed features .csv table of dim nrow_of_name by
96 ndim+1 (columns), where first column has feature labels
97

98

99 """
100 with open(of_name , "r") as fr:
101 with open(wf_name , "w") as fw:
102 for li, line in enumerate(fr):
103 if li > 0:
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104 lli = line.replace(’\n’, ’’).split(’,’)[1::]
105 newrow = labels_list[li] # append label to new row
106 # replace NAs with median values
107 lli_median = np.median ([ float(ii) for ii in lli
108 if not ii in lnotfloat ])
109 lli_format = [float(ii) if not ii in lnotfloat
110 else lli_median for ii in lli]
111 lli_fh = feature_hash(lli_format , target_dim = ndim)
112 newrow = newrow + ’,’ + ’,’.join([str(ii) for ii in lli_fh ])
113 newrow = newrow + ’\n’
114 print(’Writing new row: ’+newrow [0:100])
115 fw.write(newrow)
116 print("Finished with line number "+str(li))
117 return None
118

119 def make_hnsw_si(fname , index_name , dindex_name , space_val = ’l2’, threads = 10,
120 efc_val = 2000, m_val = 1000, ef_val = 2000):
121 """ Makes a new search index from a csv table
122

123 Arguments:
124 * fname: Name of CSV file containing index data.
125 * index_name: Name of new search index file to save.
126 * dindex_name: Name of new index dict , with str labels , to save.
127 * space_val: Space value for the index.
128 * threads: Number of threads for processing the index.
129 * efc_val: EFC value for the index.
130 * m_val: M value for the index.
131 * ef_val: EF value for the index.
132 Returns
133 * None , saves the new index and index dict
134

135 """
136 print("Loading the dataset ...")
137 df=pd.read_csv(fname , sep=’,’,header=None)
138 df_str_labels = df.iloc [0:: ,0]
139 df = df.iloc [0:: ,1::] # subset to exclude string labels
140 num_elements = df.shape [0]
141 dim = df.shape [1]
142 print("Making the new index ...")
143 p_iter = hnswlib.Index(space = space_val , dim = dim)
144 p_iter.set_num_threads(threads)
145 df_labels = np.arange(num_elements)
146 p_iter.init_index(max_elements = num_elements ,
147 ef_construction = efc_val , M = m_val)
148 p_iter.set_ef(ef_val)
149 print("Adding new data to the search index ...")
150 p_iter.add_items(df , df_labels)
151 print("Saving the search index ...")
152 p_iter.save_index(index_name)
153 print("Saving the index dict with str labels , as pickle object ...")
154 dindex = {’index’ : p_iter , ’strlabels ’ : df_str_labels}
155 file_open = open(dindex_name , "wb")
156 pickle.dump(obj = dindex , file = file_open)
157 return None
158

159 def query_si(query_data , si_fname , si_labels = [], kval = 2):
160 """ Perform a lookup on an hnswlib -saved search index
161

162 Arguments:
163 * query_data : Vector of feature hashed data , of dims R x C, where C is

the
164 same as in siobject/search index object.
165 * si_fname : Name/path to the queried search index.
166 * si_labels : Sample ID labels corresponding to index positions in
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167 search index at ‘si_fname ‘.
168 * kval : K number of nearest neighbors to return from siobject lookup.
169

170 Returns:
171 * Vector of elements , where elements are indices if si_labels = False ,
172 or else element labels if si_labels is provided.
173

174 """
175 time_start = time()
176 print("Loading search index ...")
177 sidict = pickle.load(open(si_fname , "rb"))
178 siobject = sidict["index"]
179 print("Querying "+str(query_data.shape [0])+" elements in data with k = "+
180 str(kval)+" nearest neighbors ...")
181 kval_labels , kval_distances = siobject.knn_query(query_data , k = kval)
182 time_str = str(time()-time_start);print("Query completed , time: "+time_str)
183 if len(si_labels) > 0:
184 print("Applying labels to query results ..."); kval_str_labels = []
185 for ll in kval_labels:
186 kval_str_labels.append ([ si_labels[ii] for ii in ll])
187 print("Returning data (sample id, k index , and distance)...")
188 return kval_str_labels , kval_labels , kval_distances
189 else:
190 print("Returning data (k index and distance)...")
191 return kval_labels , kval_distances
192 return NULL
193

194 def make_dfk_sampleid(sample_idv , lk = [1,2], fh_csv_fname = "bval_100_fh10.csv",
195 index_dict_fname = "new_index_dict.pickle"):
196 """ make_dfk_sampleid
197

198 Get the sample labels for the k nearest neighbors on a series of queries.
199 Use a vector gsmv to identify samples for the query , from metadata.
200

201 Arguments:
202 * sample_idv : Vector or list of sample ID strings , corresponding to
203 sample ID labels in the rownames/first column of the hashed features
204 table at ‘fh_csv_fname ‘, which can correspond to sample names in the
205 queried search index (requried , list/vector of strings).
206 * lk : List of k nearest neighbors to query (required , list of int
207 values , 1000).
208 * index_dict_fname: Name/path of the search index file (required ,
209 string).
210 * fh_csv_fname: Name/path of the hashed features csv to read (required ,
211 string , )
212 Returns:
213 * dfk_final
214

215 """
216 print("Getting hashed features data for samples ...")
217 fhdict = {}
218 with open(fh_csv_fname , "r") as of:
219 for line in of:
220 lline = line.split(",")
221 sample_id = lline [0]. replace(’"’, ’’).split(".")[0]
222 if sample_id in sample_idv:
223 print("Getting index data for sample: ’{0}’".format(sample_id))
224 fhdict[sample_id] = [float(fhi.replace("\n", ""))
225 for fhi in lline [1::]
226 ]
227 dfi = pd.DataFrame.from_dict(fhdict).T
228 si_dict = pickle.load(open(index_dict_fname , "rb"))
229 dim_si_keylabv = len([ii for ii in si_dict[’strlabels ’]])
230 dfk = pd.DataFrame ()
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231 dfk["sample_id"] = fhdict.keys()
232 for ii, ki in enumerate(lk):
233 print("Querying ",ki," neighbors from lk...")
234 if ki <= dim_si_keylabv:
235 kval_str_labels , kval_labels , kval_distances = query_si(
236 query_data = dfi , si_fname = index_dict_fname ,
237 si_labels = si_dict["strlabels"], kval = ki
238 )
239 kli_format = [";".join(ii) for ii in kval_str_labels]
240 dfki = pd.DataFrame(kli_format)
241 dfk[’k=’ + str(ki)] = [ii for ii in dfki [0]]
242 else:
243 print("Provided k ’{0}’ > n si samples , skipping ...".format(ki))
244 print("Returning query results ...")
245 return dfk
246

247 def main():
248 """
249 """

A.9 Example parallelization script

The following code depicts parallelization of study ID bias correction simulations. These are described in Sections 3.2.4,
and 3.3.2, and depicted in the workflow diagram C.1. In brief, random sets of studies and probes are selected from a data
compilation. For each simulation rep, ANOVAs are performed on each of 3 models using uncorrected Beta-values, study
ID bias-corrected Beta-values from 2-4 studies, and study ID bias-corrected Beta-values from 5 studies, respectively.
Models are defined in a context-sensitive manner, so that the platform variable is only included when more than one
platform is represented among selected studies, etc. Note the aov function is used to expedite ANOVAs, and that each
simulation rep is broken into a parallel session.

1 #!/usr/bin/env R
2

3 # Author: Sean Maden
4 #
5 # Simulate the result of GSE bias corrections on variances , inc.
6 # a general GSE bias correction across available studies (adj1) and
7 # a precise GSE bias correction on a subset of studies evaluated (adj2).
8 # For comparison , the variances from unadjusted DNAm is also calculated.
9 #

10 # Main script steps:
11 # 1. Load the grset (autosomal probes noob -norm only , not GSE -adjusted).
12 # 3. Filter samples for a given blood subgroup.
13 # 4. Run the simulations , evaluations across iterations of probes and
14 # studies. Adjustments are performed in the same probes across
15 # randomized study sets.
16 #
17 #
18

19 library(HDF5Array); library(minfi)
20 library(methyPre); library(limma); library(sva)
21 library(data.table)
22

23 #--------------------
24 # load data -- server
25 #--------------------
26 save.dpath <- file.path("home", "metamaden", "bioinfo_appnote", "manuscript_final_

results")
27 # load noob -norm data (pre gse -adj)
28 gr.fname <- "gr -noob_h5se_hm450k -epic -merge_0-0-3"
29 gr <- loadHDF5SummarizedExperiment(file.path(save.dpath , gr.fname))
30

31 #----------------------------------
32 # helper functions , parallel method
33 #----------------------------------
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34 # get anova data from model string
35 get_aovdat <- function(aov.str , labstr = "", pheno_subset ,
36 orderv = c("gse", "glint.epi.pc1", "glint.epi.pc2", "

predage",
37 "predcell.CD8T", "predcell.CD4T", "predcell.NK",
38 "predcell.Bcell", "predcell.Mono", "predcell.

Gran",
39 "Residuals", "predsex", "platform")){
40 xaov <- eval(parse(text = aov.str)); xdat <- xaov [[1]]
41 namev <- gsub(" ", "", rownames(xdat [1])); xdat.iter <- xdat[,c(2,4,5)]
42 typev <- c("sumsq", "fval", "pval")
43 vdat <- unlist(lapply (1:3, function(ii){
44 datii <- xdat.iter[,ii]; names(datii) <- namev
45 for(vname in c("predsex", "platform")){
46 if(!vname %in% namev){
47 datii <- c(datii , "NA"); names(datii)[length(datii)] <- vname}}
48 datii <- datii[order(match(names(datii), orderv))]
49 names(datii) <- paste0(names(datii), "_", typev[ii])
50 return(datii)}))
51 names(vdat) <- paste0(names(vdat), "_", labstr)
52 return(vdat)
53 }
54

55 # parallel function for gse reps
56 par_gserep <- function(gse_rep , num.studies.subset , gsev , pheno , cgidv , table.

fpath){
57 # get study subset
58 message("Working on rep ", gse_rep , " with ", num.studies.subset ," studies ...")
59 gsev_filt <- sample(gsev , num.studies.subset)
60 message("Using studies ", paste0(gsev_filt , collapse = ", "), "...")
61 pheno_subset <- pheno[pheno$gse %in% gsev_filt ,]
62 pheno_subset$gse <- droplevels(pheno_subset$gse)
63 # get the adj2 data
64 which.bunadj <- which(grepl("_unadj", colnames(pheno_subset)))
65 bunadj_subset <- t(as.matrix(pheno_subset[,which.bunadj ]))
66 rownames(bunadj_subset) <- paste0(gsub("_unadj", "",
67 rownames(bunadj_subset)), "_adj2")
68 bval_adj2 <- removeBatchEffect(bunadj_subset , batch = pheno_subset$gse)
69 pheno_subset <- cbind(pheno_subset , t(bval_adj2))
70 # get the vector of model strings
71 cnv_numeric <- c("glint.epi.pc1", "glint.epi.pc2", "predage",
72 colnames(pheno_subset)[grepl("predcell", colnames(pheno_subset)

)])
73 lm.str <- paste0("~ gse + ", paste0(cnv_numeric , collapse = " + "))
74 num.lvl.predsex <- length(unique(pheno_subset$predsex))
75 num.lvl.platform <- length(unique(pheno_subset$platform))
76 if(num.lvl.predsex > 1){lm.str <- paste0(lm.str , " + predsex")}
77 if(num.lvl.platform > 1){lm.str <- paste0(lm.str , " + platform")}
78 # get results for 3 adj levels as a matrix
79 cnv_all <- colnames(pheno_subset)
80 mrep <- do.call(cbind , lapply(c("unadj", "adj", "adj2"), function(labstri){
81 message("Working on models of type ’", labstri , " ’...")
82 cg_cnv <- cnv_all[grepl(paste0(".*_", labstri , "$"), cnv_all)]
83 lm.str.vect <- paste0(cg_cnv , " ", lm.str , ", data = pheno_subset")
84 aov.str.vect <- paste0("summary(aov(", lm.str.vect , "))")
85 mrep <- do.call(rbind , lapply(aov.str.vect , get_aovdat ,
86 pheno_subset = pheno_subset ,
87 labstr = labstri))
88 mrep <- as.data.frame(mrep , stringsAsFactors = F)
89 return(mrep)}))
90 mrep <- as.data.frame(mrep , stringsAsFactors = F)
91 mrep$gse_rep <- gse_rep
92 mrep$ngse <- num.studies.subset
93 mrep$gsev <- paste0(unique(pheno_subset$gse), collapse = ";")
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94 mrep$cgid <- cgidv
95 # write new results rows
96 message("Writing new results rows to file ", table.fpath , "...")
97 data.table :: fwrite(mrep , file = table.fpath , sep = ",", row.names = F,
98 col.names = F, append = T)
99 return(mrep)

100 }
101

102 # get all results for a series of study reps
103 get_mgserep <- function(ngse_rep , num.studies.subset , cgidv , pheno , table.fpath){
104 gsev <- unique(pheno$gse) # get studies
105 # format pheno colnames
106 cnv_numeric <- c("predage", "glint.epi.pc1", "glint.epi.pc2",
107 colnames(pheno)[grepl("predcell", colnames(pheno))])
108 cnv_factor <- c("predsex", "platform", "gse")
109 for(c in cnv_numeric){pheno[,c] <- as.numeric(pheno[,c])}
110 for(c in cnv_factor){pheno[,c] <- as.factor(pheno[,c])}
111 # get results matrix , process reps in parallel
112 message("Processing studies using ", ngse_rep , " cores ...")
113 mgserep <- do.call(rbind , mclapply(seq(ngse_rep), par_gserep ,
114 num.studies.subset = num.studies.subset ,
115 gsev = gsev , pheno = pheno , cgidv = cgidv ,
116 mc.cores = ngse_rep , table.fpath = table.

fpath))
117 return(mgserep)
118 }
119

120 # get the results of all reps of random study selections
121 get_mgse_all <- function(grf , ngsev , table.fpath , num.gse = 5,
122 ngse_rep = 10, num.probes = 500){
123 message("Getting ",num.probes ," random probes and ",
124 num.gse , " random studies ...")
125 cgidv <- sample(rownames(grf), num.probes)
126 gsev <- sample(unique(grf$gse), num.gse)
127 grff <- grf[cgidv , colnames(grf[,grf$gse %in% gsev])]
128 bval_unadj <- getBeta(grff)
129 mval_unadj <- logit2(bval_unadj)
130 message("Getting adjustment 1 data ...")
131 mval_adj <- removeBatchEffect(mval_unadj , batch = grff$gse)
132 bval_adj <- ilogit2(mval_adj)
133 message("Appending DNAm to pheno ...")
134 pheno <- colData(grff)
135 rownames(bval_unadj) <- paste0(rownames(bval_unadj), "_unadj")
136 rownames(bval_adj) <- paste0(rownames(bval_adj), "_adj")
137 pheno <- cbind(pheno ,
138 cbind(t(as.matrix(bval_unadj)),
139 t(as.matrix(bval_adj))))
140 message("Beginning iterations of random study selection and ANVOAs ...")
141 mgse.all <- do.call(rbind , lapply(ngsev , function(num.studies.subset){
142 get_mgserep(ngse_rep = ngse_rep , num.studies.subset = num.studies.subset ,
143 cgidv = cgidv , pheno = pheno , table.fpath = table.fpath)}))
144 message("Finished all ANOVA iterations; returning ...")
145 return(mgse.all)
146 }
147

148 # parallel wrapper for ‘get_mgse_all()‘
149 par_mgse_all <- function(cgrep , grf , ngsev , table.fpath , num.gse = 5,
150 ngse_rep = 10, num.probes = 500){
151 t1 <- Sys.time(); message("Beginning cgrep ", cgrep , "...")
152 mgse_all <- get_mgse_all(grf = grf , ngsev = ngsev , num.gse = num.gse ,
153 ngse_rep = ngse_rep , num.probes = num.probes ,
154 table.fpath = table.fpath)
155 mgse_all <- as.data.frame(mgse_all , stringsAsFactors = F)
156 message("Finished cgrep ", cgrep , ", time: ", Sys.time() - t1)
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157 mgse_all$cgrep <- cgrep; return(mgse_all)
158 }
159

160 # script to process a subgroup
161 do_subgroup_tests <- function(grf , num.cgrep = 5, ngsev = c(2, 3, 4), num.gse = 6,

sepsym = ",",
162 ngse.rep = 5, num.probes = 100, num.batch = 30, seed

= 1,
163 rda.fname = "mgse -adj -test_blood -group -all_2

platforms.rda",
164 table.fname = "mgse -adj -test_blood -group -all_2

platforms.csv",
165 save.dpath = file.path("home", "metamaden", "bioinfo

_appnote",
166 "manuscript_final_results")){
167 set.seed(seed);t1 <- Sys.time()
168 # write new table , then write new lines as processes finish
169 cnv <- c("gse", "glint.epi.pc1", "glint.epi.pc2", "predage", "predcell.CD8T",
170 "predcell.CD4T", "predcell.NK", "predcell.Bcell", "predcell.Mono",
171 "predcell.Gran", "Residuals", "predsex", "platform")
172 cnv <- c(paste0(cnv , "_sumsq"), paste0(cnv , "_fval"), paste0(cnv , "_pval"))
173 cnv <- c(paste0(cnv , "_unadj"), paste0(cnv , "_adj"), paste0(cnv , "_adj2"))
174 cnv <- c(cnv , "gse_rep", "ngse", "gsev", "cgid")
175 table.fpath <- file.path(save.dpath , table.fname)
176 mcnv <- matrix(nrow = 0, ncol = length(cnv));colnames(mcnv) <- cnv
177 data.table :: fwrite(mcnv , file = table.fpath , sep = sepsym , append = F,
178 col.names = T, row.names = F)
179 # do iterations , writing new lines as they complete
180 for(batch in seq(num.batch)){
181 message("Beginning batch ",batch , ", time: ", Sys.time() - t1)
182 mclapply(seq(num.cgrep), par_mgse_all , grf = grf , ngsev = ngsev ,
183 num.gse = num.gse , ngse_rep = ngse.rep , num.probes = num.probes ,
184 mc.cores = num.cgrep , table.fpath = table.fpath)
185 }
186 if(file.exists(table.fpath)){return(TRUE)
187 } else{
188 message("Couldn ’t find new table file at ", table.fpath)
189 return(FALSE)
190 }
191 return(NULL)
192 }
193

194 #---------------------------------------
195 # process subgroups -- server , test runs
196 #---------------------------------------
197 # process all -- takes about 20hr to complete on remote server
198 new.fname <- "mcg -gsebias -final_blood -4stypes -2 platforms"
199 rda.fname <- paste0(new.fname , ".rda"); table.fname <- paste0(new.fname , ".csv")
200 mcg.test <- do_subgroup_tests(grf = gr , num.cgrep = 3, ngsev = c(2,3,4), num.gse =

5,
201 ngse.rep = 3, num.probes = 500, num.batch = 20, seed

= 1,
202 table.fname = table.fname , rda.fname = rda.fname)
203

204 # append colnames
205 csv.fname <- "mcg -gsebias -final_blood -4stypes -2 platforms.csv"
206 csv.fpath <- file.path("home", "metamaden", "bioinfo_appnote",
207 "manuscript_final_results")
208 csv.fpath <- file.path(csv.fpath , csv.fname)
209 csv <- fread(csv.fpath , sep = ",", header = F, data.table = F)
210 # get colnames
211 cnv <- c("gse", "glint.epi.pc1", "glint.epi.pc2", "predage", "predcell.CD8T",
212 "predcell.CD4T", "predcell.NK", "predcell.Bcell", "predcell.Mono",
213 "predcell.Gran", "Residuals", "predsex", "platform")
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214 cnv <- c(paste0(cnv , "_sumsq"), paste0(cnv , "_fval"), paste0(cnv , "_pval"))
215 cnv <- c(paste0(cnv , "_unadj"), paste0(cnv , "_adj"), paste0(cnv , "_adj2"))
216 cnv <- c(cnv , "gse_rep", "ngse", "gsev", "cgid")
217 colnames(csv) <- cnv
218 # save new table
219 csv.fname <- "mcg -gsebias -final_blood -4stypes -2 platforms.csv"
220 csv.fpath <- file.path(csv.fname)
221 fwrite(csv , file = csv.fpath , sep = ",", col.names = T, row.names = F)
222

223 #--------------------------------
224 # get variance fract by variables
225 #--------------------------------
226 save.dpath <- file.path("home", "metamaden", "bioinfo_appnote",
227 "manuscript_final_results")
228 # append colnames
229 csv.fname <- "mcg -gsebias -final_blood -4stypes -2 platforms.csv"
230 csv.fpath <- file.path(save.dpath , csv.fname)
231 csv <- fread(csv.fpath , sep = ",", header = T, data.table = F)
232

233 # get sum of sq vars by model type
234 typev <- c("unadj", "adj1", "adj2")
235 varv <- c("gse", "glint.epi.pc1", "glint.epi.pc2", "predage", "predcell.CD8T",
236 "predcell.CD4T", "predcell.NK", "predcell.Bcell", "predcell.Mono",
237 "predcell.Gran", "Residuals", "predsex", "platform")
238 cnames.mfsq <- paste0(varv , "_", rep(typev , each = length(varv))) # groups by

probe , group
239 lindex <- list("unadj" = 1:13, "adj" = 40:52, "adj2" = 79:91) # model type var

indices
240 # get the list of fract sumsq by group
241 mcg <- csv
242 mfsq <- t(apply(mcg , 1, function(dati){
243 do.call(cbind , lapply(lindex , function(indexv){
244 datii <- dati[indexv]
245 tot.rsq <- sum(as.numeric(datii), na.rm = t)
246 fract.indexv.rsq <- as.numeric(datii)/tot.rsq
247 names(fract.indexv.rsq) <- names(datii)
248 return(fract.indexv.rsq)
249 }))
250 }))
251 colnames(mfsq) <- cnames.mfsq
252 mfsq <- as.data.frame(mfsq , stringsAsFactors = F)
253 mfsq$ngse <- mcg$ngse
254 mfsq$cgid <- mcg$cgid
255 mfsq$gsev <- mcg$gsev
256

257 # save mfsq matrix
258 msq.fname <- "msq -gse -bias_all -blood -2- platforms.rda"
259 msq.fpath <- file.path(save.dpath , msq.fname)
260 save(mfsq , file = msq.fpath)
261

262 #--------------------------------
263 # get variance diffs by variables
264 #--------------------------------
265 # get 3x FEV differences
266 cname.diff <- paste0(rep(varv , each = 3), "_",
267 rep(c("diff1", "diff2", "diff3"),
268 times = length(varv)))
269 mdiff.all <- do.call(cbind , lapply(varv , function(vari){
270 fii <- mfsq[,grepl(vari , colnames(mfsq))];namev <- names(fii)
271 diff1 <- as.numeric(fii[,1]) - as.numeric(fii[,2])
272 diff2 <- as.numeric(fii[,1]) - as.numeric(fii[,3])
273 diff3 <- as.numeric(fii[,2]) - as.numeric(fii[,3])
274 mdiff <- cbind(diff1 , cbind(diff2 , diff3))
275 return(mdiff)}))
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276 mdiff.all <- as.data.frame(mdiff.all , stringsAsFactors = F)
277 colnames(mdiff.all) <- cname.diff
278 mdiff.all$ngse <- mfsq$ngse
279

280 # save mdiff.all matrix
281 mdiff.fname <- "mdiff -gse -bias_all -blood -2- platforms.rda"
282 mdiff.fpath <- file.path(save.dpath , mdiff.fname)
283 save(mdiff.all , file = mdiff.fpath)
284 message("done")

A.10 Feature hashing equations

We can describe feature hashing in detail by paraphrasing the descriptions from [174]. Suppose we wish to learn some
predictor ws, which derives from the set of array probes x for sample s such that s ∈ S. We calculate the vector of
hashed weights wh, consisting of weight vectors w0...wS , using the corresponding vector of signed hash functions
ϕ0...ϕS to derive wh ∈ Rm. We define the semi-positive kernel matrix k as:

k(xi, xj) := ⟨ϕ(xi), ϕ(x+ j)⟩ . (18)

We next use the concept of projecting input vectors x with unmodified dimensional space Rd into the low-
dimensional space Rm with some hash function ϕ [175].

ϕ : X → Rm . (19)

ϕ
(h,ξ)
i (x) =

∑
j:h(j)=i

ξ(i)xi . (20)

(x, x
′
)ϕ := ⟨ϕ(h,ξ)(x), ϕh,ξ(x

′
)⟩ . (21)

This can be represented as:

wh = ϕ0(w0) +
∑

ϕs(ws) . (22)

We can now write the output for x and wh with errors from two sources: (1) interference between samples, ϵi; and
(2) distortions within each sample, ϵd.

⟨ϕ0(x) + ϕu(x), wh⟩ = ⟨x,w0 + wu⟩+ ϵd + ϵi . (23)

ϵi =
∑

v∈S,v ̸=0

⟨ϕs(x), ϕv(wv)⟩+
∑
v∈S

, v ̸= s⟨ϕs(x), ϕv(wv)⟩ . (24)

ϵd =
∑

v∈{u,0}

|⟨ϕv(x), ϕv(wv)⟩ − ⟨x,wv⟩| . (25)

ϵi results from collisions between hashed features for a sample s, xs, and hashed features for remaining samples
v, xv. By contrast, ϵd results for hashed features from the same sample s, or ⟨x,wv⟩, which result from internal
self-collisions among features in s. It can be shown empirically and in theory that both ϵd and ϵi are small with high
probability [174].
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B Supplementary Material for “Human methylome variation across Infinium 450K data on the Gene
Expression Omnibus”

B.1 Supplementary Figures
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Figure B.1: Cumulative yearly DNAm array studies in GEO for three platforms: HM27K (diamonds, yellow is all
studies, brown is studies with IDATs), HM450K (circles, light green is all studies, dark green is studies with IDATs),
and EPIC (triangles, light blue is all studies, and dark blue is studies with IDATs).
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neither metric >0.6).

151



(a)

blood leukemia other

−50 0 50 100 150 −50 0 50 100 150 −50 0 50 100 150
−120

−80

−40

0

40

PC1 (25%)

P
C

2 
(1

0%
)

(b)

0.00

0.05

0.10

0.15

bl
oo

d

le
uk

em
ia

Tissue

V
ar

ia
nc

e
(c)

brain brain.tumor other

0 100 0 100 0 100

−100

−50

0

50

PC1 (19%)

P
C

2 
(1

1%
)

(d)

0.00

0.05

0.10

0.15

br
ai

n

br
ai

n.
tu

m
or

Tissue

V
ar

ia
nc

e

Figure B.6: PCA facet plots and probe variance distributions of autosomal DNAm (noob-normalized Beta-values).
(a) Facet plots of non-cancer blood (left, red), leukemias (middle, purple), and remaining samples (right, black) from
Fig. B.6a. (b) Violin plots of DNAm variances in blood and leukemia samples. (c) Facet plots of non-cancer brain (left,
blue), brain tumors (middle, dark cyan), and remaining samples (right, black) from Fig. B.6c. (d) Violin plots of DNAm
variances in brain and brain tumor samples.
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Figure B.7: Analysis of autosomal DNAm variation across 7 non-cancer tissues (adipose, blood, brain, buccal, nasal,
liver, and sperm). (a) Workflow to normalize, preprocess, and analyze DNAm variation within 7 tissues (adipose, buccal,
brain, liver, sperm, nasal, and blood), including references to relevant figures. (b) Numbers of available samples by
tissue type, with number labels showing barplot amounts. (c) Number of probes removed and retained from ANOVA
filters within tissues (2.2.10).
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Figure B.8: Genome mappings among 4,577 CpG probes with low variance across 7 tissues (adipose, brain, buccal,
nasal, blood, liver, and sperm, 2.2.10, Fig. B.7). Color fills depict (left) CpG island and gene region overlaps, (middle)
gene region overlaps, and (right) CpG island region overlaps.
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B.2 Supplementary Tables

gsm gsm_title gseid disease tissue

GSM1873723 SOG048 3999876086_R02C02 GSE72874;GSE72872 cancer distal;esophagus;blood

GSM3584264 NA GSE125895 NA NA

GSM1858832 Breast tumor from TOP Cohort patient P_41 GSE72308;GSE72254 cancer tumor;breast

GSM2293090 CellLine_COLO201 GSE86078 cancer colorectal;intestine;colon;rectum

GSM2724331 9904796033_R03C02 GSE102119;GSE102120 cancer ovary;endocrine_system

GSM2565812 393N_normal GSE97466 normal NA

GSM2792160 EPN-PFA SAMPLE 486 GSE104210 cancer brain

GSM1670362 CellLine_RCC-FG2 GSE68379 cancer kidney

GSM2941227 MB, G4, sample 503 [validation set] GSE109379;GSE109381 cancer brain

GSM1873911 PAH046 9611518135_R01C02 GSE72874;GSE72872 normal;healthy;control distal;esophagus;blood

GSM2814369 whole blood taken from sample 7342 GSE105018 normal blood;whole_blood

GSM1858758 Breast tumor from Cohort 2 patient P_86 GSE72251;GSE72308 cancer tumor;breast

GSM1236074 6969568028_R03C02 GSE51057;GSE51032 normal;healthy;control blood

GSM1425640 SAMPLE_61_CD4 GSE59065 NA NA

GSM1633025 Sample146_Tumor GSE66836 cancer tumor

GSM2122901 E0007_FASD GSE80261 NA oral;buccal;throat;epithelial

GSM1501445 SAMPLE_44_Adult GSE61278;GSE61279 NA liver

GSM2756932 genomic DNA from gastric normal 33 GSE103186 normal;healthy;control stomach

GSM2405127 CHORDM, sample 2271 [reference set] GSE90496;GSE109381 cancer NA

GSM3053777 Genomic DNA from prostate_4_normal GSE112047 normal;healthy;control prostate

GSM1616987 maternal_whole_blood_rep2 GSE66210 NA blood;whole_blood

GSM1235863 5809079064_R02C01 GSE51032 cancer;breast_cancer breast;blood

GSM2817867 IPSPDL1.6L_DN GSE105093 NA neuron;stem_cell

GSM2333940 X40 genomic DNA from whole blood GSE87571 normal blood;whole_blood

GSM2403835 MNG, sample 982 [reference set] GSE90496;GSE109381 cancer brain;oral

GSM2818043 NA GSE105109 NA NA

GSM1922528 Buffy_Placebo_Baseline_Subject_18 GSE74548 NA NA

GSM1586910 Ind4_F-iPSC [Methylation] GSE65079;GSE65078 NA stem_cell

GSM1614000 iPSC PiZZ T0 3 GSE66077;GSE66078 NA stem_cell

GSM1848002 gDNA_CD4_Control_rep11 GSE71955;GSE71957 healthy;control blood;white_blood_cell;t_cell

GSM2403828 EPN, MPE, sample 975 [reference set] GSE90496;GSE109381 cancer NA

GSM2402879 DMG, K27, sample 26 [reference set] GSE90496;GSE109381 cancer blood;neuron

GSM2815379 whole blood taken from sample 2911 GSE105018 normal blood;whole_blood

Table 6.1: Postprocessed metadata for 35,360 samples (rows). Columns 1 and 2 are the GSM record ID and record title.
Column 3 is the collapsed GSE record ID (see Methods and Supplemental Information). Columns 4 and 5 are variables
with learned labels for disease/study group and tissue characteristics. Column 6 is the most likely predicted sample
type. Columns 7 and 8 are the array ID and basename for the sample IDATs. Column 9 is the mined age values with
available units. Column 10 is the predicted age. Columns 11 and 12 are the mined and predicted sex labels. Columns
13-18 are predicted blood cell fractions. Column 19 is the annotated storage procedure. Preview of supplemental table;
full table available online.
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Table 6.2: Quality and summary metrics for 35,360 samples (rows, see Methods and Supplemental Information).
Column 1 is the GSM ID. Column 2 is the GSE ID. Columns 3-19 are the BeadArray quality metrics. Columns 20-21
are the log2 medians of methylated and unmethylated signals. Column 22 shows the GSM IDs likely sharing genetic
identity from the same GSE record. Column 23 is the quantity of samples from column 22. Preview of supplemental
table; full table available online.

gsm gseid ba.restoration.grn ba.biotin.stain.red ba.biotin.stain.grn ba.specificityI.red

GSM1873723 GSE72874;GSE72872 0.02 731.5 496.6 13.51

GSM2459564 GSE93646 0.09 119.13 74.56 4.48

GSM3584264 GSE125895 0.09 183.02 85.48 7.36

GSM2363655 GSE89278 0.06 46.01 0 6.66

GSM1858832 GSE72308;GSE72254 0.11 64.99 48.72 5.49

GSM2293090 GSE86078 0.06 74.42 39.39 5.11

GSM2465258 GSE93933 0.08 54.49 83.44 6.6

GSM2724331 GSE102119;GSE102120 0.11 108.42 91.47 6.69

GSM2565812 GSE97466 0.13 25.9 14.27 3.98

GSM2792160 GSE104210 5.22 8593 19.16 2.35

GSM1670362 GSE68379 0.1 60.38 51.32 3.69

GSM2941227 GSE109379;GSE109381 6.29 111.03 9.18 5

GSM1873911 GSE72874;GSE72872 0.03 199.94 257.12 8.64

GSM2814369 GSE105018 0.07 150.3 289.59 7.06

GSM1858758 GSE72251;GSE72308 0.12 40.28 69 6.67

GSM1236074 GSE51057;GSE51032 0.08 70.98 31.24 4.41

GSM1425640 GSE59065 0.08 53.96 62.01 4.8

GSM3025701 GSE111223 0.05 10887 131.21 4.52

GSM1633025 GSE66836 0.05 462.82 217.64 5.42

GSM2122901 GSE80261 0.11 87.81 64.3 4.07

GSM2363592 GSE89278 0.04 119.33 256.44 6.5

GSM1501445 GSE61278;GSE61279 0.09 61.85 55.61 3.76

GSM2756932 GSE103186 0.04 43.43 0 3.63

GSM2905416 GSE108576 2.16 26.65 12.53 9.16

GSM2405127 GSE90496;GSE109381 7.31 457.29 157.65 5.92

GSM3053777 GSE112047 0.04 6.44 0 3.71

GSM1616987 GSE66210 0.11 121.74 63.04 8.04

GSM1235863 GSE51032 0.03 41.49 20 4.45

GSM2817867 GSE105093 0.04 75.79 90.74 5.78

GSM2333940 GSE87571 0.07 131.34 156.33 5.77

GSM2403835 GSE90496;GSE109381 0.11 155.77 79.4 7.53

GSM2818043 GSE105109 0.03 0 290.88 6.26

GSM1203553 GSE49032;GSE49031 0.06 116.17 101.06 5.02
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Table 6.3: Information about the 17 BeadArray quality metrics (rows, Methods, Supplemental Information). Column 1
is the metric name. Column 2 is the metric description. Column 3 is the published minimum threshold, and column 4 is
the formula calculation from control probe signals. Preview of supplemental table; full table available online.

name description threshold formula

Restoration Green
Extent of DNA restoration success for FFPE 

samples
0 green signal/background

Biotin Staining Red Efficiency of staining step, red color channel 5 dnp high/dnp background

Biotin Staining 

Green

Efficiency of staining step, green color 

channel
5 biotin high/biotin background

Specificity I Red

Non-specific primer extension at non-

polymorphic T site, Infinium I probes, red 

channel

1 min(PM)/max(MM)

Specificity I Green

Non-specific primer extension at non-

polymorphic T site, Infinium I probes, green 

channel

1 min(PM)/max(MM)

Specificity II
Non-specific primer extension at non-

polymorphic T site, Infinium II probes
1 min(S1.R, S2.R, S3.R)/max(S1.G, S2.G, S3.G)

Extension Red

Sample-independent extension efficiency at 

hairpin probe, A and T nucleotides, red 

channel

5 min(C or G)/max(A or T)

Extension Green

Sample-independent extension efficiency at 

hairpin probe, C and G nucleotides, green 

channel,

5 min(C or G)/max(A or T)

Hybridization, High-

Medium

Overall assay performance using high- versus 

medium-concentration synthetic targets
1 high concentration/medium concentration

Hybridization, 

Medium-Low

Overall assay performance using medium- 

versus low-concentration synthetic targets
1 medium concentration/low concentration

Target Removal 1

Efficiency of stripping step after extension 

reaction for Infinium I probes, from green 

channel

1 background/control intensity
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Table 6.4: Characteristics of studies (rows) for storage condition analyses. Column 2 is the number of samples with
available storage information. Column 3 is the quantity of FFPE samples. Column 4 is the quantity of fresh frozen
samples. Columns 5 and 6 are the unions of unique tissue and disease labels, respectively. Preview of supplemental
table; full table available online.

gseid num.gsm num.ffpe num.frozen tx.terms dx.terms

GSE109379;GSE109381 1087 1087 0

brain;blood;endocrine_system;oral;glia; 

cerebellum;NA;neuron;epithelial;ectoderm; 

nervous_system

cancer

GSE105018 1650 0 1650 blood;whole_blood normal

GSE108576 87 87 0 metastasis;brain;respiratory_system;lung; breast;tumor
cancer;skin_cancer; 

lung_cancer; breast_cancer

GSE90496;GSE109381 2778 1859 919

NA;brain;oral;blood;neuron;cerebellum;endocrine_syst

em;nervous_system;white_blood_cell; 

t_cell;epithelial;eye;rod;lymphatic_system; 

nasal;cancer;ectoderm;glia;chest;neck

cancer;normal;healthy; 

control

GSE112047 47 47 0 prostate;tumor
normal;healthy; 

control;cancer

GSE87571 725 0 725 blood;whole_blood normal

GSE105109 381 0 381 NA NA

GSE104293 132 87 45 NA NA

GSE74193 671 0 671 brain NA;control

GSE66351 189 0 189 brain;neuron;oral;glia NA

GSE114753 155 0 155 sperm control;NA

GSE71678 337 0 337 placenta normal

GSE60185 279 0 279 breast
cancer;breast_cancer; 

normal

GSE65163;GSE65205 71 0 71 nasal;epithelial NA

GSE104210 63 39 24 brain;blood;neuron NA

GSE103659 42 42 0 tumor;brain;oral;cerebellum cancer

GSE102970 47 0 47 sperm NA

GSE73549 92 92 0 prostate;metastasis; lymphatic_system;tumor normal;cancer;NA

GSE103768;GSE103769 57 0 57 adipose NA

GSE107352;GSE107353 51 51 0 tumor;colorectal;intestine; colon;rectum;mucosa
cancer;case;normal; 

healthy;control

GSE122126 11 0 11
neuron;adipose;liver;endocrine_system; 

pancreas;blood;white_blood_cell;t_cell
normal;NA
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Table 6.5: Sample sub-threshold frequencies (fst) for 362 studies. Column 1 is the GSE accession number for the study
record. Column 2 is the number of GSM records. Columns 3-19 are frequencies of samples below published thresholds
for 17 BeadArray metrics. Columns 20-25 are frequencies of samples below log2 median methylated and unmethylated
signal thresholds of 10, 11, and 12. Column 26 shows if fst is >5% for a threshold of 11 in both methylated and
unmethylated signals. Column 27 shows if fst is >5% for samples failing at least 1 BeadArray metric. Preview of
supplemental table; full table available online.

gseid ngsm restoration.grn biotin.stain.red biotin.stain.grn specificityI.red specificityI.grn

GSE72874;GSE72872 248 0 0.03 0.03 0 0

GSE93646 423 0 0 0.01 0 0

GSE125895 267 0 0 0.01 0 0

GSE89278 364 0 0.02 0.04 0 0

GSE72308;GSE72254 58 0 0 0 0 0

GSE86078 146 0 0.11 0.14 0 0

GSE93933 126 0 0 0 0 0

GSE102119;GSE102120 146 0 0.05 0.14 0.02 0.02

GSE97466 140 0 0 0 0 0

GSE104210 666 0 0.09 0.11 0 0

GSE68379 1018 0 0 0 0 0

GSE109379;GSE109381 1097 0 0.09 0.16 0 0

GSE105018 1650 0 0.1 0.17 0 0

GSE72251;GSE72308 115 0 0 0 0 0

GSE51057;GSE51032 326 0 0 0 0 0

GSE59065 293 0 0 0 0 0

GSE111223 256 0 0.14 0.21 0 0

GSE66836 181 0 0 0.01 0.02 0

GSE80261 214 0 0 0 0 0

GSE61278;GSE61279 110 0 0 0 0 0

GSE103186 187 0 0.1 0.14 0 0

GSE108576 87 0 0.15 0.15 0 0

GSE90496;GSE109381 2778 0 0.03 0.05 0 0

GSE112047 47 0 0.15 0.11 0 0

GSE66210 58 0 0 0 0 0

GSE51032 512 0 0 0 0 0

GSE105093 11 0 0 0 0 0

GSE87571 725 0 0 0 0 0
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Table 6.6: Study (rows) information for DNAm variability analyses in 7 tissues (Methods, Supplemental Information).
Column 1 is the GSE record ID. Column 2 is the record title. Column 3 is the available PubMed ID. Column 4 is
whether the study includes samples from cancer patients. Column 5 is the percent of samples removed during quality
control and pre-filters. Column 6 is the number of samples passing quality checks and pre-filters. Column 7 is the
total number of sample records. Column 8 is the tissue type(s) among retained samples. Column 9 is the number of
samples used in the DNAm variability analyses. Column 10 is the annotated sample labels and information. Column 11
is condition or disease info. Column 12 is the available study population information. Preview of supplemental table;
full table available online.

gseid title PMID ngsm_qcpass ngsm_all nctissue

GSE61450; 

GSE61454

Epigenome analysis of the human 

subqutaneous adipose tissue
25282492 39 70 adipose

GSE103768; 

GSE103769

Epigenome-wide analysis of 

healthy obese individuals during a 

one-year weightloss intervention

28978976 57 57 adipose

GSE61453; 

GSE61454

Epigenome analysis of the human 

visceral adipose tissue
25282492 45 71 adipose

GSE122126

Comprehensive human cell-type 

methylation atlas reveals origins 

of circulating cell-free DNA in 

health and disease

30498206 8 11 adipose;liver

GSE89278

Effect of prenatal DHA 

supplementation on the infant 

epigenome

27822319 349 364 blood

GSE93933

Methylome analysis of non 

syndromic cleft lip and palate in 

comparison to control samples

NA 123 126 blood

GSE105018

Whole blood DNA methylation 

profiles in participants of the 

Environmental Risk (E-Risk) 

Longitudinal Twin Study at age 18.

30770782; 30091980 1575 1650 blood

GSE66210

Epigenome analysis of first 

trimester CVS samples from 

normal and Trisomy 13,18,21 

pregnancies, and maternal whole 

blood samples.

26230497 56 58 blood
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Table 6.7: Characteristics of DNAm array CpG probes (rows) with recurrent low Beta-value variances and mean
intervals across 7 non-cancer tissues. Column 1 is the probe ID. Column 2 is the chromosome. Column 3 is the genome
coordinate. Column 4 is the DNA strand. Column 5 is the assay type. Column 6 is the CpG island name. Column
7 is the CpG island region type. Column 8 is the gene ID(s). Column 9 is the gene accession(s). Column 10 is the
gene region group(s). Columns 11-24 are the Beta-value variances and means across samples for each tissue (tissues:
adipose, blood, brain, buccal, liver, nasal, and sperm). Column 25 is the maximum absolute mean interval across all
pairwise comparisons of tissue Beta-value means. Preview of supplemental table; full table available online.

chr pos strand Name Type Islands_Name Relation_to_Island UCSC_RefGene_Name

chr1 151319512 - cg00003202 I chr1:151319326-151319545 Island RFX5;RFX5

chr1 109234919 - cg00031456 I chr1:109234788-109235161 Island PRPF38B

chr1 228290868 + cg00105470 I chr1:228289669-228291184 Island C1orf35

chr1 247242130 + cg00106446 I chr1:247241579-247242201 Island ZNF670

chr1 205196936 + cg00118468 I chr1:205196791-205197252 Island TMCC2

chr1 182584341 + cg00153856 I chr1:182584177-182584545 Island

chr1 193091045 - cg00252701 I chr1:193090728-193091224 Island CDC73

chr1 152487909 - cg00302521 I chr1:152487978-152488270 N_Shore CRCT1

chr1 1840482 + cg00309462 I chr1:1839958-1840601 Island

chr1 1710237 + cg00328972 I chr1:1709394-1710582 Island NADK

chr1 84972303 + cg00357368 I chr1:84971344-84972491 Island GNG5;SPATA1

chr1 226374726 - cg00396407 I chr1:226374035-226374760 Island ACBD3

chr1 113008976 - cg00468144 I chr1:113008844-113009154 Island WNT2B

chr1 147142741 + cg00543196 I chr1:147141842-147142918 Island ACP6

chr1 91966377 - cg00668525 I chr1:91966263-91966999 Island CDC7;CDC7;CDC7

chr1 176176785 + cg00687095 I chr1:176175711-176176811 Island RFWD2;RFWD2

chr1 55230057 + cg00756215 I chr1:55229992-55230369 Island PARS2

chr1 40254741 - cg00758584 I chr1:40253683-40255172 Island BMP8B

chr1 84464645 + cg00773459 I chr1:84464223-84465232 Island TTLL7;TTLL7

chr1 28198968 - cg00856002 I chr1:28199031-28199257 N_Shore C1orf38;C1orf38;C1orf38

chr1 226309722 + cg00926874 I chr1:226308959-226310476 Island

chr1 244211782 - cg00993651 I chr1:244211034-244212088 Island

chr1 84971486 + cg01000656 I chr1:84971344-84972491 Island SPATA1;GNG5

chr1 162039502 + cg01137537 I chr1:162039450-162040052 Island NOS1AP;NOS1AP

chr1 107684059 + cg01559617 I chr1:107682889-107684463 Island NTNG1;NTNG1;NTNG1

chr1 43855507 - cg01717331 I chr1:43855375-43855921 Island MED8;MED8;C1orf84

chr1 145477253 + cg01780466 I chr1:145477022-145477479 Island LIX1L

chr1 29213675 - cg01932091 I chr1:29213438-29214300 IslandEPB41;EPB41;EPB41;EPB41;EPB41;EPB41;EPB41;EPB41;EPB41;EPB41
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Table 6.8: Characteristics of 14,000 DNAm array CpG probes (rows) with recurrent high and tissue-specific variances
(2,000 probes per tissue, tissues: adipose, blood, brain, buccal, liver, nasal, and sperm). Column 1 is the tissue group.
Column 2 is the probe ID. Columns 3-6 are the Beta-value median, mean, variance, and standard deviations across
samples for the tissue. Column 7 is the chromosome. Column 8 is genome coordinate. Column 9 is the DNA strand.
Column 10 is the assay type. Column 11 is the CG-island name, where applicable. Column 12 is the CG-island region
type. Column 13 is the gene ID(s). Column 14 is the gene accession(s). Column 15 is the gene region group(s). Preview
of supplemental table; full table available online.

tissue cgid median mean var sd chr pos strand Type Islands_Name

adipose cg00149537 0.753 0.756 0.008 0.087 chr1 9409810 - I

adipose cg01413848 0.862 0.851 0.007 0.081 chr1 3081226 - I chr1:3080934-3081292

adipose cg01772149 0.602 0.619 0.017 0.129 chr1 3038216 - I chr1:3038067-3038343

adipose cg10096873 0.123 0.152 0.007 0.084 chr1 92546470 + I chr1:92545819-92546480

adipose cg10622019 0.732 0.729 0.009 0.092 chr1 4221485 - I chr1:4221387-4221672

adipose cg10703826 0.256 0.265 0.008 0.089 chr1 119532116 + I chr1:119531991-119532196

adipose cg14038482 0.772 0.775 0.008 0.089 chr1 8384484 + I chr1:8384387-8384719

adipose cg15930240 0.575 0.571 0.011 0.105 chr1 153749015 - I chr1:153747655-153748698

adipose cg18273417 0.316 0.307 0.007 0.081 chr1 153518418 - I

adipose cg18533397 0.157 0.179 0.007 0.086 chr1 110186005 - I chr1:110185961-110186164

adipose cg19025786 0.737 0.738 0.012 0.108 chr1 2206662 - I

adipose cg19924619 0.202 0.211 0.006 0.08 chr1 165323692 - I chr1:165323486-165323811

adipose cg20163085 0.728 0.732 0.011 0.103 chr1 10510396 - I

adipose cg23677911 0.729 0.722 0.009 0.093 chr1 230256394 - I

adipose cg23848152 0.766 0.756 0.009 0.094 chr1 145211389 + I chr1:145208944-145210075

adipose cg24434800 0.408 0.402 0.008 0.087 chr1 119542295 - I chr1:119543056-119543454

adipose cg25340966 0.252 0.264 0.01 0.102 chr1 119532195 - I chr1:119531991-119532196

adipose cg25362585 0.625 0.637 0.018 0.135 chr1 3320431 + I chr1:3321269-3322310

adipose cg25407979 0.358 0.365 0.013 0.115 chr1 204256846 + I

adipose cg00035316 0.24 0.254 0.008 0.087 chr2 176993017 + I chr2:176992950-176993186

adipose cg02565132 0.83 0.82 0.007 0.085 chr2 109559473 - I chr2:109558965-109559186

adipose cg04316624 0.47 0.465 0.008 0.092 chr2 177036809 + I chr2:177036254-177037213

adipose cg04688351 0.128 0.146 0.007 0.083 chr2 223154140 - I chr2:223155726-223156154

adipose cg05669418 0.346 0.358 0.011 0.104 chr2 177022962 - I chr2:177024501-177025692

adipose cg05864326 0.586 0.573 0.018 0.136 chr2 177030150 - I chr2:177029413-177029941

adipose cg07873325 0.759 0.765 0.007 0.085 chr2 88355771 + I chr2:88354840-88355574

adipose cg08079908 0.228 0.244 0.007 0.082 chr2 176997277 + I chr2:176993479-176995557

adipose cg08781325 0.067 0.096 0.008 0.088 chr2 26521777 - I
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C Supplementary Material for “recountmethylation enables flexible analysis of public blood DNA
methylation array data.”

C.1 Supplementary Figures

Adjustment 2 DNAmUnadjusted DNAm

FEVadj2 (per variable)FEVunadj (per variable) 

FEV = fraction of explained variance

diff1 = FEVadj1 – FEVunad

diff2 = FEVadj2 - FEVunadj

diff3 = FEVadj1 – FEVadj2

MAD1 = median(abs[diff1])
MAD2 = median(abs[diff2])
MAD3 = median(abs[diff3])

Unadjusted DNAm (Beta-values)

ANOVAunadj 

(per CpG probe)
ANOVAadj2

(per CpG probe)

Sample 500 probes, 5 
studies

Repeat 
3x times

Uniform study bias 
correction (5 studies)

Adjustment 1 DNAm

FEVadj1 (per variable)

ANOVAadj1

(per CpG probe)

Repeat 
3x times

Exact bias correction 
(2, 3, or 4 studies)

Figure C.1: Workflow diagram to simulate the impact of GSE bias corrections on explained variances. This diagram
shows a single simulation rep, including repeated probe and study selections where indicated. From top to bottom,
the workflow shows random selection of 500 CpG probes, random selection of 5 studies, and calculation of 3 DNAm
datasets per CpG probe: (1) unadjusted DNAm; (2) DNAm after local adjustment on subsets between 1-4 study
IDs among 5 selected (a.k.a. adjustment 1); (3) DNAm after uniform adjustment on all 5 selected study IDs (a.k.a.
adjustment 2). Finally, ANOVAs are conducted across the 3 DNAm models, and fractions of explained variances are
determined from sum of squared variances (3.2.4). Terminology for workflow terms is shown at top left.
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Figure C.2: Fraction explained variance (FEV) between unadjusted and adjusted DNAm across GSE bias simulations.
(a) Density plots of unadjusted FEV on x axes and adjusted FEV on y-axes. Color fill shows density of simulation
outcome counts (dark blue = low, green = moderate, yellow = high). (b) Violin plots of FEV fractions, or adjusted FEV
over unadjusted FEV, by adjustment type on the x-axis.
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Figure C.3: Autosomal DNAm PCA results across normal blood samples. Eigenvalues explained by select variables.
Stacked barplots show the eigenvalue magnitudes (left) and percentages (right) for the top ten components (x-axis). Fill
colors indicate magnitudes of component sum of squared variances explained by select variables (red = genetic ancestry
PC1, yellow = predicted CD4+ T-cells, green = Study ID, blue = other variable, purple = residuals). The term “other”
stores the 10 remaining model variables tested. X-axis labels show the percent of total variances explained by each
component in parentheses.
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Figure C.4: Top two components from PCAs of autosomal DNAm (noob-normalized Beta-values) colored according
to different variables. Each panel includes a scatter plot (top) and 95% confidence interval ellipses (bottom) where the x
and y axes correspond to, respectively, the first and second components. Colors specify sample type (top left, black =
other/not otherwise specified, gray = whole blood, yellow = cord blood, red = PBMC), platform (top middle, red =
EPIC/HM850K, blue = HM450K), the first component of genetic ancestry (top right, [32]), and predicted fractions [31]
for CD8+ T-cells (bottom left), CD4+ T-cells (bottom middle), and B-cells (bottom right). Color labels for the latter
four continuous variables correspond to sample quintile bins (e.g. 5 quantile ranges: pink = 0-20, yellow = 20-40, green
= 40-60, blue = 60-80, purple = 80-100).
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Figure C.5: Summaries of differential DNAm by sex in whole blood and peripheral blood mononuclear cells (PBMC).
(a) Volcano plot for whole blood showing difference in mean Beta-values (males minus females, x-axis) versus probe
significance (-1*log10[P-adj.], Benjamini Hotchberg adjustment [167], y-axis). Red dots represent the top 1,000 DMPs,
black circles represent non-DMP probes. (b) violin plots for whole blood showing distributions of absolute difference in
mean Beta-values (males minus females, y-axis) for all tested CpG probes (left) and only the top 1,000 most significant
differentially methylated probes (DMPs, right). Horizontal black lines indicate the distribution medians. (c) Volcano
plot for PBMC showing difference in mean Beta-values (males minus females, x-axis) versus probe significance
(-1*log10[P-adj.], y-axis). Red dots represent the top 1,000 DMPs, black circles represent non-DMP probes. (d) violin
plots for PBMC showing distributions of absolute difference in mean Beta-values (males minus females, y-axis) for
all tested CpG probes (left) and only the top 1,000 most significant differentially methylated probes (DMPs, right).
Horizontal black lines indicate the distribution medians.
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Figure C.6: Genetic ancestry differences and intersection of sex DMPs across whole blood and PBMC datasets. (a)
Violin plots of the top two genetic ancestry components for the three available datasets (black = “Inoshita et al 2015”
[138], red = PBMC compilation, gray = whole blood compilation). (b) Upset plot showing DMP overlaps (lower
left and top right barplot magnitudes) among the 4 DMP sets whole blood, PBMC, “Inoshita_et_al_2015” [138], and
“Grant_et_al_2021” [236] (lower y-axis labels).
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C.2 Supplementary Tables

Table C.1: Blood sample type (rows) availability and demographic variables (columns).
All platforms HM450K EPIC Age (years old)

Type GSE GSM GSE GSM GSE GSM Fract.
M

Median SD 1< 1-10 10-20 20-40 40-60 60-80 >80

all 62 12,242 51 9,083 12 3,159 0.44 30 25 2,155 859 1,640 2,923 2,452 2,053 160
whole
blood

31 6,866 25 5,613 6 1,253 0.43 36 21 21 289 1,352 2,252 1,386 1,442 124

cord
blood

9 1,475 7 722 2 753 0.52 0 0 1,475 0 0 0 0 0 0

PBMC 9 627 7 382 2 245 0.37 18 19 0 234 87 166 102 35 3
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Table C.2: Mined and predicted metadata for uniformly processed blood samples with either raw HM450K or raw
EPIC data available. Preview of supplemental table; full table available online.

gsm gse gsm_title platform blood.subgroup predsex predage

GSM1051533 GSE42861 Normal genomic DNA from sample 9 hm450k other/NOS M 65.884

GSM1051534 GSE42861 Normal genomic DNA from sample 10 hm450k other/NOS M 47.527

GSM1051535 GSE42861 Normal genomic DNA from sample 11 hm450k other/NOS M 35.988

GSM1051536 GSE42861 Normal genomic DNA from sample 12 hm450k other/NOS M 55.954

GSM1051537 GSE42861 Normal genomic DNA from sample 13 hm450k other/NOS M 49.468

GSM1051538 GSE42861 Normal genomic DNA from sample 14 hm450k other/NOS M 50.916

GSM1051539 GSE42861 Normal genomic DNA from sample 15 hm450k other/NOS M 68.512

GSM1051540 GSE42861 Normal genomic DNA from sample 16 hm450k other/NOS M 67.35

GSM1051541 GSE42861 Normal genomic DNA from sample 17 hm450k other/NOS M 64.241

GSM1051542 GSE42861 Normal genomic DNA from sample 18 hm450k other/NOS M 61.116

GSM1051543 GSE42861 Normal genomic DNA from sample 19 hm450k other/NOS M 55.714

GSM1051544 GSE42861 Normal genomic DNA from sample 20 hm450k other/NOS M 58.769

GSM1051545 GSE42861 Normal genomic DNA from sample 21 hm450k other/NOS M 49.344

GSM1051549 GSE42861 Normal genomic DNA from sample 25 hm450k other/NOS F 48.083

GSM1051550 GSE42861 Normal genomic DNA from sample 26 hm450k other/NOS F 62.987

GSM1051551 GSE42861 Normal genomic DNA from sample 27 hm450k other/NOS F 67.651

GSM1051552 GSE42861 Normal genomic DNA from sample 28 hm450k other/NOS F 61.094

GSM1051553 GSE42861 Normal genomic DNA from sample 29 hm450k other/NOS F 66.149

GSM1051555 GSE42861 Normal genomic DNA from sample 31 hm450k other/NOS F 64.681

GSM1051556 GSE42861 Normal genomic DNA from sample 32 hm450k other/NOS F 59.229

GSM1051557 GSE42861 Normal genomic DNA from sample 33 hm450k other/NOS F 57.179

GSM1051558 GSE42861 Normal genomic DNA from sample 34 hm450k other/NOS F 29.898

GSM1051559 GSE42861 Normal genomic DNA from sample 35 hm450k other/NOS F 63.269

GSM1051560 GSE42861 Normal genomic DNA from sample 36 hm450k other/NOS F 52.35

GSM1051561 GSE42861 Normal genomic DNA from sample 37 hm450k other/NOS F 71.544

GSM1051562 GSE42861 Normal genomic DNA from sample 38 hm450k other/NOS F 57.531

GSM1051563 GSE42861 Normal genomic DNA from sample 39 hm450k other/NOS F 30.482

GSM1051564 GSE42861 Normal genomic DNA from sample 40 hm450k other/NOS F 56.771

GSM1051565 GSE42861 Normal genomic DNA from sample 41 hm450k other/NOS F 51.167

GSM1051566 GSE42861 Normal genomic DNA from sample 42 hm450k other/NOS F 51.715

GSM1051567 GSE42861 Normal genomic DNA from sample 43 hm450k other/NOS F 40.76

GSM1051568 GSE42861 Normal genomic DNA from sample 44 hm450k other/NOS F 46.329

GSM1051569 GSE42861 Normal genomic DNA from sample 45 hm450k other/NOS F 32.529

GSM1051570 GSE42861 Normal genomic DNA from sample 46 hm450k other/NOS F 56.628

GSM1051571 GSE42861 Normal genomic DNA from sample 47 hm450k other/NOS F 31.04

GSM1051572 GSE42861 Normal genomic DNA from sample 48 hm450k other/NOS F 68.163

GSM1051573 GSE42861 Normal genomic DNA from sample 49 hm450k other/NOS F 49.452

GSM1051574 GSE42861 Normal genomic DNA from sample 50 hm450k other/NOS F 53.458

GSM1051575 GSE42861 Normal genomic DNA from sample 51 hm450k other/NOS F 57.22
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Table C.3: Fraction explained variance (FEV) medians by model type (rows) and variables (columns), across study ID
bias correction simulations (see 3.2.4).

Technical Biological Demographic

Model Study
ID

Platform CD8+
T-

cells

CD4+
T-

cells

B-
cells

Gran. Mono. Natural
Killer

Sex Age G.A.
PC1

G.A.
PC2

Unadj. 0.465 0.037 0.014 0.010 0.013 0.020 0.005 0.009 0.003 0.012 0.077 0.054

Adj. 1 0.002 0.086 0.036 0.026 0.035 0.050 0.013 0.024 0.008 0.030 0.212 0.144

Adj. 2 0.000 0.089 0.037 0.026 0.035 0.051 0.013 0.024 0.008 0.031 0.214 0.144
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Table C.4: Test results and annotations for sex DMPs from [138] and independent compilations of PBMC and whole
blood samples. Preview of supplemental table; full table available online.

cgid is.inoshita.2015.dmp is.pbmc.dmp is.whole.blood.dmp ttest.pvalue.pbmc

cg04946709 TRUE TRUE TRUE 2.69E-114

cg26355737 TRUE TRUE TRUE 6.13E-114

cg17232883 TRUE TRUE TRUE 8.31E-111

cg06759085 FALSE TRUE TRUE 3.11E-107

cg08906898 TRUE TRUE TRUE 2.90E-105

cg04737881 FALSE TRUE TRUE 5.53E-105

cg13180105 TRUE TRUE FALSE 3.44E-99

cg17238319 TRUE TRUE TRUE 3.37E-98

cg11388673 FALSE TRUE TRUE 2.39E-93

cg03894796 FALSE TRUE TRUE 4.80E-92

cg11643285 FALSE TRUE TRUE 1.38E-90

cg13323902 TRUE TRUE TRUE 5.06E-90

cg04858776 TRUE TRUE TRUE 1.50E-89

cg12691488 TRUE TRUE TRUE 2.36E-89

cg20299935 TRUE TRUE TRUE 3.23E-88

cg21148594 TRUE TRUE TRUE 2.11E-83

cg16945633 FALSE TRUE FALSE 1.22E-81

cg10507304 FALSE TRUE TRUE 6.59E-79

cg21216562 FALSE TRUE FALSE 2.00E-78

cg15254881 FALSE TRUE TRUE 8.74E-78

ch.6.149019574R FALSE TRUE FALSE 6.49E-76

cg03618918 TRUE TRUE TRUE 4.90E-73

cg05132077 FALSE TRUE TRUE 2.31E-72

cg17843887 FALSE TRUE FALSE 3.98E-72

cg26052357 FALSE TRUE TRUE 4.81E-71

cg13346869 FALSE TRUE FALSE 9.06E-71

cg08034535 TRUE TRUE TRUE 2.28E-70

cg09066361 TRUE TRUE TRUE 7.58E-70

cg02530860 FALSE TRUE TRUE 1.80E-69

cg20031364 FALSE TRUE TRUE 6.66E-69

cg07852945 TRUE TRUE TRUE 2.30E-68

cg14825413 FALSE TRUE TRUE 8.40E-67

cg25910261 TRUE TRUE TRUE 2.73E-66

cg10563109 TRUE TRUE TRUE 1.01E-65

cg18795569 FALSE TRUE TRUE 1.18E-65

cg18575221 FALSE TRUE FALSE 2.19E-65

cg22970003 TRUE TRUE TRUE 2.24E-65

cg27645294 TRUE TRUE TRUE 4.39E-65

cg11574745 TRUE TRUE TRUE 1.59E-64
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D Supplementary Material for “Retained introns in long RNA-seq reads are not reliably detected in
sample-matched short reads”

D.1 Supplementary Figures

Canonical transcript isoform 

Pre-mature mRNA transcription 

Canonical isoform 

CTS 

Poly-A addition 

Intron 
persistence 

CTS, intron 
persistence 

CTS 

Poly-A addition 

CTS 

Retained intron isoform Mature mRNA 

Intron 
persistence 

PTS 

Translation NMD 

5' 3' 

RNA polymerase II 

Transcription direction 

AAAAAA... 
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Figure D.1: Progression of transcript diagram, created with BioRender.com. Diagram depicts successive steps in
transcript processing which progress from top to bottom. At the top is shown the presumed canonical transcript isoform
with its expected splice pattern, followed by pre-mRNA processing steps, which branch between transcription by RNA
polymerase II, Co-Transcriptional Splicing (CTS), intron persistence, and poly(A) addition. At the bottom are the
possible mature mRNA endpoints, including results from Post-Transcriptional Splicing (PTS) and processing, which
include translation and Nonsense-Mediated Decay (NMD). Arrows are labeled with the events they represent, where
arrow width sizes indicate their expected event frequencies.
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Figure D.2: Short-read and long-read coverage of genes by sample. The maximum number of long reads assigned to
one transcript of each gene (y-axis) vs. the median short-read coverage per base across the entire gene (x-axis) for HX1
(red) and iPSC (blue) samples, in log scale. The vertical line represents the minimum median short-read coverage (2)
and the horizontal line represents the minimum total long-read coverage per transcript (5) required for a gene to be
included in our analysis; genes considered are in the upper right region of the plot.
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Figure D.3: Distribution of intron persistence values for introns in HX1 and iPSC samples. For introns included in
both sample studies, bottom left quadrant represents introns with no persistence across both samples (73.8%), upper left
represents introns with persistence in iPSC but not HX1 (6.7%), bottom right represents introns with persistence in
HX1 but not iPSC (8.6%), and upper right is a scatterplot of persistences in iPSC (y-axis) vs. HX1 (x-axis) for introns
with persistence in both (10.9%).
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Figure D.4: Splicing similarity between samples. Heatmaps of splicing patterns for a selection of matched transcripts
between HX1 and iPSC. Each subplot shows data for one transcript in HX1 (left) and iPSC (right) with rows representing
transcript-matched long reads and columns representing transcript introns in 5’ → 3’ order. Transcripts were selected
from a subset with 5–20 matched long reads in each sample and 5–20 introns. Dark green indicates a spliced out intron
in a given read, light green indicates a retained intron, and white indicates no coverage of the intron in the read.
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Figure D.5: (a) Distribution of persistence Pi,t and representative transcript examples for iPSC. The number of introns
(y-axis) having a given persistence value (x-axis) is shown as a dark black line; note that a large number of introns with
Pi = 0 are omitted from this analysis. Along the line, gray circles indicate the Pi value corresponding to each of nine
introns from representative transcript examples (each transcript is labeled by Ensembl ID, e.g., ENST00000446856.5).
Read-level data is shown for each transcript as a colored matrix, where each row is a single long read assigned to the
transcript and each column represents a given intron, and color indicates whether an intron is retained (light green),
spliced out (dark green), or lacking sequence coverage (white) in a given read. (b) Distributions of properties of
persistent and called RIs. Each panel contains a series of boxplots depicting the distribution of intron length (top,
log-scale), relative position in transcript (middle), and % of intron bases with overlapping annotated exons (bottom)
for HX1 (left) and iPSC (right). The distribution of each of these features is shown for long-read persistent introns
(“PacBio”, gray) and RIs called by each of the five short read tools: IRFinder-S (red), superintronic (yellow), iREAD
(green), KMA (blue), IntEREst (purple).
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Figure D.6: (a) Pairwise correlations among the intron expression values output by five short-read tools. Each element
in this heatmap depicts the correlation in intron expression values (Spearman’s test) between the indicated pair of
short-read tools, as labeled along the x and y axes. Cell text indicates Spearman ρ coefficient, with corresponding
color value obtained by the color gradient scale shown (from white to orange). Cell outline color indicates the sample
for which inter-tool correlation was assessed (iPSC [top left] and HX1 [bottom right] are outlined in blue and red,
respectively). (b) Intron expression scatter plots between all short-read RI-detection tool pairs (lower and upper triangles
of plot grid) and density plots for each of the five individual tools (diagonal plot grid) for HX1. (c) Intron expression
scatter plots between all short-read RI-detection tool pairs (lower and upper triangles of plot grid) and density plots for
each of the five individual tools (diagonal plot grid) for iPSC.
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Figure D.8: Correlation of intron expression and continuous properties. Heatmap color fills and text show the
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Figure D.9: Association of persistence with transcript position. Scatterplots of intron persistence vs. position within a
transcript for HX1 (left, red), iPSC (right, blue). Each point represents one or more introns, with point size representing
the number of points at each coordinate. Intron position is an intron-count normalized fraction where 0 represents the
transcript’s 5’ end and 1 represents the 3’ end. Plotted lines show the linear fit with equations show in the inset legends.
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Figure D.12: Performance summaries across persistence cutoffs. Scatter plot y-axes show precision and x-axes show
recall, and barplot y-axes show F1-scores, for samples HX1 (left plots) and iPSC (right plots). Colors indicate short-read
RI detection tools (red = IRFinder-S, yellow = superintronic, green = iREAD, purple = IntEREst, blue = KMA).
Centroids and whiskers indicate the measure medians and interquartile ranges across persistence cutoffs varied from 0.1
to 0.9 at 0.1 intervals (4.2).
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Figure D.14: Distribution of intron properties for shared false positive introns (FPs) called across all five short-read
detection tools. Properties are, left to right, intron length in # of bases (log scale), transcript position, and % of bases
with overlapping exons, for, in each panel, HX1 (left, red) and iPSC (right, blue).

181



FN FP TP

bg HX1 iPSC bg HX1iPSC bg HX1 iPSC
0

3000

6000

9000

Variable: motif.binned

FN FP TP

bg HX1iPSC bg HX1iPSC bg HX1iPSC
0.00

0.25

0.50

0.75

1.00 level

CTGC|GCAG

GTAG|CTAC

other

 

FN FP TP

bg HX1 iPSC bg HX1iPSC bg HX1 iPSC
0

3000

6000

9000

Variable: length.binned

FN FP TP

bg HX1 iPSC bg HX1 iPSC bg HX1 iPSC
0.00

0.25

0.50

0.75

1.00
level

long

short

 

FN FP TP

bg HX1 iPSC bg HX1iPSC bg HX1 iPSC
0

3000

6000

9000

Variable: tof.binned

FN FP TP

bg HX1 iPSC bg HX1 iPSC bg HX1 iPSC
0.00

0.25

0.50

0.75

1.00
level

high

low

 

FN FP TP

bg HX1 iPSC bg HX1iPSC bg HX1 iPSC
0

3000

6000

9000

Variable: mfb.binned

FN FP TP

bg HX1 iPSC bg HX1 iPSC bg HX1 iPSC
0.00

0.25

0.50

0.75

1.00
level

high

low

 

FN FP TP

bg HX1 iPSC bg HX1iPSC bg HX1 iPSC
0

3000

6000

9000

Variable: bol.binned

FN FP TP

bg HX1 iPSC bg HX1 iPSC bg HX1 iPSC
0.00

0.25

0.50

0.75

1.00
level

high

low

 

FN FP TP

bg HX1 iPSC bg HX1iPSC bg HX1 iPSC
0

3000

6000

9000

Variable: intron_type_annotation

FN FP TP

bg HX1 iPSC bg HX1 iPSC bg HX1 iPSC
0.00

0.25

0.50

0.75

1.00 level

other

u12

u2

 

Sample group

N
um

be
r 

of
 in

tr
on

s

Figure D.15: Distributions of binned intron properties. Barplots of intron counts (left column) and percentages (right
column) across unique levels (fill colors indicated in legends) for binned intron properties (plot titles). Results were
binned by sample group types (columns, either HX1, iPSC, or the background of all unique introns) and intron 4+
truth metric categories TP, FP, and FN (ribbon labels, e.g. intron was TP in at least 4 tools for iPSC, etc.). Qualitative
properties were binned by the top three most frequent levels (e.g. “intron type annotation” and “motif binned”), and
quantitative properties were binned using the 50th quantile cutoff (e.g. “length”, total overlapping features or “tof,” max
features per base or “mfb,” and bases overlapped or “bol”).
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Figure D.16: Intron abundance by truth category across genes with validated RIs. Barplots show intron counts and
percentages (y-axes) grouped by short-read tool (x-axes), gene (titles), for samples HX1 (left two plot columns) and
iPSC (right two plot columns). Bar color fills indicate the short-read tool-specific truth category (green = TP, pink = FP,
blue = FN).
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Figure D.18: Processing and alignment quality control. Results (y-axes, fill colors) across long-read (A-B) and
short-read (C-F) data runs for the samples HX1 and iPSC (x-axes) as follows: (a) lima quality among long-reads.
Barplot y-axes quantify long-read counts (left) and percentages (right) relative to the quality threshold (blue = above,
pink = below), where medians across all runs are shown for iPSC. (b) lima flags among long-reads. Barplot y-axes
quantify long-reads, where bar colors and x-axes indicate one of the five quality flags (magenta = below minimum
length or “minlen”, blue = undesired 5-prime 5-prime pairs as “undesired5p5ppairs”, green = below reference span
as “minrefspan”, yellow = undesired 3-prime 3-prime pairs as “undesired3p3ppairs”, and pink = below minimum end
score as “minendscore”). (c) Unique mapping among STAR-aligned short-reads. Barplot y-axes quantify short-read
counts (left) and percentages (right) by mappability (blue/1 = uniquely mapping, pink/0 = not uniquely mapping).
(d) Annotation among STAR-aligned short-reads. Barplot y-axes as in (c) with color indicating annotation (blue/1
= annotated, pink/0 = not annotated). (e) Alignment counts among bowtie2-aligned short-reads. Barplot y-axes as
in (c), where bar colors show alignment counts (blue = > 1 times, green = 1 time, pink = 0 times). (f) IRFinder-S
flag quantities. Barplot y-axes as in (c), where bar colors show flag (magenta = low coverage as “LowCover”, blue
= none, green = non-uniform intron coverage as “NonUniformIntronCover”, yellow = minor isoform presence as
“MinorIsoform”, pink = low splicing as “LowSplicing”).
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D.2 Supplementary Tables

Table D.1: Description of sequencing data used in this chapter.

Sample name in paper iPSC HX1

Sample type Induced pluripotent stem cell line Whole blood (non-
cancer)

Biosample ID SAMN07611993 SAMN04251426

SRA Study ID SRP098984 SRP065930

Long read platform PacBio Iso-Seq RSII PacBio Iso-Seq RSII

Size fractionated No Yes

Iso-Seq runs 27 46

Aligned long reads 839,558 945,180

Short-read platform Illumina NextSeq 500 Illumina HiSeq 2000

Short read runs 1 1

Aligned short reads (% uniquely
aligned)

91,330,785 (59%) 24,463,210 (88%)
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Table D.2: Performance metrics for called RIs across persistence thresholds. Green indicates the highest value per
threshold and sample for each metric.

>0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4585 1342 675 458 334 249 181 135 106 72
precision    0.317 0.077 0.032 0.023 0.019 0.013 0.009 0.006 0.002 0.002

recall    0.037 0.031 0.025 0.026 0.030 0.028 0.028 0.022 0.009 0.014
f-score    0.066 0.044 0.028 0.024 0.023 0.018 0.014 0.009 0.003 0.003

precision    0.265 0.064 0.037 0.023 0.016 0.010 0.008 0.005 0.003 0.002
recall    0.184 0.151 0.172 0.162 0.153 0.124 0.144 0.119 0.094 0.083

f-score    0.217 0.090 0.060 0.041 0.029 0.018 0.015 0.010 0.006 0.004
precision    0.444 0.120 0.063 0.040 0.028 0.019 0.014 0.010 0.008 0.004

recall    0.308 0.285 0.295 0.277 0.269 0.249 0.249 0.237 0.226 0.194
f-score    0.364 0.169 0.103 0.070 0.051 0.036 0.027 0.019 0.015 0.009

precision    0.258 0.064 0.034 0.021 0.014 0.008 0.006 0.003 0.002 0.001
recall    0.174 0.146 0.154 0.144 0.126 0.100 0.099 0.067 0.066 0.056

f-score    0.208 0.089 0.055 0.037 0.025 0.015 0.011 0.006 0.004 0.003
precision    0.509 0.175 0.086 0.057 0.036 0.022 0.012 0.009 0.007 0.003

recall    0.289 0.340 0.330 0.323 0.281 0.229 0.177 0.170 0.179 0.125
f-score    0.368 0.231 0.136 0.097 0.064 0.040 0.023 0.017 0.014 0.007

3194 782 327 212 176 140 109 75 61 40
precision    0.237 0.063 0.014 0.008 0.008 0.008 0.005 0.003 0.003 0.003

recall    0.027 0.029 0.015 0.014 0.017 0.021 0.018 0.013 0.016 0.025
f-score    0.049 0.040 0.014 0.010 0.011 0.012 0.008 0.005 0.005 0.005

precision    0.179 0.035 0.013 0.009 0.006 0.004 0.002 0.001 0.001 0.000
recall    0.229 0.182 0.159 0.165 0.136 0.121 0.083 0.067 0.066 0.025

f-score    0.201 0.058 0.024 0.016 0.011 0.008 0.004 0.002 0.002 0.000
precision    0.344 0.073 0.028 0.019 0.013 0.010 0.006 0.004 0.003 0.002

recall    0.318 0.276 0.254 0.259 0.222 0.207 0.165 0.173 0.148 0.125
f-score    0.331 0.116 0.051 0.035 0.025 0.019 0.012 0.009 0.006 0.003

precision    0.148 0.032 0.012 0.008 0.005 0.004 0.002 0.001 0.001 0.000
recall    0.171 0.150 0.131 0.132 0.102 0.100 0.083 0.053 0.049 0.025

f-score    0.159 0.052 0.021 0.014 0.009 0.007 0.005 0.002 0.002 0.001
precision    0.542 0.192 0.079 0.047 0.036 0.029 0.019 0.011 0.008 0.004

recall    0.133 0.192 0.190 0.175 0.159 0.164 0.138 0.120 0.098 0.075
f-score    0.213 0.192 0.112 0.074 0.058 0.050 0.034 0.021 0.014 0.007

sample
short read

detection tool
(RIs detected)

long read persistence threshold: 

                       long read RI count

IntEREst
(3,177)

iREAD
(533)

iPSC

HX1

IRFinder-S
(2,603)

kma
(3,084)

superintronic
(3,184)

IRFinder-S
(783)

kma
(3,676)

superintronic
(2,956)

IntEREst
(4,083)

iREAD
(367)

                       long read RI count
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Table D.3: Properties and sources of experimentally validated RIs studied.
Gene Source Intron coordinates Discovery

assay
Validation as-
say

Disease or cell
type association

Samples
with gene
expression

Sample
intron
persistence

AP1G2 Jeong
2021 [310]

chr14:23565702-
23565815 (intron 5)

short-read
RNA-seq

RT-PCR mesenchymal
stem cell

HX1, iPSC 0.06, 0

CELF1 Li 2021 [312] chr11:47478953-
47482694;
chr11:47478941-
47482694

short-read
RNA-seq

Nanostring Alzheimer’s
disease

HX1, iPSC 0, 0

CLASRP Li 2021 [312] chr19:45069249-
45070021

short-read
RNA-seq

Nanostring Alzheimer’s
disease

HX1 0

CTSD Wong
2013 [272]

chr11:1755029-
1757323
(intron 5)

short-read
RNA-seq

RT-PCR,
RNA-seq

granulocyte HX1 0

FAHD2A Li 2021 [312] chr2:95412765-
95412894

short-read
RNA-seq

Nanostring Alzheimer’s
disease

iPSC 0.06

FAHD2B Li 2021 [312] chr2:97083818-
97083947

short-read
RNA-seq

Nanostring Alzheimer’s
disease

iPSC 0.05

IGSF8 Li 2021 [312] chr1:160094172-
160094868

short-read
RNA-seq

Nanostring Alzheimer’s
disease

iPSC 0.02

LBR Wong
2013 [272]

chr1:225410417-
225411336 (intron
9)

short-read
RNA-seq

RT-PCR,
RNA-seq

granulocyte HX1, iPSC 0.02, 0.01

SRSF7 Lejeune
2001 [311]

chr2:38748654-
38749528 (intron 3)

in vitro splic-
ing
assays

Northern blot – iPSC 0.17
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Table D.4: HX1 called RIs. Preview of supplemental table; full table available online.

longread_persistence_threshold 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

longread_intron_count 4585.00 1342.00 675.00 458.00 334.00 249.00 181.00 135.00 106.00 72.00

all_IRFinder-S_RIs 2603.00 2603.00 2603.00 2603.00 2603.00 2603.00 2603.00 2603.00 2603.00 2603.00

IRFinder-S_true_positives 1324.00 456.00 223.00 148.00 94.00 57.00 32.00 23.00 19.00 9.00

IRFinder-S_false_positives 1279.00 2147.00 2380.00 2455.00 2509.00 2546.00 2571.00 2580.00 2584.00 2594.00

IRFinder-S_false_negatives 3261.00 886.00 452.00 310.00 240.00 192.00 149.00 112.00 87.00 63.00

IRFinder-S_precision 0.51 0.18 0.09 0.06 0.04 0.02 0.01 0.01 0.01 0.00

IRFinder-S_recall 0.29 0.34 0.33 0.32 0.28 0.23 0.18 0.17 0.18 0.13

IRFinder-S_fscore 0.37 0.23 0.14 0.10 0.06 0.04 0.02 0.02 0.01 0.01

all_superintronic_RIs 3184.00 3184.00 3184.00 3184.00 3184.00 3184.00 3184.00 3184.00 3184.00 3184.00

superintronic_true_positives 1413.00 383.00 199.00 127.00 90.00 62.00 45.00 32.00 24.00 14.00

superintronic_false_positives 1771.00 2801.00 2985.00 3057.00 3094.00 3122.00 3139.00 3152.00 3160.00 3170.00

superintronic_false_negatives 3172.00 959.00 476.00 331.00 244.00 187.00 136.00 103.00 82.00 58.00

superintronic_precision 0.44 0.12 0.06 0.04 0.03 0.02 0.01 0.01 0.01 0.00

superintronic_recall 0.31 0.29 0.29 0.28 0.27 0.25 0.25 0.24 0.23 0.19

superintronic_fscore 0.36 0.17 0.10 0.07 0.05 0.04 0.03 0.02 0.01 0.01

all_iREAD_RIs 533.00 533.00 533.00 533.00 533.00 533.00 533.00 533.00 533.00 533.00

iREAD_true_positives 169.00 41.00 17.00 12.00 10.00 7.00 5.00 3.00 1.00 1.00

iREAD_false_positives 364.00 492.00 516.00 521.00 523.00 526.00 528.00 530.00 532.00 532.00

iREAD_false_negatives 4416.00 1301.00 658.00 446.00 324.00 242.00 176.00 132.00 105.00 71.00

iREAD_precision 0.32 0.08 0.03 0.02 0.02 0.01 0.01 0.01 0.00 0.00

iREAD_recall 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.01 0.01

iREAD_fscore 0.07 0.04 0.03 0.02 0.02 0.02 0.01 0.01 0.00 0.00

all_kma_RIs 3084.00 3084.00 3084.00 3084.00 3084.00 3084.00 3084.00 3084.00 3084.00 3084.00

kma_true_positives 796.00 196.00 104.00 66.00 42.00 25.00 18.00 9.00 7.00 4.00

kma_false_positives 2288.00 2888.00 2980.00 3018.00 3042.00 3059.00 3066.00 3075.00 3077.00 3080.00

kma_false_negatives 3789.00 1146.00 571.00 392.00 292.00 224.00 163.00 126.00 99.00 68.00

kma_precision 0.26 0.06 0.03 0.02 0.01 0.01 0.01 0.00 0.00 0.00

kma_recall 0.17 0.15 0.15 0.14 0.13 0.10 0.10 0.07 0.07 0.06

KMA_fscore 0.21 0.09 0.06 0.04 0.02 0.02 0.01 0.01 0.00 0.00

all_IntEREst_RIs 3177.00 3177.00 3177.00 3177.00 3177.00 3177.00 3177.00 3177.00 3177.00 3177.00

IntEREst_true_positives 843.00 203.00 116.00 74.00 51.00 31.00 26.00 16.00 10.00 6.00

IntEREst_false_positives 2334.00 2974.00 3061.00 3103.00 3126.00 3146.00 3151.00 3161.00 3167.00 3171.00

IntEREst_false_negatives 3742.00 1139.00 559.00 384.00 283.00 218.00 155.00 119.00 96.00 66.00
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Table D.5: HX1 potential RIs. Preview of supplemental table; full table available online.

longread_persistence_threshold 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

longread_intron_count 4585.00 1342.00 675.00 458.00 334.00 249.00 181.00 135.00 106.00

all_IRFinder-S_RIs 12772.00 12772.00 12772.00 12772.00 12772.00 12772.00 12772.00 12772.00 12772.00

IRFinder-S_true_positives 3479.00 967.00 468.00 312.00 219.00 153.00 99.00 72.00 58.00

IRFinder-S_false_positives 9293.00 11805.00 12304.00 12460.00 12553.00 12619.00 12673.00 12700.00 12714.00

IRFinder-S_false_negatives 1106.00 375.00 207.00 146.00 115.00 96.00 82.00 63.00 48.00

IRFinder-S_precision 0.27 0.08 0.04 0.02 0.02 0.01 0.01 0.01 0.00

IRFinder-S_recall 0.76 0.72 0.69 0.68 0.66 0.61 0.55 0.53 0.55

IRFinder-S_fscore 0.40 0.14 0.07 0.05 0.03 0.02 0.02 0.01 0.01

all_superintronic_RIs 9208.00 9208.00 9208.00 9208.00 9208.00 9208.00 9208.00 9208.00 9208.00

superintronic_true_positives 2536.00 613.00 282.00 178.00 124.00 83.00 57.00 42.00 33.00

superintronic_false_positives 6672.00 8595.00 8926.00 9030.00 9084.00 9125.00 9151.00 9166.00 9175.00

superintronic_false_negatives 2049.00 729.00 393.00 280.00 210.00 166.00 124.00 93.00 73.00

superintronic_precision 0.28 0.07 0.03 0.02 0.01 0.01 0.01 0.00 0.00

superintronic_recall 0.55 0.46 0.42 0.39 0.37 0.33 0.31 0.31 0.31

superintronic_fscore 0.37 0.12 0.06 0.04 0.03 0.02 0.01 0.01 0.01

all_iREAD_RIs 4657.00 4657.00 4657.00 4657.00 4657.00 4657.00 4657.00 4657.00 4657.00

iREAD_true_positives 736.00 179.00 82.00 48.00 26.00 18.00 12.00 4.00 2.00

iREAD_false_positives 3921.00 4478.00 4575.00 4609.00 4631.00 4639.00 4645.00 4653.00 4655.00

iREAD_false_negatives 3849.00 1163.00 593.00 410.00 308.00 231.00 169.00 131.00 104.00

iREAD_precision 0.16 0.04 0.02 0.01 0.01 0.00 0.00 0.00 0.00

iREAD_recall 0.16 0.13 0.12 0.10 0.08 0.07 0.07 0.03 0.02

iREAD_fscore 0.16 0.06 0.03 0.02 0.01 0.01 0.00 0.00 0.00

all_kma_RIs 12533.00 12533.00 12533.00 12533.00 12533.00 12533.00 12533.00 12533.00 12533.00

kma_true_positives 1779.00 430.00 191.00 117.00 77.00 48.00 32.00 22.00 18.00

kma_false_positives 10754.00 12103.00 12342.00 12416.00 12456.00 12485.00 12501.00 12511.00 12515.00

kma_false_negatives 2806.00 912.00 484.00 341.00 257.00 201.00 149.00 113.00 88.00

kma_precision 0.14 0.03 0.02 0.01 0.01 0.00 0.00 0.00 0.00

kma_recall 0.39 0.32 0.28 0.26 0.23 0.19 0.18 0.16 0.17

KMA_fscore 0.21 0.06 0.03 0.02 0.01 0.01 0.01 0.00 0.00

all_IntEREst_RIs 19384.00 19384.00 19384.00 19384.00 19384.00 19384.00 19384.00 19384.00 19384.00

IntEREst_true_positives 2876.00 670.00 291.00 176.00 115.00 74.00 51.00 35.00 28.00

IntEREst_false_positives 16508.00 18714.00 19093.00 19208.00 19269.00 19310.00 19333.00 19349.00 19356.00

IntEREst_false_negatives 1709.00 672.00 384.00 282.00 219.00 175.00 130.00 100.00 78.00

IntEREst_precision 0.15 0.03 0.02 0.01 0.01 0.00 0.00 0.00 0.00

IntEREst_recall 0.63 0.50 0.43 0.38 0.34 0.30 0.28 0.26 0.26
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Table D.6: iPSC called RIs. Preview of supplemental table; full table available online.

longread_persistence_threshold 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

longread_intron_count 3194.00 782.00 327.00 212.00 176.00 140.00 109.00 75.00 61.00 40.00

all_IRFinder-S_RIs 783.00 783.00 783.00 783.00 783.00 783.00 783.00 783.00 783.00 783.00

IRFinder-S_true_positives 424.00 150.00 62.00 37.00 28.00 23.00 15.00 9.00 6.00 3.00

IRFinder-S_false_positives 359.00 633.00 721.00 746.00 755.00 760.00 768.00 774.00 777.00 780.00

IRFinder-S_false_negatives 2770.00 632.00 265.00 175.00 148.00 117.00 94.00 66.00 55.00 37.00

IRFinder-S_precision 0.54 0.19 0.08 0.05 0.04 0.03 0.02 0.01 0.01 0.00

IRFinder-S_recall 0.13 0.19 0.19 0.17 0.16 0.16 0.14 0.12 0.10 0.08

IRFinder-S_fscore 0.21 0.19 0.11 0.07 0.06 0.05 0.03 0.02 0.01 0.01

all_superintronic_RIs 2956.00 2956.00 2956.00 2956.00 2956.00 2956.00 2956.00 2956.00 2956.00 2956.00

superintronic_true_positives 1017.00 216.00 83.00 55.00 39.00 29.00 18.00 13.00 9.00 5.00

superintronic_false_positives 1939.00 2740.00 2873.00 2901.00 2917.00 2927.00 2938.00 2943.00 2947.00 2951.00

superintronic_false_negatives 2177.00 566.00 244.00 157.00 137.00 111.00 91.00 62.00 52.00 35.00

superintronic_precision 0.34 0.07 0.03 0.02 0.01 0.01 0.01 0.00 0.00 0.00

superintronic_recall 0.32 0.28 0.25 0.26 0.22 0.21 0.17 0.17 0.15 0.13

superintronic_fscore 0.33 0.12 0.05 0.03 0.02 0.02 0.01 0.01 0.01 0.00

all_iREAD_RIs 367.00 367.00 367.00 367.00 367.00 367.00 367.00 367.00 367.00 367.00

iREAD_true_positives 87.00 23.00 5.00 3.00 3.00 3.00 2.00 1.00 1.00 1.00

iREAD_false_positives 280.00 344.00 362.00 364.00 364.00 364.00 365.00 366.00 366.00 366.00

iREAD_false_negatives 3107.00 759.00 322.00 209.00 173.00 137.00 107.00 74.00 60.00 39.00

iREAD_precision 0.24 0.06 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00

iREAD_recall 0.03 0.03 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03

iREAD_fscore 0.05 0.04 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00

all_kma_RIs 3676.00 3676.00 3676.00 3676.00 3676.00 3676.00 3676.00 3676.00 3676.00 3676.00

kma_true_positives 545.00 117.00 43.00 28.00 18.00 14.00 9.00 4.00 3.00 1.00

kma_false_positives 3131.00 3559.00 3633.00 3648.00 3658.00 3662.00 3667.00 3672.00 3673.00 3675.00

kma_false_negatives 2649.00 665.00 284.00 184.00 158.00 126.00 100.00 71.00 58.00 39.00

kma_precision 0.15 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

kma_recall 0.17 0.15 0.13 0.13 0.10 0.10 0.08 0.05 0.05 0.03

KMA_fscore 0.16 0.05 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00

all_IntEREst_RIs 4083.00 4083.00 4083.00 4083.00 4083.00 4083.00 4083.00 4083.00 4083.00 4083.00

IntEREst_true_positives 731.00 142.00 52.00 35.00 24.00 17.00 9.00 5.00 4.00 1.00

IntEREst_false_positives 3352.00 3941.00 4031.00 4048.00 4059.00 4066.00 4074.00 4078.00 4079.00 4082.00

IntEREst_false_negatives 2463.00 640.00 275.00 177.00 152.00 123.00 100.00 70.00 57.00 39.00

IntEREst_precision 0.18 0.03 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00

IntEREst_recall 0.23 0.18 0.16 0.17 0.14 0.12 0.08 0.07 0.07 0.03
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Table D.7: iPSC potential RIs. Preview of supplemental table; full table available online.

longread_persistence_threshold 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

longread_intron_count 3194.00 782.00 327.00 212.00 176.00 140.00 109.00 75.00 61.00

all_IRFinder-S_RIs 10434.00 10434.00 10434.00 10434.00 10434.00 10434.00 10434.00 10434.00 10434.00

IRFinder-S_true_positives 2147.00 501.00 199.00 122.00 99.00 77.00 59.00 40.00 33.00

IRFinder-S_false_positives 8287.00 9933.00 10235.00 10312.00 10335.00 10357.00 10375.00 10394.00 10401.00

IRFinder-S_false_negatives 1047.00 281.00 128.00 90.00 77.00 63.00 50.00 35.00 28.00

IRFinder-S_precision 0.21 0.05 0.02 0.01 0.01 0.01 0.01 0.00 0.00

IRFinder-S_recall 0.67 0.64 0.61 0.58 0.56 0.55 0.54 0.53 0.54

IRFinder-S_fscore 0.32 0.09 0.04 0.02 0.02 0.01 0.01 0.01 0.01

all_superintronic_RIs 7465.00 7465.00 7465.00 7465.00 7465.00 7465.00 7465.00 7465.00 7465.00

superintronic_true_positives 1499.00 296.00 99.00 60.00 43.00 32.00 20.00 13.00 9.00

superintronic_false_positives 5966.00 7169.00 7366.00 7405.00 7422.00 7433.00 7445.00 7452.00 7456.00

superintronic_false_negatives 1695.00 486.00 228.00 152.00 133.00 108.00 89.00 62.00 52.00

superintronic_precision 0.20 0.04 0.01 0.01 0.01 0.00 0.00 0.00 0.00

superintronic_recall 0.47 0.38 0.30 0.28 0.24 0.23 0.18 0.17 0.15

superintronic_fscore 0.28 0.07 0.03 0.02 0.01 0.01 0.01 0.00 0.00

all_iREAD_RIs 11225.00 11225.00 11225.00 11225.00 11225.00 11225.00 11225.00 11225.00 11225.00

iREAD_true_positives 1373.00 250.00 74.00 44.00 33.00 22.00 13.00 7.00 6.00

iREAD_false_positives 9852.00 10975.00 11151.00 11181.00 11192.00 11203.00 11212.00 11218.00 11219.00

iREAD_false_negatives 1821.00 532.00 253.00 168.00 143.00 118.00 96.00 68.00 55.00

iREAD_precision 0.12 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00

iREAD_recall 0.43 0.32 0.23 0.21 0.19 0.16 0.12 0.09 0.10

iREAD_fscore 0.19 0.04 0.01 0.01 0.01 0.00 0.00 0.00 0.00

all_kma_RIs 8352.00 8352.00 8352.00 8352.00 8352.00 8352.00 8352.00 8352.00 8352.00

kma_true_positives 1023.00 202.00 66.00 39.00 28.00 22.00 13.00 6.00 5.00

kma_false_positives 7329.00 8150.00 8286.00 8313.00 8324.00 8330.00 8339.00 8346.00 8347.00

kma_false_negatives 2171.00 580.00 261.00 173.00 148.00 118.00 96.00 69.00 56.00

kma_precision 0.12 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00

kma_recall 0.32 0.26 0.20 0.18 0.16 0.16 0.12 0.08 0.08

KMA_fscore 0.18 0.04 0.02 0.01 0.01 0.01 0.00 0.00 0.00

all_IntEREst_RIs 12743.00 12743.00 12743.00 12743.00 12743.00 12743.00 12743.00 12743.00 12743.00

IntEREst_true_positives 1608.00 301.00 84.00 48.00 34.00 22.00 13.00 7.00 6.00

IntEREst_false_positives 11135.00 12442.00 12659.00 12695.00 12709.00 12721.00 12730.00 12736.00 12737.00

IntEREst_false_negatives 1586.00 481.00 243.00 164.00 142.00 118.00 96.00 68.00 55.00

IntEREst_precision 0.13 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00

IntEREst_recall 0.50 0.38 0.26 0.23 0.19 0.16 0.12 0.09 0.10
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