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ABSTRACT

PHOTON COUNTING RECEIVERS FOR OPTICAL COMMUNICATION
THROUGH THE TURBULENT ATMOSPHERE
Kaliappan Shammuganathan, Ph.D.
Oregon Graduate Center, 1980

Supervising Professor: Charles M. McIntyre

Direct detection, photon counting receivers for use in optical
communication through the clear air, turbulent atmosphere have been
examined. In particular, spatial diversity arrays to overcome the
effect of fading due to atmospheric turbulence are considered.
Experimental results are compared with theoretical results for an
optimum receiver structure based upon Bayes criterion of minimum
probability of error. In addition, certain suboptimum receivers
with simpler structures are derived directly from the optimum
receiver, These receivers, along with an adaptive threshold
receiver, are considered in order to examine the tradeoff between
performance and complexity., The results indicate that the adapt-
ive threshold reciever is a good compromise for information rates
that are high with respect to scintillation frequencies, a rela-

tively unrestrictive condition.
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CHAPTER 1

INTRODUCTION

Using a laser beam for communication through the atmosphere may
have several advantages. It offers extremely high bandwidth and
since a laser beam is highly directional, private communication is
possible. In addition, a range of cheap, reliable functional
devices (polarizers, modulating crystals, etc.) and very sensitive,
low noise detectors are available. There has been considerable work
in the past to understand the optical properties of the atmosphere
and to develop receiver structures to process the signal in an
optimal way. A typical optical communication system is shown in
Figure 1.

Both coherent detection (also referred to as heterodyne detec-
tion) and direct detection (also called incoherent detection) have
been considered for use in these communication systems. In coherent
detection, the received optical wave is mixed with that of a local
oscillator (Figure 2). The resulting wave is then detected to gener-
ate an IF signal and proper filtering of the IF signal recovers the
original signal. This technique is usually preferred in radio and
microwave communication, but in optical communication this technique
poses some problems. The need for a local oscillator with good fre-
quency stability and critical alignment with the received wave
introduce cost and complexity. In addition, the fluctuations in

the phase and angle of arrival of the received wave due to turbulence
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Figure 2. Block diagram of a generalized optical heterodyne
receiver.



also cause problems. Therefore direct detection, in spite of its
higher sensitivity to background radiation, has been favored in the
optical region.

Receiver structures using direct detection for optical communi-
cation through the atmosphere have been discussed by several auth-
ors.l’2 A recent and complete treatment by Teich and Rosenberg3 is
the one that is of interest in this work. In their work, lognormal
statistics are assumed for the fading due to turbulence, and the
limiting case of photon counting is considered. First, a most gen-
eral receiver structure is developed and found to be very complex.
The next simpler case of the optimum receiver using a diversity-
array of detectors, in which the fading at each detector can be con-
sidered independent, is the basis for the current investigation. An
outline of this development is given in the next chapter.

The structure of the optimum receiver, in spite of its relative
simplicity compared to the more general case, is also somewhat com-
plex. In this thesis, three additional receiver structures are
considered. Two of them are suboptimum receivers derived directly
from the optimum receiver, and the third is an adaptive threshold
receiver. All three are considerably simplified relative to the
optimum receiver.

An experimental photon counting receiver was fabricated to

measure the performance of the above receivers, The objective was

three-fold:



1) The theoretical calculations by Teich and Rosenberg show
a relatively high error rate for the optimum receiver structure.
This is due to the severe fading due to turbulence.4 This effect
can be counteracted to some extent by using large aperture receiv-
ers. However, when the turbulence is severe, the apertures must
be extremely large. This is not desirable for practical purposes.
Consequently a diversity-array, in which the individual elements
are spaced to provide independent fading at each element, is

examined to find useful levels of performance.
2) To compare experimental results with theoretical values.

3) To compare the error rates of the receivers with one
another in order to explore the trade~off between their perform-

ance and complexity.

The experiment and the results are presented in Chapter 4.

The results can be summarized as follows:

1) By using a diversity-array of four detectors, error rates
of the order of 10" are observed. In the experiment, only point
detectors were used, because it was desired to explore the worst
case. In practice each detector can have a finite size and thereby
reduce the scintillation and consequently the error rate to some

extent. The resulting error rates can therefore be better than 1074,



2) It is found that the theoretical curves for the probability
density functions agree very well with the experimentally measured
ones. For this reason, there is also good agreement between the
predicted and measured values of error rates for the optimum
receiver. This means, therefore, that the theory can be confidently
used in designing and predicting the performance of photon counting
communication systems using a laser beam through a clear turbulent
atmosphere.

3) When the scintillation frequencies are sufficiently smaller
than the bit rates, the adaptive threshold receiver performs better
than all other receivers. It is also found to be the least complex
of all. (However, it is pointed out that the optimum receiver uses
a likelihood function that has only a finite number of discrete
values. This fact can be used to reduce its complexity consider-
ably. This is especially so in the case of multi-detector arrays.)
The two suboptimum receivers perform very poorly compared to both

the optimum receiver and the adaptive threshold receiver.



CHAPTER 2

THE ATMOSPHERE AND OPTICAL COMMUNICATION

Technological developments in the field of semiconductors have
made cheap and efficient photo detection possible. This, together
with the advance in optical fiber technology, has made communica-
tion through optical fibers a reality today. But optical communica-
tion through the atmosphere is still in the budding. Some

5,6 An

experimental studies have been done in Japan and Russia.
engineering feasibility model for a satellite to earth communication
link by NASA has been reported.7 This model is to be space tested

using a satellite to be launched in the early 1980's. To explore

and exploit the possibilities, however, more work is needed.

Problems Associated with the Atmosphere

Laser communication through the atmosphere obviously requires
a good understanding of the atmosphere as an optical channel. The
effects of the atmosphere on laser propagation can be broadly divided
into two categories. First, there is scattering due to dust, haze,
fog, clouds, rain, etc.8 Recently there have been numerous studies
on the particulate scattering of laser beams. Most of them pertain
to obtaining information about the particles in the atmosphere,

but many also deal with the problems related to communication.



R. R. Meier, et al., study the scattering of UV radiation from
a point source using Monte Carlo simulation.9 G. W. Kattawar et al.,
treat the effects of radiance and polarization for the case where
diffusive scattering is very prominent.lo B. W. Fowler et al.,
obtain a numerical solution to the three-dimensional radiative
transfer equation in Ref. 8 for a foggy medium.11 Also there have
been some interesting theoretical calculations regarding the possi-
bility of burning a hole through clouds and fog using high power

lasers.lz’13

A summary of the phenomenon of light scattering in the
atmosphere may be found in Ref. 1l4. Some of the experimental inves-
tigations and their results can be found in Refs. 5, 15-17.

The second deleterious effect that the atmosphere has on laser
beam propagation is that due to turbulence. 1In this case the phase
and amplitude of the optical wave change randomly both in space and
in time at the receiver plane. Unlike particulate scattering which
occurs only in the presence of clouds, fog, etc., the turbulence
effects are always present and any receiver system using a laser
beam through the atmosphere must take this into account. In recent
years there has been considerable progress towards the understanding

of this phenomenon. A detailed account of this phenomenon is given

in Refs. 18-20. A very brief outline is given in the next section.

Turbulence
Turbulence of the atmosphere is the random variation in space

and time of the index of refraction which is mainly caused by random



fluctuations in the temperature of the atmosphere.18 These fluc-
tuations may be supposed to be encompassed by two scales: an inner
scale 20 and an outer scale Lo. Considering only the spatial fluc-
tuations, 20 is the smallest distance over which the spatial co-
variance factor differs from unity and LO is the largest distance
over which it differs from zero. Obviously, these quantitlies 24
and LO are not easily measurable. Their primary use is in formu-
lating a theoretical model for the turbulence.

It is convenient to represent the spatial variations of the
index of refraction of the atmosphere in terms of a structure

function defined as,
_ ~> - 2
D (x) = <G - n(E)]"> (1)

where n(¥) is the index of refraction at a point in the atmosphere

represented by the vector T. Dn(r) has been found to be propor-

18

0. The structure function can

tional to r2/3 where r = ?1 - T,

be written
D (r) = C2 2 3 << T 1 2
n( ) n / ’ Q’O < << o ( )

where C% is a parameter representative of the magnitude of the fluc-
tuations in the index of refraction.

For an isotropic medium, the spatial wave number spectrum of
the fluctuations in the index of refraction, for well developed

turbulence is approximately given by19

¢ (<) = 0.033 c2 k"11/3 exp(—Kz/Ki)a (3)
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In the above k is the spatial wave number of the fluctuations in
refractive index and Km = ZH/ZO. Equation (3) is a good approxi-
mation for k < 2ﬂ/Lo.

Because of the random refractive index, different portions of
the optical wave undergo different random phase changes. At some
points in the receiver plane these waves may add up in phase.
However, at other points, the random phases may cause a severe fad-
ing in amplitude. It has been observed experimentally that the
resulting distribution of amplitude (or intensity) obeys lognormal

statistics described by

2
£(A) = —1— exp | - inA - <fnh>) (4)

AV2no2 202
X X

where A is the normalized amplitude, ci is the variance of the log-
arithm of the amplitude, and f(A) is the probability density function
of the amplitude. When the turbulence is very severe (ci =~ 0.6)
there is some deviation from the lognormal distribution.21 However,
for many practical purposes, the iognormal distribution appears to
be an adequate approximation.

Assuming a spherical wave, an approximate expression for the
variance of log amplitude for a homogeneous medium is given by19

2 = 2722 _ [2mk\l/2 K2L\ | ((k2L\1/2
GX 2n<k Lf 1 (Kz]_,) cos(4k) C (2ﬂk>

o)

2 21\1/2
+ sin (%ﬁ%) S(-%;%) )] ¢n(K)KdK (5)



11

where L is the path length, %k is the optical wave number of the

laser and

X
C(x) =f cos —— dt and
(o]

K 2
S (x) =f sin '"—'2:— dt .
(o]

For a homogeneous isotropic medium the above equation can be reduced

by using equation (3). Thus,
62 = 0.124 C2 k776 L1168, 22/3 << L (6a)

where A is the wavelength. Also, it can be shown that

o2 = 0.5 c2 k7/6 111/6 (6b)

where 0% is the variance of log intensity. The above expression is

valid for 0’)2( < 0.1. Experment522,23

show that oi increases with L
until oi * 0.7. Further increases in L cause very little change.

This phenomenon is referred to as saturation of the variance of log
amplitude. Using equation (2) an expression for the covariance of

log amplitude, b (p), for the case of a spherical wave can also be

derived:19
kp2\5/6 (ROZ) (kpz)n/e
b =1-2.2|— . - . _
x(p) 22(L +1.71 5 + 0.05 I
2\2
- 0.08 (%—) (7)

where lg/l << L and lo << p << (AL)J/Z.
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The temporal fluctuations in the refractive index cause a
corresponding fluctuation in the amplitude (or intensity) at any
given point in the recelver plane, referred to as scintillation.
Among other things, scintillation is affected by the wind velocity
across the path of the beam. The relationship between scintillation
frequency and the wind velocity is usually described by using
Taylor's hypothesis.ls’20

Some of the recent theoretical work explains the saturation

24,25 indicating that at very high values of integrated

phenomenon,
path turbulence, as in equation (6), (c% >> 100) the fluctuations
in intensity are described by an exponential distribution rather
than a lognormal distribution. However, this requires extremely
long paths and is difficult to observe experimentally. As such,
the predicted exponential distribution for the intensity is less
useful than the lognormal distribution.

In recent work26 Bissonnette, et al., suggest an exponential
Bessel distribution for the fading due to turbulence. However,
their theoretical justification for such a distribution appears to
be questionable. Also from a practical point of view this distri-
bution involves parameters that are more difficult to measure than
the parameter (c%) needed in the case of a lognormal distribution.

In the subsequent treatment we will assuma a lognormal distri-

bution for the irradiance fluctuations due to turbulence.
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CHAPTER 3

THEORY OF PHOTON COUNTING RECEIVER

Theory of Optimum Receiver

In this section we outline the development of the optimum
receiver by Teich and Rosenberg.3 The theory is applicable for the
case of a non~focused laser beam passing through a clear air,
turbulent atmosphere. Only the photon counting (or more correctly,
photoelectron counting) case is considered. ZLognormal statistics
are assumed for the fluctuations in irradiance due to turbulence. It
must be mentioned here that their theoretical treatment is more
general than is needed for our purposes. In this work we will con-
sider only the very special case of the receiver defined in the next
paragraph, since it is not possible to experimentally investigate all
the receivers that the theory could cover.

The communication system considered in this thesis uses binary
coded amplitude modulation. Sending a laser pulse during a bit
interval will correspond to a hypothesis H; and not sending a laser
pulse during a bit interval will correspond to a hypothesis Hp. The
a priori probabilities of H; and Hy are equal. The system uses a
simple Bayes criterion of minimum probability of error in the
decision making process.

(To avoid a possible confusion later on we may point out here

the terminology used: When the transmitter sends a laser pulse
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during a bit interval this will be referred to as "The transmitter
sends an H; bit." When the transmitter does not send any laser
pulse during a bit interval, this will be referred to as '"'The
transmitter sends an Hy bit.")

First, a list of all the assumptions used at various stages of
the theoretical development will be given. The list will indicate
the extent of usefulness as well as the limitations of the theory.

1) Only the effects of clear air turbulence will be consid-
ered. Other effects like particulate scattering, etc. will not be
considered.

2) The background radiation is modeled as a white, zero mean,
stationary, complex Gaussian process. At low energies, this becomes
a Poisson process because of the discrete nature of the photons.

3) The background radiation is additive and the effects of
cross mixing between background and signal are negligible.

4) The detector area is assumed to be small enough to ensure
complete first order spatial coherence of the field over the
detector area of each detector. This condition will be met if the
dimensions of the detector~surface are much smaller than /Xf—, the
Fresnel zone size, with A the wave length and L the path length.
Actually, this assumption is made only to avoid carrying cumbersome
integrals over the detector area. The theory itself will hold good
irrespective of the detector area if the reduced variance of the
log-intensity due to aperture averaging over large detector surfaces

is used in the calculations, This is because it has been observed
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that intensity scintillations of the light collected by a large area
still obey a log~normal distribution with reduced variance for log-
intensity.27

5) The individual photoelectrons are resolved and the number
of unresolved cases, if present, are negligible.

6) TFluctuations in the laser output energy are negligible.
This will be generally true if the laser oscillates far above
threshold.

7) The average background radiation and its statistics are the
same for all detectors in the array.

8) The mean value of the irradiance due to the laser beam, and
its statistics are the same for all detectors in the array.

9) Finally, T << %E where T is the bit interval and fC is the
characteristic frequency of the turbulence fluctuations (typically a
few hundred Hz).

Keeping the above assumptions in mind, an expression for the
conditional probabilities for the signal (photons) detected at the
receiver is derived. First one may omit the effect of turbulence
and write the probability density function for the case of a steady
flow of photons. Then the turbulence effects can be taken into
account and the resulting density function written.

Consider one bit interval between t; and t; + T. Assume the

energy received by one detector during this interval is ET.
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t; + T
E, = f g lve")]2 at’ ("
ty

where V(t') is the field due to the signal and B is a constant
representing the area of the detector (assumption 4). If, during

this interval, n photoelectrons are detected,
ns=so— (10)
where n is the quantum efficiency and hv the energy in a single

photon. Since the counting of random events obeys Poisson statistics,

the number of photo-electrons counted should fluctuate about a mean

E.n
W==<n> = <%> (11)

Therefore, for one detector the probability density of the photo-

value W, where

electron count can be written as

iy
P_(n) = W_exp(-W) (12)

n!

If during the bit interval considered, a hypothesis H; was sent,

then W = N_ for all detectors in the array, where N

B is the average

B

number of photoelectrons due to the background (assumption 7).
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Therefore, the probability density function for n, the number of

photoelectrons counted during T for Hp, for one detector is

N exp(-N_) (13)
B (n) = b B
ni

If we consider an array of D detectors, the density function can

be written as
ni

Np

exp (-N_)
5 (14)
ni.

P (n) =
(o}

E=w]

i=1

where n, is the number of photoelectrons counted at the ith
detector and

ni

(15)

=R
L]

If we consider only the bit intervals in which hypothesis

H; were sent, the average number of photoelectron counts would be

W= ZNS + NB (16)

where NS is the average number of photoelectrons due to the laser

and Z, the fading factor due to turbulence effects. By assumption

8, NS is the same for all detectors, but Z need not be the same.

However, by assumptions 1 and 8, Z is statistically identical for
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all the detectors. Consequently, given Z, and considering only

one detector, the conditional probability density function for n,

the number of photoelectron counts when H; is sent is

P, (n]2) = (zNg + Np)" exp[—(ZNs + NB)]

n!

(17)

For the case of an array of detectors the conditional probability

density function takes the form

Z,
ny _ +
P @D = q @Ng + 8 exp [~z Ny + 8] > (18)
i=1 n,! .
1 .
Zp

Under the assumption of lognormal statistics for the fading, the

probability density function for 7 is given as

3 . 1 _OTw1&
By (2) = b/2 |, 1/2 exp 2 (19)
(2m) || (2) 23 ... Zp)
g2
>
where the vector X has components given by ‘{Xi = SLnZi + —%—-} and

A is the log-irradiance covariance matrix whose elements are

#
Con1(Ty rj) 17

ij - o2
Conr(ry» Ty) = 1

oo
fl
.

By assumption 9 the fading vector 7 does not change over the period T.
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Combining equations (18) and (19) we get the probability density
function for the hypothesis H; including the turbulence (lognormal)
as well as the counting (Poisson) statistics.

(o]

%(H) =f PC(KI'z’) pZ(E) az
(21)

(s}
o o n'
f”:/‘D {(ZiNS + Np) i exp [-(2,Ng + Np)]
= .]'[
=1
(0] [¢]

n,! }Pz(zl,zz... Zy)dzZy...dzZy

Teich and Rosenberg apply the method of steepest descents3 to reduce
the above integrals to get

n toan-1,2
{ D (2 + N exp [0, N+ NB)]} exp[_&o) (1) 1(x0>]

i=1 ni! 2

>

Pl(n) =

|A]% |-B[2 (22)

where the relevant quantities are defined below.

X = 12
o sznzio + 502 (23)
Z. N
(1) "i%o's
Q =——2 ___ _ 7 N (24)
i ZioNS + Ng io's
2) [n.Z N N
i“io§ B
Q.. = -2, N |6,, (24a)
ij (ZioNS + NB) io’s ij

and
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F-Q(Z) Q{2 v @
11 12 1D
(2) (2) ... (2) _
Bx = R %, o -7t (25)

2 L@ (2)
D1 QDZ QDD

The quantity 70 is the stationary value of 7 obtained from the equation
QP - % = o (26)

Equations (14) and (22) give the photoelectron counting distribu-
tions when the hypotheses Hy and H; respectively are sent.

Consider a single detector receiver. Suppose during a bit
interval the detector counts n photoelectrons. Using this informa-
tion, a decision has to be made as to whether HO or H; was sent from
the transmitter. This can be done by evaluating a quantity called
the likelihood ratio.28 If Pyp(n) and P;(n) are the probability
densities for receiving n photoelectron counts for the hypotheses

Hg and H; respectively, then the likelihood ratio is defined as

A®) = 5oy (27)

According to the Bayes criterion of minimum probability of error,
Hi
the decision rule is then A(n)ﬁ? 1. That is, decide in favor

of ; if A(n) > 1, and Hg if A(n) < 1. Often it is preferred to
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use another quantity called the likelihood function, L(n), for
making the decision. L(n) is simply &nA(n). In terms of L(n),
the decision rule is L(n) %i 0.

Considering a receiver system using an array of D detectors,

we can write the corresponding likelihood ratio from equations (14)

and (22).

XO+A"1§§
-> D Zio%s ny exp |~ 2
=1 —_ -
A(n) =, 1 + 1 exp [ ZiONS] T T (28)

i= NB 4 |A|é|-B*|1 .

> %, -
Z. N X TATIX

> _D io’S - "o o - 2n|A| - &n|-B*]
L(n) —'E n.hm( + 1) - Zi Ns 5 2 2

(29)

The resulting receiver structure is shown in Figure 3. As can be seen,
this receiver structure is very complicated, especially because of
the covariance terms.

For a case where the fading of the signals at each of the
detectors may be considered to be independent, the likelihood
function, and hence the resulting receiver structure, take a simpler
form. Such independent fading is possible if the detectors are
sufficiently far apart from each other. The likelihood function then

is
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52 (042, NeNy
tn$°I ——1———2 +2; N ) +1 (30)
(2 Ng+Hp) S

where Zio is now obtained from an uncoupled set of equations

given by
2
7. N A
JiTo’s  _, oy t?io Hor/D 0 {=1, 2 D (31)
Z. N+ N, “io0'8 2 ’ =4 2. D
io' S B GI

The receiver structure corresponding to the likelihood function
given in equation (30) is shown in Figure 4. This receiver will

henceforth be called the approximate optimum receiver, or simply AOR.

Suboptimum Receiver

From a point of view of practical construction, even the AOR
is relatively complicated. More complexity means more cost and in

a sense, less reliability. This, therefore, calls for further

reduction to simpler structures, and a better trade-off between
complexity and performance, if that is possible. We now consider

a few possibilities.

Suboptimum Receiver I (SOR I):

We start with the expression for the likelihood function as

given in equation (30). An investigation of the relative importance
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of the four terms on the RHES shows that the last two terms are, in
general, considerably smaller than the first two. The actual values
of these four terms are listed in Table I for certain typical combina-
tions of ci s NS and NB and near the corresponding threshold count

n The values of the four terms are presented for the threshold

T
counts, because the decision making for Hy or H; is critical only
near the threshold. As can be seen, the last two terms are very
small compared to the first two in most of the cases. As such,

there is some justification to drop the last two terms to make the
receiver structure a simpler one. Alternatively, one can look at this
approximation this way: The solution of equation (31) for Zio gives

an estimated value of the actual fading Z If we assume that

i

this estimated value for Z, is very nearly the exact value of Zi’

i
then it can be shown that the last two terms in the square bracket
in equation (30) drop out. This results in a simpler equation for

the likelihood function:

Lo = 2 210Ns
n o= | M| S 1) -z N (32)
B

where Zio is given by equation (31). The corresponding receiyer

structure is given in Figure 5.

Suboptimum Receiver II (SOR II):

Another possible approximation results from a consideration of

equation (31) for Z, . An investigation shows that the values of Zio

io




TYPICAL VALUES FOR THE TERMS IN THE LIKELTHOOD FUNCTION

TABLE I

OF EQUATION (30)
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) N 0% T; -T, -T, ~Ty
1. 2. 0.01 1.09 1.96 0.008 0.008
1. 2. 0.10 0.996 1.76 0.058 0.069
1. 2. 0.5 0.764 0.115 0.094 0.185
1. 2. 2.5 0.351 0.470 0.019 0.212
1. 10. 0.01 9.36 9.39 0.167 0.043
1. 10. 0.1 6.03 6.46 0.747 0.239
1. 10. 0.5 4.71 3.81 0.512 0.489
10. 10. 0.01 9.48 9.68 0.039 0.03
10. 10. 0.1 8.21 7.97 0.155 0.186
10. 10. 0.5 5.50 5.27 0.153 0.386
10. 10. 2.5 3.36 2.95 0.000 0.489
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only rarely fall outside the range of 0.1 and 10.0. The value of
og is never more than about 3.0. Therefore, the third term on the
LHS is of the order of unity. For reasonably large values of

NS (and hence ni) the first two terms on the LHS of the equation

will dominate. In such a case, we could drop the third term,

approximating the equation for Zio as

n.z, N n, - N

i“40's _ e

Z N+, ZioNg =0 (o) Z; =—% ) (33)
io'§ B S

We might note that n, may be less than or equal to N_,, in which case,
according to equation (33), Zio can take negative or zero values,
This, of course, is not permitted, A more correct way of writing the

above equation is

Z. =X B or 0.1, whichever is larger. (34)

The resulting receiver structure is shown in Figure 6.

Adaptive Threshold Receiver (ATR):

The above simplified receiver structures resulting from approxi-
mations for the equations for the likelihood function and the
stationary value of Z should be expected to perform poorer than the
approximate optimum receiver (AOR). An interesting case of a
receiver using an averaged threshold has been suggested by MclIntyre

and Churnside.29 They point out that if the bit rate is large,
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instead of using n, it is possible to use'ﬁi, the value for the pho-
toelectron count averaged over a properly chosen number of bits, to
calculate zio' They further show that if the number of bits
averaged over can be large enough, a receiver that is both simpler
in structure and better in performance can result, especially for
high levels of turbulence.

We consider equation (31) again. Modifying this equation to
replace n, with Nﬁi, where N is the number of bits averaged over,

one gets

T 2
N n, ZioNS NzioNS JLnZio + 01/2
- - 2
ZiONS + ZNB 2 cI

=0 (35)

As explained earlier, the last term on the LHS is of the order of
unity and can be dropped without introducing much error ifr(;i is

large enough. The resulting equation can then be solved for zio

2(m, - N)
i B
Zio Ng (36)
1f we treat this value of Zio as the exact value for fading, then we

can substitute in equation (32) to get

5 D 2n,
L(n) =% |ntnl=— -1) - 28 + 2N (37)
i=1 i NB 1 B

The corresponding receiver structure is shown in Figure 7.
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Comparing Figure 7 with Figure 4 will show a three-fold simplifi-
caction. First, the likelihood function is simpler. Second, the
solution of an implicit equation for Zio is replaced by a straight-
forward averaging. Third, the need to feed in the values o2

I

and NS does not exist. The better performance of this receiver over
that of the AOR in certain cases (high values for o% ) is a result
of the fact that through the averaging process information in more

than one bit is used in the decision making.

Receiver With Stored Likelihood Function (RWSLF):

If the laser beam used for communication is strong enough, the
light wave received can be considered to be continuous. In such a
case, any intrinsic fluctuations in the intensity (apart from the
turbulence fluctuations) would be Gaussian in nature. On the other
hand, at low intensities the light received would be discontinuous
due to the quantum nature of light. The intrinsic fluctuations
would then be Poisson. The boundary between the two regimes is

not a sharp one. However, when N_, NB < 40 which is the regime

5

we are concerned with in this work, the fluctuations are

Poisson.

< 40 the photoelectron count during any bit interval

When NS, NB

is likely to exceed 100 only rarely. Even if more than 100 photo-
electrons were counted during any bit interval, one could treat it as
if no more than 100 photo-electrons were counted without increasing

the overall error probability more than 10-10, which is negligible.
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Consequently, in the case of a photon counting receiver, one may
never have to count more than about 100 photoelectrons.

The likelihood functions in equations (30) and (32) are functions

2
o 2

I’ NS’ N, and n,. By the assumptions listed earlier o NS and NB

B

are the same for all detectors in the receiver array. Also it is

reasonable to assume that c%, N

over a period of about a minute. For such brief periods,

and NB do not change significantly

2 .
L(GI, N NB’ ni) > L(ni) is a function of only n,. Since n, takes

S?
values only from 0 to about 100, L(n) needs to take only about 101
different values. Therefore, instead of calculating L(n) for each
detector for each bit (as the receilver structures in Figures 4-6
indicate), one could calculate the 101 values of L(n), store them

in a memory, and use them over again. Since o%, NS and NB change
only very slowly, the values of L(n) need to be calculated afresh
only every minute or so. This would result in a considerable

saving in computing power. For example, a receiver operating at

10° bits/sec, and using an array of four detectors, will need 4 x 10°
calculations per second. By the ;bove method, an RWSLF would need
only about 101 calculations per minute. The receiver structure for
RWSLF is shown in Figure 8. As can be seen, either AOR or SOR I or
SOR II can be brought into an RWSLF configuration. This is not

possible with ATR, since here the likelihood function is a function

of n, whose values are continuous.




CALCULATE L.F. FOR
PHOTON COUNTS 0-100

USE EQ. 30 & 31 or
EQ. 32 & 31 or

EQ. 32 & 34
1st L.F. STORAGE L(n;)
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COUNTER
5L
2nd L.F. STORAGE g L)
WV PHOTON REGISTER
COUNTER o
=
<G
[
[« W)
-
>
-t
pth L.F. STORAG
WA PHOTON REGISTER
COUNTER L(ny)

Figure 8.

34

Receiver structure with stored likelihood function.

L(2)
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Estimation of Relative Complexity in Terms of

Necessary Computing Power

The complexity of the receiver structures considered in the
preceding sections of this chapter depend on the complexity of the
functions to be computed and the equations to be solved. The
computation and solving operations can be performed either by
analog or digital methods. Analog methods are usually much faster
and may be needed if the bit rate is very large. However, analog
computing and equation solving devices are difficult to build and
are less accurate than their digital counterparts. If the bit rate
is not much greater than about 10°/sec, real time digital processing
is possible using modern microprocessors, and may be the most appro-
priate to use in the above-mentioned receivers. In such a case,
it is possible to get an estimate of the relative complexity and
cost by performing the relevant operations in a digital computer,
and noting the processing time as a measure of the computing power
needed. This was done using specially written algorithms, and the
results are shown in Table II.

While the figures in Table II indicate the relative complexity
of the indicated operations, it must be remembered that the actual
computing power necessary depends very much on the rate at which
these operations need to be performed. Consider, for example, a

communication system with a bit rate of 10°/sec and using an array




TABLE II

COMPLEXITY OF RECEIVER OPERATIONS IN TERMS

OF DIGITAL COMPUTATION TIME

36

Receiver Operation Time
Solve for Z,O (0.1% or less error)
AOR : 100
+ g2
SOR nizioNs 7 N - anio cI =0 Units
1 ZioNs + NB io' g 012
Compute Zio
- 1 B .
Zio = ——if~——— Units
S
Compute Expression )
z, N (¢nZ, + 02/2)
nn (225 41) -z W, - io 1
i NB io'S 202
I 19
AOR Units
-n,Z, NgN
)
- 1/2 n Jo? 130°B 47 n\+1
I\ n +n)2 10F
io'g B
Compute Expression
SOR
; Z, N 5.0
n £n N +1)] - Zi NS Units
SOR i B °©
I1I
Compute Expression
Zﬁi _ 5.0
—_ - - Units
ATR niln NB 1 2ni + ZNB
Locate one value of likelihood function 0.15
RWSLF in an array of 100 numbers. Units
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of four detectors. Taking the case of AOR as in Figure 4, solving
equation (31) for Zio and calculating one likelihood function in
equation (30) have to be performed (6 x 10%) times per minute. For
four detectors, therefore, the computing power needed is

4(6 x 108) x (100 + 19) (see Table II) or about 2.86 x 10%. For the
purpose of comparison, similar calculations can be done for the ohter
receivers and after rescaling 2.86 x 102 as 100 units, the relevant
values are given in Table III.

From Table III, the following conclusions can be drawn. AOR
requires the maximum computing power and hence is the costliest to
build. This is followed by SOR I, SOR II and ATR in order. However,
the least computing power is needed when AOR, SOR I or SOR II are
built under RWSLF configuration. In the latter case, the computing
power needed is almost the same whether the receiver is AOR, SOR I

or SOR II.

Measurement of the Parameters (c%, NS’ NB)

All the receiver structures mentioned above, with the exception

of ATR, need external measurement of the parameters 02, N

1 and NB'

S
The ATR needs only NB' This is a major advantage of ATR over the
rest of the receivers.

The parameter NB can be measured in the receiver itself, without
the need for a separate device. For example, if NB is independent of

time, N, can be measured by the receiver at the beginning, with the

B
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TABLE III

RELATIVE COMPLEXITY OF RECEIVER STRUCTURES IN TERMS OF NECESSARY

COMPUTING POWER FOR A COMMUNICATION SYSTEM USING FOUR

DETECTORS AND 6 x 105/MIN. BIT RATE

Necessary Computing Power
Receiver
No Storing of L.F. L.F. Stored
AOR (Fig. 4) 100 Units (Fig. 8) 0.13 Units
SOR I (Fig. 5) 88 Units (Fig. 8) 0.13 Units
SOR II (Fig. 6) 4.6 Units (Fig. 8) 0.13 Units
ATR (Fig. 7) 4.2 Units ——
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laser off, and used throughout the operation. Alternatively, the
laser, and hence the reception, may be shut off and new values of NB
measured periodically as necessary. If intermittent operation of the
receiver is not permissible, NB may be measured by a separate detec-
tor with a telescope focused to a point close to, but not including
the laser at the transmitter. With NB known, NS can be calculated

from the relationship

Ng = 2(31 =~ Np) (38)

wherelﬁi is the average photoelectron count per bit.

The value of o% can be assumed to be the saturation value (= 2.8)

if the path length is long enough to ensure saturation. Otherwise

Q
HN

can be calculated from the measurement of Ci. These methods can

be unsatisfactory for one or more of the following reasons:

1) The theoretical equation (6b) used for calculating c% from

(@]
N

n is good only for small values of 0% 1.

2) Ci can in most cases be measured only at a few points
(usually only one) along the path of the beam. It would be reason-
able to expect that the path of the beam will not be homogeneous in
general, especially due to variations in the terrain and the height

of the beam from the ground.

3) Very often a large mirror or lens may be used to collect

enough energy of the laser beam. This will inevitably result in some
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aperture averaging of irradiance which in turn will result in a lower
effective value for c% which will be different from the calculated

or saturation value for 0% .

All this would suggest a need for calculating ci directly from
the photon counting done by the receiver. Below we show that such a
calculation is indeed possible.

Let I be the irradiance at a detector, which may be the focal
point of a large mirror or lens, where I would still obey a lognormal
distribution.27 If n is the number of photons counted during any bit

interval, it can be shown that30

<10 _ nn-1) """ (n-m+ 1)>

<I>m <n>m

(39)

Considering only the receiver defined on page 13, we have

ng + ng for H;

ng for Hy

where ng is the number of photoelectrons due to laser radiation and

n_ that due to background light, where <n

B = N, and <n,> = N

s> = Ng B B

irradiance at the detector due to the laser alone and 0%, the variance

The

of log-intensity, are related by the equation
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» <I§>
exp(a) = 5
<IS>
_ <ns(nS - 1)
- 2
<ng>
<nS(nS - 1>
Ng? (41)
By equation (40)
<n(n-1)> _ 15[<(nS + nB)(nS +np - 1) + nB(nB - 1)>]
N% > (42)
Ng
Noting that <n.ng> = NNy and that <n§> = N% + Np, since
n obeys a Poisson distribution, solving equation (42) for
<nS(nS - > and substituting in equation (41) gives
2
Ng
» <ng (nS - 1>
exp(oy) =
N2
S
_ 2<n(n - 1)> _ 2NB(NS + NB) (43)
<n(n - 1)> - N (NS + N_)
2
or, (oI) = 4n 2 B B (44)

%
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Since <n(n - 1)> can be calculated from the photon counting readings,
oi can be calculated within the receiver. Hence the structure of
RWSLF can be modified and made complete as shown in Figure 9. Other
receivers (Figures 4-6) can be modified in the same way. The above
equation holds for the case when the received intensity is low
enough to be counting photons. If, however, the intensity at the
receiver plane is strong enough to be in the Gaussian regime
(superposed with log-normal turbulence), then it is not difficult

to show that

2y - 12 - -
<I<> IB IBI IB
I

2
o = in 2 (45)

where I is the detected signal for any bit, IS is the average
current due to the laser light alone and IB is the average current

due to background light alone.

Effect of Approximating the Likelihood Function on the

Performance of Multi-Detector Receivers

In the last few sections we have been considering some approxi-
mations in the likelihood function. This was done because the complex-
ity of the likelihood function is directly related to the complexity of
the receiver structures. Any approximation leading to a simpler like-
lihood function can also lead to simpler receiver structures. These
approximations also affect the performance of multi-detector

receivers.
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n,
_p| CALCULATE Ng
EQ. (38)
5
S NB CALCULATE L.F. FOR

PHOTON COUNTS 0-100

2 J
™1 | CALCULATE o2 oZ USE EQ. 30 & gl or
 an g I EQ. 32 & 31 or
EQ. (44) EQ. 32 & 34
1st L.F. STOPAGE L(n))
A\ PHOTON  —&P{  REGISTER
COUNTER | n
2nd L.F. STORAGE 2 L(n,)
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Consider the communication system defined on page 13. When

hypothesis H; is sent, the probability that a detector in the

receiver array detects n photoelectron counts is given by the
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probability density function p; (a, b, ¢, d, n) where a, b, ¢ and d

are the parameters characterizing the channel and the signal strength.

The corresponding density function for the hypothesis H, is

pola, b, ¢, d, n). If the system uses an array of D independent

detectors, the probability that the array detects o is

D
-S>
Pl(n'H]_) = igl Pl(a, b, ¢, d, ni)
R D
and PO(nIHo) = izl py(a, b, ¢, d, ni)
The likelihood ratio is
; ;
R a, b, ¢, dy, n n,
A@y = 1 Pi(a, b, ¢, 4, ny) = 1=1 Pilny) suppressing the
- D g dependence on
iEl Pg(a, b, C, d, ni) i=1 Po(ni) a, b, c, d.

Let U(A) be a unit step function defined as

1if A>1

o) = 0.51f A =1

0if A <1

(46)

(47)

(48)

(48a)
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Therefore for a given bit with detection of';, the probability of

false alarm is

> D
Pp(n) = 4 l:.H po(ni)} u(h) (49)

i=1

The probability of false alarm for the system will then be

.
= =1
Po _rZ: Pp (n) =%

D ->
|: n Po (n)] U(p) (50)
i=1

=R A}

>
where the summation is done over all the possible values for n. In

a similar way the probabilities for a miss are given by

D
p(R) = % [iﬂl Pl(ni)] [1 - U(A)] (51)
Py =% | 1 e || 1-u
M 3 o1 i = (52)

This leads to a total probability of error for the system

= 1
=2 _Z*
n

D D
{ I Po@) v + I Py [1- 0w ] (53)

In writing the above equation for the error probability of the

system, we have assumed an exact knowledge of the forms of the
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functions Pl(“i) and po(ni) to determine the 1likelihood ration as given
in equation (27). This is obviously the ideal case and the receiver
using this likelihood function gives the least error probability
possible for the given channel and signal parameters. This receiver
may therefore be called the "Exact Receiver." In a real case the
exact forms or values of pl(ni) and po(ni) are not available and
are usually substituted by the approximate forms or values P, (ni)
and p'(ni). This may be due to various causes such as imperfect
modeling of the channel, errors in the estimation of the relevant
parameters and deliberate approximations as in section III of this
chapter.

Using pa (ni) and pi (ni) we write the counterpart of
equations (48) - (53).

D
-n '
i=1 P1(ny)

AT() =
I Potay) (54)
PI@) = %| .1, Potn,) | U’ (55)
p) =% 4y Polny =
' D
PRoo-ul J Potmy) | vaan (56)
1,7 1 D 1
Py(n) = 4[121 Pl(ni)] [1 - U@") (57)

1 — D \
By =41 { [1£1p1(ni):| [1 - UA )] } (58)
n
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P! =% 3 %p(n)U(A')’Fg ( )[1—U(A')] (59)
E S P I =

Equations (53) and (59) are of primary interest. In Appendix
A it is shown that PE as in equation (53) is a monotonically
decreasing function of the number of detectors D. This should
not be surprising, since this only means that the performance of the
receiver improves with increasing number of detectors. However, the
same cannot be said of Pé as given in equation (59), and Pé may
sometimes increase with increasing D. This is proved below by a
counter example. To make the example easier and hand verifiable,
only a simplest case is presented.

Consider the receiver system defined on page 13 and using an

array of independent detectors where the functions Pys Py p6 and pi

are defined in Table IV.
Using equations (48), (53), (54) and (59) and Table IV we
calculate PE and Pé for various values of D. The results are as

shown in Table V.




TABLE IV

PROBABILITY DENSITY FUNCTION FOR A SIMPLE

CASE OF "EXACT" AND REAL PHOTON

COUNTING RECEIVER SYSTEMS

n po(n) p, (n) p‘; (n) pi(n)

0 0.30 0.10 0.38 0.17

1 0.70 0.90 0.62 0.83

=2 0.00 0.00 0.00 0.00
TABLE V

ERROR PROBABILITIES FOR THE "EXACT'" AND

REAL RECEIVERS OF TABLE IV

D Py Py

1 0.399999 0.399999
2 0.339999 0.339999
3 0.306999 0.306999
4 0.291999 0.351999
5 0.288789 0.304839
6 0.267219 0.267219
7 0.239555 0.239555
8 0.221096 0.294931
9 0.210579 0.257900

48



49

It is evident that while the performance of an Exact Receiver
using multiple detectors should get better with an increase in the
number of detectors, that of the Real Receiver can deteriorate
sometimes with an increase in the number of detectors. Though
here we have considered only quantum signals, the extension to con-
tinuous signals should be obvious when letting the number of possible
counts tend to «. While the result may be surprising, it appears
that this reversal of performance is noticeable only in the case
of channels with inherently high error rates and when the values of

pé and p{ are very poor approximations to p, and p, respectively.

A second point of interest as seen from Table V is the fact
that PE and Pé are identical for the first three detectors. This
shows that in some cases the performance of a Real System can be
indistinguishable from that of an Exact System. This, of course,
is a consequence of the quantum nature of the signals. This fact
is very easy to see in the case of a single detector receiver.

For example, in a certain case, the Exact Receiver may use a thresh-
old count of 3.6 while that of a Real Receiver may be using 3.4.

Since there can be no fractional counts, both receivers make identi-

cal decisions for Hg or H; for all bits,
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Conclusion

In this chapter we first considered the theoretical basis and
the assumptions involved in deriving the approximate optimum receiver
structure for the photon counting receiver using a laser beam as the
carrier, and the atmosphere as the channel. Since these structures
are complex, simpler structures were sought in order that a better
trade off between complexity and performance might be obtained.

This was done by approximating the likelihood functions and the
equations for stationary fading, and by using an adpative threshold.
The relative complexity of these receivers was estimated in terms

of the computing power that each receiver may require during
operation, for a communication system operating at 10° bits/sec

and using an array of four detectors. Since the likelihood functioms
in a photon counting receiver system have only a finite number (about
100) of values, a receiver structure which could store these values
and use them over again may need the least computing power and hence
be the least costly. Also, the receiver structures were modified to
include the measurement of NS and c% from the photon counting readings.
Finally it was pointed out that gross approximations in the likelihood
function can sometimes lead to an increased error rate for increased
number of detectors.

A final evaluation of these receiver structures leading to

definite choices is not possible until the actual performances of
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these receivers are also known. An experimental investigation of the
error rates for the receiver structures discussed above is the subject

for the next chapter.
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CHAPTER 4
EXPERIMENTAL INVESTIGATION OF ERROR RATES OF

PHOTON COUNTING RECEIVERS

In Chapter 3 we considered the theoretical work of Teich and
Rosenberg3 leading to the optimum receiver structure for the case
of a photon counting receiver using a laser beam as the carrier,
the clear atmosphere as the channel and an array of detectors at
the receiver plane. For the case of partially correlated fading
at the detectors the receiver structure was too unwieldy, especially
due to the covariance terms. The assumption of independent fading
at each detector led to an approximate optimum receiver that was
considerably simpler in structure. Additional receiver structures
were considered in an attempt to find even simpler structures with
a better trade off between complexity and performance. 1In this
chapter we consider the experimentally investigated performances
of the receiver structures considered in the earlier chapter.

Error rates are experimentally measured for the following receiver
structures:

1) AOR - The Approximate Optimum Receiver developed by Teich
and Rosenberg for independent fading at each detector. (It is called
"approximate" because a lognormal distribution for irradiance is
assumed and because its development involved certain approximations
involving the evaluation of integrals by the method of steepest

descent.)
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2) EER - The "Exact'" Experimental Receiver is a hypothetical
receiver without any of the approximations in AOR. (Because Teich
and Rosenberg predict relatively high error probabilities for AOR,31
part of the aim of the experiment was to find out how much the
performance of AOR is affected by the above mentioned approximations.)

3) SOR I, SOR II - Suboptimum Receivers derived directly from
AOR. (The simplicity of these receiver structures compared to AOR
is very appealing.)

4) ATR - The Adaptive Threshold Receiver. (This receiver as
described in the last chapter is both simple and performs better
than the AOR.)

Also, probability density functions for the photon counts for log-
normally faded irradiance have been reported by Diament, Teich and

3, 32 In the present effort the probability distribution

Rosenberg.
for the photon counts is determined experimentally and is compared
with the theoretically predicted distribution.3 The experimentally
determined distribution functions are then used to calculate the
error rate for the EER.

Finally, the error rates of the above receivers as a function
of the number of detectors in the array are determined up to four

detectors. For the case of the ATR, the error rates are also deter-

mined as a function of the averaging for the adaptive threshold.
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Experimental Approach

It was judged to be impractical to measure the error rates for
all of the different receiver structures (each with 1, 2, 3, and 4
detectors) under identical atmospheric conditions in order to compare
their performance. The variability of the weather is one reason.

It has been observed by others27 and also in the preliminary experi-
ments of the present effort that the structure parameter Ci and the
variance of log-intensity G% can vary considerably in a few tens of
minutes. The cost and complexity of the experiment is another
reason. Consequently a different approach, as outlined below, was
used.

An amplitude modulated photon counting signal was transmitted
and received under measured conditions of the atmosphere. For each
bit period, a step voltage of height proportional to the number of
photoelectrons counted in the bit interval was generated by pulse
integration. The resulting wave form, as shown in Figure 10, was
recorded in an instrument tape recorder. These voltages, and hence
the data regarding the photoelectron counts, for the measured atmos-
pheric conditions could be reproduced any number of times in the
laboratory. The reproduced data was given as the input for the
processors of the various receivers considered above. Thus the per-

formance of these receivers could be compared under identical

atmospheric conditions.
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In the last chapter it was explained that digital processing of
the data for the purpose of decision making is possible in the case
of the photon counting receiver system. For this reason, it was
thought to be appropriate to use an existing digital computer for
the processing in the present experiment. This way, the costly
hardware and labor for circuit-building was exchanged for the
relatively easy and more flexible software preparation, without
sacrificing the truthfulness and usefulness of the results.

Determination of the error rate for an array of D detectors
would need the data for the photoelectron counts from D different
detectors distributed spatially. However, in the present effort we
are interested only in the case where one can assume independent
fading for each detector. This makes it possible to use the
data from only one detector exchanging spatial diversity for time
diversity. In exchanging spatial diversity for time diversity, we
take the data from a single detector and displace it in time by T,
seconds to obtain a sequence of data for the second detector, displace
it by 2T; seconds to obtain the sequence of data for the third detector
and so on (see Figure 11) If T; is large enough, the statisti-
cal independence of any one sequence from all others can be assured.
In the experiment, it was found that in all cases, the autocorrela-
tion of the irradiance was zero (within experimental errors) if the

temporal displacement was greater than about 50 msec. Three of the
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extreme cases of autocorrelation curves are shown in Figure 12. In
the actual experiment a displacement of 222 msec was used to obtain
the data for the second detector, a displacement of 444 msec for

the third detector, and so on.

The Experiment

The schematic of the transmitter is shown in Figure 13. The
transmitter consisted of an argon ion laser with vertical polarization
and operated at 0.4830 um wavelength, with a chopper modulator. The
beam was focused to a spot of about 0.02 mm on the wheel. The
chopper wheel had 150 rectangular slots ( 1 mm x 6 mm) with approxi-
mately 27 per cent duty cycle and was driven by a synchronous
motor.33’ 34 The beam pointing error discussed in reference 33 did
not arise in this case because of the focusing of the beam on the
wheel. So, 4500 pulses/sec of nearly rectangular shape, 60 usec
duration and 222 y sec period were transmitted through the atmosphere.
The middle 40 usec of this 60 usec pulse duration was treated as the
bit interval corresponding to a hypothesis Hj. Another 40 usec
interval in between the 60 usec pulses was that corresponding to the
hypothesis H; (see Figure 14). This results in a bit rate of 9 kHz.

The beam travels horizontally at a height of about 2.2 meters
above extremely flat farm land. The distance between transmitter and
the receiver was about 1.25 kms. The 1/e? intensity of the beam at

the receiver plane was adjusted to a diameter of about 3 meters with
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detectors being at the center. The laser was operated at a power
level of about 200 mW. All experiments were done between 11 a.m.
and 3 p.m. The turbulence could be expected to be well developed
during this time of the day. 1In all cases, the strength of
scintillations was almost in saturation.35 As will be seen later,
the assumption of lognornal statistics even in saturation gives

a good agreement between experimental and theoretical results.

At the receiver end, there were three detectors, each for a
specific purpose. The one of primary interest here is the photon
counter. This consisted of a photomultiplier tube with a tele-
scope at the front to collect the laser beam. A schematic of
the optics making the telescope is shown in Figure 15. The signal
to noise ratio was increased by the use of a narrow band filter
at the front of telescope. The neutral density filters reduce
the intensity of both the laser and the background light. 1In
this way the laser beam intensity was adjusted to a mean photo-
electron counting rate on the order of 50/bit interval while the
background intensity was reduced to a very insignificant level of
less than about 0.2/bit interval. Such a reduction of the actual
background intensity was done purposely to help minimize any
abrupt and unexpected changes in the background light (due to a
passing cloud, for example), thereby rendering the parameters

uncontrolied. Our preliminary experiments showed that such abrupt
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variations in the background light can occur. Additional background
intensity, when desired for reduced signal to noise ratio, was
provided through a translucent window at the side of the telescope.
The window was illuminated by a small incandescent lamp whose
intensity could be controlled by adjusting the d.c. current for

the lamp. This way, any desired value of N the mean background

B,

photoelectron count/bit interval could be set. A polarizer at the

front of the neutral density filters provides a finer control over
the intensity of the laser beam. This provides a control on NS
the mean photoelectron count/bit interval due to laser light.
Careful consideration was given to choosing the field of view
for the telescope. Due to turbulence the angle of arrival of the
signal wave varies randomly.36-38 Choosing too small a field of
view can therefore result in the loss of the beam sometimes. On the
other hand, too large a field of view will unnecessarily increase
the background light. It must be expected that the range of varia-
tion of the angle of arrival of the wave can be considerably higher
for small apertures than for larger ones. This is because, for a
small aperture, the angle of arrival can vary not only due to the
variation in the general direction of the wave front but also due to
the local distortions in the wave front. For a larger aperture,
the later tend to average out and hence play a negligible role

(Figure 16). In the present case the aperture was chosen to be 2mm
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diameter. Since the Fresnel zone size (/Kf) is 25 mm, 2 mm is
small enough to assume complete first order coherence over the
aperture. The probability of the angle of arrival of the signal
was experimentally measured by orienting a telescope of 4 mm
diameter in different directions with respect to the laser beam,
and measuring the photon counting rate. A typical result is shown
in Figure 17. The full angle of arrival fluctuation is as high
as 10 milliradians, or about one-half degree. The field of view
for the receiver telescope was chosen to be about 40 milliradians
to allow for a good margin of error in the alignment and drifts
later on.

The photon counter used a photo-multiplier tube (RCA 8850)
followed by an amplifier and discriminator unit (PAR 1121) which
suppresses the noise pulses and generates a standard pulse of a
constant height (® -1 volt) and width (= 15 nsec) for every photo-
electron pulse from the PMT. These pulses are then integrated to
obtain a voltage proportional to the number of photoelectron counts
for each bit interval (Figure 10). These voltages are then recorded
on an analog tape using an instrument tape recorder (Ampex 1300).

A second detector, almost identical to the above, except that
there were no neutral density filters and that the PMT, RCA 931A (see
Figure 18) was used to measure the irradiance (no photon counting).

The detected signal was integrated over every bit interval and the
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resulting wave form (similar to that in Figure 10) was simultan-
eously recorded on the analog tape in another channel.

The reference signal was obtained by using a large Fresnel lens
(40 cm x 20 em) to collect light from the laser beam. The large
aperture reduced the turbulence fluctuations considerably. The
light was then detected by a semiconductor diode. The resulting
voltage signal was then processed to obtain the timing and gating
pulses for the integration. The gating pulse was also recorded
simultaneously on the analog tape in a third channel to provide
the clock pulses for reproduction of the data. The block diagram
of the three detectors is shown in Figure 19.

The block diagram for the reproduction of the data is shown in
Figure 20. A faithful reproduction of the recorded voltages was
achieved in the following way. The reproduced voltage wave form
was passed through a carefully designed filter. The voltage levels
of the resulting wave form were made to coincide with the voltage
levels of the recorded wave over a small portion (= 20%) of the
period by adjusting the filter components. Voltage readings were
taken over these portions of the wave form (see Figure 10). The
measured voltages were then written on a digital tape. Recovering
the data for photon counts or irradiance from these voltage readings
was then straight forward.

Before doing the actual experiment, careful preliminary experi-

ments were done at every stage with the aim of finding and weeding



CONTROL AMPLIFIER PULSE
SR i p——o0
OPTICS PMT DISCRIMINATOR INTEGRATOR 10
ﬁ 7 ﬁ CHANNEL A
OF
RECORDER
DIODE MARGINAL PULSE — -0
DETECTOR [P O0SCILLATOR [ GENERATOR TO
CHANNEL C
OF
RESNEL RECORDER
LENS
CONTROL SIGNAL
P r—C)
OPTICS PMT INTEGRATOR 70
CHANNEL B
OF
RECORDER

Figure 19.

Block diagram of experimental photon counting receiver and data recording.

0L



——— e i ———— — ———— ——— — — ——— —

-
| PDP 11 -l
CHAN. DATA | {
Lod-0——D '
A STCNAL FILTER x5 i :
© (=4 |
cax. | c2f bl 2 8|
| 4
| % E E Ev—'c‘ 3] % I
CHAN. CLOCK SATURATION PULSE ! PULSE z § S E E § !
c storar | AMPLIFIER GENERATOR -J:ﬂ DELAY !
. i
! 1
e e e —
Figure 20. Block diagram for playback and data retrieval.

1L



72

out any bugs. One such finding was that setting the voltages in the
PMT to obtain maximum S/N ratio may not be the optimum thing to do
in the case of a photon counting receiver. The reason for this is
that in this operation there can be bursts of noise pulses which
tend to increase the rate of false alarm of the receiver system.
Further, it was found that this problem can be overcome by slightly
increasing the "optimum" threshold voltage. Details of this effect
are given in Appendix B.

When the experiments were done at the field site the values of
NS a;d NB were set approximately to desired values. Observations
were made for the wind velocity in the direction perpendicular to
the path of the beam. Since the wind velocity was fluctuating
only an average and approximate value was recorded. The value of
Cg at about the same height as the beam was measured using a Contel
MT-2 meter,

Preliminary analyses of the data showed that in order to ade-
quately and smoothly represent the distribution of the temporal
fluctuations of irradiance, a minimum of 10 sec length of data would
be needed. Therefore in all cases of data processing a minimum data
size of 102,400 bits (11.3 secs) was used. A larger data size was
used when it was deemed necessary. For each experimental run, the
variance of log intensity and the autocorrelation for the temporal

fluctuations (Figure 12) were determined from the data for irradiance,
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The counterpart of the data from the tape for the photon counting

was used to determine the probability distributions for photon counts
for hypotheses H; as well as Hp. These curves are given in

Appendix C. The same set of data for photon counting was then used
to determine the probability of error for the EER, AOR, SOR I, SOR II
and ATR. These probabilities were also determined as a function of
the number of detectors up to four. For the case of the ATR the
error probability was also determined as a function of the averaging.
These results are listed in Appendix C. However, the relevant data

needed for the discussion are presented in the subsequent pages.

Discussion of the Results

An inspection of the probability distribution curves for the
photon counts (Figures 21-23) shows that on the whole there is good
agreement between the experimentally measured and the theoretically
calculated values using equations (30) and (31) in Chapter 3. The
agreement is better in the region of low counts, which is the most
important region as far as error rates are concerned. Because of the
generally good agreement between the measured and calculated values
of the probability distribution functions, one might expect the same
for the error probabilities. As can be seen from Figures 24-26, this
is indeed so. Curiously, in almost all cases experimentally measured

values are slightly better.
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Figures 27 and 28 illustrate the relative performances of the EER,

AOR, SOR I, SOR II and ATR. First, consider the cases of the AOR and
EER. In Figure 27 we note that the performances of the AOR and EER are
indistinguishable. The reason for this is twofold. First, the
approximations made in the development of the AOR are very good
approximations and the difference between the AOR and EER is really
very small. Secondly, these small differences could not show up in
the error rates because of the discrete nature of the likelihood
function. This fact was demonstrated in the last chapter, section
V. However, when NS and D are increased, the likelihood function
tends to become "'less discrete" in nature. In such cases the differ-
ences between the AOR and EER can show up. This point is clearly
seen in Figure 28. 1In all, it appears that the thoery of Teich and
Rosenberg is a valid theory and so could be used with confidence in
designing the AOR system and predicting its performance.

Next let us compare the performance of the AOR and ATR.
McIntyre and Churnside29 predict that the ATR can perform better than
the AOR if the bit rate is sifficiently higher than the scintillation
frequencies. This, as we saw earlier, is because by averaging over a
large number of bits over a period much smaller than the scintillation
time, a very precise value of the fading can be obtained, which is
better than that estimated from equation (31). Figure 27 shows that in

such cases the ATR does perform better than the AOR (and EER, for that

matter). This, combined with the fact that the ATR has also the
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simplest structure (see second column of Table III) and that the ATR
does not need the values of 0% and NS can very well make the ATR a
very good choice. Figure 28 shows a case, however, where the ATR per-
forms poorer than the AGR. The reason why this is so in this case is
simply that due to winds perpendicular to the path of the laser beam
there were high scintillation frequencies. This can be easily seen
from Figure 12 which shows the autocorrelation function for the

cases considered. Simple calculations using Figure 12 will show that
the scintillation frequencies for the run 34 are roughly 10 times
greater than that for the run 5. Therefore it would be reasonable

to conclude that if a bit rate of 90 kHz (instead of 9 kHz) had been
used in the experiment, the ATR could be shown to perform better

than the AOR in the case of run 34 as well.

From the above considerations, we might expect that the ATR will
perform very well provided the bit rate is large enough in any given
practical situation. This is an easy condition to meet: One only
needs to know how large is ''large enough." To get some rough idea of
this "largeness' of bit rate we lo&k at Table VI. Table VI shows the
performance of the ATR for different averaging for the runs 34 and 35.
As can be seen, an approximate period for the optimum averaging is
about 4/9000 sec (= 0.5 msec) for run 34 and less than 2/9000 sec
(= 0.2 msec) for run 35. In the experiment about 10 to 20 bits

averaged over during this period can give a good averaging. This is




TABLE VI
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NUMBER OF BITS AVERAGED OVER VS. ERROR RATES FOR ATR

(In all cases the number of detectors is one.)

Run 12 Run 34 Run 35
N PE N Po N Po
12 | 2.94 E-1 2 8.46 E-2 2 | 6.04 E-2
16 | 2.91 E-1 4 8.20 E-2 4 | 6.32 E-2
20 | 2.91 E-1 6 8.56 E-2 6 | 6.58 E-2
24 1 2,91 E-1 10 9.45 E-2 10 | 7.58 E-2
28 | 2.93 E-1 14 1.02 E-2 14 | 8.46 E-~2
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because in the experiment the H; bits and Hy bits alternate regularly
and equal number of H; and Hy bits for the averaging is obtained by
simply averaging over an even number of bits. But in a practical
situation this condition is to be met by choosing "large enough"

number of bits. It is easy to show that

= 104 —0— (60)

84,

2
t

where N is the number of bits averaged over, 9, and q, are the
a priori probabilities for H; and Hy, and g is the percentage of RMS
deviation of H; bits from the expected value qu. It should be noted
that in practical cases the error in the calculation of Zio using
equation (36) depends mainly on the deviation of the number of
H; (or Hy) bits from the expected value. Assuming we allow a nominal
value of 10 (%) for g and noting that q, and q, are equal we find that
N is 100. Thus we arrive at a bit rate of a minimum of 200 K/sec
for the case in run 34 and 500 K/sec for the case in run 35.

One other point we may mnote in connection with the AOR and ATR
is that the curves in Figures 27 and 28 are approximately linear. This
indicates an approximately exponential decrease in the error rates of
AOR and ATR as the number of detectors is increased.

Finally, taking the cases of the SOR I and SOR II, we note they

do not perform well. A reference to Table III may show that these
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receiver structures are considerably simpler in comparison with the
AOR and this was the motivation for us to consider these receiver
structures. But, because of their poor performance these receiver
structures will be ignored in the subsequent discussion.

Figures 29 and 30 show that as NS increases, the error rates of
both the AOR and ATR decrease in the same general manner. However,
the error rates of the ATR are somewhat higher here, because of winds,
resulting in high scintillation frequencies.

Finally we will briefly discuss the question, "What kind of
error rates are possible in a photon counting communication system
using a non-focused laser beam through a clear air turbulent atmos-
phere?'. Figure 31 is indicative of the practical error rates using
the AOR. 1In our experiment only point detectors were used, since
point detectors are more fundamental than finite size detectors.
Also, all experiments were done at turbulence levels close to satura-
tion. Again this is because such levels of turbulence are more
fundamental; in most practical cases if the path length is more than
a few hundred meters, saturation is inevitable.35 As such, the experi-
mental results for PE should be considered as worst case values. In
real cases, however, the detectors can be of considerable size.

This can reduce the effects of turbulence through aperture averag-
ing, resulting in a smaller value for o2. Therefore, the practic-

I

ally possible receivers can have error rates better than what
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Figure 31 shows. An investigation of the Photon Counting Receiver

System using finite size detectors was beyond the scope of the present
effort. However, we saw earlier that the results of this investiga-
tion confirm the validity of the theory by Teich and Rosenberg.
Therefore, we can now use the calculations from the theory to get
some understanding of the performance of the system in areas not
directly covered in this experiment.

The curves in Figures 32-34 were obtained from the theoretical
calculations. An examination of these curves brings out two
important facts.

1) When the turbulence is low (o% 5_0.01) all of the constant
P_ curves are parallel to the ¢2 axis. This means that at these low

E I

turbulence levels, the P_ can be reduced only be increasing S/N

E
ratio. This also means, as a corollary, that if U%.i 0.01, there
is little to be gained by reducing o% even further.

2) When the turbulence is in saturation (o%_i 2) all the
constant PE curves tend to be parallel to the Ns axis. This means
that at these levels of turbulence, increasing NS even by a large
factor is not likely to improve the error rate very much. On the
other hand, reductions in o% even by a small factor can result in
considerably lower values for PE'

Tables VII-A and VII-B were prepared using theoretical calcula-

tions, to see the degree of improvement possible using finite
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TABLE VII-A

PROBABILITY OF ERROR AS A FUNCTION OF o2 AND D

(NS = 30.5, N

B 1.3)

I
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No. of Detectors

2
°1
1 2 3 4
Experimental 1.0 E-1 3.2 E-2 1.1 E-2 .0 E-3
2.5
Theory 1.2 E-1 4.1 E-2 1.4 E-2 .3 E-3
1.0 Theory 3.7 E-2 4.6 E-3 6.3 E-4 .1 E-5
0.5 Theory 1.1 E-2 5.0 E-4 2.5 E-5 .4 E-6
0.2 Theory 1.8 E-3 1.2 E-5 1.4 E-7 .3 E-9
0.1 Theory 3.4 E-4 7.5 E-7 1.5 E~9 .7 E-12




TABLE VII-B

PROBABILITY OF ERROR AS A FUNCTION OF 0% AND D

(N, = 44.2, NB = 0.29)

S
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No. of Detectors

2
°1
1 2 3 4
Experimental | 5.5 E-2 9.4 E-3 3.9 E-3 4.1 E-¢4
2.2
Theory 5.4 E-2 8.9 E-3 1.7 E-3 3.2 E-4
1.0 Theory 1.0 E-2 4.4 E~4 2.1 E-5 9.9 E-7
0.5 Theory 1.7 E-3 1.3 E-5 1.1 E-7 9.7 E-10
0.2 Theory 6.5 E-5 2.4 E-8 1.2 E-11 6.8 E-15
0.1 Theory 4.2 E-6 9.9 E-11 3.1 E-15 1.1 E-19
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size detectors and hence some aperture averaging. The tables show
that even with good aperture averaging, the use of multiple
detectors may be necessary to obtain low error rates of the order of
1076 or 1less.

As one final point it must be mentioned that adding more detectors
to improve the performance (it was mentioned that performance improves
approximately exponentially with each additional detector) can be
relatively an easy thing to do. This is because each additional
detector costs proportionately less. The end of Section II and Section
111 of Chapter 3 discuss how the discrete nature of the likelihood
function is useful in cutting down the digital processing costs after
each detector.

To sum up, on the basis of the results of the present investiga-
tion as explained in Chapters 3 and 4, one may confirm the following
conclusions.

1) The work of Teich and Rosenberg3 provides a good
theoretical basis for the receiver structure and for calculating the
error rates for a photon counting receiver using a turbulent channel
modeled by a lognormal distribution for irradiance.

2) Assuming independent fading for each detector, the approximate
optimum receiver is very nearly as good as the exact receiver under
the given channel and signal parameters.

3) The adaptive threshold receiver performs better and also is

less complex when compared to the approximate optimum receiver. A
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practical adaptive threshold receiver may require a bit rate that
is greater than 500 K/sec.

4) The decrease in the error probability of both the adaptive
threshold and approximate optimum receiver with the increase in the
number of detectors is approximately exponential.

5) The suboptimum receivers derived from the approximate
optimum receiver perform poorly.

6) Receiver structures other than the adaptive threshold

2

receiver need the values of OI

and Ng for their operation. These
values can be evaluated from the photon counting readings and do not
require separate measurement.

7) The receiver structure configuration with stored likelihood
function considerably reduces the computing power needed for digital
processing. For this reason, this configuration may be very appropri-
ate when large bit rates are used.

8) Error rates of the order of 10”6 or less can be obtained by
the combined use of aperture averaging as well as multiple detectors.

9) The selection of the operating voltages for the photon count-
ing PMT to achieve maximum S/N ratio may not always be the best. At
least in come cases this may result in high rates of noise pulses

causing false alarms. The situation may be remedied by simply

increasing the threshold voltage slightly (about 25% - 50%).



98

CHAPTER 5

SOME GENERAL CONSIDERATIONS FOR PHOTON COUNTING RECEIVERS

In this chapter we briefly consider a few more aspects of a photon
counting receiver, which were not part of the present thesis, but
nevertheless are important in one way or the other. After overcoming
the deleterious effects of the turbulence, the forbidding weather
conditions would be a very major concern especially in those areas
where clouds, fog, snow or rain may all too often interrupt the path
of the laser beam.

There are two aspects to the above problem. One is that the
prevailing weather conditions may cause a total or near total extinc-
tion of the beam. In such conditions the most reasonable thing to do
might be to shut off the communication and wait for clearer weather.
The possibility of boring a transparent hole through the fog, cloud,
etc. by the laser beam was considered by Sutton11 and Harney.12
Their calculations indicate that no significant hole boring can
happen at moderate power levels, especially if the fog or cloud is
fairly thick.

In the case of satellite to earth communications the above
problem may be overcome in a different way by setting up receiver
stations in more than one place which may have a minimum of weather

correlation.6 So, if one station could not receive due to bad
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weather conditions, the transmission may be directed to another
station where conditions may be favorable.

The other aspect concerns the drift from the expected perform-
ance of the receiver. 1In all communication systems, one needs the
assurance that the error rates of the system will not increase
beyond a maximum prescribed value due to any inadvertent changes
in the conditions under which the system may have to operate.

Drifts and changes can occur in the uncontrollable parameters
resulting in changes in the performance. A photon counting communi-
cation system designed and optimized for clear turbulent conditions
may well be able to operate without serious interruption in a lightly
rainy or mildly foggy condition. However, one should expect a drift
from the expected error rates for the system. An understanding of
the magnitude and nature of these drifts, and possible methods to
predict and cope with them need to be investigated in order to
"better optimize'" the system and make it more usable under these
mild conditions of weather. It might be possible that the error
rate of the system could be monitored and displayed continuously,

so that the operator could decide whether to go on or to shut off
the system.

The use of high bit rates in the photon counting receiver system
may be desirable on many occasions, ¥For example, the adaptive

threshold receiver requires a high bit rate of transmission. But
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high bit rate makes certain other problems more severe. For example,
a  photon counting receiver system operating at 10® bits/sec and

NS = 20 will have to be able to count about 5 x 107 random events per
second. This would require a resolution better than 1 nano second,
which might be hard to obtain in discriminator circuits. The dead
time of the PMT will also begin to play a significant role, unless
more sophisticated crossed field versions of PMT are used. In such
cases one possibility is to calculate the new probability distribu-
tion function for photon counts after taking the dead time effects
into account, and use it to describe a new receiver structure.

Such a calculation for the probability density function has been done
for free space by Canton and Teich.39 The effects of the dead time
on the error rates of the receiver system as compared to without

dead time has been numerically calculated by Stephens and Davidson.4
From their calculations it appears that the degradation may not be
very much (™~ 1 db), This might be expected because dead time

effects are serious only when there is a surge of photons coming due
to high intensity of the received beam. But most of the errors occur
only when there is a low intensity of the beam due to fading and the
problem of dead time of the PMT is not likely to affect the error
rates here. However, in a system in which the extreme variations in
the intensity due to turbulence have been reduced to a minimum by a

good aperture averaging, the dead time effects can more significantly

affect the performance of the receiver.
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At very high bit rates, since the photoelectron pulse counting
could become extremely difficult (if not impossible), one may have
to resort to passive R-C integration of pulses with no dumping
between subsequent bits. This would mean the system would retain
a memory of the previous bit. Fluchel et al. have calculated the
resulting degradation in performance for such a case for the free
space channel and pulse position modulation and report a typical
degradation of an order of magnitude in error rates.41 High bit
rates can also give rise to a channel with memory due to pulse
stretching. There has been at least one report that due to
multiple scattering in clouds the pulse stretching can be reduced
by narrowing the field of view so that only the direct beam is
received.15 But then, in situations where the beam intensity has
been reduced by the presence of clouds, etc., the field of view may
need to be increased to collect more energy from the scattered
light.l6 This means an intelligent compromise will have to be made
here,

Time synchronization is another problem which is more serious
in the case of a photon counting system. Because of this a separate
channel dedicated only to transmitting synchronization pulses may
be needed. In practice, this can be done using a single laser, by
using one polarization for sending the message, and using the other
for sending the synchronization information. For the case in

which a separate channel for the synchronization pulses is wused,
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Haney and Gagliardi have investigated the density function for the
phase error of a phasenlocked loop following photon countin detec~
tion.42 Gagliardi shows that the increase in the error probability
of the system due to error in time synchronization is more for on-off
keying than for a binary pulse position modulation system.43 Inter-
estingly, he also observes that for the OOK system, there is an
irreducible minimum error rate which cannot be overcome by any other
means except by switching to a different modulation. He further
observes that increasing the signal strength, instead of improving
the performance, may actually degrade it in such a case. However,
it must be pointed out that his observations could be true only for

an OOK system using no guard rings (i.e., no dead space between

adjacent bit intervals). If the guard rings are wide enough to
accomodate the error in time synchronization, the above observations
for an OOK system need not be true. Titterton44 has presented
several graphs showing the degradation of performance of a system
due to timing errors for several cases,

It must be noted that all of the above works on the timing errors
and the resulting degradation assume a free space channel, i.e., no
random fading due to turbulence., Naturally one should expect a more
serious degradation for a turbulent channel and work in this area to
date is minimal. For the present, however, it might be said that to

reduce the effects of timing errors, it would be desirable to make use
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of as short pulses as possible and to use a separate channel for
sending the synchronization pulses. Also, using a separate channel
for sending the synchronization pulses would be very helpful in case

a continuous monitoring of the error rate of the system is needed.
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To prove that PE

we start with equations (48) and (53) of Chapter 3.

1
P pl(n‘)
_]_\(;) = 1];)1 1
i=1 Po(ny)
e D
Py =R T Pom) UW + T P [1-vw]
n [i=1 i=1

To save writing we may use the following substitutions.

D

I Pl(n ) = a
=1 1

D

I Po(ni) =b
i=1

Equation (2A) then becomes

[en}

& | }

PE=%_§{bU(%) +a1-
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is a monotonically decreasing function of D

(14)

(24)

(38)

(44)

(54)

P_ is the error probability for the exact receiver using D detectors.

E

+
The summation is done over all possible D dimensional vectors n.

Let
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PEl be the probability of error for the same system using (D + 1)

detectors. Then,

NO aPl(n.)
P =%z I bPyn))U —1
El >3 n.=0 N b Po(nj)

(64)
N P
+ ZO aPi(n,) 1-U(a l(nj)
n,=0 J b Poln,)

where Ny is the maximum count per bit that is possible in practice.

NO a pl(n )
Pp_-P_ =%3zlbu@- : by (n.)U(——j—)
E El > b 0. =0 03 b Po(nj)
(74)
[ a] No ) [ (a p1<n.))]
+all-UE) - I a p.(n, 1-0|——
b n‘=0 1 3 b po(nj)
Ng
Noting that n2=0 a Pl(nj) = a, and collecting terms together,
- =1 - a
Pp = Ppy = % é [(b a) U(b)]
(84)

. a Py(n,)
_ S A
+ T [a Pl(nj) b Po(nj)] U<b po(nj))
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i

Say, Po E1 L1 [Ty + T, ] (94)
n

We may note that Ty < 0 and T > 0. We may further note

nz-:o(a Pl(nj) -b Po(nj)) =a-b> (104)
J
and that
No
b [a Pi(n,) - b Po(n.)]
n.=0 J J
J
(114)
Ng

I A
=]
[}
i}
o
|
[\

[a P](n.)]
pl(nj) -b pO(nj)] U F—po(nj)

In view of equations (10A) and (11A) one could see that the RHS of (9A)

is always positive or zero; i.e., PE - PEl > 0.

PE is always a decreasing function of the number of detectors D.
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APPENDIX B

The output of a photon counting PMT would normally consist of
pulses due to photo emitted electrons as well as noise electroms
(due to thermal emission, etc.). Since the gain of the PMT is
somewhat random, the height of both kinds of pulses would be dis~
tributed over a range of voltages. However, the noise pulses would
be generally smaller in voltage since not all of them would origin-
ate at the cathode and so experience less gain. Therefore, most of
the noise pulses can be stopped by setting a threshold voltage and
suppressing all pulses below that voltage.

When the threshold voltage is low, any additional increase in
the threshold voltage is likely to suppress more noise pulses than
photoelectron pulses, But when the threshold voltage is high, most
of the noise pulses would already have been suppressed and so any
additional increase in threshold voltage would suppress more of the
photoelectron than the noise pulses. Similarly, when the voltage
between the cathode and anode is small, any increase in the same
will produce more photoelectron pulses than noise pulses. But at
higher values this is reversed. So for the best S/N operation of
the PMT the threshold voltage and the anode voltage should be chosen
properly. The methods for doing this can be found in any of the
manufacturer's literature for photon counting instruments using a

PMT.
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In our experiment, we found that choosing the voltages to get
maximum S/N may not always be the best. Our experiment is aimed at
determining the error probability of a binary coded on-off keying
photon counting receiver. The anode voltage and the threshold
voltage for maximum S/N were found to be 1800 V and 2 mV respective-
ly. With the PMT operating at these voltages the probability
distribution for the pulse rates was determined. Figures 35-37
show the pulse (due to noise or photoelectron) rate distribution
for 1) with no light falling on the cathode of the PMT; 2) a
steady light falling on the cathode so that the average pulse rate
was 2.6/bit interval; and 3) a steady light falling on the cathode
so that the average pulse rate was 12.5/bit interval. The dots give
the measured probabilities while the solid curves give the theoret-
ically expected Poisson distribution. As can be seen, there are a
few cases of unexpectedly high rates of pulses. The probability of
observing these high pulse rates seems to increase with increasing
photon rates. While the exact reason for this was not understood,
on close examination it was found that the high pulse rates were due
to bursts of noise pulses within the PMT.

While in other applications these bursts of pulses may not
amount to much, they adversely affect the performance of the photon
counting receiver. This is because these high rates of pulses will
be interpreted as due to high rate of arrival of photons and thus
cause an error (false alarm). As can be seen from Figures 35-37,

this error can be of the order of 107 3.
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Fig. 35.

Cathode voltage = =~1800 V
Threshold voltage = 2 mV
Average pulse rate = 0.06/bit
. - * o . o .
1o 20 30 40

NUMBER OF COUNTS

Probability density function for output pulse (due to photo
as well as noise electrons) rate when PMT voltages are
optimized to obtain maximum S/N ratio for the PMT.

Dots give the experimentally measured values.
Solid line is the theoretically expected Poisson curve.




PROBABILITY

112

Cathode voltage = =1800 V
Threshold voltage = 2 mV
Average pulse rate = 2.6/bit
H v H M H
20 30 40

NUMBER OF COUNTS

Probability density function for the output pulse (due to
photo as well as noise electrons) rate when PMT voltages
are optimized to obtain maximum S/N ratio for the PMT.

Dots give the experimentally measured values.
Solid line is the theoretically expected Poisson curve.
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Fig. 37.
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Cathode voltage = -1800 V
Threshold voltage = 2 mv
Average pulse rate = 12.5/bit

5.0 130

NUMBER OF. COUNTS

Probability density function for the output pulse (due to
photo as well as noise electrons) rate when PMT voltages
are optimized to obtain maximum S/N ratio for the PMT.

Dots give the experimentally measured values.
Solid line is the theoretically expected Poisson curve.
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It was further found that these bursts of pulses can be stopped
by slightly increasing the threshold voltage. Figure 38 gives the
probability distribution of pulse rates with PMT operating at 1800 V
and 3 mV. This offset the "optimum conditions'" for the PMT and
resulted in about 10% less value for S/N, but completely stopped the
bursts of noise pulses. It should be obvious that for a photon
counting receiver system designed to operate with an error probability
of 10™% or less, a loss of 10% S/N ratio is worth suffering in order

to reduce false alarm by 1073,
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Fig. 38.
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Cathode voltage = -1800 V
Threshold voltage = 3 mV
Average pulse rate = 11.1/bit
L d ; L A hd - °
50 100

NUMBER OF COUNTS

Probability density function for the output pulse (due to
photo as well as noise electrons) rate after the
threshold voltage has been increased from its optimum
value for maximum S/N of the PMT.

Dots give the experimentally measured values.
Solid Line is the theoretically expected Poisson curve.
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APPENDIX C

Experimental results obtained in connection with the photon
counting receiver system are presented in this Appendix. The prob-
ability density function for H; bits (see Figure 14) is shown for
35 different cases obtained by changing the parameters Ng and NB.
The normalized variance of irradiance, o%, was calculated from a
direct measurement of the intensity fluctuations and used in the
theoretical calculation of the density functions. For comparison,
the theoretical value, (o%)T, was calculated from a measurement of
C%. Relevant parameters (e.g., the transverse wind velocity, <Vl))
were measured for each case and are presented along with the density
functions. The demnsity functions for runs 1-30 are shown in Figures
39-68, and the density functions for runs 31-35 are given in Tables
VIII-A through VIII-E.

Experimentally measured error rates for the receivers EER, AOR,
SOR I, SOR II and ATR with 1 through 4 detectors are presented in
Tables IX-A to IX-G. Table X presents experimental as well as
theoretical values of error rates for AOR for a single detector.
Tables XI and XII do the same for a two detector and a four detector
array respectively. The theoretical error rates for four detector

arrays were calculated only for selected cases.
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Figure 40. Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.
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Figure 41. Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.
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Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.
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Figure 43. Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.
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Figure 44. Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.
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Figure 45. Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.
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Probability density function for photoelectron counts.
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Solid line gives the theoretical curve.
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Figure 47. Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.
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Figure 48. Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Sclid line gives the theoretical curve.
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Figure 49. Probability density function for photoelectron counts.

Dots give the experimentally measured values.
So0lid line gives the theoretical curve.
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Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.
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Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.
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Dots give the experimentally measured values.
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Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.
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Figure 54. Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.
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Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.
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Figure 56. Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.
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Figure 57. Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.
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Figure 58. Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.
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Figure 59. Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.
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Figure 60. Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.
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Figure 61. Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.
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Figure 62, Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.
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Figure 63, Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.




143

PROBABILITY

NUMBER OF COUNTS

Figure 64. Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.
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Figure 65. Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.
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Figure 68, Probability density function for photoelectron counts.

Dots give the experimentally measured values.
Solid line gives the theoretical curve.
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TABLE VIII-A

EXPERIMENTALLY DETERMINED PROBABILITIES FOR PHOTON COUNTS
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TABLE VIII-A, Continued

0.234 E-3
0.137 E-3
0.156 E-3
0.332 E-3
0.137 E-3
0.234 E-3
0.273 E-3
0.215 E-3
0.254 E-3
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*See Appendix D.
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TABLE VIII-B

EXPERIMENTALLY DETERMINED PROBABILITIES FOR PHOTON COUNTS
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TABLE VIII-B, Continued
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TABLE VIII-C

EXPERIMENTALLY DETERMINED PROBABILITIES FOR PHOTON COUNTS

RUN 33
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TABLE VIII-C, Continued

Probability

Count

0.109 E-2
0.121 E-2
0.117 E-2
0.170 E-2
0.156 E-2
0.186 E-2
0.176 E-2

Probability

Count

0.996 E-3
0.801 E-3
0.109 E-2

122
123
124
125
126
127
128
129
130
131
132
133
134
135

Probability

Count

0.111 E-2
0.104 E-2
0.111 E-2
0.937 E-3
0.129 E-2
0.107 E-2
0.996 E-3
0.898 E-3
0.127 E-2
0.859 E-3
0.109 E-2
0.801 E-3
0.957 E-3
0.840 E-3

108
109
110
111
112
113
114
115
116
117
118
119
120
121

*See Appendix D.
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TABLE VIII-D

EXPERIMENTALLY DETERMINED PROBABILITIES FOR PHOTON COUNTS

RUN 34
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Probability
0.121 E-2
0.174 E-2
0.145 E~2
0.162 E-2
0.195 E-2
0.187 E-2
0.184 E-2
0.283 E-2
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TABLE VIII-D, Continued
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*See Appendix D.
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TABLE VIII-E

EXPERIMENTALLY DETERMINED PROBABILITIES FOR PHOTON COUNTS

RUN 35

0.29, 0% = 2.2, (o%)T = 5.2, {v)) ~8 mph.)

(N = 44.2, Ny
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TABLE VIII-E, Continued

Probability

0.159 E-2
0.173 E-2
0.177 E-2
0.214 E-2
0.223 E-2
0.251 E-2
0.286 E-2
0.306 E-2
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*See Appendix D.
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TABLE IX-A

EXPERIMENTALLY DETERMINED ERROR RATES

(Data Set I, November 10, 1978, Tape PCR 1)
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TABLE IX-B

EXPERIMENTALLY DETERMINED ERROR RATES

(Data Set II, March 1, 1979, Tape PCR 2, lst Half)

5 £ 5 5
[0)) 8
~ 3 8 -3 a Yy & [T}
[<}] W o MO NN A O~ wn N A O NN wy WV O =~ N
= - . . . . . 3 . 3 . . 3 . . . . .
U ~ O N N N N O ™ N N <& O N o~ N O N M
m nononoon X " now o ow X [ R T noon w0 R
o = [ [ o~
P A AV LAV 2 AV =" 0
A
o 51 o 5 o 5 = o 5
R N~ N~ S N
1T TITT Ty Toas
Lo
m mm e Em|E | E K a KR
<t ™~ OV T O 1._151 (Vo N i i /...556
NN 3211 ™N o~~~ 2196
I 7777 T R
1
9 [ s ) =2 = = [ o)
nw 0/._._/5 o0 M~ 639/4 539/4
/4/4/4/4 [aaTES SIS SN o 3/434 3/43/.—.
— VoL oL Lo Lo
o [Fafca iy B @ E Mmoo m moEm R
S wNo©o — O~ M~ O N O~
3333 MmN AN AN N NN NN~
R ok T ey
% @M oE [os gyl oo S s RO S
<G O T O .1_262 7_/18 /414.09
NN N 3211 2117 2195
o ok Ty Ty
| [
o (Sl Qoo [CaJes o el [ @l e
H kvo,h.nv 1‘7.6,2 M~~~ T O oy
3222 3211._ N o o~ P~ N~ O\ N
Yt |
O U ®
U N
= A
o
3
[ V] ~ © o




160

TABLE IX-B, Continued

Parameters

NS = 7.1
Ny = 1.1
c% = 1.7
(0%)T = 2.8

*~ 2 mph

(vl)

ATR

E-1
E-2
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of

No.
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N
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10
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TABLE IX-C

EXPERIMENTALLY DETERMINED ERROR RATES

(Data Set III, March 1, 1979, Tape PCR 2, 2nd Half)
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TABLE IX-C, Continued

Parameters

2.2

= 17.5
(o%)T = 3.5

= 2.5
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TABLE IX-D

EXPERIMENTALLY DETERMINED ERROR RATES

(Data Set IV, March 1, 1979, Tape PCR 3, lst Half)
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TABLE IX-D, Continued

Parameters

= 19,8
N]3 = 4,3
o% = 2.5

Ng
2y =
(02) = 4.9
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TABLE IX-E

EXPERIMENTALLY DETERMINED ERROR RATES

(Data Set V, March 1, 1979, Tape PCR 3, 2nd Half)
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TABLE IX-F

EXPERIMENTALLY DETERMINED ERROR RATES

(Data Set VI, March 29, 1979, Tape PCR 4, 2nd Half)
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TABLE 1IX-F, Continued

Parameters

ATR

SOR II

SOR I

AOR

EER

of

No.
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1

N M T

Run| Detec~-
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TABLE IX-G

EXPERIMENTALLY DETERMINED ERROR RATES

(Data Set VII, March 29, 1979, Tape PCR 5)
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TABLE IX-G, Continued

Parameters

44.2

]

ATR

SOR T1I
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No.
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~ N Mt
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THEORETICALLY CALCULATED VS. EXPERIMENTALLY MEASURED

ERROR RATES FOR AOR (SINGLE DETECTOR ARRAY)

TABLE X

170

Probability of Error

Probability of Error

Run Run
Experiment Theory Experiment Theory
1 3.6 E-1 3.8 E-1 19 1.8 E-1 E-1
2 3.5 E-1 3.6 E-1 20 1.7 E-1 E-1
3 2.9 E-1 3.0 E-1 21 2.9 E-1 E-1
4 2.7 E-1 2.8 E-1 22 2.4 E-1 E-1
5 2.2 E-1 2.4 E-1 23 2.0 E-1 E-1
6 3.6 E-1 3.7 E-1 24 1.3 E-1 E-1
7 3.1 E-1 3.4 E-1 25 1.3 E-1 E-1
8 2.7 E-1 2.7 E-1 26 2.9 E-1 E-1
9 2.4 E-1 2.5 E-1 27 2.4 E-1 E-1
10 2.3 E-1 2.0 E-1 28 1.7 E-1 E-1
11 3.4 E-1 3.5 E-1 29 1.7 E-1 E-1
12 2.9 E-1 3.2 E-1 30 1.0 E-1 E-1
13 2.6 E-1 2.8 E-1 31 2.0 E-1 E-1
14 2.0 E-1 2.1 E-1 32 1.3 E-1 E-1
15 1.7 E-1 1.8 E-1 33 1.1 E-1 E-1
16 3.6 E-1 3.8 E-1 34 7.4 E-2 E-2
17 2.7 E-1 2.8 E-1 35 5.5 E~-2 E-2
18 2.3 E-1 2.5 E-1




THEORETICALLY CALCULATED VS. EXPERIMENTALLY MEASURED

TABLE XI

ERROR RATES FOR AOR (TWO DETECTOR ARRAY)

171

Probability of Error

Probability of Error

Run Run
Experiment Theory Experiment Theory
1 2.9 E-1 3.1 E-1 19 8.3 E-2 1.1 E-1
2 2.3 E-1 2.8 E-1 20 7.5 E-2 9.7 E-2
3 2.0 E-1 2.1 E-1 21 2.0 E-1 2.1 E-1
4 1.6 E-1 1.8 E-1 22 1.4 E-1 1.5 E-1
5 1.2 E-1 1.4 E-1 23 9.6 E-2 1.1 E-1
6 2.9 E-1 3.2 E-1 24 4.8 E-2 7.1 E-2
7 2.2 E-1 2.5 E-1 25 4.8 E-2 6.2 E-2
8 1.7 E-1 1.7 E-1 26 2.0 E-1 2.1 E-1
9 1.4 E-1 1.4 E-1 27 1.5 E-1 1.5 E-1
10 1.3 E-1 1.1 E-1 28 7.4 E-2 8.0 E-2
11 2.7 E-1 2.7 E-1 29 7.5 E-2 7.3 E-2
12 2.0 E-1 2.3 E-1 30 3.2 E-2 4.1 E-2
13 1.6 E-1 1.8 E-1 31 1.0 E-1 1.1 E-1
14 9.8 E-2 1.1 E-1 32 4.4 E-2 4.6 E-2
15 7.5 E-2 8.0 E-2 33 3.3 E-2 3.9 E-2
16 2.9 E-1 3.2 E-1 34 1.7 E-2 2.0 E-2
17 1.6 E-1 1.8 E-1 35 9.4 E-3 8.9 E-3
18 1.3 E-1 1.5 E-1




TABLE XII

THEORETICALLY CALCULATED VS. EXPERIMENTALLY MEASURED

ERROR RATES FOR AOR (FOUR DETECTOR ARRAY)

Probability of error

Run
Experiment Theory
16 2.1 E-1 2.3 E-1
17 6.7 E-2 8.3 E-2
18 4.9 E-2 5.8 E-2
19 2.0 E-2 3.3 E-2
20 1.7 E-2 2.7 E-2
26 1.0 E-1 1.1 E-2
27 6.0 E-2 6.1 E-2
28 1.6 E-2 1.9 E-2
29 1.6 E-2 1.6 E-2
30 4.0 E-3 5.3 E-3
31 3.1 E-2 5.5 E-2
32 5.6 E-3 6.8 E-3
33 4.0 E-3 4.9 E-3
34 9.4 E-4 1.5 E-3
35 4.1 E-4 3.2 E-4
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APPENDIX D

I. Circuit Description

The integrating circuits following the discriminator (for the
photon detector) and the irradiance detector can be understood in
terms of the five elemental circuits in Figure 69.

(a) is a pulse integrator. A negative pulse at the emitter
terminal of the transistor causes a current pulse at the collector,
which charges up the capacitor and increases the voltage across it
by a small step. To the extent that the collector current is
independent of the collector voltage the magnitude of the step will
be of constant height. In the actual circuit the collector current
can be considered to be independent if the collector voltage is in
the range of 2-5 volts. The height of the step can be changed by
changing either Ry or C;. S; is an electronic switch. 8S; is
closed at the end of the bit interval to dump the charges across
the capacitor. S; is opened at the beginning of the next interval
to start the pulse integration once again. In the actual circuit,
S; is made of four CD4016 switches in parallel. The closed circuit
impedance is then about 70 ohms and the open impedance is several
giga ohms. The switch is closed by applying +12 volts and opened
by applying O volt. The capacitor C; must be of very high quality
with no internal leakage. Also the immediate vicinity of C; in the

circuit board must be clean to prevent any leakage.
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Figure 69. Circuits used in voltage integrations of Figures 70A-72B.

(a) pulse integrator

(b) continuous voltage integration
(c) voltage follower

(d) voltage hold circuit

(e) amplifier with d.c. adjustment
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(b) is a conventional integrator using an operational amplifier.
The functions and features relating to R,, C, and S, are very much
the same as in case (a). The switch S, has two CD4016 switches in
parallel.

(c) is a voltage follower. Because of the 100% feedback this
circuilt provides an extremely high input impedance (several giga
ohms) and a very low output impedance (a few ohms). Such circuits
are used in impedance matching between a high impedance output and
a low impedance input.

(d) is a voltage hold circuit. When the switch S3 is closed,
the voltage at point A is quickly transferred to the capacitor.
When S5 is open, the capacitor maintains the voltage to the extent
that there is very little leakage. This means that C3 must be of
very high quality as were Cy and C,. The voltage follower is used
to obtain a low impedance.

(e) is a traditional, inverting, feedback amplifier with pro-
visions for adjusting the d.c. level of the output.

Figures 70A and 70B give the overall pulse integrator circuit.
Figure 71 gives the various wave forms and control pulses involved
in the pulse integration.

(a) is the clock pulse generated from the reference signal
and given as input to the pulse generator (see Figures 19 and 76).

This pulse generator outputs the pulses d, f and h (Figure 71).
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Fig. 71. Wave forms at various stages of pulse integration.
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(b) is the output of the photon counting PMT and the input for
the discriminator. It contains both the noise as well as photo-
electron pulses.

(c) is the output of the discriminator. The noise pulses are
suppressed and the output pulses are of constant height (~ -1V) and
width (=~ 15 nsec).

(d) is the gating pulse. When this voltage is low the integra-
tion starts, and when it is high, the integration stops. By using
a delay circuit, the gating pulse was made to coincide with the bit
interval timings.

(e) is the integrating voltage. It decreases by a step for
each pulse integrated.

(f) is the first transfer pulse which turns on the switch, and
transfers the integrating voltage to the first hold circuit at the
end of the integration for the bit interval.

(g) is the output of the first hold circuit. As can be seen,
it contains slight spikes. These spikes posed a very difficult
filtering problem and the subsequent stage is intended for elimin-
ating these spikes.

(h) is the second transfer pulse. This pulse is used to trans-
fer the integrated voltage to the next hold circuit at a time when
the spikes of the previous wave form have died out.

(i) is the resulting wave form of the previous operation.
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\

(j) is the final outth after an inversion and d.c. adjustment.
At this stage the voltage wave form is recorded on the instrument
tape recorder.

Figures 72A and 72B give the overall circuit diagram for the
integration of the irradiance signal. Except for the obvious
differences at the input and an additional inverting amplification,
the general features and functions of the circuit are the same as
for the previous circuit.

Figures 73-75 describe the reproduction of the data. The
functions are explained in Chapter 4.

Figure 76 shows a typical case of the number of occurrences
of the values of the reproduced voltage vs. the voltage. This is
a set of approximate delta functions. The area under each delta
function corresponds to the number of instances that a certain
number of photoelectrons were counted during the bit intervals.
The first one on the left should correspond to a zero count, the
second to a count of one, the third to a count of two, and so on.

Figure 77 shows the schematics for the pulse generator for
generating the gating and switching pulses for the integrators
shown in Figures 70A, 70B, 72A and 72B.

Figure 78 shows the circuit for detecting the irradiance of
the received signal using the PMT (RCA 931A).

Figure 79 shows the schematics for obtaining voltages +12,

-12 and +5 from TM50 (Tektronix) power supplies.
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2nd transfer pulse

{(Continued
from Fig. 72A) 4.7 K
22 K
6
>— AN~
8 P 9
22 X , + 1 1N914
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-12 v -r-
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Fig. 72B. 1Integrator for irradiance signal. C3 1s a low leakage capacitor.
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Fig. 73. Output filter shown in Fig. 74.
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Fig. 78. Schematics for PMT, measuring irradiance.
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II. Correction for NS Calculated from the Data

After the data wereread from the analog tape and written on
the digital tape, the data were used to determine the exact values
of NB and NS' For this, all the odd-numbered data were collected
and the probability distribution for the photon counts and the mean
photon counts per bit were determined. The same was done for the

even-numbered data. The smaller of the two means gives N The

B’
value of NS was determined from equation (38).

However, a little correction may sometimes be necessary.
This is because the receiver system we used here can count up to a
maximum of only 143 per bit interval. If during any bit time the
count exceeds 143, the same will be counted as 143. When high

values of N, are used or when the turbulence is very high the counts

S
in a bit may exceed 143 in many cases, but all of them will be
counted as 143. The value of NS calculated from such data would be
smaller than the actual value,

Figure 80 shows the probability distribution for photoelectron
counts for the case of run 35. The peaking at 143 is due to the
fact that all counts above 143 were counted as 143, thereby causing
an abnormally high probability at 143, The error in the estimation
of N_. as calculated from the above case was estimated and proper

S

correction applied before the value of Ns was used elsewhere in
calculation. This estimation was done by assuming that in case
there had been no peaking at N, the distribution would taper off

uniformly up to N + N' as shown by the dashed line in Figure 81.
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Let the probability of having a count n be P(n).
Let the probability represented by the hatched area be P,.
Let the probability of the count N be P; as determined from Fig. 81

under the assumption of uniform tapering of probability.

N+N'
z P(n) = P,
n=N+1
(n - N)P1
P(n) =Py - ———»0>7X
N
N+N' P1
z { Py - (n-N) = } =P, , n>N
N 2
n=N+1
P
(N' + 1)N' "1
or N'Bj - - 5=
2P2 + P1
Solving for N', N' =
Py
~ 2P
= — 1if N' > 1
Py
Py
S P(n)=P1—(n—N)P1W,n>N
2

(n - N)P%

= P, -
1
2P2
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Let M by the total number of bits used in evaluating the mean
value of counts for H; bits.

Total number of photons counted = M - (N' + NB) + C

S
where N% is the uncorrected value of NS and C is a correction term.

N+N'

Now, C = T P(n)Mn - P,MN, n>N
n=N+1
N+N'!

= 3 {Pl—(n—z;—N)—P%}Mn—PMN

n=N+1 2

"

N+N'
M[ z {Pl— ———(I‘z; N) P?} n-PzNJ
n=N+1 2

Now, (NS + NB) = (Né + NB) + C;

where C; is the correction to be applied.

From the above,

_ ¢
Cy = M
N+N' P,
= X Pln{l—-z—l;—(n N)}-—PZN
n=N+1 2
2P2
with N' = —
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The value of C; was calculated and applied to (Né + NB)

from which the correct value of Ng was calculated using equation (38).

ITI. Some Miscellaneous Details of the Experiment

1) The recording of the data was done at a tape speed of 60
inches per second, which is the maximum speed available. This was
done to avail of the maximum band width for recording. The FM mode
was used since d.c. levels were important. The reproduction speed
had to match the tape drive speed for PDP 11. The speed used in this
case was 60/32 inches per second, though 60/16 inches speed could
have been used.

2) While handling the tape in Ampex 1300, any change of opera-
tion (from fast forward to drive, etc.) must always be done after
stopping the tape and giving sufficient time so that the tape might
come to a complete stop. Any impatience to observe this will result
in tape squeezing or, worse still, the tape may snap.

3) Cleaning and demagnetizing the head every time before
recording and reproduction is necessary.

4) The difference in the temperature between the two micro
thermal probes was recorded in channel 4 of the tape, though these
readings were not used in the calculation so far. But the same

could be reproduced from tapes PCR 1-4 if necessary.
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5) To prevent the transmission of the vibrations from the sync
motor to the optical components is important in view of the large
distance involved. The best method to do this was found to be

mounting the motor on a 4 or more inch thick foam.
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