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Chapter 1: Introduction 

 

Glaucoma is a group of chronic and progressive eye diseases caused by damage to the optic nerve, 

which is usually related to increased intraocular pressure. In 2020, more than 80 million1 people 

were diagnosed with glaucoma, and the number is projected to increase to 110 million by 2040 

worldwide.2 Glaucoma is currently the second leading cause of irreversible blindness worldwide 

and often results in long-term life quality impairment.3 In the United States, more than 3 million 

people are affected by glaucoma and the average direct cost of glaucoma treatment is close to 

$2,500 per year for patients with advanced glaucoma.4 As glaucoma progresses to blindness, the 

indirect and direct costs of the disease become even more expensive, often requiring skilled home 

nursing, adaptive devices, and resulting in the loss of social status and self-esteem.  

 

Medication therapies are crucial for glaucoma treatment - the main goal is to slow disease 

progression and preserve the quality of life. Multiple types of eye drops are used to reduce 

intraocular pressure via either reducing aqueous fluid production or increasing drainage. However, 

medications’ adverse effects and slow disease progression without clear symptoms affect patient 

compliance.5, 6 Moreover, tracking prescribed medications for glaucoma patients is important for 

patient care and clinical research; yet,  extracting accurate medication information from electronic 

health records (EHR) is not an easy task. The accuracy of the medication list is questionable and 

often accurate medication data is available only in free text notes.7, 8 Thus, an automated 

medication extraction tool is needed for glaucoma clinical care and research. 
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Surgical intervention may be needed if the maximum dose of glaucoma medications can not halt 

disease progression. Trabeculectomy remains one of the most common surgical procedures for 

glaucoma, especially in the developing world. However, the long-term surgical failure rates of 

trabeculectomy have been reported as 22% to 40% in different studies.9-12 Proper early 

postoperative management is crucial for long-term surgical outcomes and varies according to 

different complications. The most common causes of long-term surgical failures include elevated 

IOP and hypotony (low IOP), and the early postoperative treatment plan for each may be very 

different. Researchers have investigated the risk factors of surgical failures and used pre or 

postoperative IOP to predict long-term surgical failure. However, the fluctuation of IOP during the 

early postoperative period and the complexity of surgical recoveries make predicting long-term 

surgical outcomes more challenging. Therefore, a trustworthy quantitative model for identifying 

if a patient has a high risk of long-term surgical failure and the cause of this failure (low or high 

IOP) is needed.  

 

Artificial intelligence (AI) can be a possible strategy to address these challenges. With widespread 

EHR adoption and a large volume of clinical data available, AI techniques have been broadly 

applied in the medical field, including ophthalmology. In ophthalmology, studies have 

demonstrated that AI applications can be productive in many fields, such as diagnosis 

improvement and disease screening using imaging data. However, there are still many existing 

challenges, especially in applying AI techniques with real EHR data. Moreover, there is lacking 

sufficient attention to surgical outcome predictions. To address these challenges, I have proposed 

the following specific aims: 
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Aim 1: Identify the possible issues of the secondary use of EHR data in AI applications in 

ophthalmology – Conduct a systematic literature review to investigate current AI applications 

using EHR data for prediction and management of ocular diseases. The objective of this literature 

review was to gain better understanding of the AI techniques used and their performance, explore 

the potential problems of secondary use of EHR data, and provide future directions to clinical 

practice and research. I drew upon PRISMA13 (Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses) 2009 flow diagram to perform the literature review using an exhaustive search 

in the PubMed database. 

 

Aim 2: Approach the challenges of secondary use of EHR data, especially exploring the 

accuracy of medication lists for glaucoma patients – Perform EHR data quality assessment and 

explore the accuracy of medication lists for glaucoma patients. Develop a name entity recognition 

model to extract current medication information and adherence from clinical progress notes. Also, 

demonstrate a prototype automatic tool to help with medication reconciliation for glaucoma 

patients. 

 

Aim 3: Predict multiclass long-term surgical outcomes for patients who underwent 

trabeculectomy and identify possible risk factors – Develop a prediction model to classify 

which patients have a high risk of long-term surgical failure due to high or low IOP.  Predict the 

specific cause for primary trabeculectomy that addresses the need for effective post-operative 

management. This work was accomplished by using a multimodal neural network with structured 

EHR data and free-text operation notes. The third aim also explored the possible risk factors related 

to specific surgical outcomes using SHAP model interpretation tool. 
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Overall, our goal is to explore AI applications in ophthalmology and help with clinical care for 

glaucoma patients. The first study described the AI applications for ocular diseases and explored 

the knowledge gaps and problems. The second aim shows the data quality issues of glaucoma 

patients, such as the inaccuracy of medication list. Also, an NLP-based model was developed to 

assist in medication reconciliation and medication adherence extraction. This tool may be useful 

for patients' safety of medication usage and compliance improvement. Finally, the objective of the 

third study is to assist in postoperative clinical management for glaucoma patients. Early 

postoperative care is crucial for the long-term surgical outcomes of primary trabeculectomy. A 

reliable long-term surgical outcome prediction model will be very helpful for arranging 

appropriate treatment plans and allocating medical resources. Several possible risk factors for 

surgical failures were identified in the prediction model. These findings can bring novel insights 

into clinical care and the direction of future clinical studies.   
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Chapter 2: Background 

 

GLAUCOMA 

Symptoms  

Glaucoma is a group of eye diseases characterized by progressive degeneration of optic nerve and 

visual field loss that is irreversible.14 Although the pathogenesis of glaucoma is not fully 

discovered, intraocular pressure (IOP) control is the most important factor in influencing the 

progression of glaucoma.15, 16 The imbalance of secretion of aqueous humor and drainage may 

increase intraocular pressure and damage retinal ganglion cells. Figure 1 shows the illustration of 

open-angle glaucoma and closed-angle glaucoma.16 Typically, glaucoma symptoms start from a 

gradual loss of peripheral vision then following by progressive loss of central vision. Eventually, 

glaucoma can progress to complete blindness.  

 

 

Figure 1: Illustration of glaucomatous eyes. Figure 1A shows the mechanism of open-angle 

glaucoma, which has increased resistance to aqueous outflow through the trabecular meshwork. 

B 
 

A 
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Figure 1B show the structure of primary closed-angle glaucoma with the obstructed drainage 

pathways. Figure adapted from “The Pathophysiology and Treatment of Glaucoma.”16 

 

Epidemiology 

To date, glaucoma is the second leading cause of irreversible blindness worldwide.3 Because the 

damage to the eye is slow and painless, only half of the patients are aware of the disease and 

irreversible nerve damage often happens long before the diagnosis.17 The proportion of blindness 

attributable to glaucoma varies considerably from the lowest values in South Asia to a high 

prevalence in sub-Saharan Africa,3 where open-angle glaucoma is the most common form (90%).2 

In 2020, there are 80 million people1 worldwide with open-angle glaucoma, and the number was 

projected to increase to 111 million in 2040,2 with an estimated 3 million afflicted in the United 

States alone. In the same year, the prevalence of glaucoma in the United States affects about 1.9% 

of individuals aged over 40.18 The economic burden (medical costs, assistance programs in the US 

estimated at ~$3 billion/year) doubles when considering indirect costs associated with productivity 

loss, physical consequences (increase in hip fractures; increase in family care), and decreased 

quality of life. In the United States, the average direct cost of glaucoma treatment is close to $2,500 

per year for patients with late-stage glaucoma.4 Given that early detection of glaucoma, initiation 

and adherence to treatment strongly correlate with socioeconomic status.19 

 

Diagnosis and Exams 

The current clinical diagnosis of glaucoma is based on the measurements of intraocular pressure 

(IOP > 21 mm Hg), visual function (visual field test) and retinal structure. Eye exam devices such 

as stereoscopic ophthalmoscopy and optical coherence tomography (OCT) are used to examine 
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the optic nerve head and degeneration of the retinal nerve fiber layer.20, 21 Perimetry records the 

functional damage in vision by testing for arcuate scotoma (regional loss of peripheral vision), and 

tonometry is used to measure IOP.20, 21 Patients at risk for the primary angle-closure type of the 

disease are additionally examined with gonioscopy, which bounces light into the eye using a 

specialized lens. In the glaucomatous eye, the optic nerve appeared to be cupped with thinning of 

the neuro-retinal rim neuroretina rim is narrower, and the center is cupped.  

 

Visual Field  

The measurement of visual field change shows the trend of disease progression. Figure 2 shows 

an example of the glaucomatous optic nerve head and visual field test result. Summary statistic of 

visual field changes, such as Mean Deviation (MD) and Visual Field Index (VFI) is often used to 

perform the analyses. Rates of visual field loss are typically expressed as linear rates of change of 

dB per year in practice. However, the rates of visual field worsening are not necessarily constant 

over time in reality. For example, patients’ compliance with treatment and treatment intensity can 

change the worsening rate. Visual filed progressive rates for glaucoma patients in treated clinical 

practice are varied among studies with a range from -0.05dB per year to -0.62dB per year.22-24 On 

the other hand, in Heijl’s study, they reported that the median rate of MD loss in untreated eyes of 

118 glaucoma patients was -0.4 dB per year.25 For VFI change, studies have reported average rates 

of VFI loss in glaucoma patients from -1.1% to -1.5% per year.26, 27 Moreover, visual fields decline 

due to aging has estimated to be -0.06dB per year.28 Previous studies suggest that most glaucoma 

patients do not progress very quickly, but a sizeable part of patients shows higher progress rates. 

In these cases, the mean rates of visual field loss are worse than average rates.23-25 The reported 

proportion of glaucomatous eyes progressing at faster than -1.5 dB per year have varied from 3 to 
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17% in some previous studies.23, 25, 26, 29, 30 Also, some studies found that 15-20% of glaucomatous 

eyes seem to progress at rates of VFI loss higher than 5% per year.27, 31 The variety of rates of 

glaucoma progression makes it difficult for medication treatment and leading the need for surgery. 

 

 

Figure 2: Glaucomatous and severe glaucomatous optic nerve heads and corresponding 

visual field test results. Figure A, glaucomatous optic nerve presents a thin neural retinal rim and 

enlarged optic cup. The visual field loss (inferior defect) corresponded to the superior neural losses. 

A 
 

B 
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Figure B, severe glaucomatous neural fiber loss and enlarged optic cup. The visual field shows 

defect in both the superior and inferior hemifield. Figure adapted from “The Pathophysiology and 

Treatment of Glaucoma.”16 

 

Optical Coherence Tomography  

Retinal nerve fiber layer (RNFL) measurements measured by Optical Coherence Tomography 

(OCT) have been the most commonly used metrics to measure structural change. OCT employs 

the interferometric technique with a low-coherent light source to construct the cross-sectional 

images. OCT is analogous to ultrasound except that it uses light as opposed to sound and does not 

need physical contact with the tissue. OCT can visually differentiate the tissue layers of the retina 

because of the differences in the tissue light scattering properties. Thus, OCT is capable of 

characterizing the morphological changes in RNFL prior to the potential of visual loss. The 

estimates of mean RNFL rates of loss in healthy eyes are reported in the range of -0.33μm/year 

(cross-sectional analysis) and -0.52 μm/year (longitudinal analysis).32 The progression in 

glaucoma patients measured using spectral-domain OCT-based RNFL thinning has been found to 

range between -0.76 μm/year and -1.5 μm/year.33-35 Therefore, OCT measured RNFL thickness as 

the structural changes can be another indicator for glaucoma progression. 

 

Treatment of Glaucoma 

The main goal of glaucoma treatment is to slow disease progression and preserve the quality of 

life. Multiple studies have shown that intraocular pressure reduction is the primary and the only 

proven way to treat the disease.36-39 The treatment of glaucoma relies on medication eyedrops or 

surgeries, which either reduce aqueous fluid production or increase drainage. Physicians should 
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use the fewest medications and minimize adverse effects to control patients' intraocular pressure. 

Several different groups of pressure-lowering medications, including eye drops and oral 

medication are available. The first line of medical therapy is prostaglandin analogues, which 

reduce IOP by reducing outflow resistance that increases aqueous humor flow.40 However, 

prostaglandin analogues may cause some adverse effects, such as conjunctival hyperemia, loss of 

orbital fat, and periocular skin pigmentation. Therefore, second-line glaucoma medications are 

used when the adverse effects, contraindications of prostaglandin analogues are found, or IOP is 

inadequately controlled with the first line medication. Second-line agents include carbonic 

anhydrase inhibitors, beta-adrenergic blockers, alpha-adrenergic agonists, and pilocarpine.41 Some 

glaucoma eye drops, such as beta-adrenergic blockers may cause significant systemic adverse 

effects that make medication control for glaucoma more challenging. Enhancing patients' 

compliance can increase the success of medication therapy. 

  

Medication Treatment 

Medication therapies are crucial for glaucoma treatment; however, extracting accurate medication 

information from the EHR remains a challenging task. A medication list is generated through 

clinical care; this discrete format data provides an opportunity for medication data extraction. 

Before using the medication list to track medicine usage for glaucoma patients, it is important to 

understand the accuracy and completeness of the information. Several issues of accuracy of 

medication information were reported, such as accuracy of medication list, medication 

discrepancies in an integrated EHR, and meaningful information of medication may be recorded 

in the clinical notes.7, 8 Characterizing the accuracy of the medication list can help people 

understand the quality of automated data to inform the clinical care team and use it for medical 
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research. In addition, prior studies show that physicians direct very little attention to EHR 

medication lists, and instead spend most time reviewing the impression and plan section.42, 43 It 

seems reasonable to expect that medications recorded in narrative notes can be a reliable source of 

medication records. Describing the agreement between a patient’s medication list and the clinical 

narrative progress note can be used to evaluate the accuracy of the medication list. However, 

manually reviewing narrative progress notes and medication lists is a time-consuming task.  

 

As previously mentioned, enhancing patients’ compliance can help with disease progression. 

However, chronic and initially asymptomatic diseases, such as glaucoma, are susceptible to 

medication non-adherence and affect the disease progression. Since the majority of patients with 

glaucoma are managed initially with medical therapy, sustained and consistent patient adherence 

is critical for preventing the progression of the disease.44, 45 Poor compliance might decrease the 

treatment effect and lead to disease progression. Non-adherence in patients with glaucoma has 

been reported to vary from 24 to 59%.46-48 Several barriers to glaucoma medication adherence 

were reported, such as difficulties with self-instillation of eye drops, lack of motivation, and 

forgetfulness.5, 6 20, 21 Medication adherences can be measured by direct and indirect methods, but 

the cost of the direct method and accuracy of the indirect method need to be concerned.49 On the 

other hand, physicians often record patients’ compliance and adherence in the clinical notes. A 

previous study shows the extraction of patients' noncompliance from clinical notes can identify a 

larger proportion of patients who self-reported poor medication adherence compared to an 

automated EHR pull alone.50 Therefore, a reliable method to get active medication information 

and adherence for glaucoma patients from clinical notes will be needed. 
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Surgical Treatment 

Surgical intervention may be needed if the maximum dose of glaucoma medications cannot 

achieve adequate intraocular pressure reduction or halt disease progression. For patients with 

poorly adherent or rapid progression, surgery may be considered first-line therapy. General 

glaucoma surgeries include laser and incisional surgeries. The estimated number of incisional 

glaucoma surgeries is 274 per million people per year.51 Laser trabeculoplasty uses short pulses of 

low-energy light to affect biological changes in the trabecular meshwork. These changes can 

improve drainage and lower intraocular pressure. Laser procedures are very safe and can be 

performed in the clinic office room. However, the effects of the procedure decrease gradually over 

time with an approximate 10% failure rate every year.52, 53  

 

Trabeculectomy 

Incisional glaucoma surgeries include drainage device implantation and trabeculectomy. Drainage 

device implantation is also called minimally invasive glaucoma surgery. The drainage device can 

reduce IOP immediately through a valving mechanism.54 The most common postoperative 

complications include fibrosis and tenon capsule formation around the implant plate decreased 

drainage of the aqueous humor, leading to increased IOP and eventual device failure in some 

patients.54 Therefore, many anti-inflammatory agents, such as steroids, anti-VEGF, and 

antifibrotic medications, have been used to prevent fibrosis with variable success.55 
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Figure 3. Illustration of trabeculectomy. Surgeons cut out the trabecular meshwork or the tissue 

anterior to the trabecular meshwork to provide a drainage way for the outflow of aqueous humor 

from the inside of the eye. Figure adapted from “Is It Time to Retire the Trabeculectomy?”56  

 

Although the popularity of drainage device implantation has steadily increased, trabeculectomy is 

still one of the most common glaucoma incisional surgeries, especially in developing countries.57 

Trabeculectomy is a type of filtering surgery to improve the fluid drain out of the eye to decrease 

intraocular pressure. Surgeons will remove a small portion of the trabecular meshwork and or 

adjacent corneoscleral tissue to provide a drainage way for the outflow of aqueous humor from 

inside of the eye. Figure 3 displayed an example of trabeculectomy.56, 58 Releasable or adjustable 

sutures are commonly used to reduce the chance of postoperative complications (Figure 4).59 In 

addition, anti-scarring agents are frequently used in surgical sites to mitigate fibrosis-proliferative 
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response and increases the surgical success rate, but this may increase the rate of complications 

such as infection and hypotony. 

 

 

Figure 4. Example of releasable sutures. Figure adapted from “Releasable Sutures in 

Trabeculectomy.”59  

 

 

Figure 5. Laser suture lysis image. The suture was lysed by Argon laser in the black arrow. 

Figure adapted from “Argon laser suture lysis following glaucoma filtering surgery–A short 

introduction to the procedure.”60  
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Surgical Failures of Trabeculectomy 

However, the long-term surgical failure rates of trabeculectomy were around 30% reported in 

several studies.9-11 In the Tube versus Trabeculectomy Study, the failure rate of trabeculectomy 

was 28.2% in the second year and 30.7% in the third year.9 Also, Garris et al. reported the overall 

surgical failure rate at 2 years was 32% for trabeculectomy.10 In a multicenter study by Kirwan et 

al., the surgical failure rate was from 22% to 35%, according to different criteria.11 The definition 

of surgical failure may be variable among different studies. In general, surgical failure of 

trabeculectomy was defined as patients needing re-operation, loss of light perception vision, 

showing consistently elevated IOP (> 21 mmHg or less than 20% reduction below baseline) or 

hypotony (<=5 mmHg) after 3 months of primary surgery.9 The success of trabeculectomy highly 

depends on post-operative management within the first 3 months following surgery.61 After the 

trabeculectomy procedure, the patient is seen on the first day postoperatively. Topical 

corticosteroids are often used to alleviate inflammation or scarring tissue proliferation. Depending 

on the patient’s condition and intraocular pressure control, the follow-up interval can vary. A 

common routine is scheduling a follow-up visit one week post-operatively and then every one to 

two weeks within the first two to three months post-operatively.62 

 

Postoperative Management of Trabeculectomy 

Proper IOP control in the early postoperative period is critical for long-term surgical outcomes and 

is affected by different surgical complications.63 The most common early postoperative 

complications involved either elevated intraocular pressure or hypotony. Scarring is the most 

common and challenging complication related to post-operative elevated IOP.64 Physicians may 

lower the intraocular pressure by releasing the scleral flap sutures using laser suture lysis or 
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removing the releasable sutures altogether. Also, the post-operative antifibrotic agent 5-

fluorouracil (5-FU) can be used to modulate wound healing and limit scar tissue formation.65 On 

the other hand, excessively low IOP post-surgery is caused by conjunctival wound leaks and over-

filtration.61, 66 Physicians may postpone laser suture lysis or decrease the dose and frequency of 

topical steroid use to reduce the risk of hypotony. If the hypotony persists and leads to severe 

complications like choroidal, operations may be needed.  

 

Several studies have investigated the possible risk factors for failure of trabeculectomy. For 

example, in Broadway et al.'s review study, they summarized the risk factors for failure of 

trabeculectomy, including previous ocular surgery, uveitic or neovascular glaucoma, black race, 

multiple topical glaucoma medications used for a long time, and young age.67 The previous ocular 

surgeries include failed previous trabeculectomy, cataract extraction, and conjunctival incisional 

procedures, while the possible causes to explain this are the breakdown of the blood-aqueous 

barrier and anatomic disturbance that affect the wound healing.67 Also, Landers et al. reported 

similar findings that the risk of trabeculectomy failure was younger or had uveitic glaucoma and 

patients with pseudoexfoliation or aphakia were more likely to progress to blindness.68 These risk 

factors may be helpful with the surgical outcome prediction for trabeculectomy. In addition, other 

studies focused on the prediction power of intraocular pressure for surgical failure, including pre-

operative IOP or early postoperative IOP. Some studies suggested that early postoperative IOP at 

1 month had higher predictive power for long-term surgical outcomes69, 70 but the predictive power 

of pre-operative IOP was controversial.71  
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In conclusion, despite the fact that several risk factors of trabeculectomy surgical failure were 

identified and early postoperative IOP seems to help with surgical outcome prediction, the surgical 

outcomes still remain hard to predict. The fluctuation of intraoperative pressure during the early 

postoperative period and the complexity of surgical recoveries make identifying which patient has 

a higher risk of long-term surgical failure more difficult. Classic statistical regression methods 

based on intraocular pressure alone or with limited features cannot provide sufficient information 

to predict long-term surgical outcomes accurately. Furthermore, since the treatment plans for 

elevated IOP and hypotony might be contrary, it is more clinically useful to predict a patient's 

surgical failure risk due to the specific cause. Therefore, there is a strong need for a reliable 

quantitative model for identifying a patient's risk of surgical failures due to different complications, 

which could aid the decision-making of post-operative management. 
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ARTIFICIAL INTELLIGENCE 

 

The rapid adoption of electronic health records (EHRs) has generated huge volumes of clinical 

data that can help with secondary use in research. EHR data analysis can be used to support clinical 

decision-making, medical concept extraction, disease screening, diagnosis, and risk assessment. 

However, there are many different types of EHR data, such as patient demographic information, 

diagnosis codes, laboratory tests, medication prescriptions, imaging, free-text clinical documents, 

and billing codes. The complexity and heterogeneity of EHR data make it difficult to reuse. One 

of the promising strategies to handle those heterogeneous data is the artificial intelligence (AI) 

techniques. Artificial intelligence is a broad field where the computer simulates human intelligence 

that is programmed to mimic human action or thinking. Over the past decades, AI techniques have 

been applied within and outside of the scientific community. The primary characteristic of AI is 

its ability to rationalize and take actions that achieve specific goals with the best possibility.  

 

Machine Learning 

Machine learning (ML) is a subset of artificial intelligence where computer programs can 

automatically "learn" from the data without being assisted by humans. Machine learning 

algorithms use computational methods to learn patterns and information directly from large 

amounts of data without relying on a predetermined equation or being explicitly programmed. In 

other words, machine learning algorithms find natural patterns within data to get novel insights 

and make accurate predictions. Overall, the goal of machine learning generally is to understand 

the structure of the data and fit that data into models that can be understood and utilized by people. 

In ML, there are three main types include supervised learning, unsupervised learning, and 
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reinforcement learning (Figure 6).72, 73 In supervised learning, a model learns from “ground truth” 

data in a training data set that contains labeled output data and then can predict the output for new 

cases. The algorithm is typically a classifier with categorical output or a regression algorithm with 

continuous output. In unsupervised learning, the model learns from a training data set without 

labeled output and identifies underlying patterns or structures within its input data, which is mainly 

used for clustering problems.74 Reinforcement learning maximizes the cumulative reward to 

improve the model performance by interacting with the environment. There are many machine 

learning algorithms applied in medicine. Some of the most popular algorithms include random 

forest,75 logistic regression,76 support vector machine,77 gradient boosting,78 least absolute 

shrinkage and selection operator (LASSO),79 and AdaBoost80 were introduced in the chapter 3. In 

addition, aside from classical machine learning algorithms, some other techniques were popularly 

used for clinical studies and applications, including deep learning and natural language processing 

(NLP). In the next sections, we will describe the basic introduction of deep learning and NLP. 
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Figure 6. Illustration of three major types of machine learning. Supervised learning includes 

classification used to predict category and regression used to predict numerical value. The main 

difference between supervised and unsupervised learning based on whether labels are given. 

 

Deep Learning 

Artificial Neural Networks 

Deep learning is a subset of machine learning techniques based on artificial neural networks 

(ANNs) that mimic human brain processing. As shown in Figure 7, multiple layers of computation 

are constructed in a deep learning model, and each layer is used to perform computations on data 

from the previous layer. The layers between the input layer and the output layer are called hidden 

layers. While the information may flow from the input to subsequent output layers (feedforward), 
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information can also flow backward from hidden layers to input layers (backpropagation). The 

inputs and outputs of hidden layers are not reported; deep learning algorithms present only the 

final outcome of the output layer.81 Deep learning does not always need to use structured features 

for input as machine learning does; hence, deep learning is useful for raw images because they do 

not have to be prefiltered as they do for machine learning algorithms. After processing raw input 

through multiple layers within deep neural networks, the algorithms find appropriate features for 

classifying output.  

 

 

Figure 7. Illustration of artificial neural network (ANN). A classical ANN contains input layer, 

hidden layers, and output layer. A neural network can possess any number of hidden layers with 

one or more neurons. Each neuron is connected to each other and each layer could have different 

activation functions.  
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Recurrent Neural Network 

A recurrent neural network (RNN) is a subtype of deep learning. In a traditional neural network, 

the model is able to learn non-linear relationships with large dimensions. However, a static neural 

network is not able to learn the temporal information, which is trained by itself. It is important for 

time-series data to learn the information from the previous prediction. That led to the development 

of RNN, which remembers the information from prior inputs throughout the time steps in the 

training process. More specifically, in an RNN model, each output of the hidden state from the 

previous time step is used as the input to the hidden state of the next time step. RNNs were used 

to predict disease progress and clinical event onset in several studies.82-84 Also, the RNN model 

was used to build a visual field prediction algorithm with a series of visual field data.84 

 

However, one of the most common problems of an RNN model was short-term memory. If the 

input sequence is long enough, an RNN model will be hard to carry information from earlier time 

steps - the later ones are much more important in this case. In detail, during the calculation of 

backpropagation, RNN models can easily suffer from the vanishing gradient problem. Gradients 

are the values that were used to update the neural network weights. The vanishing gradient problem 

might occur when the gradient shrinks as it backpropagates over time.85 Therefore, if a gradient 

value becomes extremely small, it cannot help with the model learning. In RNN, the earlier layers 

easily get small gradient values and the model will forget early step information.  

 

Long Short-Term Memory 

To address this problem, two advanced RNN-based algorithms were created, including long short-

term memory (LSTM)86 and gated recurrent units (GRU).87 Figure 8 shows the basic structure of 
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a LSTM cell. These algorithms contain internal mechanisms called gates to regulate the memory 

of information. The gates are used to learn which input sequence is more important to keep and 

skip the less important one. In this way, the model can pass relevant information over a long 

distance to make predictions. LSTM has popularly used in many fields such as speech recognition, 

sentiment analysis, text generation, time series analysis and text classification. 

 

 

Figure 8. Structure of LSTM Cell. There are two major parts of an LSTM cell: (1) Cell state and 

(2) Cell gates. The cell state is the horizontal line shown on top of the figure, which passes the 

information between cells. The gates shown at the bottom of the figure, which regulated the 

information can be added or removed. 

 



 

 24 

Transformer  

A transformer model is a neural network with self-attention and positional embedding mechanisms, 

which is popularly used in many fields, such as NLP and computer vision. In the paper "Attention 

Is All You Need" Vaswani et al.88 first introduced a novel architecture called Transformer. The 

transformer is a neural network with attention mechanisms and positional embeddings for 

transforming sequence to sequence. Figure 9A shows the basic structure of the transformer with 

encoder block and decoder block. Two key components were described in the encoder block: 

Multi-head attention and positional embeddings. Multi-head attention is the core mechanism of a 

transformer block, which contains n different attention layers to find the attention token/word from 

the sequence. Also, positional embeddings can enhance and maintain the position of each word 

along the sequence. Both of these mechanisms can provide information about the relationship 

between different words. Furthermore, a transformer model can train in parallel and manage the 

text data in a non-sequential way, which means sentences are processed as a whole rather than 

word by word. In this way, a transformer can void forgetting of past information over a long 

distance. Long-distance memory loss is the most critical issue for RNN-based neural networks, 

even for the LSTM and GRU models. For a classification problem, only encoder blocks were used 

to extract information.89 The output of each encoder is passed to the next encoder, and the process 

goes on. Output from the final encoder layer can be passed to linear layers or concatenated with 

other input data (Figure 9B). 
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Figure 9. Architecture of the transformer. Figure 9A shows the structure of transformer 

including encoder block and decoder block with input embeddings and multi-head attention layers. 

Figure 9B demonstrates the encoder blocks connected to an output layer. Figure adapted from 

“Attention Is All You Need.”88 

 

Deep Learning Fusion Model 

Clinical and EHR data are increasingly getting multimodal and heterogeneous, such as structured 

EHR data, image data, text data, time-series data, and audit logs. Integrating multimodal data may 

be able to capture the underlying complex relationship among different data sources of data to 

improve the model performance. Deep learning-based data fusion strategies are a popular approach 

for handling these heterogeneous data. Deep neural networks are flexible and capable of 
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combining different functional blocks in a single model. Generally, the fusion strategies can be 

categorized as early fusion, intermediate fusion, and late fusion (Figure 10).90 Input data are 

concatenated directly in early fusion; thus, the resulting vector is treated like unimodal input.90 In 

an intermediate fusion, the input features can be processed through some neural networks (LSTM, 

transformer block, etc.) and then the learned features are concatenated with other input features.90 

Lastly, in a late fusion, the original input features or learned features are not concatenated, but 

combined decisions from each sub-model (with unimodal input features).90 The decisions of each 

sub-model can be the predicted label or probability. The late fusion strategy is similar to ensemble 

learning or voting averaging methods in classical machine learning. 

 

 

Figure 10. Deep learning-based fusion strategies. The blue layers contain the inputs from 

multiple modalities and learn the information simultaneously. (a) Early fusion strategies (b) 

Intermediate fusion strategies. (c) Late fusion strategies. Figure adapted from “Multimodal deep 

learning for biomedical data fusion: a review.”90 
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Natural Language Processing  

Natural language processing (NLP) is a branch of AI in which computers attempt to interpret 

human language in written or spoken form. NLP combines many fields, such as computational 

linguistics (rule-based modeling of human language), machine learning, and deep learning to 

perform specific tasks. Using these technologies, computers can process human language, 

understand its meaning, or find hidden rules or patterns. With advancements in computing power 

and machine learning development, NLP has been applied in many fields. In the clinical field, 

NLP has been successfully used to process free-text EHR data for deep contextualized word 

representations,91 information extraction,92 semantic analysis,93 and Chatbot.94 In the coming 

sections, the three most relevant techniques will be described, including named entity recognition 

(NER), word embeddings, and text classification. 

 

Named Entity Recognition  

Natural language processing algorithms for clinical information extraction have been actively 

researched over the past years. The methods have evolved from simple logic and rule-based 

systems to complex deep learning architectures.95, 96 One of the common ways for information 

extraction is by transforming free-text data into a coded form, such as universal medical language 

system (UMLS). In addition, a rule-based system using semantic lexicons was used to handle more 

complex linguistic features with the advances in deep learning, which played an important role in 

developing more capable models for natural language processing. Several NLP tools were 

integrated with deep learning models like named-entity recognition (NER). 
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NER model is a sub-task of a natural language process tool, which seeks to classify words into 

predefined groups and assign labels to them.97 The NER models built with deep learning 

techniques can extract entities from text corpus by not only identifying the keywords of entities 

but also by leveraging the context of the entity in the sentence. Furthermore, with language model 

pre-trained embeddings, the NER models leverage the proximity of other words that appear along 

with the entity in domain-specific literature.98 NER models were used to extract medication 

information98 or medical terms99 in previous studies and can be a useful tool to extract other 

medical concepts such as clinical exam results or medication adherence from free-text clinical 

notes. 

 

Word Embeddings and Text Classification 

Word embeddings were developed as a numerical representation of textual data that allows similar 

words have a similar representation. A pre-trained word embeddings can be used as input layers 

to deep neural networks. Word embeddings are a kind of classifying technique where each word 

is given a numeric vector in a predefined vector space. Each word is mapped to a unique vector. 

Several methods are used to train the word embedding to learn the vector values, such as 

word2vector100 and GloVe (global vectors for word representation)101. There are two methods 

commonly used for word2vector models include Skip-gram100 and CBOW (continuous bag of 

words)100. Figure 11 shows the architectures of a Skip-gram model and Figure 12 shows the 

architecture of CBOW. We used CBOW to preprocess operation notes as input features for the 

surgical outcome prediction models. Overall, the goal of word embedding is using a densely 

distributed representation of each word instead of a huge sparse word representation, such as a 

one-hot encoding. 
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As mentioned above, pre-trained word embeddings can be used as input features to a predictive 

model. One of the most common approaches is text classification.102 Text classification is a 

machine learning or deep learning technique that assigns a set of predefined categories to text. 

This technique is one of the fundamental parts of NLP and has been applied in many fields such 

as sentiment analysis, topic labeling, spam detection, and outcome prediction model. 

 

 

Figure 11. Architectures of Skip-gram. The figure shows the structure of the Skip-gram model, 

which used the target word to predict surrounding words. The ultimate goal of the word embedding 

models is not the outputs of the networks, and rather the goal is to learn the weights of the hidden 

layer that are used as "word embeddings." 
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Figure 12. Architectures of CBOW. In the CBOW model, the surrounding words are combined 

to predict the target word. Similarly, the output of a CBOW model is the weights of the hidden 

layer. We used a CBOW model to convert the operation notes to pre-trained word embeddings. 

 

Data Preprocessing 

EHR data contains rich information, and secondary use of EHR data with machine learning/deep 

learning models can be a useful way for disease prediction. However, the raw EHR data may 

contain some errors and have plenty of missing data in real-world settings. For example, glaucoma 

patients might not have follow-up visits every six months or might not take eye exams for each 

visit. The missing data of the EHR dataset can cause problems for many machine learning 

algorithms. Specifically, missing data poses a major difficulty for modeling longitudinal data since 

most statistical models assume feature-complete data.103 Therefore, it is important to manage 

missing data for secondary use of EHR data. Some studies handle this issue by removing subjects 

or time points with missing data, thus potentially losing a large quantity of data. Two major 

methods are used to manage missing data.104 First, the missing data can be preprocessed in a 
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separate step. This means we can impute the missing data with zero, variable’s mean, or other 

machine learning strategies.105, 106 Second, directly integrating the missing data issues into the 

machine learning models or training strategies. For example, marginalizing the missing data with 

Bayesian approaches.107 

 

Several methods are used for preprocessing strategies to impute the missing data in a separate 

process. A basic and popular approach to data imputation is using statistical methods to estimate 

a value for the missing data and replace it. A common statistic calculated includes (1) mean value 

of the column, (2) median value of the column, (3) mode value of the column, and (4) zero or a 

constant value. For the time-series dataset, some other methods can be considered, such as forward 

filling and linear filling. Forward filling involved imputing the missing data with the last timepoint 

available data.108 And the linear filling is similar to the forward filling but uses previous and future 

time points for imputation.109 In addition, a sophisticated approach, “iterative imputation” is 

commonly used, which involves defining a model to predict each missing feature as a function of 

all other features and repeating this process of estimating feature values multiple times.110 In the 

following study, linear imputation was used to handle the missing numeric data. 

 

Model Evaluation Metrics 

 
In general, the model performance is evaluated via some form of accuracy metrics on the training 

and test dataset for a supervised learning problem. In the training phase, a validation dataset or 

other validation methods, such as k-fold cross validation111 were used to tune the algorithms to 

optimize the model settings that may work well for the new population. On the other hand, test 

dataset are samples from the original dataset that have not been seen by algorithms during the 
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training phase. If the model shows much better performance on the training dataset rather than the 

test dataset, which refers to the model overfit to the training dataset.112, 113 This indicates the model 

learned the detailed and noise pattern in the training data and this pattern does not apply to new 

data and has a negative effect on the model generalizability. Many techniques can be used to avoid 

or alleviate overfitting problems in deep learning or machine learning models, such as weight 

regularization, activity regularization, dropout, adding noise, and changing the model structure 

(e.g. reducing tree depth in a random forest model).113 In contrast, underfitting refers to a model 

that performs poorly on both training and test datasets.112 Ideally, a good fitted model can stand at 

the sweet spot between underfitting and overfitting with strong a performance on both datasets. 

 

Aforementioned, a supervised learning problem is most commonly evaluated with some kind of 

prediction accuracy metrics. For a regression model, the average mean squared error (MSE) and 

R-Squared are popular evaluation metrics for the model performance. The MSE is calculated by 

the error between the predicted value and target value, which indicates how close a predicted value 

to the real one. R-Squared is the ratio of the sum of squares regression (SSR) and the sum of 

squares total (SST). R-Squared value is used to evaluate the goodness of its line, which indicates 

how good the regression model explains observed data. 

 

For a classification model, the commonly used evaluation metrics include receiver operating 

characteristics (ROC) curve and area under ROC curve (AUROC), F1 score, precision, 

recall/sensitivity, and specificity. The outputs of most classification models are the probability of 

each class based on the threshold. Take binary classification, for example, the probability threshold 

is normally set at 0.5. With different threshold settings, some accuracy metrics can be changed. 
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Therefore, the ROC curve and AUROC are used to measure the classification ability at all 

threshold settings. The ROC curve is plotted with the true-positive rate (TPR) against the false-

positive rate (FPR). The AUROC represents the model's ability to distinguish different classes. 

Figure 13 illustrates the ROC curves with different AUROC. An excellent model has AUROC 

near 1, which means the model can perfectly separate two classes, while when AUROC is 0.5, it 

means the model has no class separation ability. 

 

 

Figure 13. Receiver operating characteristics (ROC) curves illustration. The left figure shows 

an ideal situation. The two curves (on the bottom) do not overlap, which means the model has 

perfect separability. The middle figure shows a classification with good separability, but there is 

still part of the output that is mis-labeled. When AUC is 0.75, which means there is a 0.75 chance 

that the model can correctly distinguish between positive class and negative class. The right figure 
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is the worst situation. The model shows no capability to distinguish between positive class and 

negative class. And the AUC will be close to 0.5. 

 

Besides, classification models are also commonly evaluated by using accuracy, F1 score, precision, 

recall, and specificity.114 These metrics were computed by true positive (TP), false-positive (FP), 

false-negative (FN), and true negative (TN). The equations of these metrics are listed below. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑅𝑒𝑐𝑎𝑙𝑙/𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Where true positive or true negative were counted if the model correctly predicted an instance as 

positive or negative, respectively. On the other hand, if the model incorrectly labeled an instance 

as positive or negative, it is a false positive or false negative, respectively. The accuracy measure 

is pretty straightforward - it determines how the correct values are predicted. A recall score is the 
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ratio of correctly predicted class to the all actual class, and a precision score is the ratio of correctly 

predicted class to the total predicted class. F1 -score uses a combination of precision and recall to 

calculate an average score for both of them. 

 

For multiclass classification models, the evaluation metrics are more complicated. The evaluation 

metrics in binary classification need to be adapted to work for multiclass prediction. A standard 

method uses one vs. rest (ovr) and one vs. one (ovo) strategies. In the ovr metrics, the model 

compares each class against all the other classes, which means all other classes are treated as the 

same class. In this way, the selected class is considered as the "positive" class, while all the other 

classes are considered as the "negative" class. In the ovo metrics, all possible two-class 

combinations are compared and calculated. For a ROC curve or AUROC score, the model 

performance can be calculated by averaging all the ovr or ovo scores to get the final score. In 

general, one vs. rest (ovr) is more commonly used for adapting the evaluation metrics for a 

multiclass classification problem. In addition, macro averaging or micro averaging can be used to 

calculate the average F1 score, precision, and recall for all classes. Macro averaging is pretty 

straightforward - computing the arithmetic mean of all the per-class evaluation metrics. And the 

micro average aggregates the contributions of all classes to get the average metric. 
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AI Applications in Ophthalmology  

In ophthalmology, although most AI techniques are used for image processing and computer-aided 

diagnosis (CAD) system development, there are still many classical ML models being used in this 

field. Clinical applications for disease diagnosis, monitoring, and risk assessment have recently 

become a focus of machine learning research. Examples of ophthalmologic diseases where 

machine learning has been applied to include glaucoma, age-related macular degeneration, and 

diabetic retinopathy. Random forest classifiers with EHR data have been used to predict the risks 

of cataract surgery complications.115 Also, bootstrapped least absolute shrinkage and selection 

operator model were used to identify highly associated features.115 Similarly, Chaganti et al. also 

utilized random forest classifiers to evaluate the predictive power of the different sources of data 

in identifying optic nerve disease.116 In Fraccaro et al.'s study, several machine learning algorithms, 

such as support vector machines random forests and AdaBoost, were used to develop predictive 

models to diagnose age-related macular degeneration.117 In addition, machine learning algorithms 

were used to predict glaucoma progression as well.118  

 

Deep learning has been popularly applied in ophthalmology as well, especially for image-based 

diagnosis systems. Coyner et al. demonstrated that deep learning models could use for quality 

control for retinal fundus images,119 generating synthetic retinal fundus images for data 

augmentation or physician training,120 and developing the risk prediction model for retinopathy of 

prematurity patients.121 Similarly, Brown et al. presented that the deep learning algorithm has 

comparable or better accuracy than human experts for plus disease diagnosis in retinopathy of 

prematurity.122 Besides, combined deep learning models can be used to predict disease progression. 

In Dixit et al.'s study, the convolutional LSTM model can capture local and global trends in visual 
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fields over time and is able to assess glaucoma progression. Furthermore, a combined architecture 

model using machine learning with output information from a deep learning model was used to 

identify high-risk patients with myopic regression after corneal refractive surgery. The researchers 

used ResNet50 (for image analysis) and XGBoost (for integration of all variables and fundus 

photography) to develop the prediction model.123  

 

Although AI techniques have been popularly applied in ophthalmology fields, there are still many 

existing challenges. One of the major issues is data quality. The predictive model performance 

highly depends on the data quality. Structured EHR data collected from clinical practice may suffer 

from data quality problems, such as missing data, loss of follow-up visits, incorrect data entry, and 

incomplete information. While imaging data has less affected by the data quality issues among all 

other clinical data, there is no well-established standard for many imaging techniques. And the 

data access for image data in HER system is always complicated and frustrating. The data quantity 

is the most common issue for AI applications in many different fields, especially for deep learning 

algorithms. Comparing to classical machine learning algorithms, deep learning may need more 

training data to enhance the model performance. However, the EHR data from a single institute or 

research project are often limited and sharing EHR data across different institutes is extremely 

difficult. In addition, the model interpretation is another challenging point of AI application. 

People want to have some better understanding of model prediction rather than accept a “black 

box.” Furthermore, most of the previously published studies in the ophthalmology field of AI 

application focused on diagnosis improvement or disease screening using imaging data, lacking 

sufficient attention to disease progression or surgical outcome predictions. We will discuss and 

address some of these challenges in the following chapters. 



 

 38 

Chapter 3: Applications of Artificial Intelligence to Electronic Health Record 

Data in Ophthalmology 

 

Note: The following was published in the Translational Vision Science & Technology journal. 

Citation: Lin, W. C., Chen, J. S., Chiang, M. F., & Hribar, M. R. (2020). Applications of 

artificial intelligence to electronic health record data in ophthalmology. Translational vision 

science & technology, 9(2), 13-13. 

 

ABSTRACT 

Widespread adoption of electronic health records (EHRs) has resulted in the collection of massive 

amounts of clinical data. In ophthalmology in particular, the volume range of data captured in EHR 

systems has been growing rapidly. Yet making effective secondary use of this EHR data for 

improving patient care and facilitating clinical decision-making has remained challenging due to 

the complexity and heterogeneity of this data. Artificial intelligence (AI) techniques present a 

promising way to analyze these multimodal datasets. Yet, while AI techniques have been 

extensively applied to imaging data, there are a limited number of studies employing AI techniques 

on EHR data. The objective of this review is to provide an overview of different AI methods 

applied to EHR data in the field of ophthalmology. This literature review highlights that the 

secondary use of EHR data has focused on glaucoma, diabetic retinopathy, age-related macular 

degeneration, and cataracts using artificial intelligence techniques.  These techniques have been 

used to improve ocular disease diagnosis, risk assessment, and progression prediction. Techniques 

such as supervised machine learning, deep learning, and natural language processing were most 

commonly used in the articles reviewed. 
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INTRODUCTION 

Rapid adoption of electronic health records (EHRs) in recent decades has generated large volumes 

of clinical data with potential to support secondary use in research.124-126 Indeed, one recurring 

justification for EHR adoption has been to support collection and analysis of “big data” to gain 

meaningful insights.127, 128 The clinical research community has expressed growing interest in 

developing effective techniques to reuse clinical data from EHRs, in part due to the benefits of 

secondary data reuse over primary data collection.129, 130 Researchers reusing EHR data may not 

need to recruit patients or collect new data, potentially reducing cost compared to traditional 

clinical research. Moreover, EHR data often contain valuable longitudinal data regarding a 

patient’s status, medical care, and disease progression which have been previously shown to 

support clinical decision support,131 medical concept extraction,132 diagnosis,133 and risk 

assessment.134  

 

However, there are challenges associated with reusing EHR data, particularly due to its complexity 

and heterogeneity. For example, in ophthalmology, patient data contained in EHRs may include 

fields as diverse as demographic information, diagnoses, laboratory tests, prescriptions, eye exams, 

imaging, and surgical records. Interpreting these heterogeneous data require strategies such as 

information extraction, dimension reduction, and predictive modeling typical of machine learning, 

and more broadly artificial intelligence (AI) techniques. Applying AI to EHR data has been 

productive in a variety of domains. For instance, studies in cardiology have broadly employed AI 

techniques with EHR data for early detection of heart failure,135 predicting the onset of congestive 

heart failure,136 and improving risk assessment in patients with suspected coronary artery 

disease.137 Likewise in ophthalmology, machine learning models with EHR data have been used 
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to predict risks of cataract surgery complications, improve diagnosis of glaucoma and age-related 

macular degeneration, and perform risk assessment of diabetic retinopathy.138-141  

 

While the application of artificial intelligence to EHR data related to ocular diseases has increased 

over the past decade, there have been no published reviews of this literature. One literature review 

of machine learning techniques applied in ophthalmology was published in 2017,142 however, the 

included studies mainly focused on application of machine learning techniques to imaging data, 

rather than EHR data. This manuscript addresses this knowledge gap by reviewing the literature 

applying artificial intelligence techniques to EHR data for ocular disease diagnosis and monitoring. 

With this review, we explore the type of AI techniques used, the performance of these techniques, 

and how AI has been applied to specific ocular diseases, providing future directions to clinical 

practice and research.  
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METHODS 

An exhaustive search was performed in the PubMed database using search terms related to 

“Artificial intelligence”, “Electronic health records”, and “Eye” in any field of articles. See the 

Appendix for the full query.  The results were then examined and narrowed according to the 

following criteria:  

1. Duplicates were removed. 

2. Studies were eliminated for lack of relevance after review of the title and abstract; studies 

that used only imaging data without any EHR data were excluded. 

3. Studies without direct clinical application or not related to the topic were excluded. 

 

The review process is summarized in Figure 1. One author (WL) identified articles for inclusion 

through manual title, abstract, and content review. Two authors (WL & JSC) extracted data about 

each study: the aim, disease, algorithm, specific techniques, performance assessment and 

conclusion of the articles that met the inclusion criteria, as summarized in Table 1.138-141, 143-151  
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Figure 1: Flow diagram for the literatures selection. 
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Table1. Studies on ocular diseases using artificial intelligence techniques with EHR data 

Author Aim Disease Algorithm 

Type 

Specific 

Techniques 

Performance Conclusions 

Lin et al.143  Disease 

detection 

Myopia Supervised 

machine 

learning 

Random forest 95% confidence 

interval (CI) for 

predicting onset of 

high myopia. 3 

years onset 

prediction (AUC: 

94%-98.5%), 5 

years (85.6% - 

90.1%), 8 years 

(80.1% - 83.7%) 

 

Use machine learning 

with EHR data can 

accurately predict 

myopia onset.  

Lee et al.144 Improve 

diagnostic 

accuracy 

Age-Related 

Macular 

Degeneration 

(AMD) 

Deep 

learning 

Convolutional 

neural 

networks 

For each patient, 

AUC (97.45%), 

accuracy (93.54%), 

sensitivity 

(92.64%), and 

specificity 

(93.69%) 

Linked OCT images to 

EMR data can improve 

the accuracy of the deep 

learning model, which 

used to distinguish AMD 

from normal OCT 

images. 

Baxter et 

al.145 

Risk 

assessment 

Open-angle 

glaucoma 

Supervised 

machine 

learning 

 

Deep 

learning  

Logistic 

regression, 

Random 

forests,  

 

ANNs 

AUC of logistic 

model (67%), 

random forest 

(65%), ANNs 

(65%) 

 

Existing systemic data in 

the EHR can identify 

POAG patients at risk of 

progression to surgical 

intervention. 

Chaganti et 

al.139  

Identify risk 

factors and 

improve 

diagnostic 

accuracy  

Glaucoma, 

intrinsic optic 

nerve disease, 

optic nerve 

edema, orbital 

inflammation, 

and thyroid eye 

disease 

Supervised 

machine 

learning 

Random forest AUC of classifiers: 

glaucoma (88%), 

intrinsic optic 

neuritis (76%), 

optic nerve edema 

(78%), orbital 

inflammation 

(77%), thyroid eye 

disease (85%) 

EMR phenotype (from 

pyPheWAS) can 

improve the predictive 

performance of random 

forest classifier with 

imaging biomarkers. 

 

Apostolova 

et al.146  

Patient 

identification 

Open globe 

injury 

Supervised 

machine 

learning 

 

Text-

mining 

SVM  

 

 

 

NLP - Word 

embeddings 

Text classification: 

precision 

(92.50%), recall 

(89.83%) 

Free-form text with 

machine learning 

methods can used to 

identify open globe 

injury. 

 

Saleh et 

al.141  

Risk 

assessment 

Diabetic 

retinopathy 

(DR) 

Supervised 

machine 

learning 

Fuzzy random 

forest (FRF), 

dominance-

based rough set 

approach 

(DRSA) 

Performance of 

FRF: 

Accuracy 

(80.29%), 

sensitivity 

(80.67%), 

specificity 

(80.18%) 

 

Performance of 

DRSA: 

Accuracy (77.32 

%), sensitivity 

(76.89 %), 

specificity 

(77.43%) of 

DRSA. 

 

Ensemble classifiers 

(RFR and DRSA) can be 

applied for diabetic 

retinopathy risk 

assessment. The 2-steps 

aggregation procedure is 

recommended. 
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Rohm et 

al.147 

Predict 

progression 

Age-related 

macular 

degeneration 

(AMD) 

Supervised 

machine 

learning 

AdaBoost, 

Gradient 

Boosting, 

Random 

Forests, 

Extremely 

Randomized 

Trees, Lasso 

Accuracy of 

logMAR visual 

acuity (VA) 

prediction after 

VEGF injections. 

3 month: MAE 

(0.14), RMSE 

(0.18) 

12 month: MAE 

(0.16), RMSE (0.2) 

 

EHR data of patients 

with neovascular AMD 

can be used to predict 

visual acuity by using 

machine learning 

models. 

Yoo et al 148 Risk 

assessment 

Diabetic 

retinopathy 

Supervised 

machine 

learning 

Ridge, elastic 

net, and 

LASSO 

In external 

validation, LASSO 

predicted DR: 

AUC (82%), 

accuracy (75.2%), 

sensitivity 

(72.1%), and 

specificity 

(76.0%). 

 

LASSO with high-

dimensional EHR can be 

used to predict DR risk 

among diabetic patients. 

  

Fraccaro et 

al.140 

Improve 

diagnostic 

accuracy 

Age-related 

macular 

degeneration 

(AMD) 

Supervised 

machine 

learning 

Logistic 

regression, 

Decision trees, 

SVM, random 

forests, and 

AdaBoost. 

AUC of random 

forest, logistic 

regression, and 

AdaBoost (92%); 

SVM, decision 

trees (90%) 

 

Machine learning 

algorithms using clinical 

EHR data can be used to 

improve diagnostic 

accuracy of AMD. 

 

Sramka et 

al.149 

Improve 

surgical 

outcome 

Cataracts Supervised 

machine 

learning 

 

 

Deep 

learning 

Support vector 

machine 

regression 

(SVM-RM) 

 

Multilayer 

neural network 

ensemble 

model (MLNN-

EM) 

Both SVM-RM 

and MLNN-EM 

achieved 

significantly better 

results than the 

Barrett Universal 

II formula in the 

±0.50 D PE 

category.  

 

 

 

SVM-RM and MLNN-

EM with EHR data can 

be used to improve 

clinical IOL calculations 

and improve cataract 

surgery refractive 

outcomes. 

 

Peissig et 

al.150 

Patient 

identification 

Cataracts Text-

mining 

Natural 

language 

processing 

(NLP) 

The multi-modal 

model shows 

results including 

sensitivity 

(84.6%), 

specificity 

(98.7%), PPV 

(95.6%), and NPV 

(95.1%) 

A multi-modal strategy 

incorporating optical 

character recognition and 

natural language 

processing can 

accurately increase the 

number of cataracts 

cases identified. 

 

Gaskin et 

al.138 

Identify and 

predict risks 

of cataract 

surgery 

complications 

Cataract Supervised 

machine 

learning 

 

 

 

 

 

 

 

 

Text-

mining 

Bootstrapped 

LASSO, 

Random forest 

 

 

 

 

 

 

 

 

Natural 

language 

Based on the 

LASSO model, 

younger age (<60 

years old), prior 

anterior vitrectomy 

or refractive 

surgery, history of 

age-related 

macular 

degeneration 

(ARMD), and 

complex cataract 

surgery were risk 

Bootstrapped LASSO 

can be used to identify 

risk factors of post-

operative complications 

of cataract surgery.  

 

Random forest shows 

good reliability for 

predicting cataract 

surgery complications. 
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processing 

(NLP) 

factors associated 

with postoperative 

complications. 

The random forest 

model shows high 

NPV > 95% and 

moderate 

sensitivity (67%) 

and AUC (65%) 

 

Skevofilakas 

et al.151 

Risk 

assessment 

Diabetic 

retinopathy 

Deep 

learning  

 

 

 

 

 

 

 

Supervised 

machine 

learning 

Feed forward 

Neural 

Network 

(FNN) and 

improved 

Hybrid 

Wavelet Neural 

Network 

(iHWNN) 

 

Classification 

and Regression 

Tree (CART) 

AUC of hybrid 

Decision Support 

System (DSS) 

(98%), iHWNN 

(97%), FNN 

(88%), and CART 

(86%). 

 

 

Hybrid DSS trained on 

imaging and related 

EHR data can estimate 

the risk of a type I DM 

patient developing 

diabetic retinopathy. 
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RESULTS  

The PubMed query returned 164 articles published through August 2019. In total, 161 papers were 

reviewed after removing 3 duplicates. 118 papers were excluded due to lack of relevance based on 

title and abstract. A total of 13 articles were considered which met inclusion criteria (Figure 1). 

 

Artificial Intelligence Techniques 

Three major techniques were used in these studies: 11 studies used supervised machine learning, 

of which 3 studies specifically employed a deep learning technique and 2 studies also used natural 

language processing to generate structured data suitable for analysis from unstructured text. Only 

one study used deep learning by itself and another study used natural language processing 

independent of other techniques (Table 1). Figure 2 illustrates a simplified machine learning 

process, and the relationship among these three techniques. In short, natural language processing 

can be used to extract useful information from text-based data and process it into a format suitable 

for machine learning. Supervised machine learning techniques, some of which employ deep 

learning algorithms, can then be applied to these and other structured datasets to develop predictive 

models or classifiers. 
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Figure 2: Schematic of the steps of machine learning application. NLP, natural language 

processing; SVM, support vector machine; CART, classification and regression tree; CNN, 

convolutional neural network; FNN, feed forward neural network. 
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Machine Learning  

Machine learning techniques are computational methods that learn patterns or classifications 

within data without being explicitly programmed to do so.152 Machine learning can be divided into 

two methods based on the use of “ground truth” data: supervised learning and unsupervised 

learning. In supervised learning, a model learns from “ground truth” data in a training dataset that 

contains labeled output data, and then can predict the output for new cases. The algorithm is 

typically a classifier with categorical output or a regression algorithm with continuous output. In 

unsupervised learning, the model learns from a training dataset without labeled output and 

identifies underlying patterns or structures within its input data. In medicine, machine learning has 

been widely used in several specialties such as radiology, cardiology, oncology, and 

ophthalmology for improving diagnostic accuracy and early diseases detection.153 In this review, 

most studies used supervised machine learning techniques such as logistic regression,76 support 

vector machines (SVMs),154 Classification and Regression Tree (CART),155 random forest,75 

AdaBoost,80 and gradient boosting.156 

 

As shown in Figure 3B, logistic regression is an extension of linear regression (Figure 3A). In 

linear regression, the data is modeled as a linear relationship that can be used to predict a value for 

a given input. In logistic regression, a non-linear function, called the logistic function, converts 

prediction values into binary categories based on a threshold. Some methods can be used to 

improve the prediction accuracy of logistic regression, such as least absolute shrinkage and 

selection operator (LASSO).157 LASSO is a statistical method that selects a smaller subset of 

predictor variables most related to the outcome variable and shrinks regression coefficients to 

improve accuracy and generalizability. SVM is another popular machine learning model used for 
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classification analysis.  As shown in Figure 3C, a boundary is created to split input data into two 

distinct groups and can be used to classify new data into similar distinct categories. 

 

A decision tree is an important supervised machine learning algorithm. Figure 3D illustrates a 

decision tree with a root node as a start followed by the branched nodes and terminal nodes. The 

root node is the first decision node representing the best predictor variable. Each branched node 

represents the output of a given input variable. As more input variables are added to subsequent 

branching nodes, the decision tree becomes more sophisticated in predicting the outcome variable 

at the terminal nodes.  

 

Ensemble methods combine multiple machine learning models and are commonly used to improve 

the performance of prediction models. The two most common methods: bootstrapping aggregation 

(bagging) and boosting were shown in Figure 3E. In a bagging method, multiple subsets of data 

are randomly selected from the original dataset and each subset data are used to train a separate 

prediction model. The final predictions will be aggregated from all prediction models. Random 

forest algorithms are examples of an ensemble machine learning method that combine bagging 

and decision trees.  Boosting is another technique that combines multiple models to create a more 

accurate one. Adaboost and gradient boosting are widely used boosting machine learning 

algorithms.  
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Figure 3: Illustrations of machine learning models. 3A. Linear regression; 3B. Logistic 

regression; 3C. Support vector machine; 3D. Classification and regression trees (CART); 3E. 

Ensemble methods; 3F Artificial neural network (ANN). 

 

As shown in the Table 1, random forest was used by Lin et al.143 to predict myopia onset and by 

Chaganti et al.116 to improve the diagnostic accuracy of glaucoma. In addition, Baxter et al.118 used 

random forest and logistic regression to identify patients with open-angle glaucoma who had a risk 

of progression to surgical intervention. Fraccaro et al.117 used logistic regression, decision trees, 

SVMs, random forests, and AdaBoost to improve diagnostic accuracy of AMD. In addition, fuzzy 

random forest (FRF) and dominance-based rough set approach (DRSA) were used by Saleh et 

al.141 for DR risk assessment. And Gaskin et al.115 used random forest and bootstrapped LASSO 

to identify and predict risks of cataract surgery complications. Moreover, Yoo and Park148 used 

elastic net and LASSO to predict DR risk among diabetic patients. 
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Deep Learning   

Deep learning is a subset of machine learning techniques based on artificial neural networks (ANN) 

that mimic human brain processing. As shown in Figure 3F, multiple layers of computation are 

constructed in a deep learning model, and each layer is used to perform computations on data from 

the previous layer. The layers between the input layer and the output layer are called hidden layers. 

While the information may flow from the input to subsequent output layers (feedforward), 

information can also flow backward from hidden layers to input layers (backpropagation). The 

input and output of hidden layers are not reported; deep learning algorithms only present the final 

outcome of the output layer.81 Deep learning does not use structured features for input as machine 

learning does; therefore, deep learning is useful for raw images since they do not have to be pre-

filtered as they do for machine learning algorithms. After processing raw input through multiple 

layers within deep neural networks, the algorithms find appropriate features for classifying output. 

In this review, several articles used deep learning algorithms such as artificial neural networks 

(ANNs),158 convolutional neural networks (CNNs),159 multilayer neural network ensemble models 

(MLNN-EM),160 and feed forward neural networks (FNNs).161 CNN is a subtype of deep neural 

network commonly used in image classification. In a CNN model, special convolution and pooling 

layers are used to reduce a raw image to essential features necessary for the model to classify or 

label the image. In other words, these techniques use machine learning to determine model input 

features from the raw image data, rather than a human or a separate image processing program. 

MLNN-EM is a learning technique that integrates several neural networks to aggregated outcome. 

In addition, FNN is another subtype of neural network where the information moves forward in 

(one direction) from root nodes; information never moves backwards. The nodes between input 

and out layers do not form a cycle of information.  
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As shown in Table 1, Lee et al.20 used CNNs to distinguish AMD from normal OCT images, 

Baxter et al.21 used ANNs to identify open-angle glaucoma patients at risk of progression to 

surgery. Also, Sramka et al.149 used MLNN-EM and support vector machine regression (SVM-

RM) to improve clinical intra-ocular lens (IOL) calculations and Skevofilakas et al.151 used feed 

forward Neural Network (FNN) and improved hybrid wavelet neural network (iHWNN) to 

develop hybrid decision support system for predicting DR risk among diabetic patients.  

 

Natural language processing (NLP)  

NLP is a branch of artificial intelligence where computers attempt to interpret human language, in 

written or spoken form. By utilizing NLP, researchers can extract information from text; some 

uses in medicine include separating progress notes into sections, determining diagnoses from notes, 

and identifying the documentation of adverse events.162 As shown in Table 1, Apostolova et al.,146 

Peissig et al.,150 and Gaskin et al.138 describe the use of natural language processing in extracting 

cataract information from free-form text clinical notes. 

 

Outcome Metrics for Evaluation of Performance of AI Techniques 

The evaluation of the performance of different AI techniques depends on the chosen algorithm, 

the purpose of the study, and the input dataset. In supervised machine learning algorithms, 

classifiers are evaluated based on a comparison between the known categorical output and the 

predicted categorical output. For outputs with two categories, the accuracy, sensitivity, specificity, 

positive predictive value (PPV), and negative predictive value (NPV) can be computed. Another 

important evaluation metric is the AUC-ROC (Area under the curve – Receiving operating 

characteristic), which is used to evaluate performance of classifiers based on different thresholds. 
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ROC is a probability curve that visualizes the true positive rate (sensitivity) change with respect 

to false positive rate (1 – specificity) for different threshold values used in the model. The AUC 

represents the ability of a model to distinguish between different outcome values.163 An AUC equal 

to 1 is ideal and represents the model’s ability to perfectly distinguish between two outcomes. On 

the other hand, an AUC of approximately 0.5 is the worst case because it means that the model is 

not better than chance for distinguishing between two outcomes. 

 

As shown in Table 1, eight studies used AUC-ROC to evaluate the performance of classifiers.138-

140, 143-145, 148, 151 The range of AUC-ROC was from 65% to 98.5% and the median AUC in all 

included studies was 90%. In addition, precision and recall were used to evaluate the performance 

of text-mining algorithms.164 Apostolova et al.146 and Peissig et al.150 used precision and recall to 

evaluate the performance of text classification. 

 

For regression models, two evaluation metrics, mean absolute error (MAE) and root mean squared 

error (RMSE), are commonly used to measure accuracy for continuous variables. They measure 

the average difference between actual observations and predictions. MAE shows the absolute 

differences with equal weight for each difference. In contrast, RMSE penalized larger errors by 

taking the square of the difference before averaging. In Rohm et al.’s147 study, MAE and RMSE 

were used to evaluate visual acuity prediction. 

 

Application of AI to Clinical Ophthalmology 

Artificial intelligence techniques have been applied clinically to improving ocular disease 

diagnosis, predicting disease progression, and risk assessment (Table 1). Several diseases were 
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studied in papers included in this review including glaucoma, cataract, age-related macular 

degeneration (AMD), and diabetic retinopathy (DR). We will present the benefits of artificial 

intelligence techniques with EHR data in these diseases. 

 

Glaucoma  

Two studies in this review focused on the field of glaucoma and used supervised machine learning 

techniques to improve diagnosis and predict progression.139, 145 In Chaganti et al.’s study,16 a good 

performance was obtained (AUC of glaucoma diagnosis 88%) and results showed that addition of 

electronic medical record (EMR) phenotype could improve the classification accuracy of a random 

forest classifier with imaging biomarkers.139 On the other hand, Baxter et al.145 reported a moderate 

performance (AUC 67%) in a study that used EHR data to predict risk of progression to surgical 

intervention in open-angle glaucoma patients. In addition to model performance, it is also 

important to know which factors can be used to improve disease diagnosis. The work performed 

by Chaganti et al.139 began to explore this problem by comparing performance of classifiers using 

EMR phenotype, visual disability scores (VDS), and imaging metrics. 

 

Cataracts  

Three studies applying different artificial intelligence techniques to cataract diagnosis and 

management were reviewed. In Peissig et al.’s study,150 natural language processing was used to 

extract cataract information from free-text documents. An EHR-based cataract phenotyping 

algorithm, which consisted of structured database querying, information from free-text notes, and 

optical character recognition on scanned clinical images, was developed to identify cataract 

subjects. The result of the study showed good performance (PPV >95%).150 Additionally, Gaskin 
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et al.15 used supervised machine learning algorithms to identify risk factors and to predict intra-

operative and post-operative complications of cataract surgery. The investigators used data mining 

via NLP to extract cataract information from the EHR system.138 The predictive model showed 

moderate performance (AUC 65%) and the risk factors associated with surgical complications 

included: younger patients, refractive surgery history, AMD history, and complex cataract surgery. 

These risk factors were associated with post-operative complications, and the predictive model 

showed moderate performance (AUC 65%). Supervised machine learning (support vector machine 

regression – SVM-RM) and deep learning (multilayer neural network ensemble model - MLNN-

EM) algorithms were used to improve the intraocular lens (IOL) power calculation by Sramka et 

al.149 Both SVM-RM and MLNN-EM model provided better IOL calculations than the Barrett 

Universal II formula. 

 

Age-Related Macular Degeneration (AMD) 

Three studies used AI in AMD were reviewed. Lee et al.20 used deep learning techniques to 

improve the diagnosis of AMD. Optical coherence tomography (OCT) images of each patient were 

linked to EMR clinical end points extracted from EPIC (Verona, WI) for each patient to predict a 

diagnosis of AMD. The model had high accuracy with an AUC 97% in distinguishing AMD from 

normal OCT images.144 Another study conducted by Rohm et al.,147 used supervised regression 

models to accurately predict visual acuity in response to anti-vascular endothelial growth factor 

(VEGF) injections in patients with neovascular AMD. Models predicting treatment response may 

have implications in encouraging patients adhering to intravitreal therapy. Also, as demonstrated 

by Fraccaro et al.,140 supervised machine learning techniques can be incorporated into EHR 

systems providing real-time support for AMD diagnosis. 
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Diabetic Retinopathy  

DR is one of the most common comorbidities of diabetes and frequent screening exams for diabetic 

patients are resource consuming. Three studies explore this problem by using AI techniques with 

EHR data to determine patient risk for developing DR. Saleh et al.141 used two kinds of ensemble 

classifiers: fuzzy random forest (FRF) and DRSA to predict DR risk using EHR. Good 

performance (accuracy 80%) of the FRF model was shown in this study. Similarly, Yoo et al.148 

proposed a comparison between the learning models: ridge, elastic net, and LASSO using the 

traditional indicators of DR. They showed that the performance of LASSO (AUC 81%) was 

significantly better than the traditional indicators (AUC of glycated hemoglobin 69%; AUC of 

fasting plasma glucose 54%) in diagnosing DR. In addition, a hybrid Decision Support System 

was developed by Skevofilakas et al.151 to estimate the risk of a type I DM patient to develop DR. 

The hybrid DSS showed an excellent performance with an AUC of 98%. Overall, these studies 

show that integrating these techniques with an EHR system has promise in improving early 

detection of diabetic patients at risk of DR progression.  
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DISCUSSION 

This article reviews the literature applying artificial intelligence techniques to EHR data to aid 

ocular disease diagnosis and risk assessment. We focus the discussion on three areas: AI 

techniques used to analyze EHR data, the performance of techniques, and the ocular diseases most 

commonly analyzed. 

 

First, secondary use of EHR data via artificial intelligence techniques can be used to improve 

ocular disease diagnosis, risk assessment and disease progression. The predictive models across 

the eight classifiers showed good performance with a median AUC of 90%.  We found one study 

focused on postoperative complications of cataract prediction reported moderate accuracy with 

65%.138 The reason may be due to insufficient predictors, such as lack of surgeon relevant 

information. Also, standard classification techniques may not be able to handle imbalanced data 

very well.165, 166 For example, when a dataset contains a very few number of disease or 

complications cases, there is not enough data about these cases for the model to accurately learn 

how to predict these cases. On the other hand, excellent performance of classifiers trained on 

combined EHR and image data were reported by Skevofilakas et al.151 and Lee et al.144 For future 

studies, one feasible direction might be to develop the hybrid model that employs both the routine 

EHR data and image datasets to have a more complete picture of patient variables associated with 

the outcome of interest. 

 

Second, supervised machine learning was the most common technique used with EHR data to 

analyze ocular diseases. Studies often focused on improving diagnosis, predicting progression, or 

risk assessment for early detection. The predictors defined were based on the risk factors of disease, 
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demographic features found from literature review and clinical experiences. None of the studies 

reviewed used unsupervised machine learning techniques where the desired output and the 

relationship between the outcome variable and the predictors are unknown. These methods are 

used to identify clusters of data that are similar and can help discover the hidden factors that are 

useful for improving the diagnosis. However, unsupervised learning has been successfully applied 

to other fields. For example, Marlin et al.167 demonstrated that the probabilistic clustering model 

for time series data from real-world EHR could be able to capture patterns of physiology and be 

used to construct mortality prediction models. For future studies, unsupervised machine learning 

techniques might be used to find hidden patterns from EHR data for improving clinical predictions 

of ocular diseases. 

 

Finally, in this review, studies that analyzed EHR data with AI techniques mainly focused on four 

diseases: glaucoma, DR, AMD, and cataracts. The focus on these diseases (glaucoma, AMD, and 

DR) is likely due to their prevalence as the major causes of irreversible blindness in the world.168 

Early detection or treatment can delay or halt the progression of such diseases, reduce visual 

morbidity, and preserve a patient’s quality of life.169, 170 AI techniques can be used to achieve this 

goal. Furthermore, cataract surgery is the most common refractive surgical procedure and is one 

of the most common surgeries performed in ophthalmology.171 Risk assessment of the 

postoperative complications and decreasing the risk of re-operation are crucial to patient outcomes, 

and AI techniques can help approach these issues. 

 

This review presents the AI techniques used in vision sciences based on EHR data. However, 

several problems still need to be addressed for future studies. One of the major problems is data 
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quality. EHR data used for research is essentially different from data collected during a traditional 

clinical research study. EHR data collected from clinical practice may have incomplete 

information due to incorrect data entry, non-answers, and recording errors. Consequently, the 

performance of machine learning models will be dependent on data quality and is an issue when 

using AI techniques with EHR data.172-175 Additionally, except for the work reported by Lin et 

al.,143 all reviewed studies were single-center studies. Thus, the results of studies may not be 

generalizable to other healthcare systems. 

 

While imaging data do not suffer from the data quality issues of other clinical data, there is no 

well-established gold standard for many imaging techniques. For instance, Garvin et al.176 

presented an automated 3D intraretinal layer segmentation algorithm using OCT image data. The 

gold standard was determined by two retinal experts’ recommendations. This requires more time 

and resources to analyze and cross-validate the outcomes. Also, different pre- and post-processing 

algorithms, hardware configurations, and image processing steps are intended to improve image 

quality for easier automated diagnosis. However, these factors often make models difficult to 

replicate. In addition, using imaging analysis without other prior information, such as medical 

history information, may also affect the model performance and lead to biased results. Therefore, 

integration of imaging data and routine EHR data allow us to obtain prior information to input to 

the predictive model. 
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CONCLUSION 

Artificial intelligence techniques are rapidly being adopted in ophthalmology, and have potential 

to improve the quality and delivery of ophthalmic care. Moreover, secondary use of EHR data is 

an emerging approach for clinical research involving artificial intelligence, particularly given the 

availability of large-scale data sets and analytic methods.177-179 In this review, we describe 

applications of artificial intelligence methods to ocular diseases and problems such as diagnostic 

accuracy, disease progression, and risk assessment, and find that the number of published studies 

in this area has been relatively limited due to challenges with the current quality of EHR data. In 

the future, we expect that artificial intelligence using EHR data will be applied more widely in 

ophthalmic care, particularly as techniques improve and EHR data quality issues are resolved. 
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APPENDIX 

PubMed Search Query 

( 

( ("electronic"[All Fields] AND "health"[All Fields] AND record[All Fields])  

OR (“electronic"[All Fields] AND "medical"[All Fields] AND record[All Fields]) OR 

(("computerised"[All Fields] OR "computerized"[All Fields]) AND "medical"[All Fields] AND 

record[All Fields])  

OR ("electronic health records"[MeSH Terms])  

OR (“medical records systems, computerized"[MeSH Terms])  

OR (“electronic health data” [All Fields]) 

OR (“personal health data” [All Fields]) 

OR (“personal health record” [All Fields]) 

OR (“personal health records” [All Fields]) 

OR (“Health Record” [All Fields]) 

OR (“computerized patient medical records” [All Fields]) 

OR (“computerized medical record” [All Fields]) 

OR (“computerized medical records” [All Fields]) 

OR (“computerized patient records” [All Fields]) 

OR (“computerized patient record” [All Fields]) 

OR (“computerized patient medical record” [All Fields]) 

OR (“electronic health records” [All Fields]) 

OR (“electronic patient record” [All Fields]) 

OR (“electronic healthcare record” [All Fields]) 

OR (“ehr” [All Fields]) 

OR (“ehrs” [All Fields]) 

OR (“emr” [All Fields]) 

OR (“emrs” [All Fields]) 

OR (“phr” [All Fields]) 

OR (“phrs” [All Fields]) 

OR (“patient record” [All Fields]) 

OR (“patient health record” [All Fields]) 

OR (“healthcare record” [All Fields]) 

)  

 

AND  

 

(  

("Machine"[All Fields] AND "Learning"[All Fields])  

OR (“Artificial"[All Fields] AND "intelligence"[All Fields])  

OR ("deep learning"[All Fields])  

OR (“Machine intelligence"[All Fields]) 

OR (“Natural language processing"[All Fields]) 

OR (“NLP"[All Fields]) 

OR (“ML"[All Fields]) 
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OR (“DL"[All Fields]) 

OR (“vector machine "[All Fields]) 

OR (“random forest"[All Fields]) 

OR (“neural network "[All Fields]) 

) 

 

AND 

English[lang]  

 

AND 

 

(  

("Ophthalmology"[All Fields])  

OR (“Eye"[All Fields])  

OR (“Vision"[All Fields]) 

OR (“visual"[All Fields]) 

OR (“Diabetic retinopathy"[All Fields]) 

OR (“Cataract"[All Fields]) 

OR (“Glaucoma” [All Fields]) 

OR (“Cornea” [All Fields]) 

OR (“Pediatric Ophthalmology and Strabismus” [All Fields]) 

OR (“Retina” [All Fields]) 

OR (“Retinal disease” [All Fields]) 

OR (“Uveitis” [All Fields]) 

OR (“Neuro-ophthalmology” [All Fields]) 

OR (“Ophthalmic genetics” [All Fields]) 

OR (“Inherited retina diseases” [All Fields]) 

OR (“Oculoplastics” [All Fields]) 

OR (“Ocular Oncology” [All Fields]) 

OR (“Cataract surgery” [All Fields]) 

OR (“Comprehensive eye care” [All Fields]) 

OR (“Oculofacial plastics and reconstructive surgery” [All Fields]) 

OR (“Vision rehabilitation” [All Fields]) 

OR (“Contact Lenses” [All Fields]) 

OR (“Myopia” [All Fields]) 

OR (“Age-related macular degeneration” [All Fields]) 

OR (“ROP” [All Fields]) 

OR (“Congenital cataract” [All Fields]) 

OR (“Low vision” [All Fields]) 

OR (“Pediatric ophthalmology” [All Fields]) 

OR (“Strabismus” [All Fields]) 

OR (“Oculoplastic surgery” [All Fields]) 

OR (“Comprehensive ophthalmology” [All Fields]) 

OR (“Refractive error” [All Fields]) 

OR (“Refractive surgery” [All Fields]) 

) 
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Chapter 4: Extraction of Active Medications and Adherence Using Natural 

Language Processing for Glaucoma Patients 

 

Note: The following was published in the AMIA Annual Symposium Proceedings 2021. Citation: 

Lin, W. C., Chen, J. S., Kaluzny, J., Chen, A., Chiang, M. F., & Hribar, M. R. (2021). Extraction 

of Active Medications and Adherence Using Natural Language Processing for Glaucoma Patients. 

In AMIA Annual Symposium Proceedings (Vol. 2021, p. 773). American Medical Informatics 

Association. 

 

ABSTRACT 

Accuracy of medication data in electronic health records (EHRs) is crucial for patient care and 

research, but many studies have shown that medication lists frequently contain errors. In contrast, 

physicians often pay more attention to the clinical notes and record medication information in them. 

The medication information in notes may be used for medication reconciliation to improve the 

medication lists’ accuracy. However, accurately extracting patient’s current medications from 

free-text narratives is challenging. In this study, we first explored the discrepancies between 

medication documentation in medication lists and progress notes for glaucoma patients by 

manually reviewing patients’ charts. Next, we developed and validated a named entity recognition 

model to identify current medication and adherence from progress notes. Lastly, a prototype tool 

for medication reconciliation using the developed model was demonstrated. In the future, the 

model has the potential to be incorporated into the EHR system to help with real-time medication 

reconciliation. 

 

 

 

 



 

 64 

 

INTRODUCTION 

The rapid adoption of electronic health records (EHRs) has generated large-scale clinical data that 

has been re-used for many purposes, including patient phenotyping,180 pharmacovigilance,181, 182 

comparative effectiveness research,183 clinical decision support,184, 185 and quality improvement 

and research.186 Although secondary use of EHR shows many benefits such as improved healthcare 

quality, reduced healthcare costs, and effective clinical research,130, 187 there are many challenges 

that still need to be addressed. One of the biggest challenges is the accuracy and completeness of 

EHR data, specifically medication information.188  

 

The accuracy of medication data is crucial for patient safety, quality of care, and clinical research. 

Inaccurate or incomplete medication records can lead to polypharmacy, adverse medication 

interactions, and decreased data reliability in research.189 The medication list is a structured record 

of a patient’s medication data which is populated automatically by electronically prescribed 

medications or manually through medication reconciliation.190 However, the EHR system may not 

always capture medication data correctly or prevent errors in the medication list.191 Previous 

studies have shown that medication lists frequently contain errors, including duplicated 

documentation of medications, outdated discontinued prescriptions in the medication list, and 

missing medications prescribed elsewhere.190, 192-196  In addition, prior studies show that physicians 

direct very little attention to EHR medication lists, and instead spend most time reviewing the 

impression and plan section.197, 198 It seems reasonable to expect that medications recorded in 

narrative notes are more reliable and can be helpful with medication reconciliation. Medication 
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reconciliation is a process to create and maintain patients' most current and accurate list of 

medications.199, 200 

 

However, manual reviewing progress notes for medication data extraction in EHR is time-

consuming and labor-intensive. Natural language processing (NLP) is a promising strategy for 

capturing medication information from the free-text progress note. With advancements in machine 

learning and the large text corpora available in EHR, NLP has been successfully used to process 

free-text EHR data, for deep contextualized word representations,201 information extraction,202 and 

semantic analysis.203 Named entity recognition (NER) is a sub-task of information extraction, 

which seeks to identify words or phrases into pre-defined categories with specific labels.204 Over 

the past years, the NER technique has been applied to extract medication information, such as drug 

names, frequency, dosage, adverse drug events, adherence, etc., from free-text documents.99, 205-

208 For example, a conditional random field (CRF) model was used to develop a NER model to 

detect medication attributes and adverse drug events.206 Also, bidirectional long short-term 

memory (LSTM) model was used for named entity recognizing for medication information.205, 207 

More recently, pre-trained deep learning models were widely used for biomedical information 

extraction.208, 209 However, to our knowledge, there has not been a well-developed NLP tool to 

identify a list of current medications for a specific disease such as glaucoma and help with 

medication reconciliation. 

 

The purpose of this study is to develop a NER model for extracting patients’ current 

ophthalmologic medication and adherence from free-text notes for glaucoma patients. Glaucoma 

is characterized by progressive degeneration of the optic nerve and irreversible visual field loss, 
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and it is the leading cause of irreversible blindness worldwide.210 The majority of glaucoma 

patients are treated using medical therapy, and the accuracy of medication documentation is crucial 

in glaucoma management 211 However, the accuracy of glaucoma medication documentation is 

unclear. In addition,  glaucoma patients’ medication non-adherence rate has been reported to vary 

from 24% to 59%.212, 213 Therefore, a reliable method to assess glaucoma patients’ current 

ophthalmologic medication and adherence is needed.214 Finally, the reliability of medication data 

is important for glaucoma research, such as prediction models for disease progression. In this study, 

we first manually reviewed patient charts for discrepancies in medication documentation between 

medication lists and progress notes. Next, we trained and tested a NER model for extracting current 

medication from progress notes and evaluated its accuracy. Finally, we demonstrated an approach 

for medication reconciliation using the NER model on small sample progress notes. 
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METHODS 

This study was approved by the Institutional Review Board at Oregon Health and Science 

University (OHSU). OHSU is a large academic medical center in Portland, Oregon. This study 

was conducted at Casey Eye Institute, OHSU’s ophthalmology department serving all major 

ophthalmology subspecialties. The department performs over 130,000 outpatient examinations 

annually and is a major referral center in the Pacific Northwest and nationally. In 2006, OHSU 

implemented an institution-wide EHR (EpicCare; Epic Systems, Verona, WI) to handle all 

ambulatory practice management, clinical documentation, order entry, medication prescribing, and 

billing. 

 

The study contains three phases (1) Explore medication discrepancies between the medication list 

and the progress note for glaucoma by manually reviewing charts; (2) Develop a NER model to 

extract patients’ current ophthalmologic medication and medication adherence from progress notes 

for glaucoma patients and (3) Apply the NER model to perform medication reconciliation.  

 

1. Manual Chart Review of Medication Lists and Progress Notes 

Progress notes and medication list data from EHR were extracted for 150 randomly selected Casey 

Eye Institute patients with encounter ICD10 diagnosis codes related to glaucoma from January 23, 

2019, to September 28, 2020. The patient’s most recent office visit notes were manually reviewed 

by three independent reviewers. The medications recorded in the narrative notes were abstracted 

and compared to the EHR medication list at the time of visit. All ophthalmologic medications and 

over-the-counter (OTC) medications (e.g., artificial tears) were collected. All medications listed 
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in the notes but not on the medication list or vice versa were labeled. Cross-validation among the 

three reviewers was conducted by using a subset of 20 encounter notes (96.4% agreement).  

 

2. NER Model for Extracting All Ophthalmic Medications 

We sampled a dataset with 507 progress notes from office visits at the Casey Eye Institute from 

January 01, 2019, to December 31, 2019, with encounter ICD10 codes associated with glaucoma. 

The dataset was constructed by random stratified sampling from all ophthalmology visits 

according to the department and primary provider name. The documents were manually annotated 

for nine categories: Drug Name, Route, Frequency, Dosage, Strength, Duration, Adverse Drug 

Event (ADE), Adherence, and Current Medication Use. All medication names, including generic 

names, brand names, and abbreviations, were sourced from publicly available online resources and 

glaucoma specialists. An open-source tool (Doccano; Open source: Doccano; 2018) was used to 

annotate the documents.215 Due to the limited number of ADE entities, we discarded this category 

and kept the other eight entities. Figure 1 displays an example of the annotation. The annotated 

dataset was randomly split into 75% for training and 25% for testing. A 10% randomly sampled 

subset of documents from the training data was used as a validation set for turning the 

hyperparameters. Table 1 presents the description of the datasets and annotation statistics. 
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Figure 1. Example of note annotation by an open-source tool. Medication drug name, strength, 

dosage, frequency, route, duration, current use, and adherence are identified. 

 

We used named entity recognition, a sub-type information extraction technique, to extract 

medication information and adherence from clinical notes. The NER model was developed in 

Python 3.7.6 using the spaCy library.216, 217 The spaCy library is a free open-source library for 

NLP. The architecture of spaCy’s NER model is based on convolutional neural networks which 

uses a word embedding strategy using sub-word features and "Bloom" embeddings.218, 219 In this 

study, the training task contains 200 epochs with experiments with multiple hyperparameter 

settings. Different learning rates (initial at 1e−2, 1e−3, 2e−3, 1e−4, 2e−4) were tested and adjusted 

by two optimizers: Adaptive Moment Estimation (Adam) and stochastic gradient descent. We use 

a decaying dropout rate (0.5 - 0.35; 1e-3) to avoid overfitting. Also, we experimented with different 

batch compounding sizes and regularization schemes to optimize the model. The results of the 
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NER model’s extraction for the test set were determined by comparing the manually annotated 

and the NER model’s extracted entities. The model performance was evaluated by using F1 score, 

precision, recall, and the micro-averaged score, which aggregates the contributions of all 

categories to calculate the average metrics.114 

 

Table 1. Distribution of annotated entities and number of progress notes in training and 

testing datasets. 

Named Entities Train Test Total 

Drug 2029 505 2534 

Frequency 1722 411 2133 

Route 1666 371 2037 

Dosage 201 40 241 

Duration 35 15 50 

Strength 168 31 199 

Adherence 132 48 180 

Current Medication Use 725 185 910 

Number of Notes 381 126 507 

 

 

3. Medication Reconciliation Using NER Model for Current Medications 

Finally, we developed a prototype medication reconciliation tool using the optimized NER model. 

For this purpose, we are focusing only on medications the patient is currently using as documented 

in progress notes. Figure 2 demonstrates an example of medication reconciliation using our 

prototype tool. First, our NER model extracted the patient’s medications and "Drug Use" label 

from the150 sample progress notes which were manually reviewed in phase 1. The “Drug Use” 

label identified which medications that the patient was currently taking. Next, the current 

medications were standardized based on RxNorm Ingredient (IN).220 Finally, the standardized 
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medications were compared to the manually identified medications from phase 1. Both 

ophthalmologic medications and over-the-counter (OTC) medications (e.g., artificial tears) were 

included. All medications listed in the notes but not on the medication list or vice versa were 

flagged. 

 

 

Figure 2. Example of medication reconciliation using the developed NER model 
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RESULTS 

1. Manual Chart Review of Medication Lists and Progress Notes 

The randomly sampled 150 patients’ notes and medication lists contained a total of 450 

medications, including glaucoma eye drops, mydriasis eye drops, antimicrobials, corticosteroids, 

and OTC medications. Prescription medications were most common (n = 355; 79%), followed by 

OTC medications (n = 95; 22%). Around 57% of patients had at least one medication mismatch 

for all categories in their records. However, only 36% of patients had at least one medication 

mismatch for prescription medications (Figure 3). Nearly 66% of medications (n = 298) could be 

reconciled between the progress notes and medication list. Around 34% (n = 152) of medications 

are mismatched for various reasons, including medications prescribed by clinicians from different 

institutions, medications with duplicated prescriptions, medications that were prescribed and 

entered in the medication list but not recorded in the progress note, and old medications that were 

not discontinued in the medication list. Figure 4 displays the distribution of medication 

mismatches among the two categories in the EHR by location. The most frequent mismatch was 

found with prescription medications (55%) followed by the OTC medications (45%). The OTC 

medications were more commonly recorded in the progress notes but not entered into the 

medication list. In contrast, mismatched prescription medication more often appeared in the 

medication list but not in the progress notes. 
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Figure 3. Medication documentation mismatches were stratified based on the number of 

mismatches that occurred per patient for prescription (blue), OTC (green), and all medications 

(yellow). 

 

Figure 4. Summary of medication mismatches across 150 patients. 
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2. NER Model for Extracting Current Ophthalmic Medication  

The custom NER model was trained with 381 progress note documents that were manually 

annotated with eight named entities and then tested on 126 progress notes. Table 2 presents the 

overall micro-averaged and per-entity performance for the optimal NER model on test data (126 

progress notes). The overall performance of the NER model across all categories was F1 score = 

0.955, Precision = 0.951, and Recall = 0.957. Higher performance was observed on medication-

related entities: Drug, Name, Route, Frequency, Dosage, and Strength, compared to patient’s 

behavior-related entities: Adherence and Current Medication Use. An error analysis was 

performed for false negative and positive on Drug Name, Adherence, and Current Medication Use 

to recognize the source of error predictions. Several causes of errors were identified, such as 

different wordings for medication adherence, mislabeled current medication use and drug name 

due to similar sentence structure, eye exams or warm compress mislabeled as drug name, and 

misclassification when entity information was contained in a short sentence. (Table 3). 

 

Table 2. The results of the NER model on the test dataset 

Entities Performance on Test Data 

 Precision Recall F1-Score 

Drug 0.971 0.971 0.971 

Frequency 0.972 0.969 0.970 

Route 0.948 0.986 0.966 

Dosage 0.987 0.998 0.991 

Duration 1.000 0.600 0.749 

Strength 0.969 0.997 0.982 

Adherence 0.803 0.758 0.779 

Current Medication Use 0.899 0.919 0.909 

Average (micro) 0.951 0.957 0.955 

 

 



 

 75 

Table 3. Error analysis from NER predictions related to Drug Name, Current Medication 

Use, and Adherence labels 

Error category Example Explanation 

Mislabeled Current Medication Use 

 

“Urgent add on - Last seen Dr. X 

on X/X/XXXX” 

 

 

“encouraged PFATs at least BID 

OU - discussed to space at least 5 

mins from glaucoma drops” 

 

Unexplained error, “Urgent add on” 

was labeled as Current Medication 

Use 

 

“Encouraged” was mislabeled as 

Current Medication Use due to the 

similar sentence structure 

 

Mislabeled Adherence “- History inconsistent drop 

adherence” 

 

“No eye pain/discomfort but 

patient admits to forgetting his 

drops frequently.” 

 

There are many different wordings 

for medication adherence, and 

Adherence label was not assigned 

 

Mislabeled Drug Name  “Cont warm compresses BID ou” 

 

 

 

“Vision has been good. Just using 

OTC readers.” 

 

“warm compresses” was mislabeled 

as Drug Name due to a similar 

sentence structure 

 

“Using” was mislabeled as Current 

Medication Use, and OTC readers 

was mislabeled as Drug Name due to 

the similar sentence structure 

 

 

3. Medication Reconciliation Using the NER Model 

The prototype medication reconciliation tool identified 408 current medications from the 150 

progress notes that were manually reviewed in phase 1. After standardizing the medications to 

RxNorm, 14 medications were removed for a final list of 394 medications. Among the 394 

medications, there were 379 medications matched with the manually abstracted current 

medications. The prototype tool achieved a good performance of F1 score = 0.969, Precision = 

0.959, and Recall = 0.979. 

 

 

 



 

 76 

DISCUSSION 

In this study, we explored medication discrepancies in the EHR data and evaluated the 

performance of a custom NER model's applicability to extract current medication for glaucoma 

patients. We also used the developed NER model in a proof-of-concept application to perform 

medication reconciliation in a subset of our patients.  The key findings from our study were (1) 

Medication discrepancies in patient charts were found to be present in a large proportion of office 

visits; (2) The custom NER model can accurately extract current medication and adherence for 

glaucoma patients; (3) The NER model can be used to reconcile the medication documentation.  

 

The first key finding is that medication discrepancies were found to be present in a large proportion 

of office visits. Our study shows that approximately twenty percent of medications prescribed to 

glaucoma patients had at least one discrepancy between the medication list and the progress note. 

Overall, more than one-third of patients in this study had at least one medication mismatch between 

both data sources. These inconsistencies in the EHR medication records may increase the risk of 

medication errors221 and affect the reliability of research that relies on this data. These findings are 

similar to other studies, including a study for microbial keratitis demonstrating 76.9% of 

medication agreement between progress notes and medication lists190 and another study for 

inflammatory bowel disease reporting 78.6% of medications agreement between clinical narrative 

and medication list.193 The findings from these studies indicate that the accuracy of the medication 

list is a common problem. An accurate tool for medication reconciliation of medication lists and 

further qualitative studies to understand the causes of medication data discrepancies is needed. 

 



 

 77 

The second key finding is that our NER model can accurately identify current medication and 

adherence from progress notes from outpatient glaucoma visits. In our study, the model reached a 

micro-averaged F1 score of 0.955 across all categories. The NER model was developed to 

recognize eight categories from free-text progress notes, including drug names (including generic, 

brand, and abbreviation names), the route of administration, prescription frequency, the dosage of 

the drugs, drug strength, duration, medication adherence, and current medication use. The NER 

model could accurately identify medication-related entities (except duration) but showed lower 

performance on patient behavior-related entities, such as adherence and current medication use. 

The difference could be ascribed to the limited number of training cases and the higher variety of 

wordings. As shown in Table 1, there are only 35 annotated duration entities and 132 annotated 

adherence entities in the training data. In addition, the words and phrases to indicate adherence 

and current medication use are various, and some of these phrases are located in different sentences 

than the medications. Nevertheless, the most common error of drug name identification is 

mislabeling other terms such as “warm compress” or “OTC readers” as a drug name due to similar 

sentence structure. For example, “warm compress left eye PRN” or “Vision has been good. Just 

using OTC readers.” In these cases, these mislabeled drugs will easily be filtered out of the results 

in practice during the conversion to RxNorm names. 

 

Finally, our NER model can be used to reconcile medication documentation. As shown in the 

phase one study, we can manually abstract the medication records from their progress notes to 

compare with their medication list. Similarly, the NER model was able to recognize common 

medications as well as identify text related to current medication use. This is the first study, to our 

knowledge, to develop NLP models to recognize current medication use from free-text progress 
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notes. With the ability to identify the current medication use, we are able to capture the whole 

picture of current medications for the target patients and reconcile it with their medication list. As 

previously mentioned, the medication reconciliation between progress notes and medication lists 

was only reported from 76.9% to 79.6% for three different diseases, including microbial keratitis, 

inflammatory bowel disease, and glaucoma.190, 193 And more than one-third of patients had at least 

one discrepancy for ophthalmic prescription medications.190 In our study, the NLP tool can 

correctly identify current medications for glaucoma patients on 150 sample progress notes (F1 

score = 0.969). Figure 2 displays an example of medication reconciliation using the NLP tool. In 

this prototype tool, we focused on reconciling the drug names since physicians did not always 

record the other attributes, such as route, frequency, and dosage along with the medications. In 

future work, we plan to extend this medication reconciliation method to use the information from 

both narrative progress notes and medication lists to construct a current medication list for 

glaucoma patients. 

 

Our study has limitations future work may address. First, some of the entities are naturally less 

frequently recorded in the progress notes that affect the performance of the NER model. For 

example, text related to drug duration appeared much less frequently than other entities, such as 

drug name, route, and frequency. Thus, it is challenging to train the model correctly recognize 

these entities. A similar finding was reported in another study.208 Second, the model was trained 

on a set of notes for glaucoma patients from a single institution; it is unclear if the model can be 

generalizable to other subspecialties within ophthalmology or other healthcare systems. Finally, 

the application of the custom NER model for medication reconciliation is a proof of concept. We 

conducted the test of medication reconciliation using the NER model on a limited number of 



 

 79 

samples. Our intention is to extend and replicate these study methods to different specialties and 

institutions to increase the generalizability of our model. In the future, the custom model could be 

incorporated into the EHR system to help with medication reconciliation. 
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CONCLUSION 

Discrepancies in medication documented in the medication and in progress notes were observed 

in more than one-third of encounters for glaucoma patients.  Inaccurate medication lists in the EHR 

may affect the reliability of the research or clinical decision support using this data. Since 

physicians often record current medication information in the progress notes this data could be 

used for medication reconciliation. In this study, we developed an NLP model to accurately 

identify current medication information from free-text EHR data that can be applied to perform 

automated medication reconciliation; the performance of the model is similar to the best 

performing published NLP models for medication extraction studies.99, 205-208, 222 This has 

implications in improving the data quality and usefulness for medication data in both research and 

clinical care. 
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Chapter 5: Prediction of Multiclass Surgical Outcomes in Glaucoma Using 

Multimodal Deep Learning with Operation Notes and EHR Data 

 

ABSTRACT 

Objective 

The objective of this study was to predict long-term multiclass surgical outcomes of 

trabeculectomy using multimodal models and explore the predictive effect of operative notes. Also, 

we compared different deep learning techniques to find the best method to extract text information 

in a multimodal neural network with limited sample size.  

 

Materials and Methods 

Three classes of surgical outcomes were defined, including surgical success, elevated intraocular 

pressure (IOP) and hypotony surgical failure. Operation notes of primary trabeculectomy were 

collected and mapped to pre-trained word embeddings. The structured features contain three 

groups: pre-operative EHR features, operation-related features, and early post-operative features. 

We developed several deep learning models to predict long-term multiclass surgical outcomes 

using operation notes, structured input features, or combined input features.  

 

Results 

At one year, 193 eyes were considered hypotony surgical failure, 183 eyes were considered 

elevated IOP surgical failure, and 1164 eyes were defined as surgical success. The transformer 

multimodal neural network had the highest macro AUROC (0.752) and macro F1 score (0.541), 
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followed by LSTM multimodal neural network (AUROC = 0.725; macro F1 score = 0.491), and 

the ANN model used structured input features alone (AUROC = 0.709; macro F1 score = 0.476). 

Prediction models with text data alone showed lower model performance.  

 

Conclusions  

Multimodal deep learning models with both structured EHR data and operation notes can be used 

to predict long-term multiclass surgical outcomes of trabeculectomy. Also, we explored the 

prediction power of operation notes and the better way to extract text information in a multimodal 

prediction model. The work has implications for improving post-operative management. In the 

future, we may incorporate imaging data into models to improve prediction accuracy. 
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INTRODUCTION 

Glaucoma is a group of eye diseases characterized by optic nerve damage and visual field loss.223  

It is the second leading cause of irreversible blindness worldwide and associated with deterioration 

in the quality of life.224 Intraocular pressure (IOP) control through medication is the primary 

intervention for preventing the progression of glaucoma.15 Surgical intervention may be needed if 

the maximum dose of glaucoma medications can not halt disease progression. Trabeculectomy 

remains one of the most common surgical procedures for glaucoma worldwide.225, 226 

Trabeculectomy is a type of filtering surgery to improve eye fluid drainage, which decreases 

IOP.227 However, the long-term surgical failure rates of trabeculectomy have been reported as 22% 

to 35% in multiple studies.9-11 9 Surgical failures were defined as patients needing re-operation, 

loss of light perception vision, showing consistently elevated IOP (> 21 mmHg or less than 20% 

reduction below baseline) or hypotony (<=5 mmHg) after 3 months of primary surgery.9 The 

outcomes of trabeculectomy highly depend on post-operative management within the first 3 

months following surgery.228  Proper IOP control in the early post-operative period is critical for 

long-term surgical outcomes and is affected by different surgical complications.63 Scarring is the 

most common and challenging complication related to post-operative elevated IOP.64 Physicians 

may lower the intraocular pressure by releasing the scleral flap sutures using laser suture lysis or 

using post-operative antifibrotic agents.65 On the other hand, excessively low IOP post-surgery is 

caused by  conjunctival wound leaks and over-filtration.66, 228 Physicians may postpone laser suture 

lysis or decrease the dose and frequency of topical steroid use to reduce the risk of hypotony. Yet, 

the fluctuation of intraoperative pressure during the early post-operative period and the complexity 

of surgical recoveries make identifying which patient has a higher risk of long-term surgical failure 

more difficult. Therefore, there is a strong need for a quantitative model for identifying a patient's 
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risk of surgical failures due to high or low IOP, which could aid the decision-making of post-

operative management. 

 

Artificial intelligence has been applied for surgical outcome prediction studies in many specialties 

such as ophthalmology, neurosurgery, cardiovascular, and renal disease.123, 229-232 For example, 

Jeong et al. developed several machine learning models to predict post-operative complications 

for end-stage renal disease (ESRD) patients who underwent any type of surgery. They 

concatenated three groups of features that came from different sources: pre-op electronic health 

records (EHR) features, peri-op features, and text features. Two categories of text features (binary 

and numeric) were extracted from the pre-anesthetic assessment document using the rule-based 

natural language processing method. Their best-performing model achieved F1 score of 0.797 with 

the random forest model.229 Also, applied machine learning was used to predict the improvement 

of quality of life after surgery for degenerative cervical myelopathy patients. The random forest 

model showed the highest AUC of 0.70 with accuracy of 0.77.231 In ophthalmology, a recently 

published study described a multimodal machine learning approach with convolutional neural 

networks (ResNet50) and XGBoost to predict myopic regression after corneal refractive surgery. 

Their final combined machine learning model showed good performance with AUC of 0.75.123 

These studies show the promise of using artificial intelligence to provide surgical outcome 

predictions on an individual level to help with clinical decision-making. 

 

For trabeculectomy surgical outcome predictions, several studies have used early post-operative 

IOP to predict long-term eye pressure control.70, 233, 234 However, classic statistical regression 

methods based on intraocular pressure alone or with limited features cannot provide sufficient 



 

 85 

information to predict long-term surgical outcomes accurately. A previous study demonstrated that 

machine learning algorithms with pre-operative surgical data could predict the higher risk group 

of surgical failure with AURCO 0.64 - 0.74, but these prediction models were based on small 

samples and focused on a binary outcome prediction: surgical success or failure.232 As 

aforementioned, long-term surgical failures might correlate with different causes, and the post-

operative management for the two different causes is often contrary to each other. Thus, it is more 

clinically useful to predict a patient's surgical failure risk due to the specific cause.  

 

In addition to IOP, there are other structured EHR features such as demographic data and 

medication usage, intraoperative features and unstructured EHR data are other important 

predictors for surgical outcomes after trabeculectomy.229, 235, 236 While previous prediction models 

for trabeculectomy mainly rely on patients’ pre-existing conditions or early post-operative clinical 

measurements, there is a wealth of intraoperative information reflecting patients' conditions and 

performed procedures during the surgery that has potential for predicting outcomes. The operative 

note is a clinical document that records intraoperative information such as surgical findings, 

procedures performed, and the patient's condition during the surgery. Operative notes are free-text 

documents that require natural language processing (NLP) for extracting data to be used in models. 

With recent advancements in machine learning and the large text corpora available in EHR, NLP 

has been successfully used to process free-text EHR data, for deep contextualized word 

representations,237 information extraction,92, 238 and text classification.93, 239 Furthermore, in recent 

years, several studies combined structured data and unstructured text directly through deep 

learning techniques to develop prediction models.240-242 Transformer encoder blocks and long 

short-term memory (LSTM) layers are commonly used to extract information from the text in these 
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multimodal studies.241, 243 Deep neural networks are flexible and capable of combining different 

functional blocks in a single model.241  

 

Therefore, an advanced prediction tool combining pre-operative, intraoperative, and post-

operative features has the potential to predict the multiclass risks of surgical failures after 

trabeculectomy. We developed multimodal models to predict long-term multiclass surgical 

outcomes for patients who underwent trabeculectomy and explored the predictive effect of 

operative notes on the surgical outcome prediction model. Also, to explore the best method to 

extract information from the operation notes in a multimodal architecture, we compared the model 

performance of multimodal neural networks with transformer encoder blocks versus the LSTM. 

Finally, we identified possible risk factors for surgical failures using an analytic tool. 
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METHODS 

This study adheres to the tenets of the Declaration of Helsinki and was approved by the 

Institutional Review Board at Oregon Health and Science University (OHSU). OHSU is a large 

academic medical center in Portland, Oregon. This study was conducted at Casey Eye Institute 

(CEI), OHSU’s ophthalmology department serving all major ophthalmology subspecialties. The 

department performs over 130,000 outpatient examinations annually and is a major referral center 

in the Pacific Northwest and nationally. In 2006, OHSU implemented an institution-wide EHR 

(EpicCare; Epic Systems, Verona, WI) to handle all ambulatory practice management, clinical 

documentation, order entry, medication prescribing, and billing. 

 

The study included patients aged 18 years or older who underwent primary trabeculectomies 

(Current Procedural Terminology codes 66170 and 66172) from January 1, 2010 to May 31, 2021 

at OHSU Casey Eye Institute. We collected EHR data for the study patients from the enterprise-

wide clinical warehouse; it included demographic data, pre-operative systemic health data, pre-

operative medication data, pre-operative and post-operative ocular data, operation notes, surgery-

related data, and post-operative procedures data. Patients were excluded if they (1) were under 18 

years old; (2) did not have a complete operation note; (3) had a trabeculectomy combined with 

other procedures except phacoemulsification; (4) had less than 1 year of follow up. 

 

Outcome 

The primary outcome was 3 classes of long-term surgical outcomes at year one:  surgical success, 

surgical failure due to elevated IOP, and surgical failure due to hypotony. The surgical failure due 

to elevated IOP was defined as post-operative IOP higher than 21 mmHg or less than 20% 
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reduction below baseline on 2 consecutive follow-up visits after 3 months or reoperation for 

glaucoma due to continuous high IOP. Similarly, surgical failure due to hypotony was defined as 

post-operative IOP of 5mmHg or lower on 2 consecutive follow-up visits after 3 months or 

operation for glaucoma led by hypotony. 

 

Free-text operative notes 

The operative notes are free-text clinical documents that record detailed information about the 

surgery. There are several specific aspects that need to be recorded in the operation note, including 

the site or type of incision made, surgical findings, all steps carried out in the procedure, the 

medications or materials utilized, all complications discovered intraoperatively, and the estimated 

blood loss. We identified the primary trabeculectomy operation notes for each eye. All notes were 

preprocessed by removing special characters and punctuation, converting to lowercase, tokenized, 

and removing custom stop words. Then, the length of each operation note was fixed at 512 tokens 

to ensure the consistency of the input text feature. The cleaned-up operation notes were mapped 

to custom 50-dimensional word embeddings. To obtain custom word embeddings, we trained the 

unsupervised word2vec model100 with 50-dimensional word embeddings. The word2vec model 

was trained using all glaucoma-related operations notes in the CEI data warehouse to enlarge the 

training text corpus. We utilized the Gensim toolkit244 with the Continuous Bag of Words Model 

(CBOW) to train the word2vec model in the Python environment. 
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Structured EHR data 

The structured features contain three groups: pre-operative EHR features, operation related 

features, and early post-operative features. The pre-operative EHR features include demographic 

values, glaucoma diagnosis, active medication usage before the surgery, chronic systemic diseases, 

conjunctiva conditions, the best visual acuity measures (logMAR),245 and the highest IOP recorded 

in 6 months prior to surgery. The operation related features included surgeon and procedure type 

(trabeculectomy, trabeculectomy with the previous scar, and trabeculectomy with 

phacoemulsification). The post-operative features include multiple time points of IOP measures 

(at day 1, day 2 - day 14, and day 15 - day 30) and the best visual acuity measures (logMAR) 

within 30 days. All categorical features are converted into binary features. Numeric features were 

normalized and linear imputation was used to handle the missing data. The final input structured 

dataset contains 75 features. 

 

Models 

We developed three groups of classification models to identify glaucoma patients with high risk 

of surgical failures after 30 days of surgery: 1) models that use only structured EHR data, 2) models 

that use only unstructured operative notes, and 3) multimodal models that combine the structured 

and unstructured data models. These models are implemented using Pytorch246 in the Python 

environment.247 All models are trained with Adam optimizer and used ReLU as the activation 

function. The batch size is 16 with learning rates initiated with 4e-5. Class weights were used to 

handle the imbalanced nature of the dataset. 
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EHR structured data classification model 

We trained an artificial neural network (ANN) and a random forest with the structured input 

features as the baseline models. The neural network consisted two dense layers (Dimension: 75D 

-> 256D -> 256D -> 64D) with a dropout rate of 0.5 and an output layer (Dimension: 64D -> 3D) 

with a softmax function to predict the probability of surgical outcomes. The random forest is a 

bootstrap aggregating-based ensemble method that is popularly used in many clinical prediction 

models.248 As previously mentioned, several studies applied random forest models for surgical 

outcome predictions and have shown good results.229, 231, 232 Five-fold cross-validation was used 

to tune the hyperparameters of the random forest model and avoid overfitting. 

 

Text classification model 

To investigate the prediction power of the operation notes, we used the preprocessed operation 

notes to develop the text classification model. We compared two popular text classification models 

including transformer encoder block and long short-term memory (LSTM) neural networks where 

they have been previously shown to perform well in text classification tasks.89 In our study, the 

operative notes were mapped to the custom word embeddings. These pre-trained word embeddings 

were input to the transformer encoder blocks and LSTM layer (50 hidden units), then connected 

to the other two dense layers and the softmax output layer (Dimension: 50D -> 256D -> 64D -> 

3D). Batch normalization and the dropout (0.5) layers were used to prevent the gradient vanishing 

and overfitting. The transformer model consists of 10 attention heads, 12 layers of transformer 

blocks, and 768 hidden units. 
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Multimodal model 

We developed multimodal neural networks to verify our hypothesis that operation notes can 

improve the predictive model performance by incorporating structured input features. To explore 

the better method to process text data in a multimodal predictive model, we compared the 

transformer encoder blocks with the LSTM models. 

 

The transformer model architecture is demonstrated in Figure 1(A), which combined both 

structured input features and operation notes. The early-fusion strategy was used to concatenate 

these two types of data. The operation notes were mapped to the aforementioned custom word 

embeddings and then passed through transformer encoder blocks (12 layers) with 10 attention 

heads and 768 hidden units. One more global average pooling layer takes the output of transformer 

encoder blocks as input and outputs the final text vector. The structured features were input to the 

model and concatenated with the final text vector and connected with two more dense layers and 

the final out layer with a softmax function (Dimension: 125D -> 256D -> 48D -> 3D). Batch 

normalization and the dropout (0.5) layers were used to prevent the gradient vanishing and 

overfitting.  

 

Figure 1(B) shows the structure of the LSTM-based multimodal neural network. The LSTM layer 

contains 50 hidden units. One more global average pooling layer was used to capture the 

information from all hidden layers. The structured features were input into the model and 

concatenated with the output of the LSTM layers. Two more dense layers and a final output layer 

with a softmax function were connected (Dimension: 125D -> 256D -> 48D -> 3D). Batch 

normalization and the dropout (0.5) layers were used as well. 
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Figure 1. Overview of multimodal neural network architectures used, (A) transformer 

encoder block model, (B) LSTM-based model. LSTM: long short-term memory 

 

Model evaluation 

The dataset was randomly split on the patient level; 70% of the data were used for training, and 

10% for validation, 20% for testing. We used the area under the receiver operating characteristic 

curve (AUROC), precision, recall, and F1 score as the main evaluation metrics on the test dataset. 

For the multiclass classification task, we calculated macro average and One-vs-Rest (ovr) of 

AUROC and calculated macro average and per class of precision, recall, and F1 score. We also 
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performed model interpretations for the random forest model and the text classification model 

using SHAP (SHapley Additive exPlanations) toolkit249 in Python to explore the important 

structured input features and the important words in the operation notes related to surgical outcome 

prediction. 
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RESULTS 

Table 1 shows the descriptive characteristics of the patients in the study cohort. A total of 1540 

eyes from 1326 patients who underwent trabeculectomy between January 2010 and May 2021 met 

the inclusion criteria. At one year, 193 (13%) eyes were defined as surgical failure due to hypotony, 

183 (12%) eyes were defined as surgical failure due to elevated IOP, and 1164 (75%) eyes were 

defined as surgical success. The patient demographic showed that the majority of patients were 

Caucasians (86%) and females (57%), with a diagnosis of primary open-angle glaucoma (72%). 

The patient's average age was 64 years and most patients used Medicaid (49%) and commercial 

insurance (42%). The mean IOP before the surgery was near 21 mmHg and the mean logMAR 

visual acuity was near 0.25, which is about 20/36 as a Snellen equivalent. 
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Macro receiver operating characteristic curves on the test dataset for the ANN with structured 

input features, text classification model with operation notes, and transformer and LSTM 

multimodal neural networks with both data are presented in Figure 2. Also, Table 2 shows other 

evaluation metrics including the precision, recall, F1 score (macro average) and AUROC (macro 

average) for the three models. The transformer multimodal neural network had the highest macro 

AUROC (0.752) and macro F1 score (0.541), followed by LSTM multimodal neural network 

(AUROC = 0.725; macro F1 score = 0.491), the random forest model (AUROC = 0.712; macro 

Table 1.  Baseline Demographic and Clinical Characteristics   

 

 

Total 

(1540 eyes) 

Age, years  

    Mean (SD) 63.55 (15.69) 

Sex   

    Male 661 (43%) 

    Female 879 (57%) 

Race  

    White 1329 (86%) 

    Non-White Hispanics 56 (4%) 

    Black 50 (3%) 

    Asians 60 (4%) 

    Others 45 (3%) 

Clinical Characteristics   

Intraocular Pressure (mmHg) 21.07 (8.6) 

Visual acuity logMAR 0.25 (0.41) 

    Number of Glaucoma Medications 2.59 (1.41) 

Surgical Outcomes  

    Success 1164 (75%) 

    Hypotony surgical failure 193 (13%) 

    Elevated IOP surgical failure 183 (12%) 

Healthcare Insurance  

    Medicaid 62 (4%) 

    Medicare 756 (49%) 

    Commercial insurance 641 (42%) 

    Unknown 81 (5%) 
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F1 score = 0.486), and the ANN model (AUROC = 0.709; macro F1 score = 0.476). The text 

classification models showed lower model performance for both AUROC and F1 score. 

 

 

Figure 2. Multiclass receiver operating characteristic curves on the test dataset for the ANN 

model, text classification model, LSTM multimodal network, and transformer multimodal 

network. LSTM: long short-term memory; MNN: Multimodal neural network 
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Table 2. Comparison of model performance using macro average metrics 

Surgical Outcomes Predictions (Macro) 

 AUC score Precision Recall F1 score 

Transformer-MNN 0.750 0.529 0.622 0.541 

LSTM-MNN 0.725 0.477 0.527 0.491 

ANN 0.708 0.492 0.470 0.476 

Random forest 0.712 0.495 0.487 0.486 

Text Transformer 0.648 0.461 0.410 0.414 

Text LSTM 0.630 0.388 0.409 0.391 

MNN: Multimodal Neural Network; LSTM: long short-term memory 

 

 

Receiver operating characteristic curves of each class and macro average on the test dataset for the 

transformer multimodal neural network were shown in Figure 3. In Table 3, the evaluation metrics 

for each class are depicted for the transformer multimodal neural network. The model shows the 

highest AUROC (0.787, ovr) for the elevated IOP surgical failure group, followed by the hypotony 

surgical failure group (0.756, ovr), and the surgical success group (0.707, ovr). In addition, the 

model had the highest recall (0.691) for hypotony surgical failure, while the surgical success group 

had the highest precision (0.876) and F1 score (0.707). Overall, the model showed a better 

discriminate ability to predict the elevated IOP surgical failure (AUOC: 0.787; F1-score: 0.482) 

than hypotony surgical failure (AUROC: 0.756; F1-score: 0.409). 
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Figure 3. Receiver operating characteristic curves of each class and macro average on the test 

dataset for the transformer multimodal neural network 

 

Table 3. Performance metrics for each class for the multimodal neural networks 

Transformer Multimodal Neural Network 

 AUC score Precision Recall F1 score 

Success 0.707 0.876 0.623 0.734 

Low IOP 0.756 0.294 0.691 0.409 

High IOP 0.787 0.437 0.544 0.482 

Macro average 0.750 0.529 0.622 0.541 

LSTM Multimodal Neural Network 

 AUC score Precision Recall F1 score 

Success 0.654 0.783 0.649 0.709 

Low IOP 0.710 0.314 0.458 0.373 

High IOP 0.797 0.333 0.474 0.391 

Macro average 0.725 0.477 0.527 0.491 

LSTM: long short-term memory 
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In addition, we are also interested in which structured input features are more important to help 

with the model prediction. We applied the SHAP toolkit to the random forest model, which showed 

higher AURCO and F1 scores than the ANN model. We calculate the global importance of each 

feature contributing to the model prediction for all outcome classes. Figure 4 shows the top 15 

most important structured features related to all outcome classes prediction.  Important features 

include several IOP measures before and after the surgery, use or non-use of prostaglandin eye 

drops, with or without previous cataract surgery, and patient's age. Also, we used the SHAP 

summary plots to explore the feature effects on each outcome class. Figure 5 and Figure 6 present 

the top 14 most important features and their effects on elevated IOP surgical failure and hypotony 

surgical failure, respectively. Several features increased the predicted risk of elevated surgical 

failure, including males, using angiotensin-converting enzyme (ACE) inhibitors, prior cataract 

surgery, and higher pre and post-operative IOP. On the other hand, patients with lower pre and 

post-operative IOP, used prostaglandin eye drops, and had prior cataract surgery had a higher 

predicted risk of hypotony surgical failure. Lastly, Figure 7 shows the top 14 most important 

features and their effects on surgical success. Post-operative IOP from week 2 to week 4 was still 

the most important feature, but its dependence plot (Figure 8A) shows no clear linear relationship 

between the IOP value and the probability of surgical success. Many instances with the same IOP 

value show both positive and negative impacts on the probability of surgical success. Besides, 

Figure 8B shows the clear linear relationship between the patient's age and the probability of 

surgical success. In this plot, younger patients had a lower surgical success rate. 
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Figure 4. Important features in the random forest model as determined by average SHAP 

values. The Blue label shows the features’ effect on hypotony surgical failure. The red label 

indicates the features’ effect on elevated surgical failure. And the yellow label means the features’ 

effect on surgical success. 
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Figure 5. SHAP summary plot of important features and their impact elevated IOP surgical 

failure in the random forest model. Each point on the summary plot is a SHAP value of a feature 

for a data point. The Y-axis is determined by the feature and ordered according to its importance. 

The X-axis shows the SHAP value, and the color represents the value of the feature. Overlapping 

points are jittered in the y-axis direction. 

 
 

 
Figure 6. SHAP summary plot of important features and their impact hypotony surgical 

failure in the random forest model. 
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Figure 7. SHAP summary plot of important features and their impact on surgical success 

in the random forest model.  

 

 

Figure 8. Dependence plot of post-operative IOP from week 2 to week 4 (A) and patient's 

age (B). Figure A shows no clear linear relationship between the IOP value and the probability 

of surgical success. In the age dependent plot, there is a clear linear relationship. 
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DISCUSSION 

In this study, we evaluated the applicability of deep learning models to predict multiclass surgical 

failures for glaucoma patients who underwent trabeculectomies. Also, we explored the prediction 

ability of operation notes in the outcome prediction model. The key findings from our study were 

(1) Using multiclass surgical outcome prediction for glaucoma patients provides more information 

to clinicians; (2) Operative notes can provide important predictive information to help with the 

model performance; (3) Transformer-based multimodal neural network model outperformed the 

baseline model and yielded more accurate predictions by incorporating operation notes; (4) Model 

explainer tool can be used to identify possible risk factors for surgical failures. 

 

Our first key finding—that our model successfully predicted a multiclass outcome—is crucial for 

trabeculectomy post-operative care. In previous studies, the developed prediction models for long-

term surgical outcomes for glaucoma patients were a binary outcome of success or failure. In our 

study, we have shown that predicting specific causes of surgical failure can provide more practical 

assistance for clinical decision-making. As previously mentioned, the outcome of trabeculectomy 

is mainly determined by early post-operative care and IOP control.63, 228 The post-operative 

treatment plan varies according to the IOP and post-operative complications. For patients with 

high risk of scarring and long-term elevated IOP surgical failure, physicians might remove 

releasable sutures, perform laser suture-lysis, increase steroids dosage, and use antifibrotic agents 

(5 Fluorouracil). On the contrary, for patients with high risk of chronic hypotony, lower steroid 

dosage use or delayed suture-lysis should be considered. In our study, with the reasonable 

threshold setting, the multimodal neural network achieved a recall score of 0.691 for the hypotony 

surgical failure cohort and 0.543 for the elevated IOP surgical failure cohort. This result indicates 
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the model could correctly identify more than half of patients who actually progressed to surgical 

failures within one year. With this result, the prediction model might be able to inform physicians 

of the potential risk for specific surgical failures so that the patients could receive more appropriate 

therapy. 

 

Our second key finding was that operative notes had predictive power for trabeculectomy 

outcomes. To the best of our knowledge, this work is the first study investigating the usage of free-

text operation notes in predictive models for multiclass surgical outcomes. Our model with 

structured EHR data included patients' information, pre-operative ocular measures, and post-op 

ocular measures but lacked intraoperative information. To address this gap, we developed 

multimodal neural network models to extract intraoperative information from operation notes and 

incorporate it with structured input features. The result of the study demonstrates the multimodal 

neural network that used both structured data and unstructured operative notes performed better 

than the model using structured data alone. This finding indicates operation notes can complement 

the intraoperative information gap in predictive modeling which leads to performance 

improvement. This concept can be applied to other specialties to improve the performance of 

surgical outcome prediction models. 

 

We further investigated critical features from the operative notes using SHapley Additive 

exPlanations (SHAP) toolkit for transformer text classification model. Several words/phrases were 

identified including mitomycin c usage, surgeons, and conjunctiva conditions. From clinical 

perspective, usage and dosage mitomycin c could be an important predictor of the surgical outcome 

predictions.250 Conjunctiva conditions were also important, which makes sense since patients' 
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conjunctiva conditions are correlated to wound recoveries.251 However, there were many words 

that contributed to the prediction having less clinical meaning. This could be ascribed to the 

frequency of words and the limited number of training cases. The investigation of keywords in the 

predictive models might be helpful to validate the trustworthiness of the model and provide 

possible risk factors for glaucoma surgery for future studies. 

 

Our third key finding was the transformer-based multimodal neural network model outperformed 

both types of models using structured and unstructured data only. We have used the word2vec 

based custom word embeddings to preprocess the free-text operation notes. Previous studies have 

shown that transformer blocks with pre-trained embedding give promising results compared to 

classical deep learning models for text classification tasks.89, 243, 252 However, the word embedding 

models in these studies were trained using large datasets with over 1 million lines of sentences. In 

our study, we used a high correlation but smaller dataset (around 150 thousand lines of sentences) 

to develop the custom pre-trained word embeddings with 50 dimensions. To explore the better 

method to extract information from the operation notes with a custom small text corpus pre-trained 

word embedding in a multimodal architecture, we compared the transformer encoder blocks with 

the LSTM layers. The transformer-based multimodal neural network model and text classification 

model all showed better performance for both AUROC and F1 scores. This is likely due to the 

sequential nature of LSTM for the long text, where the length of input text data in our model is 

512 tokens. In addition, data scarcity is a common problem in the real world and affects model 

performance. Our study shows using the transformer encoder blocks with custom word 

embeddings can provide better results with scarce data. This has implications for other 

classification tasks with limited sample sizes. 
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The final key finding was the model explainer tool can be used to identify possible risk factors for 

surgical failures. We used the SHAP toolkit to investigate the importance of structure input 

features contributing to the model prediction. We calculated the global importance of each feature 

and its impact on each prediction output class. These results are shown in Figure 4 to Figure 8. 

As expected, higher IOP before and after the surgery increased the predicted risk of elevated 

surgical failures and vice versa. The most important feature for all output classes is post-operative 

IOP from week 2 to week 4, which is similar to the previous studies' findings. Two studies 

suggested that post-operative IOP at 1 month had a higher predictive value for long-term surgical 

outcomes. 69, 70 To be noticed, Figure 8A shows no clear linear relationship between the IOP value 

and the probability of surgical success. Many instances with the same IOP value show both positive 

and negative impacts on the probability of surgical success. This finding indicates that using IOP 

measures alone to predict long-term surgical outcomes is difficult and unreliable. Also, patients 

who had prior cataract surgery have a higher predicted risk of surgical failures for both elevated 

IOP and hypotony. Similar findings were reported in Takihara's study,253 where they found patients 

who underwent trabeculectomy in pseudophakic eyes after phacoemulsification had less surgical 

successful rate compared with that in phakic eyes. Younger patients and male patients are also 

important for surgical outcome predictions, and similar results were presented in Okimoto's 

study233 and Mathew's study.254 The similarity between these important features and previous 

studies' findings can be helpful in proving the reliability of the prediction model. Furthermore, 

several important features related to surgical outcome predictions haven’t been clearly investigated 

or controversial. For example, in the prediction model, the use of prostaglandin eye drops showed 

a protective effect against elevated IOP surgical failure but increased the predicted risk of hypotony 

surgical failure. On the contrary, the use of ACE inhibitors shows the opposite effect. Yet, the 
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effect of prostaglandin eye drops and ACE inhibitors on surgical outcomes hasn't been clearly 

studied. Therefore, these findings can be a direction for future study. 

 

Despite these innovative findings, there are several limitations in our study. Firstly, an important 

challenge of this work is the naturally inherent imbalance dataset in our study cohort. In our study, 

less than 25% of glaucoma patients were considered surgical failures at year one, which increases 

the difficulties of training the prediction model. Predictive models were trained to optimize the 

loss for overall accuracy, often resulting in making predictions for the major class. To address this 

problem, class weights and optimal prediction thresholds were used to handle the imbalanced 

nature of the dataset. Secondly, our model did not include ocular imaging data, as this information 

was not available for most of the patients in the study cohort. Integrating imaging data into the 

multimodality predictive model might improve the model performance and is a future direction 

for this research. Finally, although we collected one of the largest clinical observation datasets 

with detailed information about trabeculectomy outcomes, the sample size is still limited due to 

the nature of the study in a single institute. Future studies will ideally include data from multiple 

institutions. 
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CONCLUSION 

In this study, we have developed a multimodal prediction model for multiclass surgical outcomes 

of trabeculectomy using both structured EHR data and free-text operation notes to address the need 

for effective post-operative management. Also, we have investigated the prediction power of 

operation notes and explored the better method to extract information from text in a multimodal 

prediction model. We believe that our work will be helpful for clinical decision-making for post-

operative care and the study methods can be extended to other specialties to improve surgical 

outcome predictions. In the future, we may be able to incorporate imaging data as well as multi-

site data to improve the model performance. 
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Chapter 6: DISCUSSION 

 

In this work, we have explored the application of artificial intelligence using EHR data to ocular 

disease, specifically glaucoma. In the first study, we performed a literature review of applications 

of AI using ophthalmic EHR data.  We found applications for multiple purposes, including 

diagnosis improvement, disease progression, and risk assessment. In the second study, we 

conducted a data quality assessment of the medication list for glaucoma patients, finding 

inconsistencies between medications recorded in progress notes and medication lists. 

Consequently, we developed an NLP-based algorithm to extract medication information and 

adherence from the clinical progress notes and extended it to a prototype assist tool for automatic 

medication reconciliation. In the third study, we developed several multiclass prediction models 

to predict if a glaucoma patient will have surgical failure due to high or low interocular pressure. 

In addition, several possible risk factors were identified using a model interpretation analytic tool. 

There are three key findings derived from this work: (1) Quality of EHR data and data accessibility 

may affect the secondary use of EHR for AI models; (2) NLP techniques can be used to improve 

the data quality of medication records and help with medication reconciliation; (3) a multimodal 

neural network that combined both structured and unstructured EHR data can be used to predict 

multiclass surgical outcomes for glaucoma patients. Detailed discussions of each aim can be found 

in Chapters 3 – 5; in the following sections, we will discuss additional findings for each aim. 
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Aim 1: Identify the possible issues of the secondary use of EHR data in AI applications in 

ophthalmology. A systematic literature review was conducted to explore the current applications 

of AI using EHR data in ophthalmology. Our goal was to better understand the potential problems 

of secondary use of EHR data with AI techniques in ophthalmology, explore the AI techniques 

used, and the model performance of these works. There were 13 studies that met our inclusion 

criteria focusing on glaucoma, cataracts, age-related macular degeneration, and diabetic 

retinopathy. Also, supervised machine learning was the major technique used in these studies, 

especially the random forest model. Besides this literature review study, we also explored other 

AI application studies for glaucoma management. Overall, two key findings arose from this study: 

(1) There are limited studies using AI techniques for disease outcome or progression predictions; 

(2) Data quality is the major issue for secondary use of EHR data via AI applications. 

 

AI techniques have been broadly applied to ocular diseases for a decade. However, most of the 

previously published studies in the field of AI application for glaucoma used imaging data and 

functional data to improve diagnostic accuracy or characterize patterns of glaucoma 

progression.255 There are about 80% of the studies focusing on improving diagnosis, but only a 

limited number of works among these studies focusing on disease outcome or progression 

predictions with EHR data. In our literature review paper, there were only two studies that used 

machine learning techniques with EHR data for glaucoma prediction.116, 118 In the 2 years 

following this study, there are more studies using EHR data with AI techniques to help with 

glaucoma management.92, 232, 255 Compared to the clinical data that was collected for research 

purposes, EHR data from clinical practice are less structured and are prone to poor data quality. 
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Aim 2: Approach the challenges of secondary use of EHR data, especially exploring the 

accuracy of medication lists for glaucoma patients. We performed the EHR medication data 

quality assessment for glaucoma patients at CEI, checking the medication list accuracy through a 

manual chart review. To address the inaccurate medication recorded issues, we developed a NER 

model to extract active medication information and medication adherence from progress notes. 

The developed model was used to help with medication reconciliation in a prototype tool. 

 

We also conducted additional data quality assessments for other sources of EHR data for glaucoma 

patients. Multiple issues were noticed, such as incorrect data, duplicated data, ambiguous data, 

inconsistent data, incomplete data, and data assessing issues. For example, several patients 

underwent trabeculectomy surgery (CPT66170), but their billing codes were recorded as shunt 

surgery (CPT66180) and vice versa. These errors could be led by treatment plan change - patients 

were scheduled for shunt surgery, but eventually, their condition might not be eligible for the 

procedure; therefore, they received trabeculectomy instead. Duplicated EHR data is another 

common issue. Many patients' operation notes are duplicated in the EHR system. Ambiguous data 

issues commonly happen for some description clinical exams, such as visual acuity. Notations or 

characters in visual acuity exams may not have a consistent definition, which makes it difficult to 

convert them to quantitative measures (LogMAR). Patients lost to follow-up are another frequent 

data quality issue.  Unlike prospective data collected from a clinical trial study, retrospective EHR 

data from clinical practice are more commonly incomplete. Furthermore, data accessibility is 

another major issue for the secondary use of EHR data. For instance, we noticed that accessing 

visual field data and OCT data in the EHR for ocular diseases is extremely difficult, which creates 

barriers for AI applications. 
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To address the accuracy issues of the medication list, we manually reviewed 150 progress notes 

and found that 36% of patients had at least one medication mismatch for prescription medications. 

In an extension study, we explored these mismatches in detail for specific groups of medications. 

Our results demonstrate that 84% of glaucoma medications were accurately documented between 

the progress note and the medication list. Nonglaucoma ophthalmic medications (57.8%) and over-

the-counter (OTC) medications (28.4%) show much lower accuracy.256 These discrepancies raise 

concerns about the quality of EHR data used in patient care, research, and billing. There are several 

possible reasons for these discrepancies. First, physicians may not regularly manually update the 

medication list, especially OTC medications, which are usually not prescribed by physicians. Also, 

physicians used to document in paper charts may prefer documenting in progress notes rather than 

medication lists. The inconsistent medication records may inadvertently lead to unsafe treatment 

plans and increase the rate of adverse events.257 These issues also limited the secondary use of 

medication data. Therefore, we developed a NER model to extract active medication from the 

progress notes and demonstrated a prototype medication reconciliation tool. 

 

Our model can accurately identify active medication and adherence from progress notes. The 

model achieved a 0.971 F1 score to identify the medication names and showed similar results for 

medication frequency, route, and dosage. The performance is close to or better than the best-

performing published NLP models for medication extraction studies. In addition, our model can 

be used to extract "current medication use" labels, and we added "not current medication use" 

labels in our extension study. These labels can be used to identify if the medications are active use 

during the visit. As shown in the medication reconciliation tool, the tool can capture and present 

the mismatched medications between the medication list and progress notes. Our tool shows a 
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promising method to automate medication reconciliation but still needs further validation to be 

implanted in a clinical setting. 

 

EHR data quality improvement is an essential direction for future studies. Several possible 

methods may be helpful to improve the data quality of EHR, such as having better standardization 

of data, enhancing documentation practices, increasing structured data fields, and improving the 

EHR user interfaces to encourage more accurate and thorough documentation. In addition, most 

AI studies using EHR data in ophthalmology were performed at a single institution. Thus, the 

developed algorithms may not be generalizable to other healthcare systems. One possible strategy 

for extending studies to multiple institutions is federated learning: sharing the model instead of 

sharing the EHR data.  This is done by training the same model at each institution with its own 

EHR data and sharing the trained model among institutions to optimize the model. Overall, 

applications of AI techniques are a promising direction to help with clinical care, but there are still 

several challenges that need to be addressed, especially the quality issues of EHR data. 
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Aim 3: Predict multiclass long-term surgical outcomes for patients who underwent 

trabeculectomy and identify possible risk factors. We developed several prediction models 

using structured input features, free-text notes, or both inputs to predict multiclass long-term 

surgical outcomes. The multimodal neural network with transformer encoder blocks shows the 

best performance with both structured EHR data and operation notes. Furthermore, we used the 

SHAP toolkit to explore the most important structured features in the random forest model and 

their effects related to different prediction classes.  

 

In this study, we hypothesized that operation notes containing useful intraoperative information 

could help to fill the information gaps in the prediction model using structured input features only. 

The operative notes are free-text clinical documents that record detailed information about the 

surgery that are not recorded elsewhere. Examples of potentially helpful intraoperative information 

might include mitomycin c dosage and injection rate, conjunctiva conditions, the volume of blood 

loss, and specific trabeculectomy techniques. Mitomycin c is an anti-fibrotic agent usually used 

during surgery to prevent postoperative scarring leading to bleb failure. The dosage of mitomycin 

c and the injection rate might be important predictors of surgical outcomes. 

 

We developed several text classification models, including transformer-based neural network, 

LSTM, and 1-dimensional convolutional neural network (CNN), to evaluate the prediction power 

of operation notes alone and determine the best information extraction method. The transformer-

based neural network shows the best result. The possible reason can be the limitation of LSTM 

and CNN for the long text since we used a fixed input length of 512 words. Although the text 

classification model shows a certain degree of prediction power, the model performance (macro 
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AURCO of transformer-based neural network = 0.648) was weaker than the baseline model using 

structured EHR data alone (macro AURCO of ANN model = 0.708). Therefore, we developed 

several combined models incorporating operation notes and structured EHR data to verify our 

hypothesis that the operation notes can fill the information gaps in the baseline model. 

 

Our experiments demonstrated that the transformer-based multimodal neural network (macro 

AURCO = 0.750) outperformed both types of models using structured (ANN; macro AUROC = 

0.708) and unstructured data (Text Transformer; macro AUROC = 0.648) alone and other 

multimodal models (LSTM-MNN; macro AURCO = 0.725). The results are consistent with the 

previous text classification model - the transformer encoder block has a better ability to extract 

information from operation notes. This finding can support our hypothesis and provide directions 

for future studies. 

 

Lastly, we used SHAP explainer to explore the important features and their effects on surgical 

outcomes in the random forest model. SHAP is a game theoretic approach to explaining the output 

of a machine learning model. The SHAP value represents the contribution of each feature of each 

instance to the prediction, which is a type of local explanation. Averaging the absolute SHAP 

values can get the global importance of the model. This analysis identified some novel risk factors, 

such as prostaglandin eye drops and oral angiotensin-converting enzyme inhibitors. Further 

investigation of the effects of these drugs on long-term surgical outcomes may be merited. Overall, 

identifying risk factors for different surgical failure causes can bring insights into clinical care and 

future clinical study.  
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To sum up, in this study, we demonstrated the prediction power of operation notes and developed 

multimodal neural networks to predict multiclass long-term surgical outcomes with reliable results. 

We think this work will be helpful for both postoperative clinical care and future research. Also, 

the identified risk factors can help with clinical decision-making and provide a direction for other 

clinical studies. 

 

  



 

 117 

Chapter 7: SUMMARY AND CONCLUSIONS 

 

In the recent decade, AI applications have been popularly applied in a variety of domains, such as 

disease screening, diagnosis improvement, and outcome predictions in ophthalmology. However, 

more work is needed to improve the performance of outcome predictions, which may include 

addressing EHR data quality issues. In this work, we developed multiple models that predict 

glaucoma surgery outcomes. As previously mentioned, glaucoma is the second leading cause of 

irreversible blindness globally and often leads to long-term life quality impairment. Medication 

therapies are the primary treatment to avoid disease progression for glaucoma patients. However, 

the accuracy of the medication list may be questionable. The discrepant medication documentation 

may result in unsafe treatment plans and adverse events in addition to limiting its potential for 

reuse in predictive models. Thus, we developed a robust active medication information extraction 

model to help with medication reconciliation as well as to improve the quality of the medication 

list. Next, we investigated the use of AI for supporting early postoperative management for 

glaucoma patients who undergo trabeculectomy since treatment varies according to different 

complications, but predicting these longer-term complications is difficult. Therefore, we 

developed a prediction model to classify which patient has a high risk of long-term surgical failure 

due to specific causes. The model combined structured EHR data and free-text operation notes to 

make multiclass predictions. The results indicate the model can identify more than half of the 

patients who may need reoperation or close follow-up due to specific complications. This model 

can be helpful for clinical decision-making for postoperative care and effective medical resource 

allocation. Finally, to better understand the risk factors of glaucoma surgical failures, we explored 

the important risk factors and their effects associated with surgical outcomes in the prediction 
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model. In the future, to improve the model's performance and generalizability, we plan to combine 

image data in our multimodal neural network and include data from other institutions. In 

conclusion, we developed artificial intelligence models based on EHR data to improve glaucoma 

management for two common treatments: medications and trabeculectomy surgery.  
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