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Abstract 

The innate neuroimmune response is characterized, in part, by proliferation and morphological 

changes of microglia and astrocytes. Over-activation of microglia results in the production of a 

number of pro-inflammatory markers and the release of reactive oxygen and nitrogen species 

that cause neuronal damage. Neuroinflammation can be quantified using position emission 

tomography (PET) to target upregulated peripheral benzodiazepine receptors (PBR) on activated 

microglia. Methamphetamine (MA) exposure leads to neurotoxicity and increases oxidative 

stress, inflammatory cytokine production, and gene and protein expression of factors associated 

with activated microglia. Despite clear evidence for the effects of MA on immunological 

pathways, the results using PET to quantify neuroinflammation in MA-use disorder have been 

mixed. This may, in part be attributed to different modeling methods and input functions (IF) 

being used across studies. Robust quantification relies upon pharmacokinetic modeling of the 

PET radiotracer using an IF to represent the compartment of available ligand. The gold standard 

for IF generation is the dynamic measurement of radioactivity within the plasma from arterial 

sampled blood. Arterial sampling, however, is invasive and can be difficult to perform in 

medically susceptible populations like intravenous drug users. An alternative to arterial sampling 

would substantially reduce patient burden and advance the scientific knowledge in vulnerable 

patient populations that present with neuroinflammation. Therefore, the aims of this thesis were 

to investigate if there is a significant difference in the tracer plasma concentrations between 

healthy controls (HC) and MA users and to identify an alternative to arterial Ifs by generating a 

population-based input functions (PBIF). Three quantification methods (compartmental 

modeling, spectral analysis, and graphical analysis) and two different scaling methods (blood 

activity-based and body mass index-based) were tested and compared. Arterial Ifs and PBIFs 

were generated using least-squares regression analyses. Through the application of statistical 

equivalency testing,  no statistical differences between the concentration of activity within 

plasma were found between MA users and HCs, with all subjects falling within the equivalency 

bounds. Body mass index (BMI) to scale PBIF resulted in a strong correlation between the 

volume of distribution (VT) obtained using an arterial IF and the VT obtained using a PBIF, with 

Pearson correlation coefficients of 0.8 with spectral analysis and >0.9 with compartmental 

modeling and Logan graphical analysis. These modeling and scaling combinations, however, did 

not meet statistically significant levels of agreement. Although this study was underpowered, 

these preliminary data suggest a trend towards strong correlations between VT obtained using an 

arterial IF and VT obtained using a scaled PBIF. Recruitment for this study is ongoing and with 

added data, future analyses may produce results showing clinical application of PBIFs as a 

suitable replacement for arterial IFs.  
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INTRODUCTION 

A growing literature indicates that neuroinflammation contributes to a number of 

neuropsychiatric and neurodegenerative pathologies. In substance use disorders (SUD), 

neuroinflammatory conditions may contribute to the maintenance of addiction through 

compromise of signaling pathways leading to an increase of withdrawal symptoms and decision 

making deficits. As such, therapies targeting neuroinflammation to treat SUDs and improve rates 

of relapse are ongoing. Investigation of these therapies requires accurate quantification of ng  

Of particular public health concern is the drug Methamphetamine (MA). MA is widely 

abused throughout the United States (US) with high rates of overdose and hospitalization1. 

Previous studies linking MA use and associated symptoms with neuroinflammation using PET 

imaging have produced mixed results2-4. These studies used radiotracers with critical 

shortcomings like high levels of binding to non-receptor sites and low brain penetrance. A new 

generation of tracers targeting neuroinflammation has been developed to overcome these 

problems.  

This project utilized the second-generation radiotracer [11C]PBR28 to study the scope and 

implications of neuroinflammation in individuals with a  methamphetamine use disorder (MUD). 

The primary aim of the parent study is to identify whether neuroinflammation is associated with 

cognitive control, craving, resting-state functional connectivity, and ventral striatal activation 

during monetary incentive delay tasks. The second aim of the parent study is a clinical trial in the 

MUD group designed to determine if quantifiable reductions in neuroinflammation resulting 

from treatment with the anti-inflammatory drug, Ibudilast correlate with improvements in 

behavioral and neurobiological deficits. Ibudilast is pharmaceutical approved for the treatment of 

asthma and indicated for the treatment of conjunctivitis and hay fever in Japan. Additionally, 

Ibudilast has shown promising results in reducing cravings and the use of MA5.  
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Comprehensive PET quantification requires system modeling in order to account for the 

complex chemical and physical interactions at molecular levels in the processes of interest. 

System modeling requires a knowledge of the concentration of radiotracer in the plasma that is 

available for diffusion and possible binding. Radiotracer concentration is typically estimated by 

measuring the radioactivity in arterial blood samples throughout the PET scan. The parent study 

of this thesis precludes MA subjects from undergoing arterial sampling due to its invasive nature 

and high rates of line failure, particularly in fragile populations with confounding medical 

conditions6. For this reason, a comprehensive analysis within this patient population is difficult 

with the currently available methods.  

The aims of this thesis were to determine if there is a valid alternative to arterial sampling 

for the purpose of pharmacokinetic modeling. Many of the methods proposed in the past to 

replace arterial sampling are computationally expensive, require additional imaging, or are not 

appropriate for all cohorts and imaging studies. Therefore, the first aim of this thesis was to 

determine if a population-based input function (PBIF) could be used in place of an individual 

arterial input function (IF) to derive kinetic parameters of receptor uptake. In an attempt to 

address the fundamental biological questions of whether chronic MA use affects tracer 

concentration in the plasma compartment, the second aim of this thesis was to determine if 

significant differences in the plasma tracer concentration exist between the HCs and the MA 

users. We hypothesize that the small amount of increased binding of TSPO associated with MA 

use would not affect the overall plasma concentration significantly. Favorable outcomes from 

these two aims would support the application of a PBIF generated using the arterial data from 

HCs to modeling in MUD group.   
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BACKGROUND 

PET is a minimally invasive biomedical imaging technique. Although it was first 

theorized in the late 19th century and first implemented in the 1950s, it did not become widely 

used in hospitals and healthcare centers until the 1990s. Advances in radiation detection 

technology and computational ability have enabled PET imaging to become a viable tool for 

basic science researchers and medical clinicians to do things like measure glucose metabolism 

for research and cancer diagnoses, identify neurotransmitter signaling pathways and receptor 

density, index markers of inflammation, and investigate blood flow. 

Unlike computed tomography (CT) or magnetic resonance imaging (MRI), PET imaging 

can provide information at the molecular level by labeling compounds that mimic naturally 

occurring substrates with radioactive isotopes. These radiotracers can be introduced into the 

body through various routes, such as venous injection, inhalation, or digestion. Radiation 

detectors collect the emitted particles from the region of interest, and iterative back projection is 

used to form a 3-dimensional image of radiotracer location and density. As such, PET can enable 

the imaging of biochemical processes in-vivo to investigate abnormal and normal physiology.  

PET imaging has been instrumental in neuroscience  with any radiotracers having been 

developed whose lipophilicity enables them to cross the blood-brain barrier (BBB) and enter 

brain tissues. Spatial resolution in PET, however, is limited due to decay particle interactions and 

behavior, making PET one of the lowest resolution imaging modalities in common use. PET is 

also not capable of providing vital anatomic information and will almost always need 

accompanying CT or MR imaging for anatomic localization. 

Despite these limitations, PET imaging has been seminal to the basic understanding of 

neurotransmitter signaling. In conjunction with functional MRI, PET imaging has provided 

mechanistic support for the molecular underpinnings of functional brain activation7. Application 
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of PET in neuropsychiatric conditions such as addictions has provided evidence of abnormalities 

in dopaminergic signaling in key pathways thought to promote addictive behaviors4. With the 

development of new tracers, identification of novel neuropathological conditions in the context 

of addiction has emerged and extends beyond neurochemical interactions.  

 

2.1 PET Imaging Physics and Technology 

Many naturally occurring isotopes undergo beta-plus (β+) decay when their nuclei are 

unstable due to an excess concentration of protons. Protons undergo nuclear change to transform 

into a neutron and consequently release a positron (electron anti-particle) and an electron 

neutrino. The resultant daughter species is a new nucleus with the same number of nucleons but 

an atomic number that has been reduced by one. The emitted positron will travel a short distance, 

losing energy until it interacts with an electron. The positron-electron pair will undergo 

annihilation, resulting in two 511-keV gamma photons moving anti-parallel (180° +/- 0.25°) to 

each other8. 

PET systems are designed with a ring of scintillator crystals coupled to photodetectors 

surrounding the subject (Figure 1). When photons interact with the scintillator crystal, visible 

light is produced, which then travels through the crystal and enters the photodetector9. The 

photodetector converts this visible light into a measurable electronic signal. The scintillator's 

visible light response is proportional to the energy that the incoming particle loses in the 

interaction. Furthermore, the amplitude of the electronic signal is proportional to the light yield 

from the scintillator10. If the crystals are thick enough to stop the incoming particles entirely it is 

possible to measure the energy of those particles and establish energy windows in order to 

specifically detect the 511-KeV photons of interest, discriminating against background sources 

of radiation and Compton scattered photons. Two signals detected opposite each other within an 
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acceptable time frame are deemed a coincidence event. A line of response (LOR) is drawn 

between the two involved detector elements. If enough LORs are constructed, the region of 

photon origin can be isolated9. 

 

Figure 1: A. PET imaging takes advantage of matter-antimatter annihilation to localize the spatial distribution of a 

radioactive tracer. At the source of annihilation, two photons are released in opposite directions. The photons will 

be detected by the scintillator-photodetector complex if they lose energy. If two detector blocks pick up a signal 

within the same time frame, a line-of-response (LOR) is drawn between them. If enough LORs are constructed, 

localization of photon origin can be estimated. B. Time of flight (TOF) PET improves spatial localization by weighting 

the LORs based on the time difference in signal detection between the two detector blocks involved and the known 

speed of light.  

Dynamic PET imaging enables insight into temporal complexity of tracer dynamics and 

can be used to investigate biological processes. Dynamic data acquisition is performed by 
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collecting frames of list data at set time intervals. Frames are reconstructed separately and form a 

time series representing the tracer distribution at distinct time points. Dynamic PET has had 

limited implementation in a clinical setting because of its added complexity, but is widely used 

in clinical and pre-clinical research studies11.  

Ideally, acquisition of PET images would be simultaneously collected with anatomical 

imaging in the form of a CT or MRI to reduce artifacts and distortions from subject movement. 

This is not always possible, depending on the resources available to researchers. The subject may 

need to be imaged on two separate scanners, and the images will undergo a transformation to be 

co-registered (figure 2). MRI is often the anatomical scan of choice for brain imaging studies 

because of its superior soft-tissue contrast. There are a number of software options that can 

perform registrations of images from PET and MR using both rigid (osseous) and 

deformable(grey matter/sulci) landmarks12. 

 
Figure 2: PET and MR images of the same study subject that were co-registered using PmodTM. Registration allows 
us to take advantage of the functional information of PET and the anatomical information of MRI congruently. 

 

2.2 The Case for PET Quantification 

Neurology and neuroscience studies often require quantification of slight changes in 

drug, hormone, or neurotransmitter uptake and concentration. The substances, known as ligands, 

will bind with receptor proteins to mediate chemical change between and within cells. Receptor 
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binding is a complex process that depends on plasma concentration, blood flow, tracer retention, 

and biological clearance. Dynamic PET acquisition paired with pharmacokinetic modeling 

describes how the injected substance will move and interact throughout the living. Each new 

radiotracer must undergo rigorous characterization before being used as a clinical quantification 

tool. 

Complete pathophysiological quantitation is expensive both financially and 

computationally. It is also more difficult to find subjects and patients willing to undergo the long 

dynamic scan times and invasive procedures needed for complete kinetic modeling. For these 

reasons, total physiological quantitation is not often used clinically. Nevertheless, for the 

application of drug development and neuropsychiatric research studies, complete physiological 

modeling and quantitation is an invaluable tool. 

Ligands are molecules that will bind with a receptor or other protein to serve some 

biological purpose. Ligand binding is a highly specific process with each receptor having an 

affinity for only one or a couple of ligands13. The rate of said binding will vary depending on the 

activation state of the receptor, which itself depends on varying physiological processes. As 

such, ligand binding is a standard imaging marker to identify receptor state, availability, and 

density.  

In central nervous system (CNS) studies, receptor occupancy (RO) is used as a metric for 

blood barrier penetration, effectiveness of therapeutic pharmacodynamics, disease severity and 

abnormalities in receptor activation states. RO is defined as the relative change in a parameter at 

baseline and in a state of interest. The parameter most often used for RO calculation is Binding 

Potential (BP), but Volume of Distribution (VT) is also commonly used. BP describes the 
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binding force of a receptor to its ligand. It is the product of the maximum density of a 

neuroreceptor and the affinity of a specific receptor to the ligand14. 

 𝑅𝑂 = 100% ×
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 −  𝑆𝑡𝑎𝑡𝑒 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 ( 1 ) 

Accurate calculation of BP requires a reference region of tissue that exhibits no specific 

tracer binding, such that any activity concentration detected by PET in this region will be due to 

free and non-specifically bound tracer. Non-specific binding refers to when the radiotracer binds 

to sites other than the targeted molecule. Many radioligands exhibit specific binding globally in 

the brain, so defining such a reference region is often not possible. Although BP can be estimated 

by non-linear estimation methods, the results of these estimations are highly dependent on image 

noise and the initial guess of parameters15. VT is often used to quantify receptor binding in these 

situations because a reference region is not required for calculation16. VT is the ratio of the 

radioligand concentration in the tissue region of interest (ROI) to that in plasma at equilibrium, 

as depicted in figure 3. 

 
Figure 3: Volume of distribution (VT) represents the ratio of activity in tissue to the activity in plasma. VT allows us to 
quantify how tracer is being concentrated in the tissues. 
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2.3 Nuclear Imaging of Neuroinflammation 

Benzodiazepines are psychoactive drugs that bind to two structurally and 

pharmacologically distinct types of receptors: central benzodiazepine receptors (CBR) and 

18kDa translocator proteins (TSPO), also known as peripheral benzodiazepine receptors 

(PBR)19. CBR is found exclusively in the CNS on the surface of neurons. In the CNS, TSPO is 

expressed on the surface membrane of mitochondria in glial cells like microglia and astrocytes. 

TSPO is also present in red blood cells and in peripheral tissues of the adrenal glands, heart, 

lungs, kidneys, and testes. TSPO is minimally expressed globally in the normal brain17 but 

exhibits strong upregulation in microglia and astrocytes during pathological conditions. As 

TSPO can be globally expressed in brain, defining a true reference region devoid of receptor 

binding is difficult. An in vitro study suggests that TSPO is also expressed in neurons, which 

may further complicate possible interpretations of underlying biology18. However, these results 

have yet to be confirmed in-vivo. Another confounding factor is that TSPO is overexpressed in 

the endothelium of brain blood vessels19. The vascular fraction varies from person to person, 

with the endothelial TSPO binding fraction being less in aged brains and brains suffering from 

vascular fibrosis. Pharmacokinetic models accounting for this vascular binding contribution have 

been established and show improved accuracy and reproducibility20. These models, however, are 

not yet widely used in the field or implemented in common kinetic modeling software. 

Within the CNS, TSPO is thought to regulate neurosteroid biosynthesis, mitochondrial 

function, and cellular proliferation21. The relationship between TSPO and neuroinflammation 

was not understood until an autoradiography and immunohistochemistry study demonstrated a 

correlation between elevated TSPO binding and the appearance of activated microglia22. 

Microglia are the immune cells of the CNS responsible for host defense and immune 

surveillance. Microglia are activated by pathological events in their environment, prompting 
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release of proinflammatory factors and toxins23. When microglia become activated, their TSPO 

binding sites are upregulated to meet the increased mitochondrial energy burden. This link makes 

TSPO binding a viable target for studying neuroinflammation in a variety of pathologies. 

One of the first ligands designed to specifically bind to TSPO with high affinity was the 

isoquinoline carboxamide derivative PK11195. In the 1990s and 2000s, [3H]PK11195 

autoradiography was used in studies exploring pathologies like multiple sclerosis, autoimmune 

encephalitis, stroke, and traumatic brain injury24. As PK11195 suffers from  low brain penetrance 

and high levels of non-specific binding25, second generation radioligands have been developed 

including  [11C]PBR28, [18F]DPA-714, [18F]FEPPA, [11C]DAA1106, and [18F]PBR111. All of 

these second-generation ligands have a much higher specific binding ratio (SBR) than PK11195. 

While this is a major advantage over PK11195, limitations of the second-generation ligands 

include high rates of vascular binding and increased intersubject variability in uptake. Most 

significantly, within the TSPO encoding region of the human genome, a single nucleotide 

polymorphism (rs6971) introduces variation in binding affinity for second-generation tracers21 

This nucleotide substitution delineates between high-affinity binding sites and low-affinity 

binding sites. To complicate matters further, rs6971 is a co-dominant gene meaning that 

individuals’ phenotypic expression can be characterized as (1) high-affinity binders (HAB), (2) 

mixed-affinity binders (MAB), or (3) low-affinity binders (LAB). Differences in binding affinity 

between the HAB, MAB, and LAB groups will depend on the specific ligand. Prior studies have 

shown that binding of PK11195 is insensitive to TSPO phenotype26,27. The ligand PBR28 

exhibits a large difference between groups, with HABs exhibiting approximately twice the 

binding of TSPO as MABs. For this reason, all research subjects must undergo genetic 
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sequencing to stratify them into their binding affinity classifications, and many studies exclude 

individuals with LAB genetic status. 

The synthesis method for PBR28 was first published in 200828. This work highlighted the 

advantage of PBR28 to target TSPO by showing high SBR and superior brain penetrance. In 

addition,  free fraction in the blood is simple to separate through chromatography due to in-vivo 

metabolism being limited to the production of just one polar radiometabolite. One of the carbon 

atoms making up the PBR28 molecule is replaced with 11C. This isotope of carbon is radioactive, 

decaying with a half-life of 20.38 minutes29 and can be easily produced in hospital-based 

cyclotrons. Due to the aforementioned favorable qualities of this radiotracer, this research  aims 

to utilize PBR28 to validate and extend previous work that used first generation TSPO 

radiotracers to investigate MA-induced neuroinflammation3.  

 

2.4 Pharmacokinetic Modeling Inputs 

Kinetic modeling of PET radiotracers requires two system inputs. One is arterial plasma 

concentration used to construct the IF, while the other is the time activity curve (TAC) in given 

ROIs from the PET data, CPET(t). Both of these are reported in units of activity per volume. 

CPET(t) contains the concentrations of (1) free tracer in the tissues (CF(t)), (2) non-specifically 

bound tracer (CNS(t)), and (3) specifically bound tracer (CS(t)). CF(t) and CNS(t) will not change 

based on the pathology or drug treatments under investigation and can be combined into a single 

term called the non-displaceable concentration (CND(t)). For the current study and the 

pathophysiological question of interest,  CS(t) will be modeled and mathematically expressed as: 

 𝐶𝑆(𝑡) = 𝐶𝑃𝐸𝑇(𝑡) − 𝐶𝑁𝐷(𝑡) ( 2 ) 

The IF represents the amount of radioactive tracer available in the plasma compartment 

to penetrate the BBB and transfer into the non-displaceable tissue compartment. Arterial blood 
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sampling during PET imaging is the gold standard for IF generation. Though venous sampling is 

more comfortable for the subject and can be easier to set up and maintain than arterial sampling, 

venous plasma concentration is dependent on the sampling site due to differences in compound 

clearance in the vascular bed of different tissue types30. As such, the use of venous blood 

samples to construct IFs does not provide the requisite accuracy for PET studies. in contrast, the 

concentration of tracer in arterial plasma is independent of the sampling site31. 

 Radiopharmaceuticals injected into the venous system  travel to the heart and are 

subsequently dispersed systematically through the arterial system. A portion of the radiotracer 

molecules will attach to red blood cells and not be available to bind to receptors, while some of 

the radiotracer molecules will be taken up by organs, metabolized, and then re-enter the 

plasma32. However, lipophilicity of most of these metabolized compounds prevent BBB 

penetration and are therefore not available for receptor binding. In order to construct IFs for 

kinetic modeling, data on the quantity of the radiotracer in these three different states as a 

function of time are required. The IF is estimated through a combination of measurements and 

modeling methods based on known pharmacodynamics and the results of previous studies and 

will be detailed in the methods section. 

Utilization of a reference region is the most commonly adopted alternative to arterial 

sampling for IF construction. A true reference region is a region that is devoid of any specific 

tracer binding. However, some tracers exhibit ubiquitous uptake in the organ of interest resulting 

in no suitable candidate regions to be used as a reference . Some studies using [11C]PBR28 and 

other second generation TSPO radioligands have tested the use of pseudo reference regions for 

the implementation of pharmacokinetic modeling33-35. In a pseudo-reference region, there is 
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specific binding of the tracer, but the uptake amount is comparable between the study cohort and 

healthy controls (i.e. uptake in the region is not influenced by the pathology being studied). 

In order to use a pseudo-reference region as a system input, prior studies are required to 

find regions that show no significant differences in quantitation between study groups for the 

specific radiotracer being used. Such studies have been performed for [11C]PBR28 in Multiple 

Sclerosis and Alzheimer's Disease. At the time of writing this thesis, no similar efforts to find an 

appropriate pseudo-reference region have been reported for a population of subjects with MUD.  

Another non-invasive alternative to arterial sampling is the use of an image-derived input 

function (IDIF). IDIFs can only be used with a small number of radiopharmaceuticals and still 

require blood sampling for validation, plasma corrections, and calibration. Creation of IDIFs 

require the field of view (FOV) of the PET acquisition to be expanded to include the 

cardiothoracic cavity or the ascending and descending aorta. Typically, TACs are reconstructed 

using PET data from one of these sources and is used as the IF. Many scanners do not have a 

FOV capable of simultaneously acquiring data from the neck and brain and would therefore 

require a separate bed position during the scan. This is particularly problematic for 

radiopharmaceuticals with short half-lives, where quickly decaying levels of activity would 

prevent adequate counts in both regions for reasonable statistics.  

Several other issues must be addressed by groups attempting to use an IDIF to index 

neuroinflammation. First, inflammation of the arteries or heart can lead to an overestimation in 

the IDIF if receptors avidly take up the radiotracer in the inflammatory cells. This will lead to a 

higher IF than is physically accurate. In addition, the limited spatial resolution of 4-5 mm of PET 

imaging may lead to severe bias in the IDIF. As the diameter of the carotid artery is similar to the 

attainable resolution in PET, with an average internal carotid artery diameter of 5.11±0.87 mm 
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and 4.66±0.78 mm in men and women, respectively36.Close proximity of arteries and veins may 

preclude differentiation of measurements from these sources using PET. This can lead to 

spillover and partial volume effects that cause inaccuracies using IDIF as a reference region. 

Zanotti-Fregonara et al.37 investigated using an IDIF for [11C]PBR28 imaging in a study of major 

depressive disorder and reported poor results and high variability depending on the quantification 

method and the radiometabolite fraction. 

PBIFs are another alternative to arterial sampling. PBIFs are generated using data from 

many IFs obtained through arterial sampling that can be applied to an independent dataset of 

subjects without the need for invasive sampling. Intersubject variability is addressed by scaling 

the PBIF by various methods based on parameters like the injected dose or blood activity 

concentration at a single time point. The PET scan and reconstruction protocol must be highly 

standardized for this method to be accurate and reproducible. 

A study using healthy non-human primates compared VT obtained using an arterial IF, a 

PBIF, and a pseudo-reference region derived IF38. The PBIF was scaled in two different ways, 

one using the injected activity per body weight and one using the activity level in plasma from a 

single arterial blood sample. The study found the plasma activity scaled PBIF showed a strong 

correlation (r >0.90). But there was a poor correlation with their attempt to scale based upon 

injected activity per patient size(r = 0.46). The pseudo-reference region approach had the lowest 

correlation (r=0.26). Based on these and other promising results from studies implementing 

PBIFs39-41, this was the method chosen as a candidate for replacing arterial blood sampling for 

subjects with MUD.  
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2.5 Quantification Methods 

Standardized uptake volume (SUV) is a semi-quantitative method that is also referred to 

as the differential uptake ratio (DUR) or the differential absorption ratio (DAR) in literature. The 

simplicity of SUV has led to wide clinical use42. SUV is the ratio of the tissue radioactivity 

concentration (CPET) measured in kBq per milliliter at time T and the injected dose divided by 

body weight measured in kBq per gram (equation 3). SUV is often treated as a dimensionless 

quantity because one milliliter of soft tissue is approximately one gram of soft tissue.  

 

Figure 4: Standardized uptake volume (SUV) in one of our study participants. SUV can provide semi-quantitative 
information about the relative concentration of radiotracer in different regions, but does not take into account the 
entire biological system. 

 SUV =
CPET(T)

Dose/Weight
   ( 3 ) 

As SUV does not consider any underlying pharmacodynamics,  it does not quantify  

physiological processes such as receptor uptake. SUV has also been criticized because of its 

major sources of variability43-45, including body composition and size, length of the uptake 

period, image noise, plasma glucose levels, and partial volume effects. Researchers have taken 

steps to address these variability issues by strictly standardizing protocols to limit the effects of 
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these confounding factors. SUV variability can be further reduced by taking the ratio of the SUV 

in the region of interest to the SUV in a reference region that shows minimal uptake. This is 

dubbed the SUV ratio (SUVR). SUV remains clinically significant despite its shortcomings 

because it does not require blood sampling or complicated computational programming.  

Full compartmental modeling (CM) is a kinetic quantification method that characterizes 

the fast tracer transfer between plasma, tissue, and receptors to estimate the rate constants and 

receptor density14. CM is widely accepted in the field as the gold standard for describing the 

underlying pharmacokinetics in PET experiments. 

 
Figure 5: The radiotracer is injected intravenously and will travel within plasma around the body. When it reaches 

the brain, some amount of it will cross the blood-brain barrier, typically through passive diffusion. Once in the 

brain tissues, it can reside in a non-displaceable state, where pathology and intervention cannot affect the 

concentrations (free and non-specifically bound). It can also specifically bind to its receptor. These three states 

(plasma, non-displaceable, and specifically bound) are the compartments we use for our compartmental model. Ki 

are the transfer rates of tracer between these compartments. 

 

A two-tissue compartmental model (2TCM) is the most commonly used compartment 

organization for [11C]PBR28(Figure 5). Here, CP is the concentration of radiotracer in the plasma 

compartment, and CND and CS are two pharmacologically distinct compartments within the 
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tissue. Note that this does not necessarily mean two geographically distinct compartments. In this 

case, CND represents the concentration of non-displaceable radiotracer, and CS represents the 

concentration of specifically bound radiotracer. K1 and K2 are the rates at which the tracer 

diffuses into and out of tissues. K3 and K4 are the rates of binding and dissociation from TSPO 

receptors, respectively46. As the transfer rates are dependent on the concentrations within each 

department, this model is described by a system of first-order differential equations: 

 

𝑑𝐶𝑁𝐷(𝑡)

𝑑𝑡
= 𝐾1𝐶𝑃(𝑡) − (𝐾2 + 𝐾3)𝐶𝑁𝐷(𝑡) + 𝐾4𝐶𝑆(𝑡) 

𝑑𝐶𝑆(𝑡)

𝑑𝑡
= 𝐾3𝐶𝑁𝐷(𝑡) − 𝐾4𝐶𝑆(𝑡) 

( 4 ) 

This system can be solved completely through non-linear estimation using maximum-

likelihood algorithms, though it is computationally expensive work. When the entire system is 

solved, and rate constants are estimated, the VT is found to be: 

 𝑉𝑇 =
𝐾1

𝐾2
(1 +

𝐾3

𝐾4
) ( 5 ) 

A disadvantage of CM is that radiotracers must be fully characterized and understood by 

investigators in order to choose a parsimonious compartment model that produces the most 

accurate and reproducible result. It is sometimes not obvious what compartment configuration is 

appropriate for a given radioligand-receptor complex study, and testing of multiple 

compartmental models must be carried out. The other two methods discussed in this section do 

not require prior selection of compartment configuration. 

Systems developed in dynamic PET by CM are usually linear and time-invariant (LTI). A 

linear system will obey the principle of superposition47. Putting two signals through the system 

and adding the results would be the same as adding the two signals and then passing the sum 

through the system. For a time-invariant system, adding a delay to the input signal would simply 
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result in the output signal acquiring the same delay. As such, the output can be defined as the 

convolution between the input function (typically CP) and the impulse function (IR): 

 

𝐶𝑃𝐸𝑇(𝑡) = 𝐶𝑃(𝑡)  ⊗  𝐼𝑅(𝑡) 

𝐶𝑃𝐸𝑇(𝑡) = ∫ 𝐶𝑃(𝜏) 𝐼𝑅(𝑡 − 𝜏)𝑑𝜏
∞

−∞

 
( 6 ) 

An alternative to CM is spectral analysis (SA). SA is a technique commonly used in 

fields that perform a lot of signal processing, like Astronomy and Electrical Engineering. It is 

based on the idea that the LTI time series can be represented by an analytically summed series of 

exponentials, each with its own frequencies48,49. Using the CM description from equation 4, we 

define the IR to be a series of summed exponentials: 

 𝐶𝑃𝐸𝑇(𝑡) = ∑ 𝐶𝑃(𝑡) ⊗ α𝑖 ⋅ 𝑒−β𝑖𝑡

𝑁

𝑖=0

= ∑ α𝑖

𝑁

𝑖=0

β𝑖(𝑡) ( 7 ) 

N is the number of tissue responses being summed in order to model the tissue uptake 

and is chosen to be a large number (typically around 1000) to allow for high granularity. Values 

of βi are predetermined and designed to cover a spectral range that will account for both slow 

transfer responses and transient phenomena like the passage of the radiotracer through the 

vasculature in the area. Values of αi are solved by a non-negative least-squares procedure using 

the PET tissue activity and the input function. As SA modeling is based upon a compartmental 

system described by first-order differential equations, parameters and coefficients are restricted 

to be real and non-negative50. In PET systems, only a few values of αi will be non-negative, 

leading to a kinetic spectrum of peaks like those seen in Figure 6. An advantage of SA over CM 

is that there is no imposed specific compartment structure, and if fact, the results of SA can 

indicate the number of compartments appropriate for the system based on the number of spectral 

peaks resolved. 
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Figure 6: A simplified pictorial example of a kinetic spectrum that might result from spectral analysis of a 

pharmacological system. The peak at A indicates that there is an irreversibly binding (during the time span of the 

scan at least)  component. Peak B and C indicate that there are two reversibly binding components that will have 

transfer into and out of them. 

 

The number of peaks (β with α > 0) corresponds to the number of distinct compartments. 

A peak to the far left (β ≅ 0) is due to a low-frequency component that indicates irreversible 

tissue binding. A peak to the far right (β → ∞) is due to a high-frequency component that 

indicates vascular contributions. Peaks in between these two extremes can be attributed to 

reversible binding between compartments51. The VT can then be estimated from spectral analysis 

by the following relationship: 

 𝑉𝑇 = ∑
α𝑖

β𝑖

𝑁

𝑖=1

 ( 8 ) 

SA does not allow for the exact solutions of macroparameters of interest or even 

estimation of transfer rate coefficients, making it a less rigorous solution than CM. However, it 

does allow us to separate transient vascular effects in a way that CM does not, which can be a 

major advantage in some situations. SA is not used regularly in the field but is accumulating 

growing support. 
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Another alternative to CM is the implementation of graphical analysis (GA) for kinetic 

quantification. The main idea behind the graphical approach for quantification is to transform the 

data into new variables that are linearly related so that parameters of interest can be solved by 

simple systems of linear regression52. Most commonly used in PET studies is the method 

introduced by Logan et al.53, dubbed the Logan Plot. The Logan plot method is designed to be 

used for ligands that bind reversibly in tissue and whose complexes can be accurately described 

by a one or two tissue CM. 

 
Figure 7: A simplified pictorial example of Logan plot that might be created with PET data. This graphical analysis 

method transforms the compartmental relationships into a linear system that can be solved by using simple 

regression once equilibrium has been reached. 

 

 Again, the theory behind the Logan GA method stems from the system description 

established by CM. Differential equations given in equation 4 are transformed in such a way as 

to leave us with the linear relationship: 
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∫ 𝐶𝑃𝐸𝑇(τ)𝑑τ

𝑡

0

𝐶𝑃𝐸𝑇(𝑡)
= 𝑉𝑇

∫ 𝐶𝑃(τ)𝑑τ
𝑡

0

𝐶𝑃𝐸𝑇(𝑡)
+ 𝑏 ( 9 ) 

Equation 9 allows for VT to be solved through simple linear regression, where b is the y-

intercept, and VT is the slope54. In this derivation, it is assumed that the signal contribution from 

blood in vessels is small enough to be negligible. Benefits of using the Logan GA are its simple 

methodology, fast computation time, and independence from a strict kinetic model. A non-linear 

estimation algorithm, like what is necessary for SA, is highly dependent on initial parameter 

guesses. Importantly, the same is not true for the linear optimization methods employed with 

GA. A requirement of the Logan GA method is that the system must have reached equilibrium 

before analysis can occur and parameters solved. The limitations of the Logan GA method 

include this equilibrium timing constraint and its inability to fully describe the physiology of 

interest. Logan plots are routinely used in the field, with many [11C]PBR28 studies55-57 

exclusively using this method for quantification due to its computationally simple algorithms. 

As no previous studies have yet evaluate PBIF performance with more than one 

quantification method, it is possible that other methods noted above would show less sensitivity 

to changes in the IF and thus perform better than previously published methods. Therefore, this 

thesis will test PBIF performance with these three quantification methods to evaluate the most 

comparable VT between the arterial IF modeling and the PBIF modeling. 

 

2.6 Clinical relevance in Methamphetamine-use Disorder.  

Chronic drug addiction is a national and global public health concern58. SUDs present 

with a host of deleterious side effects that harm the user and society at large. Of particular 

concern in the Northwestern US is MA. MA is a drug that affects the dopamine (DA) and 

norepinephrine receptors of the CNS to elicit feelings of alertness, euphoria, and well-being. 
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Negative symptoms include increased blood pressure, cardiac arrhythmia, stroke, shaking, 

increased anxiety, insomnia, aggressive tendencies, paranoia, and hallucinations59. According to 

the 2020 National Survey on Drug Use and Health, about 1.5 million people in the US have a 

MUD. 

MA is a derivative of amphetamine which was utilized medicinally as early as 1932 and 

became mass marketed during the first world war when it was given to soldiers and factory 

personnel to stave off tiredness and increase endurance. The first epidemic of MA abuse took 

place shortly after the war, following army surplus being released to mass civilian markets. 

Recreational MA is often injected intravenously or smoked but can also be snorted or ingested. 

Users of MA often struggle to maintain abstinence as discontinuing drug use is usually 

accompanied by depression, fatigue, cognitive impairment, and intense cravings. Compared to 

other substance use disorders, rates of inpatient hospitalization for MUD are high due to the high 

rates of medical complications and side effects. As there are no FDA medications for MUD, the 

use of MA is widespread, particularly in low-income populations who often have limited access 

to medical interventions and treatment. 

A large body of evidence suggests that deficits in decision-making and self-control 

associated with MUD are moderated by abnormalities in the DA system from chronic MA 

exposure. Long-term effects include a decrease in DA D2 receptor binding, deficits in functional 

activation and connectivity in dopaminergic brain regions, and abnormalities in regional brain 

volumes and structural white matter integrity4. Animal studies show that DA production was 

significantly reduced after just ten days of MA use and took two years to fully recover in a study 

using [18F]fluoro-L-DOPA PET2. In addition to actions of MA on monoamine signaling 

pathways contributing to functional brain and cognitive deficits, excess DA and glutamate 
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neurotransmission with chronic MA exposure induces neurotoxicity and increases inflammatory 

cytokine production and expression of factors associated with activated microglia. Chronic 

cytokine exposure decreases striatal DA release and striatal D2 type receptor availability in 

cytokine-treated non-human primates. This decrease in DA release is associated with reductions 

in sensitivity to rewards. As studies provide evidence that neuroinflammation and MA use affect 

multiple aspects of DA function that may interact to promote functional brain abnormalities 

present in addiction, investigating the link between neuroinflammation and brain function in 

MUD may provide biomarkers for treatment targets and interventions. 
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METHODS 

3.1 Subjects 

This IBR approved study recruited volunteers diagnosed with MUD(DSM-IV) from the 

Veterans Affairs Portland Healthcare System (VAPORHCS) and community substance abuse 

treatment programs. Healthy controls we recruited via online advertisements. All volunteers 

were provided written informed consent, as approved by the VAPORHCS and Oregon Health & 

Science University Institutional Review Boards. Exclusion criteria, determined by medical 

history and laboratory blood tests were: systemic, neurological, cardiovascular, or pulmonary 

disease, head trauma with loss of consciousness, magnetic resonance imaging (MRI) 

contraindications, use of medications known to have dopaminergic mechanisms (e.g., 

antipsychotics, antidepressants, antiparkinsonian agents), sedative-hypnotics (e.g. barbiturates, 

benzodiazepines, zolpidem) or anticholinergics. Past or Current Axis I diagnoses, other than MA 

dependence (MA group) or nicotine dependence (either group), assessed with the Structured 

Clinical Inventory for DSM-V, were exclusionary. Urine testing on the day of the MRI scan 

verified abstinence from cocaine, methamphetamine, benzodiazepines, opiates, and 

cannabinoids. Participants were allowed to smoke cigarettes up to one hour before scanning to 

minimize and balance the effects of recent smoking on brain function against the effects of 

nicotine withdrawal and craving. 

 

3.2 PET Imaging 

PET imaging was performed on the Philips® Vereos Time-of-Flight Scanner at the 

VAPORHCS. This system is reported by the vendor to have a maximum spatial resolution of 4.1 

mm and a timing resolution of 310 kilo-counts per second. [11C]PBR28 was prepared at the 

Center for Radiochemistry (CRR) cyclotron facilities at Oregon Health & Science University 
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under an FDA Investigational New Drug (IND) protocol. Once manufactured, the radiotracer 

dose undergoes quality control at the CRR to ensure acceptable purity. After arriving at the 

VAPORHCS nuclear medicine department from the CRR, it undergoes one last round of quality 

assurance to make sure the activity is within tolerance limits of the prescribed dose of 0.2 

mCi/kg with less than 5 µL of  PBR28 per mL of injectate. With the assistance of the nuclear 

medicine technologists, subjects are positioned on the scan bed with their brains centered axially 

within the FOV. The patient first undergoes a CT scan for attenuation correction. If the dose has 

passed all QC and the activity is within the correct range, it is injected through an intravenous 

(IV) catheter, and the PET detectors begin acquisition. The dynamic series includes 25 image 

frames with lengths ranging from 15 seconds to 10 minutes. The entire duration of the scan is 90 

minutes.  

 

3.3 Venous or Arterial Sampling Procedure 

HC subjects had a radial arterial line placed in one arm for blood sampling and an IV line 

in the other for tracer injection. In the case of an arterial line failure or if there is no medical staff 

available to facilitate the line set-up, both arms receive IV lines, one for injection and one for 

blood draws in opposite arms to avoid cross-contamination that would affect the blood activity 

counts. In MA subjects, we only set IV lines were placed due to their compromised vasculature 

and their concomitant risk comorbidities. 

During PET scan acquisition, 19 serial blood samples were manually drawn from the 

arterial or non-injection IV line at specific time points and processed within the PET suite by the 

study research staff. Specifically, blood draws were obtained in the following time course: one 

milliliter was obtained every 30 seconds for the first 4 minutes, every minute for 6 to 10 minutes 

after injection, every 5 minutes from 20 to 30 minutes after injection, and every 10 minutes from 
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40 to 90 minutes after injection. Samples were immediately microfuged and their activity was 

measured using a LudlumTM gamma spectrometer.  

Blood volumes used for measurement and the counting time lengths were standardized in 

order to aid ease of processing and to reduce the risk of error due to human error. The first half 

of the samples are counted for one minute using 200 µl of whole blood or plasma. Halfway 

through the scan, the volumes and counting times are doubled to maintain statistical strength as 

the decaying activity results in waning count rates. Using three samples spread throughout the 

length of the scan, we measure the activity in the whole blood. Some of the radiotracer and 

radiometabolites will become attached to red blood cells and contribute to image signal without 

being available in the plasma compartment to pass into brain tissue and bind to receptors. 

Modeling software, PmodTM, requires both plasma activity and whole blood activity to account 

for the signal coming from the whole blood. 

Small amounts of each of the 19 blood samples were spun down in a centrifuge to 

separate the serum from the red blood cells. For all 19 samples, the specified volume of plasma 

was pipetted into a counting tube and put into the bore of the well counter for measurement. Not 

all of the radioactive material that is in the plasma is available for receptor binding. When a 

pharmaceutical is injected into the bloodstream, it will end up in a variety of states because of the 

complex chemical environment of the circulatory system. Some of the radiotracer 

pharmaceutical will be broken down into one or more derivative compounds known as 

metabolites60. At least one of these metabolites will contain the radioactive isotope but will not 

behave in the same way as the intended parent radiotracer. Accounting for this radiometabolite 

contribution to the image signal will be described in the data analysis section (3.4.1).  
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3.4  Data Analysis 

3.4.1 Corrections and Calibrations 

The PET scanner will apply multiple corrections and calibrations, and the final data will 

be in units of activity, typically kilobecquerels (kBq). In order to perform kinetic modeling, 

blood data also need to be in units of activity. Raw blood activity measurements are in the 

number of counts detected per unit of time, typically counts per minute (cpm). To convert cpm to 

kBq, we need to calculate a calibration factor that will account for counter sensitivity and 

efficiency. We performed the calibration experiment with the gamma counter in the exact 

location it is in during scans using a pure dose of [11C]PBR28. Knowing the precise activity of 

the dose at a specified time, the inherent sensitivity and efficiency of the counter were measured 

and a calibration factor was calculated that would later be applied to blood data to convert from 

cpm to kBq. 

Background radiation is always present and contributes to the count signal even through 

the lead shielding of the well counter. Celestial and terrestrial sources of background do have a 

small contribution to the signal, but the main contributions are from the injected subject and from 

the blood samples collected near the processing bench, which are both inherently radioactive. In 

an effort to account for these sources of radiation, dark counts are taken throughout the scan. 

These background counts are fit to a decaying exponential curve which is used to correct each 

blood draw by subtracting the estimated background counts per minute from the collected counts 

per minute at each time point. 

 

3.4.2 Metabolite Processing 

The radiometabolites are usually less lipophilic than the original tracer and so are less 

likely to cross over the BBB and into the brain tissue. When constructing the plasma IFs, it is 
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vital to ensure only the unmetabolized parent radiotracer concentration in plasma is used as that 

is what needs to be reflected in the plasma modeling compartment. Using ion exchange filters 

and solid phase extraction techniques, metabolites are separated from the plasma based on their 

polarity and chemical characteristics. By measuring the activity left in these columns and the 

activity in the plasma which has been pushed through, the fraction of unchanged parent 

radiotracer within the plasma, known as the plasma parent fraction (PPf), can be determined. The 

HPLC process is time-consuming and resource-expensive,  and so is only performed for 8 of the 

19 samples. The PPf as a function of time is constructed by fitting through least squares 

regression to a modified hill model given by Tonietto et al.60 that is specific for [11C]PBR28: 

 𝑃𝑃𝑓(𝑡) =
(1 −

𝑡3

𝑡3 + 10𝑎)
𝑏

1 + 𝑐
 

𝐶𝑃(𝑡) = 𝐶𝑡𝑜𝑡(𝑡) ⋅ 𝑃𝑃𝑓(𝑡) 

( 10 ) 

 
Figure 8: Processed metabolite data are plotted and fit to a modified hill function to construct the parent plasma 

fraction (PPF). The PPF will be used to correct all plasma values to only reflect the unchanged radiotracer. 
 

3.4.3 Derivation of Population-Based Input Function 

The calibrated blood activity data are decay corrected to the time of injection. In this 

way, it is ensured that the variation in activities across time points is due to biological processes, 
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not the physical decay of the radioisotope. The PET scanner software will automatically do the 

same for scan signal data. Plasma input functions for every subject were constructed by fitting a 

decaying tri-exponential function (equation 12) suggested by PmodTM documentation51 to the 

fully corrected unmetabolized plasma activity data through least-squares estimation using the 

SciPy package in Python. Although PmodTM provide a package to perform this fit, Python 

implementation allows flexible customization of starting parameters and is more computationally 

efficient.  

 𝐶𝑃(𝑡) = {

𝑙𝑖𝑛𝑒𝑎𝑟 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 ;  𝑡 <  𝑏𝑒𝑔𝑖𝑛

∑ 𝐴𝑖𝑒
(𝑡−𝑏𝑒𝑔𝑖𝑛)𝑙𝑛2/𝐵𝑖

3

𝑖=1

  ;  𝑡 ≥  𝑏𝑒𝑔𝑖𝑛
 ( 11 ) 

For the generation of PBIFs, a leave-one-out method was implemented in order to not 

introduce bias and overfitting into the results. The number of subjects will correspond to the 

number of PBIFs generated for testing. The first step was to construct data sets of time activity 

information from the derived arterial IFs. With N subjects, plasma time activity data from N-1 

IFs were loaded into a concatenated data frame and fit to the same decaying exponential function 

given in equation 12. The resultant PBIF was assigned to the subject whose data was left out 

during its construction. 

 Second generation TSPO ligands have notoriously high intersubject variability. This 

simple averaging method for PBIF generation will likely need to be augmented by scaling of the 

PBIF based upon some metric specific to the subject. Previous studies have done this with one or 

a few arterial or venous blood activity levels from samples drawn at optimized times61. This 

method still requires invasive sampling but modestly alleviates patient burden by reducing the 

number of required blood draws. This scaling method was tested by scaling by blood activity at a 

single time point across all subjects. In order to determine the most optimal time point, the area 



30 
 

under the curve (AUC) from the PBIFs scaled by activity at each time point was compared to the 

AUC from the arterial IFs to obtain the residual sum of squares (RSS). After analysis of all the 

available time points, the time point with the lowest RSS was used for scaling. The limitation of 

this blood activity scaling method is that for this study, the PBIF generated with data from HCs 

with only arterial sampling data is applied to the patient group with only venous sampling. It is 

unclear whether validation of arterial blood activity scaling translates to the venous blood 

activity scaling in the patient group. 

 
Figure 9: Residual sum of squares (RSS) of the ratio IF AUC to PBIF AUC using blood activity scaling at different 

time points when compared to a ratio equal to 1 (PBIF AUC = IF AUC). Based on these values, I chose to scale by 

the blood activity at six minutes as this had the lowest RSS. 

 

 As these limitation warrant caution, alternative scaling methods were tested. Scaling by 

injected activity, injected activity divided by patient size, and subjects’ genetic binding affinity 

classification all resulted in worse performance than the non-scaled PBIF. As PBR28 exhibits 

high lipophilicity in order to cross the BBB62, scaling by body mass index (BMI) was 

investigated. The lipid solubility of [11C]PBR28 enables peripheral adipose tissue uptake which 

reduces the concentration in the plasma available to cross the BBB and bind with the TSPO 

receptors. Because of this, I hypothesize that differences in the range of body fat could be 

contributing to intersubject variability, making it a promising metric by which to scale. BMI is 

calculated as an individual's weight in kilograms divided by the square of their height in meters. 

As such, it is not a true measure of body fat since it doesn't take into account natural variation in 

the ratio of lean and adipose tissues and other bodily constituents. However, it is employed 
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clinically and in many research fields as an estimate of body fat levels because of its general 

correlation and wide history of use.  

Each subject's BMI was plotted against the arterial IF AUC to PBIF AUC ratio which 

was fit to a decaying exponential (equation 12) where parameters a and b were optimized. The 

RSS using the unscaled PBIF was 24.6. After BMI scaling, the RSS was 3.92. This is a larger 

RSS than those seen from the blood activity scaling investigation (figure 9) but is still a dramatic 

improvement from no scaling. 

 

Scaled PBIF =  PBIF × Y 

𝑌 = 𝑎𝑒−𝑏×𝐵𝑀𝐼 

( 12 ) 

 

Figure 10: Testing of the BMI scaling method established for this study. Each vertical line is the ratio of IF AUC to 

PBIF AUC for a HC subject. In an ideal world, this ratio would be 1 for all points. The green pentagons show the 

ratio with the raw PBIF with no scaling. The yellow hexagons show the rations with the PBIF have applying BMI 

scaling. The residual sum of squares improved from 24.6 to 3.92. 

 For both the blood activity and BMI methods, the scale factor was based on the AUC of 

the plasma IFs. To investigate which scaling method resulted in stronger correlations to the gold 

standard arterial IFs, PBIFs scaled by both methods and the PBIF with no scaling were included 

in kinetic modeling to get VT.  
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3.4.4 Dynamic PET Processing 

The dynamic PET data were processed using PNEURO63 , a tool provided by PmodTM. 

The first step in the analysis pipeline is to import the DICOM files from the scans and inspect 

them to ensure image quality is acceptable and there are no significant artifacts or other issues. 

One of the study PET scans had corrupted frame slicing that was flagged at this step. The 

corruption created doubt about the accuracy of kinetic modeling with this data and so was 

excluded from VT calculations for the purpose of this thesis. 

The next step is to load the corresponding T1-weighted MR image for anatomical 

registration. MR images were previously processed for cropping and defacing, but this 

processing can be performed in PNEURO if needed. The software will segment the gray matter, 

white matter, and cerebrospinal fluid using probability maps. Next, the averaged PET image is 

rigidly matched with the MR image. Rigid matching is sufficient if MR and PET images are 

acquired in sufficiently close succession for brain imaging. Visual inspection was performed and 

any minor adjustments were made accordingly. 

MRI data from subjects’ brains were then transformed into a standard anatomical 

coordinate space through normalization. The default atlas, N30R83, in the head-first supine 

orientation was used as this is the most commonly applicable space. This atlas is based upon the 

description of the brain and its structures detailed by Hammers et al.64 and consists of 83 distinct 

brain regions contoured onto the MRIs of 30 healthy subjects. Normalization results in a 

mapping of the MR to the standard atlas. This MR-atlas mapping and the previous PET-MR 

matching allow the software to bootstrap a mapping of the PET to the atlas space. The different 

brain regions are outlined in all three spaces based on this mapping. The four ROIs chosen for 
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this analysis include the whole brain, the cerebellum, the ventral striatum (including the caudate 

nucleus, the nucleus accumbens, and the putamen), and the amygdala/ hippocampus. 

 

3.4.5 Kinetic Modeling 

TACs for each chosen ROI were be calculated and exported along with Ifs to the PmodTM 

kinetic modeling tool, PKIN51 to perform kinetic modeling . The software has a library of 

modeling methods that can be applied to data to generate optimized model-specific parameters. 

For CM, these are the scaling amplitude and transfer rates for each compartment. For SA, we are 

optimizing the α’s and β’s. And for Logan GA, these parameters are the start time corresponding 

to when equilibrium is reached and the slope and intercept of the linear regression. It is important 

to cycle through guesses of these starting parameters when using CM or SA in order to ensure 

you are obtaining the best fit, as initial values will have significant effects when using iterative 

estimation methods. Once the model parameters were optimized, the corresponding VT from 

each method, for each participant, in each brain region was generated using arterial IFs and then 

using the PBIFs. As kinetic modeling is highly dependent on ROI contouring, IF and PBIF 

analyses were performed using the same ROI definitions and tissue TACs. 

 

3.5 Statistics 

3.5.1 Comparison of Plasma Activity Between Groups 

The first aim of this thesis is to make sure that the plasma activity concentrations between 

the MA group and the HC group are not statistically different. Common statistical tests like the 

two-sided t-test and analysis of variance (ANOVA) are insufficient for this purpose because 

while a low p-value would lead to the conclusion that there is a statistically significant difference 

between the two groups, a high p-value does not allow us to draw conclusions in the opposite 
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direction to say that there is not a difference between the groups. It is erroneous to use statistical 

tests in this way to confirm agreement. Therefore, we implement equivalency testing, which was 

actually developed in the field of pharmacokinetics in the 1980s65. Equivalency testing provides 

support for the absence of any meaningful effects by setting equivalence bounds based on 

standardized effect sizes defined and justified by the investigator. Effects small enough to be 

deemed insignificant by this defined criterion can be rejected. When we reject an effect, we can 

act as if the true effect is close enough to zero for practical purposes.  

The decision to use equivalency testing for these analyses provides the flexibility to 

define boundaries that are clinically significant. As arterial sampling method is the gold standard 

and this data is used to generate and test PBIFs within this group, equivalency bounds will be set 

based on the normalized intersubject variability seen in this group. We will need to normalize the 

AUCs by dividing each AUC value by the average AUC value for the group we're comparing. If 

the AUCs are all close to each other, this will result in values close to one. Big differences in 

AUCs will mean these values will be further from one. The standard deviation seen in the HC 

arterial group was calculated and the equivalency bounds we set to be one plus or minus 1.96 

times this standard deviation. 

 

3.5.2 Comparison of VT: Arterial IF Versus PBIF 

The second aim of this thesis is a methodological comparison to determine whether use 

of a PBIF provides results consistent with the results from the currently accepted or gold-

standard method of using an arterial IF. As with any research aim, we need to establish our 

statistical analysis framework before analyzing data and drawing conclusions. The commonly 

employed t-test and ANOVA are inappropriate for agreement studies because they only measure 

the difference between the means of two groups, while we are interested in directly comparing 
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the individual results of each subject using two different methods. To feel confident using a PBIF 

as an alternative to arterial sampling, the results from both methods must be strongly correlated 

to indicate high precision and also within statistical agreement to indicate high accuracy.  

The first step is to examine the correlation between two methods. If the two methods 

were exactly the same, they would fall along the diagonal line y = x. In practice, they will have 

some spread about a line with an arbitrary slope. Parametric linear regression is performed and 

SciPy tools are used to extract the Pearson correlation coefficient (r-value), which is a measure 

of the linear correlation between two variables. I will consider a strong correlation to be r > 0.75 

based on literature trends in similar fields.  

If a high correlation exists, the next step will be to ensure agreement within statistical 

constraints. A formal implementation of agreement analysis was developed by Bland and Altman 

in the 1980s for methodological comparison studies66. The analysis involves plotting the 

difference between the two methods against the average to obtain 95% confidence intervals for 

clinical consideration. Krouwer67 suggests that when one of the methods is considered a gold 

standard, the difference between methods should be plotted against the gold standard, not the 

average. Because arterial sampling is the accepted gold standard in kinetic modeling, I will be 

using the Krouwer modification of the Bland-Altman statistical method to compare results from 

PBIF and arterial IF for agreement.  
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RESULTS 

4.1 Input Functions 

After correcting and calibrating blood data from the HC and MA subjects, plasma activity 

curves were constructed for each individual using the SciPy package in Python. Each set of data 

was fit to equation 12 using least squares regression. Two HC subjects had to be excluded from 

the analysis due to errors with blood data collection resulting in data being too messy to correct 

and fit. This analysis includes 5 HCs with arterial sampling, 4 HCs with venous sampling, and 8 

MA users with venous sampling. The plots below represent the blood activity data, either from 

venous or arterial sampling, and the IF that was fit to those data. For the HC subjects who did 

have arterial sampling, the PBIF that was generated without data from the specific subject is 

plotted next to their plasma activity data and arterial IF for comparison. This PBIF is what was 

used for modeling to obtain the values of VT reported later.  

Visual inspection of the PBIFs reveals a clear variability in how well the PBIFs match the 

arterial IFs between subjects. The match between the two IFs is worse toward the beginning of 

the scan before equilibrium has been reached. Subjects 209 and 968 had noticeably lower 

activity levels overall in their plasma samples as revealed by the AUCs in table 1. The PBIFs for 

these subjects are visually more different from the arterial IFs as seen in figure 11. 
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Figure 11: Time activity plots, fitted arterial IFs, and generated PBIFs for all of the HC subjects who underwent 

arterial sampling.  
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Figure 12: Time activity plots and arterial IFs for all of the HC subjects who underwent venous sampling. 
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Figure 13: Time activity plots and arterial IFs for the MA subjects, all of whom underwent venous sampling 
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The AUC, a measurement of total activity during the time course of the scan, was 

calculated through definite integration from 0.25 minutes to 90 minutes post-injection. 

Integration was performed in Python using the integrand function from the SciPy package. 

Table 1: Total plasma activity during the course of the PET scan for all subjects  

Subject 
IF AUC 

(kBq) 
 Subject 

PBIF 

AUC 

(kBq) 

 Subject 
IF AUC 

(kBq) 
 Subject 

IF AUC 

(kBq) 

HC w/ Arterial 

Plasma Samples 
 

HC w/ Arterial 

Plasma Samples 
 

HC w/ Venous 

Plasma Samples 
 

MA w/ Venous 

Plasma Samples 

209 112.19  209 456.47  117 66.19  289 233.26 

715 705.02  715 159.16  227 136.43  449 0.14 

716 457.30  716 322.97  641 157.81  528 21.81 

884 1116.60  884 226.83  712 114.19  575 186.43 

968 72.89  968 443.91     585 144.42 

         748 91.58 

         894 105.51 

         926 95.20 

 

Table 1 lists the AUC of each subjects’ plasma IF, based on venous or arterial sampling 

measurements. HCs with arterial sampling also have an AUC of their PBIF listed. This is the 

PBIF assigned to them for modeling that was generated with their data left out. These data show 

the high levels of inter-subject variability. The arterial sampling HC group showed the largest 

variability with a standard deviation of 435 kBq. Data from venous sampling in the HC and MA 

groups resulted in standard deviations of 39 kBq and 78 kBq, respectively. 

 

4.2 Volume of Distribution 

 Kinetic modeling was performed through the PNEURO and PKIN packages provided by 

PmodTM on the PET data from HCs with arterial sampling. VT is reported in units of ml/cm3. One 

of the HCs who had arterial sampling data had a PET scan file that was corrupted and could not 
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be fixed in time for the analysis of this thesis. The below tables list the VT values for all brain 

regions in all subjects, using all modeling and scaling methods.  

Table 2: VT in all brains regions of all subjects using the 2-tissue-compartmental modeling technique 

2-Tissue Compartmental 

Model 

VT from 

IF 

VT from PBIF 

No 

Scaling 

Blood 

Scaling 

BMI 

Scaling 

Subject 209 

Whole Brain 8.911 1.642 2.053 10.736 

Cerebellum 8.937 1.674 2.102 11.179 

Ventral Striatum 7.162 1.361 1.716 8.978 

Amygdala-Hippocampus 10.269 1.913 2.397 12.552 

Subject 715 

Whole Brain 1.543 3.194 2.416 1.835 

Cerebellum 1.968 4.000 3.009 2.294 

Ventral Striatum 1.624 3.317 2.511 1.906 

Amygdala-Hippocampus 1.584 3.381 2.696 2.058 

Subject 716 

Whole Brain 0.829 2.624 0.374 1.571 

Cerebellum 1.019 3.191 0.454 1.910 

Ventral Striatum 0.730 2.284 0.328 1.370 

Amygdala-Hippocampus 0.828 2.663 0.380 1.600 

Subject 884 

Whole Brain 1.068 3.810 1.665 2.630 

Cerebellum 1.349 4.704 1.940 3.053 

Ventral Striatum 1.088 3.855 1.518 2.411 

Amygdala-Hippocampus 1.091 3.903 2.082 3.226 

 

Table 3 lists the VT obtained through CM in the arterially sample HCs using all IFs. 

Without scaling the PBIF, there was an average percent difference of 165±74 between the 

arterial IF and PBIF results. When we scaled the PBIF based upon blood activity at a single time 

point, there was a 62±14 average percent difference. And scaling the PBIF based upon subject 
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BMI resulted in an average percent difference of 70±57. The VT was significantly higher in 

subject 209 for unknown reasons, but the results from the BMI scaled PBIF matched these high 

values. 

Table 3: VT in all brain regions using the spectral analysis technique. Note that spectral analysis failed for one set 

of patient data using PmodTM and a separate spectral analysis specific software, SAKE, even after consultation with 

the creator of the software 

Spectral Analysis 
VT from 

IF 

VT from PBIF 

No 

Scaling 

Blood 

Scaling 

BMI 

Scaling 

Subject 209 

Whole Brain     

Cerebellum     

Ventral Striatum     

Amygdala-Hippocampus     

Subject 715 

Whole Brain 1.331 3.117 3.284 2.512 

Cerebellum 1.641 3.916 4.302 3.297 

Ventral Striatum 1.435 3.261 2.901 2.214 

Amygdala-Hippocampus 1.436 3.369 3.705 2.839 

Subject 716 

Whole Brain 0.725 2.596 0.371 1.559 

Cerebellum 0.970 3.152 0.450 1.893 

Ventral Striatum 0.676 2.269 0.324 1.363 

Amygdala-Hippocampus 0.805 2.640 0.377 1.585 

Subject 884 

Whole Brain 1.013 3.797 1.568 2.483 

Cerebellum 1.217 4.678 1.827 2.893 

Ventral Striatum 0.986 3.834 1.432 2.268 

Amygdala-Hippocampus 1.082 3.876 1.960 3.104 

 

Table 4 lists the VT obtained through SA in the arterially sample HCs using all IFs. These 

values are similar to those obtained via CM, with an average difference 9% between the two 
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quantification techniques when using arterial IFs. Without scaling the PBIF, there was an 

average percent difference of 216±64 between the arterial IF and PBIF results. When we scaled 

the PBIF based upon blood activity at a single time point, there was an 84±46 average percent 

difference. And scaling the PBIF based upon subject BMI resulted in an average percent 

difference of 112±34. 

Table 4: VT in all brain regions from all subjects using the Logan graphical analysis technique 

Logan Graphical Analysis 
VT 

from IF 

VT from PBIF 

No 

Scaling 

Blood 

Scaling 

BMI 

Scaling 

Subject 209 

Whole Brain 6.534 1.247 1.588 8.308 

Cerebellum 6.727 1.288 1.643 8.592 

Ventral Striatum 5.480 1.061 1.357 7.097 

Amygdala-Hippocampus 7.675 1.465 1.868 9.774 

Subject 715 

Whole Brain 1.428 2.954 2.082 0.568 

Cerebellum 1.782 3.620 2.420 0.604 

Ventral Striatum 1.522 3.135 2.230 0.497 

Amygdala-Hippocampus 1.497 3.176 2.419 0.570 

Subject 716 

Whole Brain 0.765 2.305 0.329 0.051 

Cerebellum 0.928 2.788 0.398 0.053 

Ventral Striatum 0.667 1.978 0.282 0.058 

Amygdala-Hippocampus 0.786 2.362 0.337 0.049 

Subject 884 

Whole Brain 0.945 3.612 1.173 0.427 

Cerebellum 1.154 4.409 1.374 0.404 

Ventral Striatum 0.935 3.599 1.105 0.387 

Amygdala-Hippocampus 0.987 3.732 1.320 0.508 
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Table 5 lists the VT obtained through Logan GA in the arterially sample HCs using all 

IFs. These values are also similar to those obtained via CM, with a slightly higher average 

difference of 13% between the two quantification techniques then SA. Without scaling the PBIF, 

there was an average percent difference of 167±82 between the arterial IF and PBIF results. 

When we scaled the PBIF based upon blood activity at a single time point, there was a 51±20 

average percent difference. And scaling the PBIF based upon subject BMI resulted in an average 

percent difference of 60±24. 

With all quantification methods, the non-scaled PBIF produce VTs that were the most 

different from the VT produced using arterial IFs. The differences seen from the blood activity 

and BMI scaling methods were within one standard deviation of each other with all 

quantification methods. There appears to be no trend between brain ROI and performance, so the 

data will be concatenated together for analysis. The significance of these data and their 

interpretation are presented in the discussion section.  
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DISCUSSION 

5.1 Comparison of Plasma Activity Between Groups 

 The first step was to set the equivalency bounds which will define statistical significance 

as outlined in the Methods section (3.5.1) using AUCs from the arterial IFs of HCs (Table 1). It 

was found that the standard deviation of the normalized AUCs in the HCs was 0.789, resulting in 

equivalency bounds of [-0.547,2.547] based upon 95% confidence intervals (figure 14). 

 
Figure 14: Establishing the equivalency bounds to be used in our venous groups by calculating the 95% confidence 

intervals in the arterial group. The standard deviation (stderr) of these five points is 0.789. The equivalency bounds 

are 1 +/- 1.96*stderr. 

 

 There are twice as many MA subjects as HC subjects, so when normalizing the AUC 

values, the contribution of each group had to be weighted accordingly. Ideally, this analysis 

would be performed with equal group sizes. The results are displayed in figure 15. 
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Figure 15: Equivalency testing the normalized plasma activity between MA users and healthy controls (HC). 

Equivalency bounds are set by the inter-subject variability seen in the HC  atrial sampling group. All subjects from 

both groups fall within the equivalency bounds 

All of the subjects fall within the equivalency bounds. This provides support to conclude 

that there are no effects large enough to be deemed clinically significant contributing to inherent 

differences between the two groups. From this, I conclude that there is no biological difference 

between the MA users and the HCs which significantly affects the levels of radiotracer within 

the plasma compartment. The predicted upregulation of PBR is not large enough to impact the 

concentration of blood tracer. This conclusion supports the decision to apply a PBIF generated 

using HC data to a group of MA data as a substitution for their arterial IF. 

 

5.2 Comparison of VT: Arterial IF Versus PBIF  

All of the VT comparison data are plotted in figures 16-18. When comparing the linear 

regression of the methods, ideally, the slope and the r-value approach one, and the y-intercept 

approaches zero. Figures 16-18 show that this is not reflected in all of the data sets, particularly 

with the PBIF which has undergone no scaling. When looking at the Krouwer plots, at least 95% 

of the data points need to be within the statistical bounds. Ideally, these bounds would be close 
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together to ensure that results are both statistically accurate and precise. To more easily visualize 

the values to be optimized, I plotted the differences from the ideal in 3x3 matrics representing 

the combinations of modeling and scaling techniques with scaled heatmapping (figure 19). 

 With the current dataset of processed subject visits, none of the modeling method and 

scaling technique combinations meet both the correlation and statistical agreement constraints set 

forth as evidence that a PBIF can be reliably used in place of an arterial IF. Of the quantification 

methods, SA resulted in the strongest correlations with r-values of 0.54, 0.96, and 0.8 when 

combined with different scaling techniques. The correlations resulting from CM and GA were 

very similar to each other. Predictably, not scaling the PBIF resulted in the worst correlations. 

The proposed novel scaling method based on BMI resulted in the highest correlations with r-

values of 0.8 with SA and >0.9 with CM and GA. 

 Four combinations of modeling and scaling passed the criteria of having r-value >0.75 set 

for acceptance of correlation to move on to judging of statistical agreement. These were SA with 

blood scaling and BMI scaling, CM with BMI scaling, and GA with BMI scaling. Unfortunately, 

none of these combinations had 95% of their data points fall within the acceptable agreement 

intervals of the Krouwer plot. Of these, the combination of SA with blood scaling performed best 

with 88% of the data points falling into agreement bounds. The BMI scaling combinations had 

70%, 69%, and 80% falling within agreement across the different modeling methods. The high 

correlations mean that the intervals are very narrow and so more data points will likely be 

required to reach significance. This analysis will need to be continued with more data points in 

order to confidently judge whether a generated PBIF can be used in an effort to not put subjects 

through arterial sampling.  
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Figure 16: Method Comparison of arterial IF vs. PBIF using 2-tissue compartmental modeling. Each row shows a 

different scaling method (no scaling, blood activity scaling, BMI scaling). The left column employs a parametric 

least-squares linear regression. The right column uses the Krouwer modification of a Bland-Altman plot to test for 

statistical agreement. 
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Figure 17: Method Comparison of arterial IF vs. PBIF using spectral analysis. Each row shows a different scaling 

method (no scaling, blood activity scaling, BMI scaling). The left column employs a parametric least-squares linear 

regression. The right column uses the Krouwer modification of a Bland-Altman plot to test for statistical agreement. 
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Figure 18: Method Comparison of arterial IF vs. PBIF using Logan graphical analysis. Each row shows a different 

scaling method (no scaling, blood activity scaling, BMI scaling). The left column employs a parametric least-

squares linear regression. The right column uses the Krouwer modification of a Bland-Altman plot to test for 

statistical agreement. 
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A) B)  

C)  

D) E)  

Figure 19: graphical representation with scaled heatmapping of the parameters which we use to judge the 

performance of each combination of modeling method and scaling technique. In all grids, lighter colors correspond 

to better performance. The first grids represent parameters obtained through plotting VT obtained from use of 

arterial IF against VT obtained from use of PBIF. The last two are parameters founds from the Krouwer plots. A) 

How different the slope is from 1. B) How different the y-intercept is from 0. C) The Pearson correlation coefficient. 

D) The +/- bounds set from the 95% confidence interval. E) The percentage of data points that fall within the 

agreement bounds 
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5.3 Limitations & Future Work 

A significant limitation of this work is that arterial sampling was not collected from the 

MA group, thus limiting the ability to test with certainty that a PBIF is a suitable replacement for 

an arterial IF. A study performed last year compared modeling using venous blood samples 

against the gold standard of arterial blood samples in a [18F]GE-179 PET study with promising 

results68. Investigation of venous modelling in [11C]PBR28 studies would benefit this research 

study, however, it would require acquiring simultaneous venous and arterial samples from HC 

subjects. 

Another major factor limiting our conclusions is the sample size. Recruiting during 

modified operations due to the global Covid-19 pandemic was challenging. Staffing constraints 

also made it difficult or impossible to set arterial lines in all of the HCs, further reducing the 

number of subjects we had available to generate and test the PBIF. PET scans have been 

acquired on more subjects since these analyses were performed and I intend to continue this 

work after the submission of the thesis and adding their data to the analysis. These new results 

may strengthen our agreement and increase our statistical power. Future directions also include 

creating and streamlining a workflow pipeline that enables future students or researchers in the 

group to continue processing the data and performing pharmacokinetic modeling in a similar 

manner. Our methods could be improved by a future student by implementing a CM that takes 

into account the vascular binding component. This thesis has laid the groundwork for future 

studies to continue to improve upon PET quantification in our cohort. 
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SUMMARY & CONCLUSIONS 

 This project explores the validity of using a PBIF for accurate [11C]PBR28 PET 

quantification which would do away with the need for invasive and risky arterial sampling in 

vulnerable populations, including IV drug users. Arterial sampling is not always possible due to 

its invasive nature and prohibitive staffing costs. A reliable alternative for use with [11C]PBR28 

would expand scientific possibilities, allowing for the advancement of our understanding of the 

immunological responses associated with MUD and other diseases that present with 

neuroinflammation. The literature using image derived methods and pseudo-reference region 

methods as an alternative to arterial sampling in [11C]PBR28 studies show poor agreement 

results and limited reproducibility. PBIFs have been employed with different radiotracer studies 

with statistical success.  

 The first aim of this thesis was to determine whether a PBIF generated with HC arterial 

data can be applied to MA subjects. The statistical framework was based upon common 

statistical practices in the field of pharmacokinetics. Equivalency analysis of the MA users and 

the HCs revealed that there was no significant difference between the plasma concentrations of 

tracer in IV sampled blood between the two groups. This suggests that a PBIF constructed and 

validated in a HC group would be comparable to an IF generated with MA data and thus PBIF 

using controls can be applied to the MA group. This would be a significant contribution to the 

field and would limit the risk associated with arterial line placement in vulnerable populations.  

The second aim therefore was to determine whether a PBIF from HC arterial plasma data 

would result in accurate quantification in an independent test group. Three different 

quantification methods were modeled to test whether a specific quantification method would 

perform more robustly when presented with differences in IF. Results from these three methods 

were similar, with SA slightly outperforming CM and GA. The PBIFs also needed to be scaled to 

account for intersubject variability. This was tested using the blood activity at a single time point 

and using the subject’s BMI. Both scaling methods improved the results using a non-scaled 

PBIF. The BMI scaling method resulted in superior correlations with Pearson coefficients of 0.8 

when using SA and >0.9 when using CM and Logan GA. Due to the small number of scans 

available for analysis in this thesis, none of the combinations of quantification method and PBIF 

scaling technique reached statistically significant agreement levels.  
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The strong correlations are promising that an accurately generated PBIF with a suitable 

scaling procedure could be used in place of arterial IFs in populations that are precluded from 

arterial cannulation. However, more HC subjects’ scans would need to be added to our analysis 

in order to strengthen the agreement statistics before any substitution is implemented into 

practice. As patients’ scans are currently ongoing in this study, it should be possible to expand 

our analysis and make more definitive conclusions.  

In order to obtain rigorous quantification of neuroinflammation levels in the MA group, a 

validated alternative to arterial IFs is imperative. A mechanistic understanding of the effect of 

neuroinflammation in MUD and its treatment could dramatically improve the lives of the 

millions of people suffering from this neuropsychiatric disorder and also relieve a significant 

public health burden. 
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