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Chapter 1. Introduction 

The general purpose of the sensory brain 

Our senses are continuously bombarded by an avalanche of stimuli. The sensory epithelia, 

and the downstream regions of the brain a few synapses away from them, have the task of finding 

and representing the parts of this sensorium which are relevant for behavior and survival.  

This is a difficult task as the raw input of sensory systems, i.e., the activity of the sensory 

neurons (rod and cones in vision, hair cells in hearing) is very high dimensional where each 

sensory neuron corresponds to one dimension. Furthermore, the activity of neighboring sensory 

neurons is highly correlated and therefore carries redundant information, and there are temporal 

correlations as sensory experience tends to change smoothly over time. 

The sensory brain maps this high dimensional highly correlated raw sensory input to a lower-

dimensional, less redundant representation (Chechik et al., 2006) by projecting the information 

onto the activity of fewer and less correlated neurons. This is ultimately useful for behavior as it 

leads to the explicit representation of relevant abstractions. For example, as you are cast away in 

a distant tropical shore, the roar of a tiger and the crashing of waves will cause activity in all hair 

cells of both cochleas, however different downstream groups of neurons fire in these two cases, 

allowing decision and motor centers to readily identify the danger and enact an escape upon 

receiving input from the roaring neurons. 

This mapping is not trivial, it is a complex nonlinear function. In the case of hearing, these 

mapping functions include the integration over diverse time scales of spectral information of 

sound. For humans such mapping transforms pressure waves on the cochlea into speech, which 

carries complex information (semantics, prosody) across multiple time scales (phonemes, 

syllables, words, phrases). An example of such integration in the scale of phrase semantics is 

that of homophones, where the meaning of a word lies in its context. Without the proper context, 
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truths might become lies. This complex mapping is performed at multiple steps along the different 

centers of the ascending auditory pathway(Escabí & Read, 2003; Norman-Haignere et al., 2022). 

Hierarchical processing of auditory information 

Anatomical hierarchy of the ascending auditory pathway 

Sound is first sensed by the cochlea, which performs a spectral decomposition of the 

waveforms, a logarithmic compression of their amplitude and conversion into precisely timed 

electrical and chemical signals. Low to high frequencies, are separated and represented along 

the longitude of the cochlea, from the proximal to distal end relative to the middle ear (Fettiplace, 

2020). This frequency ordered response, called cochleotopy or tonotopy is orderly transmitted 

forward through the cochlear nerve. 

These signals are relayed to the cochlear nucleus and the olivary complex located in the 

brainstem, to later converge towards the Inferior Colliculus (IC) in the midbrain, and then the 

Medial Geniculate Body (MGB) in the thalamus. The thalamus then sends extensive and 

branching projections to the auditory cortex, reaching mostly the layer IV of the primary auditory 

cortex (A1), but with some projections to other cortical fields and layers (Huang & Winer, 2000). 

Through these relay, sound signals go from 3500  inner hair cells in each human cochlea to at 

least ten thousand time more neurons in A1 (DeWeese et al., 2005). 

The auditory cortex is subdivided into regions based on the pattern of thalamic and cortical 

projections. After the lemniscal thalamic input reaches A1 (Bizley et al., 2005; Wallace et al., 

1997), it is then transmitted to surrounding secondary regions, known as the belt and para-belt 

areas. These connections are both direct (cortico-cortical) or through a cortico-thalamic loop 

(Winer et al., 2005). These secondary regions are thought to further process information coming 

from A1. This hierarchical division of the cortex is further supported by response differences with 

secondary regions showing longer response latency, and broader tuning (Atiani et al., 2014; 

Bizley et al., 2005; Norman-Haignere et al., 2022). 
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Stepwise emergence of abstractions  

This anatomical architecture of transmission relays has implications for the processing of 

information, it enables a stepwise processing of the auditory input. Early relays have access to 

more complete auditory information. This is the case in the cochlear nucleus and the olivary 

complex, where the activity of neurons faithfully follows the sound power at different frequencies, 

and in the case of low frequency, even the peaks and valleys of the sound wave itself. Since most 

of the incoming auditory information is represented, we can say that behaviorally important 

features of sound are also present, albeit in an implicit manner. As we have mentioned, this raw 

information is transformed and mapped into useful representations. An example of this 

transformation happens early in the auditory pathway at the medial superior olive (MSO). Neurons 

in this area have access to low latency wave phase information coming from both ears, and 

function as coincidence detectors that can represent the time difference of sound arrival between 

ears (Ashida & Carr, 2011). We can say that the interaural time difference information that was 

implicitly represented in the cochleas is then explicitly represented (abstracted) in the MSO. This 

explicit representation can then be used to infer the azimuthal position of sound sources. 

However, in the process the MSO loses some information that was present in the cochleas. This 

process of transforming implicit to explicit representations happens at every step of the ascending 

auditory pathway. 

In the next auditory center, the inferior colliculus, auditory information is integrated with — and 

modulated by — other sensory systems. For example, information from eye position and visual 

input, alongside interaural time differences can be used to infer the location of a sound source 

(Gruters & Groh, 2012). Auditory information then passes through the thalamus, which filters and 

gates information to and between regions of the auditory cortex (Huang & Winer, 2000). Neurons 

in the MGB and the primary auditory cortex respond similarly to sound, however, the 

transformations of auditory information that happen at the thalamocortical interface are numerous 

and complex. 



   
 

11 
 

Inheritance, construction, and ensemble 

The thalamocortical interface computation can be summarized in 3 heuristic rules (Miller et al., 

2001): (i) ‘Inheritance’, where the tuning of cortical neurons is equal to that of their presynaptic thalamic 

partners (ii) ‘Construction’, where the tuning of multiple thalamic neurons is summed, conferring the cortical 

neuron a much broader tuning (iii) ‘Ensemble’, where only the common part of the multiple thalamic 

receptive fields is present in the cortical tuning. The mechanism of this ensemble or intersection 

might include lateral blanket inhibition suppressing the response to all but the common part of the 

stimulus (Winer et al., 2005). 

These three mechanisms describe computations performed on the spatial or spectral 

dimensions of sensory stimuli. Vision offers an example of “construction” where the union of 

center surround fields generate simple fields (Hubel & Wiesel, 1962). Hearing, on the other hand, 

is predominantly represented by “inheritance”, where the tuning of cortical neurons match that of 

their thalamic presynaptic partners (Miller et al., 2001).  

This inheritance would seem like a superfluous step: the transmission of unchanged 

information. However, while tuning is inherited, differences in the temporal properties of neurons 

in A1 emerge, where sound evoked responses come with an extended latency due to the extra 

synaptic steps, but also an increased duration in the responses, which corresponds to an 

increased temporal integration window. This suggests that the thalamocortical interface 

computation is predominantly temporal. However, spectral computations like inhibition by sounds 

outside the preferred frequency, help sharpen the tuning to the preferred frequency in the auditory 

cortex (Kato et al., 2017; Lakunina et al., 2020), and paradoxically might contribute to the apparent 

simple inheritance of tuning from the thalamus.  

This increase in the temporal integration it not only present at the thalamocortical interface, 

but along the entirety of the ascending auditory pathway (Asokan et al., 2021; Escabí & Read, 

2003) and between primary and secondary regions of the auditory cortex (Atiani et al., 2014; 

Norman-Haignere et al., 2022). 
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While these three scenarios were proposed for the thalamocortical interface, variations of 

them might appear on other brain regions. Furthermore, they only consider bottom-up information 

transmission, which ignores the top-down feedback signals, and the local computations 

performed at the IC, MGB and A1. It also obviates some of the more complex nonlinear 

interactions between inputs to a cortical neuron, where the operation performed is not a simple 

union or intersection. The contribution of these different sources of information and tuning are the 

subjects of ongoing research. 

Phase and rate codes 

A main consequence of these temporal computations, characterized by an increase in the 

integration window and the duration of neuronal responses is the transformation of implicit phase 

codes into explicit rate codes, two strategies to represent temporal modulation of sound. 

Phase codes are found in early stages of the auditory pathway, where neuronal activity is said 

to be phase locked to sound, i.e., it faithfully follows the peaks and valleys of an amplitude 

modulated sound. The precise timing of phase codes is necessary for some computations. For 

example, inferring the position of sound sources from binaural queues (Ashida & Carr, 2011). 

Precise neuronal timing is enabled by special characteristics of these early auditory neurons, that 

ensure fast and reliable synaptic transmission, with low latency, jitter and temporal summation, 

i.e., short integration windows (Trussell, 1999). 

Rate codes appear at later stages in the auditory pathway. As the temporal integration 

accumulates over serial synapses, neurons become unable to resolve amplitude modulation of 

frequencies (period) faster than their integration window. Instead, these neurons modulate their 

firing rate as a function of the amplitude modulation rate of sound (T. Lu et al., 2001). Furthermore, 

the feedforward architecture and expansions motifs of the leminiscal auditory pathway favors rate 

code transmission (Barral et al., 2019). 
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Single neuron representations 

We have referred to the spectral preference or tuning of a neuron, and to the temporal 

properties of its response, latency, and duration. This, however, is an oversimplification of the 

response characteristics of neurons in the auditory cortex, which are tuned to precise 

spectrotemporal characteristics of sound. For example, it's not uncommon to find neurons which 

respond to the onset of a sound, but quickly stop their firing even when the sound continues. Is 

this neuron activated or suppressed by this frequency? What is the temporal window of these 

activation and suppression, and how are these two integrated together? 

The STRF 

To answer these questions requires modeling the response properties of the neuron. 

However, the answers given by a model will be contingent on the assumptions and biases of the 

model itself. It's therefore wise to use models with few of these assumptions, such as reverse 

correlation, where the occurrence of spikes or changes in firing rate are correlated with the power 

present at different spectral bands and time lags of the sound. These combinations of frequency 

and time (the two orthogonal dimensions of sound) can be represented as a spectrogram. 

The reverse correlation of neuronal activity to these sound spectrograms yields the 

spectrotemporal receptive field (STRF) (Aertsen & Johannesma, 1981). Despite the recent 

developments in machine learning and AI, the STRFs remain an unbiased and powerful 

description of the tuning of auditory neurons, and how this tuning is transformed along the auditory 

pathway. Furthermore, STRFs enable the inference of a neuron tuning with more efficient stimuli 

like temporally orthogonal ripple combinations (TORC) (Klein et al., 2000), but also with natural 

sounds (Theunissen et al., 2001). 

STRF changes along the auditory pathway 

STRF of neurons along the auditory pathway confirms that the main computations performed 

early on are on the time domain. STRFs from IC, thalamus and A1 share a similarly narrow 
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spectral tuning (Miller et al., 2002; Sen et al., 2001), whereas the temporal windows of receptive 

field increase from responses as fast as 10ms in the IC to past 100ms in A1 (Escabí & Read, 

2003; Sen et al., 2001).  

Once in the auditory cortex, more spectral-related computations appear and STRFs become 

higher dimensional, i.e., described by multiple spectral and temporal filters (Atencio et al., 2012). 

In the secondary regions of the cortex, the frequency tuning becomes broader, exemplified by 

neurons responding only to broadband noise, but not pure tones (Bizley et al., 2005). 

Alongside this cortical spectral integration, neurons with more complicated and specific 

tunings emerge. An example is that of neurons tuned to the vocalizations of conspecifics, but 

unresponsive to tones, TORCs, and other synthetic sounds with equal spectral content (Montes-

Lourido et al., 2021; Rauschecker et al., 1995; Theunissen et al., 2000). Capturing these more 

complex responses with STRFs or more complex models, will help to understand why neurons 

respond to certain sound properties only during specific contexts for example, as part of a 

vocalization. Furthermore, if the computations behind receptive fields are elucidated, they can 

guide the search for their underlying physiological substrate. However, modeling these receptive 

fields is not a trivial task. 

Temporal and linear limitations of the STRF 

The classic STRF cannot capture more complex tunings. This is due to the linear nature of 

the STRF, which cannot fit the nonlinear interactions which precisely give rise to the specificity 

and complexity of the tuning of some of these later cortical neurons. Nonlinearities are 

accumulated at every neuron along the auditory pathway, with their firing threshold, membrane 

time constants, synaptic adaptation, integration across multiple synaptic inputs and time windows, 

etc.  

A simple example of nonlinearity is the minimum and maximum responses of a neuron 

associated with zero spikes (rectification), and the neuron maximum firing rate (saturation). For 

this nonlinearity, an STRF can be extended with a sigmoid function, which captures this 
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rectification and saturation of firing rate (Thorson et al., 2015). This is known as a linear non-linear 

model (LN-model). The question turns into finding the right nonlinearities to extend and improve 

the STRF. 

Empirical observations have shown the temporal limitations of STRFs, which fail to describe 

the effects of past sounds, more than 150 ms ago, on neuronal response (Atiani et al., 2014). 

However, cortical neurons’ response and integration windows extend past the STRF estimations, 

as evidenced by extended offset responses (Schinkel-Bielefeld et al., 2012), and the influence of 

recent sounds on the response to an ongoing stimulus (Angeloni & Geffen, 2018; Asari & Zador, 

2009). 

This STRF temporal limitation is likely caused by the nonlinear nature of the long duration 

influence of sound on neuronal activity. The likely underlying mechanisms are synaptic plasticity, 

the intrinsic properties of neurons (Dean et al., 2008; Whitmire & Stanley, 2016), and local 

neuronal population dynamics (Dean et al., 2005). It is worth exploring the known physiology 

behind these mechanisms to properly model the appropriate extensions to the STRF to capture 

them. 

Mechanisms of temporal processing 

Adaptation 

As mentioned, adaptation is one potential source of nonlinearities, however, adaptation plays 

other equally important roles in sound representation.  

Neurons efficiently respond to and relay the broad range of activity arriving to them. This is 

achieved by adjusting their transfer function (input to firing rate) to the statistics of the input. For 

the auditory system this means encompassing a broad dynamic range that goes from the quiet 

rustle of leaves in the jungle, to the roar of a tiger — which is orders of magnitude louder. 

Adaptations to input statistics are not limited to sensory neurons, they appear on most neurons in 

the brain as they adapt to all their synaptic inputs (Barlow, 2012; Beyeler et al., 2019). 
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Adaptation is supported by synaptic mechanisms like the changes in the release probability 

of synaptic vesicles, which are mediated by the interplay of activity-dependent Ca2+ 

concentration, the size of the readily releasable pool, and the dynamics of the Ca sensitive 

SNARE protein complex (for an exhaustive review see (Jackman & Regehr, 2017)). Furthermore, 

the neuron has intrinsic passive and active electrical properties, which actively modulate its firing 

threshold (Silver, 2010).  

Other mechanisms of synaptic plasticity, like long term potentiation, will not be discussed here 

as their durations go beyond the time scale of hundreds of milliseconds to seconds, associated 

with the representation of ongoing stimuli in the current soundscape context. 

The two directions of synaptic adaptation, facilitation and depression are thought to play 

distinct roles as temporal filters. Facilitation enables the transmission of sustained burst of activity, 

acting as a high pass filter, while depression transmits changes in firing rate with, acting as a low 

pass filter (Jackman & Regehr, 2017).  

Besides these filtering properties, the state of depression or facilitation of a synapse holds 

information about its recent levels of activity. This information is not explicitly represented in the 

firing rate of the neuron, but instead remains “hidden” until revealed by a new bout of activity. 

The memory held by adaptation is limited by the time the neurons take to relax back to their 

basal states. As mentioned before, these time constants are consequence of the complex 

interplay of many synaptic proteins. The complexity of this system is further compounded by the 

number of synapses and neurons and neuron types that are involved in the local circuitry 

integrating and representing sound stimuli. 

To overcome and model the multitude of this synaptic and neuronal complexity we can make 

use of some simpler approximation. This has been done by describing adaptation as a change in 

synaptic strength (either increase or decrease) with each subsequent action potential, and a 

return to a baseline strength following an exponential decay (Tsodyks et al., 1998). This simplified 

model describes adaptation in two parameters corresponding to synaptic availability and rate of 



   
 

17 
 

recovery. Furthermore, this equation can be used multiple times in parallel to account for the 

different time constant and integration windows that might be involved and can be readily 

implemented for firing rates making it compatible to STRFs inferred from extracellular recordings.  

Role of adaptation on the representations of sounds 

While adaptation happens on a timescale of hundreds of milliseconds, it might be associated 

to representation of sound features on much longer time scale, for example those associated to 

adaptation to background environmental sounds like the rain in the jungle, but that does not 

reduce the response to a salient stimulus, like the distant roar of a tiger, or the distinct repeating 

pattern of splashing sounds made by an animal running through the wet jungle. 

The extent to which the auditory brain can filter out background stimuli, while readily 

representing salient ones has been extensively studied in human cognition through EEG and 

MEG measurements. A standard measurement of stimulus salience is the mismatch negativity 

(MMN), in which event-related potentials are characterized by a reduced response to repeated 

(standard) stimuli and an enhanced response to unexpected (oddball) sounds (Ulanovsky et al., 

2003). The characteristics that define standard and oddball range from straightforward sound 

dimensions like frequency, to more complex and abstract dimensions, like the perceived gender 

of a speaker, i.e., the sudden voice of a woman pops out from repeated male speech, independent 

of the content of what is said (Casado & Brunellière, 2016). 

An effect related to the MMN occurs during pattern detection. Listeners are presented with a 

random sequence of tones (standard) which at some point transitions to a regular, repeating 

sequence (oddball). In this case, they can readily detect when the pattern starts repeating and 

regularity emerges. Furthermore, the neural correlates of this percept are observed even when 

subjects are performing an unrelated visual task. Thus this pattern detection is pre-attentive, and 

likely supported by a bottom-up integration mechanism (Barascud et al., 2016).  
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Stimulus specific adaptation 

How neuronal adaptation can give rise to these macroscopic observations have been studied 

through the lens of stimulus-specific adaptation (SSA) (Ulanovsky et al., 2003). Similar to MMN, 

neurons tend to decrease their response to repetitive (standard) sounds, without changing — and 

sometimes increasing — their response to unexpected (oddball) stimulus. Some SSA is observed 

starting from the IC. However, it becomes more pronounced in A1 (Carbajal & Malmierca, 2018), 

and occurs for different dimensions of sound like frequency and inter stimulus intervals. Given its 

similarities, SSA is thought to be an underlying mechanism of MMN. 

SSA is partly mediated by bottom-up processing, where different synaptic inputs receive 

distinct narrowly tuned inputs, i.e., through the “construction” process characteristic of the 

thalamocortical interface. However, other mechanisms, such as recurrent top-down influences 

and local circuit dynamics, also contribute to SSA. Within local circuitry, the role of inhibitory 

interneurons (IN) is of note, as they mediate a refinement and amplification and shaping of SSA 

(Natan et al., 2015; Yarden et al., 2022). 

Cortical column circuitry 

The mechanism of how distinct neuronal subtypes contribute to SSA, context integration and 

other temporal computations must be explained from the perspective of their general role in local 

circuitry. For A1, this circuitry is instantiated as the archetypal cortical column (Mountcastle, 

1997), characterized by its 6-layer organization, its presence across all mammalian cortex, and 

the specific computations it supports. 

First, thalamic input reaches mostly neurons in the granular layers (L4). Granular neurons 

therefore show simple receptive fields emerging from inheritance, construction, and ensemble, 

evidenced by simple, and single-whisker neurons in the L4 of visual and barrel cortex respectively. 

Information propagates to the infra-granular (L5, L6) and supra-granular (L1, L2/3) layers. In the 

latter, additional cortico-cortical projections arrive. This generates more complex receptive fields 

in infra- and supra-granular layers, evidenced by the enrichment of hypercomplex and multi-
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whisker neurons in the visual and barrel cortex respectively (Brumberg et al., 1999; Hubel & 

Wiesel, 1962; Martinez & Alonso, 2003). 

Although tuning to sound frequency is distributed tonotopically, neurons in auditory cortex do 

integrate information across frequency channels as well (Linden & Schreiner, 2003; A. K. Moore 

& Wehr, 2013; Tischbirek et al., 2019).There is evidence of frequency integration in the form of 

sideband suppression, which arrives through L2/3 cortico-cortical recurrent connections, from 

adjacent columns (Kato et al., 2017). It appears that the main systematic difference between 

auditory cortex layers is not content but computations, i.e., the complexity and nonlinearity of 

interactions between the different parts that compose the receptive field of neurons (Atencio et 

al., 2009). This supports the more subtle layer differences observed, like the reliable or sparse 

response to click trains in granular and supra-granular layers respectively (Sakata & Harris, 2009), 

the selective response to conspecific vocalizations in supra-granular layers (Montes-Lourido et 

al., 2021), and to the increased plasticity of STRFs in supra-granular layers during behavioral 

tasks (Francis et al., 2018). 

Inhibitory interneuron's role in computations 

Within the different cortical layers, different IN subtypes perform distinct roles in computation, 

which go beyond preventing runoff activity by matching and equilibrating excitation (E/I 

equilibrium) (Isaacson & Scanziani, 2011). Somatostatin (SST) expressing INs target the apical 

dendritic arbors exerting weak but facilitating, dendrite specific inhibition (Murayama et al., 2009). 

Parvalbumin (PV) expressing INs, exert strong, but quickly depressing suppression of somas, 

gating the response of pyramidal neurons with precise timing (Nocon et al., 2022). Vasoactive 

Intestinal Peptide (VIP) expressing INs target other INs and play a role in release from inhibition 

(Pi et al., 2013). For the auditory cortex, the particular temporal profiles of response and synaptic 

adaptation of different IN subtypes play a significant role in temporal computations (Seay et al., 

2020).  
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Interestingly, besides this precise timing, INs also show responses extending past sound 

termination. Furthermore, these extended responses differ from those during sound in their 

sensitivity to recent sound history, the latter being more depressed relative to the former during 

conditions of sustained stimulation (i.e., Standard sound for the SSA oddball paradigm). This 

differential adaptation plays a role in representing the recent sound history, as PV neurons 

preferentially inhibit the response of pyramidal neurons under low adaptation (SSA deviants), 

while VIP reduce this inhibition under high adaptation (SSA standards) (Yarden et al., 2022). 

These two mechanisms constitute opposite roles which can then modulate the extent of 

adaptation to past neuronal history, therefore modulating the duration of the cortical integration 

window.  

IN specializations and their associated temporal computations, a hallmark feature of auditory 

processing, are likely necessary for the emergence of tuning along more complex dimensions of 

sound stimuli, like conspecific calls selectivity, and ultimately speech. 

Finally, despite the similar spectral tuning of neighboring neurons, IN and particularly SOM 

neurons play a role in refining the frequency tuning of neurons though inhibition elicited by sounds 

outside of the preferred frequency (Lakunina et al., 2020), which comes from differently-tuned 

neighboring columns though the wide ramifications of SOM neurons (Kato et al., 2017). In 

conjunction with the aforementioned temporal integration, these are likely mechanisms that 

identify the general statistics of noise, and subtract it from relevant signals, thus generating noise-

invariant representations (Rabinowitz et al., 2013), and improving the detection of sound in noise 

(Lakunina et al., 2022). 

We have treated the role of neurons as isolated parts of a circuit, representing segments of 

auditory features, like the different time scales associated to different cell types. However, this is 

an incomplete view, and to gain insight of the computations performed by circuits, we must 

consider the coordinated activity of populations of neurons that form these circuits. We must then 

turn our focus to the representation of sound by populations of neurons. 
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Distribution of representations in neuronal populations 

The development and miniaturization of electronics allowed for the simultaneous recording of 

thousands of neurons, as is the case for Neuropixels (Steinmetz et al., 2021). Having access to 

the response of population of neurons inevitably leads to the question of how the labor of 

computation and representation are distributed within a population. If we think on temporal 

integration, and how responses to current sounds will be influenced by historic activity, we 

confront a combinatorial explosion, where the brain not only needs to represent a sound but also 

all its variations when embedded in diverse historical contexts. The value of distributed population 

representations becomes evident with the richness of the soundscape. 

Efficient sparse code 

Historically, population sensory coding has been studied from the perspective of efficient 

sparse coding (Lewicki, 2002). Efficient insofar as the representations in the brain tend to match 

the statistics of the sensory inputs, i.e., not all sounds are equally likely to occur in nature, and 

therefore evolutionary pressure devoted more neural resource to represent naturally occurring 

sounds. Sparse insofar as how distinct categories and features of sound are represented by 

different subsets of neurons, i.e., distinctly and specifically tuned neurons.  

Dense and local codes: capacity, robustness, and readout 

Sparse codes lay on a continuum between two extreme strategies, a local code, and a dense 

code. These two extreme code modalities have advantages and disadvantages. In the local code, 

every neuron in the population is specialized in explicitly representing one abstraction, e.g., the 

concept of grandmother (Quiroga et al., 2005). The representation of frequency in the auditory 

nerve resembles this paradigm, in which distinct (groups of) neurons, or labeled lines, transmit 

specific frequency information. This strategy enables simple decoding and composition (as 

explained for the thalamocortical interface), e.g., a chord represented as the sum of different 

frequency neurons. However, a local code is limited in the amount of representation (one 



   
 

22 
 

representation per labeled line), and it’s vulnerable to damage, where a representation would be 

lost if the labeled line carrying it was damaged. This coding scheme works for the auditory nerve 

where the sound feature being explicitly represented is frequency, which is relatively low 

dimensional compared to more complex abstractions emerging later. 

As information is broadcasted to a greater number of neurons in the auditory cortex, and 

numerous and diverse abstractions emerge along the way, a local code is no longer suitable. 

Dense code presents an alternative, where all abstractions are represented by the weighted 

activity of all the neurons in the population. This distributed representation is robust to neuron 

death, and it has exponential storage capacity given by the equation MN where M the different 

levels of activity (firing rates) of N the number of neurons. However, it’s difficult to decode, and 

will not necessarily yield readily composable representations as described on the thalamocortical 

interface. 

Sparse codes: A tradeoff for optimal coding  

Sparse codes lie between dense and local codes, thus balancing capacity, composability, 

robustness, and decodability. Sparse codes are a set of components, akin to principal 

components in PCA, which are selected such that stimuli can be reconstructed as the weighted 

sum of as few (sparse) components as possible, i.e., as a weighted sum of all components, where 

most components are weighted zero. This seemingly arbitrary constraint yielded models with 

components that resemble the receptive fields of neurons across multiple brain areas. Since their 

introduction in the visual system (Olshausen & Field, 1996, 2004), sparse codes have also been 

adapted to the auditory field, and can capture multiple stages of representation, from gammatones 

describing the response of the auditory nerve (Lewicki, 2002), to STRFs in the IC (Carlson et al., 

2012) up to the auditory cortex, now using deep learning models (Zhang et al., 2019). This 

success of sparse deep neural network models in capturing representations at different auditory 

regions, and of different levels of abstraction, supports the prevalence of sparseness as a general 

organizing principle for sensory representations. Similar sparseness might be present for the 
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representation of more abstract features emerging from nonlinearities across frequency and over 

increasing periods of time. 

Temporal tiling 

Populations codes can implement other strategies for the representation of temporal features, 

particularly those that might last longer than the integration window of individual neurons and 

cannot therefore be resolved by them. To overcome this limitation, neurons within a population 

coordinate their activity, tiling the duration of stimuli or task representations during behavior, as 

observed in A1 and the posterior parietal cortex (PPC), a region associated with visual and 

auditory integration into perceptual objects, objects-oriented action, and sound localization 

(Runyan et al., 2017). This temporal tiling can be thought of as a sparse code of the temporal 

location in the time interval associated to sensory experience or behavioral task. 

Internal state effects on representation 

So far, we have described how information flows bottom-up from the periphery (sensory 

epithelia) towards sensory cortices. However, a parallel descending pathway exists, which 

permits a top-down flow for these higher cognitive representations to influence sensory 

representations in the sensory cortices (Choi et al., 2018). 

Studying these top-down influences of internal states and representations poses a challenge, 

since this state cannot be readily and precisely manipulated like sensory stimuli. Despite these 

limitations, some internal states like arousal and its associated noradrenergic and cholinergic 

activity can be inferred from pupil dilation (McGinley et al., 2015; Reimer et al., 2016), directly 

read form locomotion (Schneider et al., 2021), or can be enforced like attention during behavioral 

tasks. 

Stimuli can influence these internal states, e.g., hearing the distant roar of a tiger leads to a 

state of fear, arousal, and heightened attention. This establishes a feedback loop in which 

perception alters internal states, which in turn modulate perception. Therefore, internal states 
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constitute another expression of the context of historical stimuli, which works on longer time 

scales, and is supported by top-down connections carrying auditory and multisensory information 

(Choi et al., 2018), and input from modulatory brain regions like the nucleus basalis (Froemke et 

al., 2007) . Consistent with this, models including arousal (pupil dilation) and behavioral aspects, 

like task engagement, can better capture variation in the sound evoked activity of IC and A1 

neurons (Saderi et al., 2021), through the modulation of the overall excitability of cortical neurons 

(Schwartz et al., 2020). 

Context as hidden state 

We have drawn a complex picture of the sources of information, internal and external, and the 

transformation and temporal computations performed on different time scales by local circuits and 

recurrent loops between brain regions. Understanding the nuance of these computations, the 

complex interplay between local and brain wide connectivity and their different time scales, quickly 

becomes an intractable problem. The advent of deep learning and AI, which arose from inspiration 

coming from neuroscience, might now lend a helping hand back. Theoretical developments like 

liquid state machines, and state dependent computations (Buonomano & Maass, 2009), can help 

frame the problem. At their core these theories posit a system of interconnected spiking neurons 

with internal states defined by adaptation and synaptic plasticity, which receive a continuous 

stream of information. At any given point, this information propagates through the network, 

generating a pattern of spikes which in turn changes the adaptation state of neurons and 

synapses. These changes remain “hidden”, as they are not readily observable unlike spikes. This 

hidden state is the substrate that sustains memory of stimulus history and context. However, this 

hidden state can be read in the influence it will exert on the network response to new incoming 

stimuli. A simple example of this is the SSA which we have already treated, however, liquid state 

machines are universal function approximations, i.e., with enough neurons, and diversity in 

adaptation time constants, any arbitrary nonlinear function can be implemented (Maass & 
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Markram, 2004). As we have seen, these nonlinearities are necessary to generate more complex 

receptive fields and higher abstractions. 

Liquid state machines are a general framework that encompasses diverse mechanisms like 

sustained activity, adaptation, and recurrent connections. This strength in generality can become 

a weakness: further refinements are needed to capture the specifics of their implementation by 

the brain. Care is required, as the hubris and ego of trying to capture all the nuance of the brain 

In Silico will lead to catastrophic results, as it has happened before with the Blue Brain Project 

(Hutton, n.d.). 

Our contributions 

In the following chapters we will discuss the specific mechanisms by which adaptation and 

population dynamics implement some of the more complex computations and representations of 

nonlinear sound features. In chapter 2 we demonstrate how adaptation occurs independently for 

different spectral inputs, i.e., a neuron might adapt to a low frequency sound but remain 

responsive to a higher frequency one. We show how this independent adaptation supports well 

characterized temporal computations, like SSA, and an overall increase in the variability in sound 

responses, which is required to capture the diversity of natural sounds. Response variability 

emerges from the diverse spectro-temporal preferences of neurons, and the combinations and 

nonlinear interactions between these preferences. In chapter 3 we dive deeper into the sources 

of diversity in sound responses by exploring the duration of the temporal integration window of 

neurons.  We show how recent auditory input influences responses to ongoing sounds, such that 

information about recent and ongoing sounds coexist in the activity of populations of neurons 

forming a sparse code. We also show how this complex integration of recent and ongoing sound 

is supported by a combination of neuron adaptation, circuit connectivity, and population dynamics.  
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Chapter 2. Spectral tuning of adaptation supports coding of sensory context 

in auditory cortex 

Adapted from (Lopez Espejo et al., 2019) 

Abstract 

Perception of vocalizations and other behaviorally relevant sounds requires integrating 

acoustic information over hundreds of milliseconds. Sound-evoked activity in auditory cortex 

typically has much shorter latency, but the acoustic context, i.e., sound history, can modulate 

sound evoked activity over longer periods. Contextual effects are attributed to modulatory 

phenomena, such as stimulus-specific adaptation and contrast gain control. However, an 

encoding model that links context to natural sound processing has yet to be established. We 

tested whether a model in which spectrally tuned inputs undergo adaptation mimicking short-term 

synaptic plasticity (STP) can account for contextual effects during natural sound processing. 

Single-unit activity was recorded from primary auditory cortex of awake ferrets during presentation 

of noise with natural temporal dynamics and fully natural sounds. Encoding properties were 

characterized by a standard linear-nonlinear spectro-temporal receptive field (LN) model and 

variants that incorporated STP-like adaptation. In the adapting models, STP was applied either 

globally across all input spectral channels or locally to subsets of channels. For most neurons, 

models incorporating local STP predicted neural activity as well or better than LN and global STP 

models. The strength of nonlinear adaptation varied across neurons. Within neurons, adaptation 

was generally stronger for spectral channels with excitatory than inhibitory gain. Neurons showing 

improved STP model performance also tended to undergo stimulus-specific adaptation, 

suggesting a common mechanism for these phenomena. When STP models were compared 

between passive and active behavior conditions, response gain often changed, but average STP 

parameters were stable. Thus, spectrally and temporally heterogeneous adaptation, subserved 
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by a mechanism with STP-like dynamics, may support representation of the complex spectro-

temporal patterns that comprise natural sounds across wide-ranging sensory contexts. 

Introduction 

Vocalizations and other natural sounds are characterized by complex spectro-temporal 

patterns. Discriminating sounds like speech syllables requires integrating information about 

changes in their frequency content over many tens to hundreds of milliseconds (Binder et al., 

2000; Huetz et al., 2011; Mesgarani, Cheung, et al., 2014). Models of sensory encoding for 

auditory neurons, such as the widely used linear-nonlinear spectro-temporal receptive field (LN 

model), seek to characterize sound coding generally. That is, they are designed to predict time-

varying responses to any arbitrary stimulus, including natural sounds with complex spectro-

temporal dynamics (Wu et al., 2006). When used to study auditory cortex, however, LN models 

typically measure tuning properties only with relatively short latencies (20-80 ms), which prevents 

them from encoding information about stimuli with longer latency (Atiani et al., 2014; deCharms 

et al., 1998; Depireux et al., 2001). It remains an open question how the auditory system 

integrates spectro-temporal information from natural stimuli over longer periods. 

 

Classic LN models cannot account for integration over longer timescales, but studies of 

spectro-temporal context have shown that auditory-evoked activity can be modulated by stimuli 

occurring hundreds to thousands of milliseconds (Angeloni & Geffen, 2018; Asari & Zador, 2009; 

Klampfl et al., 2012) or even several minutes beforehand (K. Lu et al., 2018b; Yaron et al., 2012). 

These results have generally been interpreted in the context of pop-out effects for oddball stimuli 

(Carbajal & Malmierca, 2018; Natan et al., 2015; Ulanovsky et al., 2003; Yarden & Nelken, 2017) 

or gain control to normalize neural activity in the steady state (Dean et al., 2005; Lesica & Grothe, 

2008b; Rabinowitz et al., 2011). Encoding models that incorporate recurrent gain control or 

nonlinear adaptation have been shown to provide better characterization of auditory-evoked 
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activity in the steady state, indicating that these properties of neurons may contribute to context-

dependent coding on these longer timescales (S. V David & Shamma, 2013; Rabinowitz et al., 

2012; Rahman et al., 2019; Williamson et al., 2016; Willmore et al., 2016; Yarden & Nelken, 2017). 

Some models have been shown to account for cortical responses to natural stimuli more 

accurately than the LN model (Harper et al., 2016; Kozlov & Gentner, 2016; Rahman et al., 2019; 

Willmore et al., 2016), and others have been proposed that have yet to be tested with natural 

stimuli (Ahrens et al., 2008; Atencio et al., 2008; Rabinowitz et al., 2012; Williamson et al., 2016). 

These findings suggest that an adaptation mechanism plays a central role in context-dependent 

coding, but there is no clear consensus on the essential components of a model that might replace 

the LN model as a standard across the field. 

Short-term synaptic plasticity (STP) is a widely-observed phenomenon in the nervous system. 

Upon sustained stimulation, the efficacy of synapses is depressed or facilitated until stimulation 

ceases and synaptic resources are allowed to return to baseline (del Castillo & Katz, 1954; 

Tsodyks et al., 1998). Activity evoked by a sensory stimulus will engage synaptic plasticity across 

the auditory network, and the specific synapses that undergo plasticity will depend on the 

stimulus. Because the pattern of plasticity is stimulus-dependent, it could provide a latent code 

for sensory context that modulates responses to subsequent stimuli. Thus we hypothesized that 

nonlinear adaptation with STP-like properties may play a general role in auditory cortical 

processing. The precise mechanism producing nonlinear adaptation can take other forms than 

STP (e.g., feedforward inhibition, postsynaptic inhibition (Natan et al., 2015; Nelken, 2014)), but 

all these mechanisms support a simple and fundamentally similar algorithm for encoding spectro-

temporal features. The focus of this study is whether functional properties of auditory neurons are 

impacted significantly by such a mechanism at the algorithmic level and, in particular, if this 

adaptation occurs independently across inputs with different sound frequency. Regardless of 

precise mechanism, a population of neurons with spectrally tuned adaptation may support a rich 
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code for information over the many hundreds of milliseconds required to discriminate spectro-

temporally complex natural sounds (Buonomano & Maass, 2009; Fortune & Rose, 2001). 

To test for spectrally tuned adaptation during auditory processing, we developed a 

vocalization-modulated noise stimulus in which two simultaneous noise bands are modulated by 

envelopes from independent natural vocalizations. The naturalistic dynamics of these stimuli 

produce a wide range of sensory contexts for probing neural activity. We presented these stimuli 

during single-unit recordings in primary auditory cortex (A1) of awake ferrets and compared the 

performance neural encoding models to test for STP-like effects (Thorson et al., 2015; Wu et al., 

2006). We fit variants of the LN model in which inputs adapt either locally to one spectral band or 

globally across all channels. For many neurons, locally tuned adaptation provided a more 

accurate prediction of neural activity, supporting the idea of channel-specific adaptation. The 

strength and tuning of adaptation was heterogeneous across the A1 population, consistent with 

the idea that a diversity of spectrally tuned adaptation supports a rich basis for encoding complex 

natural sounds. We observed the same pattern of results for models fit to a library of fully natural 

sounds.  

We also asked how changes in behavioral state, which can influence response gain and 

selectivity, affected nonlinear adaptation properties in A1 (Ding & Simon, 2012; Fritz et al., 2003; 

Kuchibhotla et al., 2016; Mesgarani & Chang, 2012; Niwa et al., 2012; Otazu et al., 2009; 

Schwartz & David, 2018). We compared model STP parameters between passive listening and 

during a behavior that required detecting a tone in a natural noise stream. While the gain of the 

neural response could fluctuate substantially with behavioral state, STP was largely stable across 

behavior conditions. This finding suggests that, unlike response gain, nonlinear adaptation 

properties are not influenced by behavioral state and may instead be critical for stable encoding 

of spectro-temporal sound features (Buonomano & Maass, 2009; Chance et al., 1998). Together, 

these findings demonstrate that during natural hearing, a simple, STP-like mechanism can explain 

many aspects of context-dependent sound coding. Moreover, these processes, typically 
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associated with steady-state adaptation to different contexts, such as SSA, can play a more 

dynamic role, continuously shaping the representation of spectro-temporally complex natural 

sounds.  

Results 

Encoding models reveal spectrally tuned adaptation in primary auditory cortex 

This study characterized how primary auditory cortex (A1) integrates information from 

dynamic, naturalistic stimuli over frequency and time. Data were recorded from 200 single units 

in A1 of 5 passively listening ferrets during presentation of two band vocalization-modulated noise 

(Figure 1 A-B, (S. V David & Shamma, 2013; Lesica & Grothe, 2008a)). The stimulus contained 

complex natural temporal statistics but simple spectral properties. Thus it allowed an experimental 

focus on nonlinear temporal processing in the presence of multiple spectral features. Noise bands 

were one-quarter octave and modulated by different natural vocalization envelopes. Both bands 

were positioned so that they fell in the spectral receptive field of recorded neurons, as measured 

by briefly presented tones or noise bursts (Figure 1 B).  

The dynamic vocalization-modulated noise often evoked reliable time-varying responses from 

A1 neurons, but the timecourse of this response varied substantially. Peri-stimulus time histogram 

(PSTH) responses computed from average repetitions of identical noise stimuli showed that 

responses could predominantly follow the envelope of one or both of stimulus bands (Figure 1 C). 

Thus, while all neurons included in the study were excited by isolated, narrowband stimuli in each 

frequency band, responses to stimuli presented in both bands simultaneously were complex and 

varied across neurons. 
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Figure 1 
A. Two example natural vocalization waveforms show characteristic interspersed epochs of high sound 
energy and silence. Each sound has a distinct envelope tracing amplitude over time, which captures 
these complex temporal dynamics. B. Spectrogram of vocalization-modulated noise presented to one 
A1 neuron. Stimuli were generated by applying vocalization envelopes to narrowband noise, capturing 
the complex temporal dynamics of natural sounds. For the two-band stimulus, a different envelope was 
applied to adjacent, non-overlapping spectral bands. Both noise streams were positioned in the 
responsive area of a frequency tuning curve (right). Thus vocalization-modulated noise enabled probing 
natural, nonlinear temporal processing while minimizing complexity of spectral features. C. Raster 
response the same neuron to repeated presentations of the vocalization-modulated noise stimulus (top), 
and peri-stimulus time histogram (PSTH) response averaged across repetitions (gray shading, bottom). 
The envelope of each noise stream is overlaid. Increased amplitude in stream 2 (blue) leads to a strong 
onset response that weakens after about 50 ms (transients in the PSTH at 0.25 s and 0.8 s). Stream 1 
(orange) suppresses the PSTH, with no evidence for adaptation. 

We used a linear-nonlinear spectro-temporal receptive field model (LN model) to establish a 

baseline characterization of auditory encoding properties (Figure 2 A, (Aertsen & Johannesma, 

1981; S. V David et al., 2009; Klein et al., 2000)). This model describes time-varying neural activity 

as the linear weighted sum of the preceding stimulus spectrogram (Eq. 1). Because the 

vocalization-modulated noise consisted of just two distinct spectral channels, the model required 

a filter with only two input spectral channels, compared to multiple spectral channels for analysis 

of broadband noise or natural sounds. To account for well-established nonlinear threshold and 

saturation properties of spiking neurons, the linear filter stage was followed by a static, sigmoidal 

output nonlinearity (Eq. 2, (Thorson et al., 2015), Figure 2 A). 
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Figure 2 Alternative encoding models to describe auditory neural responses to vocalization-
modulated noise. 
A. The linear-nonlinear spectro-temporal receptive field (LN model) describes the time-varying neural 
response as a linear weighted sum of the preceding stimulus envelopes, followed by a static sigmoid 
nonlinearity to account for spike threshold and saturation. B. In the global short-term plasticity (STP) 
model, nonlinear STP (depression or facilitation) is applied to the output of the linear filter prior to the 
static nonlinearity. C. In the local rectification model, the input channels are linearly reweighted and then 
nonlinearly thresholded (rectified) prior to the linear temporal filter and static nonlinearity. D. In the local 
STP model, input channels are linearly reweighted, and then nonlinear STP (depression or facilitation) 
is applied to each reweighted channel, prior to the linear temporal filter and static nonlinearity. Gray 
boxes show example model parameters applied at each processing stage. 

To regularize model fits, we constrained the temporal dynamics of the filter applied to each 

input channel to have the form of a damped oscillator (Eq. 3, (Thorson et al., 2015)). This 

parameterization required fewer free parameters than a simple, nonparametric weighting vector 

and improved performance over the model with a nonparametric linear filter (see Figure 4 C). 

However, the shape of a single parameterized temporal filter did not capture temporal responses 

dynamics fully for all neurons. To support more flexible temporal encoding, we introduced a 

spectral reweighting in which the two input channels were mapped to J channels prior to temporal 
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filtering, with the possibility that J > 2 (Eq. 4). Each reweighted input was passed through a 

separately-fit temporal filter. Several values of J were tested. For the majority of model 

comparisons, J = 5 was found to produce the best performing models, on average, and most 

results below are for models with this channel count (although J = 2 spectral channels achieved 

nearly asymptotic performance for the LN model, see below). 

The LN model, as well as the other models discussed below, was fit using gradient descent 

(Byrd et al., 1995; Pennington & David, 2022). Model fits were regularized by the parametric 

formulation of the linear filter (Eqs. 3-4) and by a shrinkage term applied to the mean squared 

error cost function (Thorson et al., 2015). Model performance was assessed by the accuracy with 

which it predicted the time-varying response to a novel validation stimulus that was not used for 

estimation (Wu et al., 2006). Prediction accuracy was quantified by the correlation coefficient 

(Pearson’s R) measured between the predicted and actual PSTH response, corrected to account 

for sampling limitations in the actual response (Hsu et al., 2004). A value of R=1 indicated a 

perfect prediction, and R=0 indicated random prediction. 

The LN model was able to capture some response dynamics of A1 neurons, but several errors 

in prediction can be seen in example data (Figure 3, Figure 5). In particular, the LN model failed 

to account for transient responses following stimulus onset (arrows in Figure 3). A previous study 

showed that, for stimuli consisting of a single modulated noise band, a model incorporating 

nonlinear short-term synaptic plasticity (STP) prior to the temporal filtering stage provides a more 

accurate prediction of neural activity (S. V David & Shamma, 2013). STP is widespread across 

cortical systems, making it a plausible mechanism to support such adaptation (S. V David & 

Shamma, 2013; Tsodyks et al., 1998). Given that STP occurs at synaptic inputs, this observation 

suggests that A1 neurons can undergo adaptation independently for inputs in different spectral 

channels. Spectrally tuned adaptation could give rise to a rich code for complex spectro-temporal 

patterns (Buonomano & Maass, 2009). However, based on previous results, it is not clear whether 

the nonlinear adaptation occurs primarily after information is summed across spectral channels 
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(global adaptation) or if it occurs separately for the different spectral channels (local adaptation). 

To determine whether adaptation occurs pre- or post-spectral integration, we estimated two 

variants of the LN model, a global STP model, in which input spectral channels undergo the same 

adaptation prior to linear filtering (Figure 2 B), and a local STP model, in which each channel 

adapts independently according to the history of its own input (Figure 2 D).  

Spectral reweighting was applied to the stimulus for STP models (Eq. 4), as in the case of the 

LN model, above. For the local STP model, nonlinear adaptation occurred after spectral 

reweighting. The reweighting made it possible for the same band of the vocalization-modulated 

noise to undergo adaptation at multiple timescales and, conversely, for different bands to be 

combined into a single channel before adaptation. This flexible arrangement models cortical 

neurons, where inputs from peripheral channels can be combined either pre- or post-synaptically 

(X. Gao & Wehr, 2015; Ko et al., 2011). The model schematic shows a model in which the two 

inputs were reweighted into two channels (Figure 2 D), but we compared models with J = 1…5 

channels (see Figure 4and Methods). As in the case of the LN model, the STP models included 

the same sigmoidal output nonlinearity. The linear filter and static nonlinearity architectures were 

the same across LN and STP models, and all models were fit using identical data sets. However, 

the free parameters for each model were fit separately.  

To test for the possibility that any benefit of the local STP model simply reflects the insertion 

of a nonlinearity into the LN model between spectral reweighting and temporal filtering, we 

considered an additional model, the local rectification model, in which each reweighted channel 

was linearly rectified prior to temporal filtering (Eq. 9, Figure 2 C). 
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Figure 3 
Transformation applied to incoming vocalization-modulated noise for a local short-term plasticity (STP) 
model estimated for one A1 neuron. Spectral reweighting emphasizes input stream 1 in channel 1 (red), 
stream 2 in channel 2 (blue), and both streams in channel 3 (gray). All three reweighted channels 
undergo independent STP. For this neuron, STP is stronger for channel 1 than for the other channels. 
The linear filter produces excitation for channel 1 and inhibition for channel 2. After the final static 
nonlinearity (NL), the predicted PSTH (bottom panel, purple) shows a good match to the actual PSTH 
(gray shading), while the prediction of the LN model does not predict the response dynamics as 
accurately (orange). Arrows indicate transient PSTH features captured better by the STP model. 

These different encoding models can each be cast as a sequence of transformations, where 

the output of one transformation is the input to the next. Their modularity enables visualization of 

how the data is transformed at each step of the encoding process. Figure 3 illustrates the 

transformations that take place in an example local STP model for an A1 neuron (J = 3 spectral 

reweighting channels shown for simplicity). The vocalization-modulated noise envelope is first 

linearly reweighted into three channels. In this example, the first reweighted channel closely 

follows the first input channel. Second, the three reweighted channels undergo independent STP-

like adaptation. The first channel experiences the strongest adaptation (red). The adapted 

channels are then convolved with a linear filter, which in this case is excitatory for channel 1, 
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inhibitory for channel 2 (blue), and transient excitation for channel 3 (gray). The convolved 

channels are summed and then passed through a static nonlinearity to generate the final 

predicted time-varying spike rate. The PSTH response predicted by the reweighted STP model 

can be compared directly to the actual PSTH and predictions by other models (Figure 4). 

 

Figure 4 
A. Scatter plot compares noise-corrected prediction correlation between the linear-nonlinear (LN) model 
and local short-term plasticity (STP) model for each A1 neuron. Black points indicate the 56/187 neurons 
for which the local STP model performed significantly better than the LN model (p<0.05, jackknifed t-
test). B. Mean performance (noise-corrected correlation coefficient between predicted and actual PSTH) 
for each model across the set of A1 neurons. The global STP model showed improved performance over 
the LN and local rectification (relu) model. The local STP model showed a further improvement over the 
global STP model (*p < 0.01, **p < 10-4, ***p < 10-6, Wilcoxon sign test, n = 187/200 neurons with above-
chance prediction correlation for any model). The best performing model, the local STP model, 
reweighted the two input envelopes into five spectral channels, each of which underwent independent 
STP prior to linear temporal filtering and a static nonlinearity. C. Pareto plot compares model complexity 
(number of free parameters) versus average prediction correlation for model architectures with and 
without STP, with and without parameterization of the temporal filter (full vs. DO) and for variable 
numbers of reweighted spectral channels (rank). Models with STP showed (purple, blue) consistently 
better performance than models without STP (orange, red) for all levels of complexity. 

For 187 out of the 200 A1 neurons studied, at least one model (LN, global STP, local 

rectification, local STP, J = 5 spectral reweighting channels for all models) was able to predict 

time-varying responses with greater than chance accuracy (p<0.05, Bonferroni-corrected 

permutation test). Prediction correlation for the global STP model was significantly greater than 

the linear model for a subset of neurons (n = 22/187, p < 0.05, permutation test, Figure 4 B). The 

average noise-corrected prediction correlation across the entire sample of neurons was greater 

for the global STP model (mean 0.699 vs. 0.732, median 0.715 vs. 0.755, p = 2.1 x 10-7, sign 

test). Mean performance tended to be slightly lower than median, probably because performance 
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was near the upper bound of r = 1.0, creating a slight negative bias in the mean. However, we 

saw no qualitative difference between these metrics in any model comparison. The local 

rectification model also showed an average improvement in performance over the LN model 

(mean 0.699 vs. 0.709, median 0.715 vs. 0.732, p = 0.042, sign test, Figure 4 B). However, the 

local STP model consistently performed better than all the other models (mean 0.795, median 

0.818, p<10-8 for all models, sign test, Figure 4 B). Prediction accuracy was significantly greater 

than the LN model for 58/187 neurons (p < 0.05, permutation test, Figure 4 A). Taken together, 

these results indicate that the spectrally tuned nonlinear adaptation described by the local STP 

model provides a more accurate characterization of A1 encoding than LN models or models in 

which the adaptation occurs uniformly across spectral channels. 

While the local STP model consistently performed better than the other models, its 

performance could be attributed to its additional complexity, i.e., the fact that it required more free 

parameters than the other models, rather than something specific about spectrally tuned 

adaptation. To characterize the interaction of model complexity and performance, we compared 

prediction accuracy for models with variable numbers of spectral reweighting channels, J=1…5 

(Figure 4 C). When compared in a Pareto plot, the local STP model shows a consistent pattern 

of improved performance over LN models, independent of spectral channel count or overall 

parameter count. This comparison also included models in which the temporal filter was either 

parameterized by a damped oscillator (Eq. 3) or nonparameterized (“full”). The parameterized 

models performed consistently as well or better than their nonparameterized counterparts, 

indicating that this reduction in dimensionality preserved important temporal filter properties. 

Thus, the benefit of incorporating local STP is consistent, regardless of model complexity. 

Spectrally tuned adaptation is stronger for excitatory than inhibitory inputs 

We studied properties of the LN and STP models in order to understand what features of the 

STP models lead to their improved performance. Response dynamics varied across A1 neurons, 

sometimes emphasizing only sound onsets and in other cases tracking one or both envelopes 
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across the entire trial. For many neurons, both models were able to capture the coarse response 

dynamics, but the STP model was able to predict the transient responses and the relative 

amplitude of responses more accurately (Figure 5 B-C). In some cases the LN and STP models 

performed equivalently, indicating that some neurons showed little or no nonlinear adaptation 

(Figure 5 G).  

 

Figure 5 
A. Envelope of vocalization-modulated noise streams. B-G. Left column, example PSTH responses of 
several A1 neurons (gray shading). The spectral position of noise bands was adjusted to fall within the 
receptive field of each neuron, but the envelopes were the same for each recording. Responses were 
sometimes dominated by one stream (e.g., unit B tracks stream 1 and G tracks stream 2), but could also 
track both (e.g., unit F). Response dynamics also vary substantially, from sustained, following the 
stimulus envelope (G), to highly transient responses that attenuate after sound onset (D). Numbers at 
upper left of PSTH plots indicate prediction correlation for the linear-nonlinear (LN) model (orange) and 
local short-term plasticity (STP) model (blue). Predicted PSTHs are overlaid on the actual PSTH. Second 
column shows linear filters from the LN model for each neuron, whose gain reciprocates the PSTH 
responses. Columns at right show spectral weights, STP properties and linear filters for the largest 
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(positive gain, red) and smallest (negative gain, blue) temporal filter in local STP models for the same 
neurons. 

Although isolated stimuli in both input channels usually evoked excitatory responses (Figure 

1 C), the gain of one filter in both LN and STP models was often negative (Figure 5, middle and 

right columns). These suppressive responses likely reflect the unmasking of inhibition by 

broadband stimuli (Eggermont, 2011). The fit procedure was not constrained to require a negative 

channel, so the presence of negative channels is the result of optimizing model parameters for 

prediction accuracy. We quantified the gain of each local STP model channel by summing 

temporal filter coefficients across time lags. By definition, one channel always had the largest 

gain, which we identified as the strongest input channel. A comparison of gain for largest versus 

smallest gain showed that one channel was always positive (n = 187/187 units, Figure 6 B). 

Strikingly, almost every filter contained at least one channel with negative gain (n = 175/187). We 

focus on models with J=5 spectral reweighting channels here, but nearly the same results are 

observed for models with J = 2…5. There was no difference in the prevalence of inhibitory 

channels in neurons that showed a significant improvement for the STP model, compared to 

neurons that did not show an improvement (p > 0.05, unpaired t-test, n=56/175 improved, 

n=119/175 not improved, see Figure 6 A and below). Although the specific mechanisms producing 

positive and negative gain are not determined in this model, we refer to them as excitatory and 

inhibitory gain, respectively. 
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Figure 6 
A. In the local STP model, each reweighted spectral channel passed through a nonlinear filter, mimicking 
synaptic STP, a nonlinear transformation, prior to the linear temporal filter stage. An index of adaptation 
strength for each model synapse was computed as one minus the fraction change in the amplitude of a 
test signal after passing through the adapting synapse. An index value > 0 indicated synaptic depression, 
and a value < 0 indicated facilitation. B. Overall gain for each channel of the linear filter in the STP model 
was computed as the sum of the filter across time lags. Scatter plot compares gain for the channel with 
largest magnitude, which was always positive (horizontal axis), and for the channel with smallest 
magnitude, which was either positive or negative (vertical axis). The vast majority of model fits contained 
at least one excitatory (positive) channel and one inhibitory (negative) channel (n = 183/187). Units in 
which the local STP model generated a significant improvement in prediction power are colored black (n 
= 56, p<0.05, jackknife t-test). C. Comparison of release probability parameter fit values for STP filters 
in excitatory versus inhibitory channels (n = 56 STP models with significant improvement in prediction 
power). Gray lines connect values for a single model. Average values were significantly greater for 
excitatory versus inhibitory synapses for release probability (mean 0.45 vs. 0.15, p = 1.4 x 10-6, sign test). 
D. Comparison of STP recovery time constant, plotted as in D, shows no difference between excitatory 
and inhibitory channels (mean 0.063 vs. 0.081 s, p > 0.5, sign test). E. Comparison of adaptation index 
shows a significant difference between excitatory and inhibitory channels (mean 0.25 vs. 0.13, p = 2.8 x 
10-4 sign test). F. Scatter plot compares average adaptation index for each local STP model against the 
change in prediction correlation between the LN and local STP model. There is a positive correlation 
between STP effects and changes in prediction accuracy (r = 0.17, p = 0.023, n = 187, Wald Test). 
Neurons with significant changes in prediction accuracy are plotted as in B. 

We wondered whether adaptation captured by the STP model differed between excitatory and 

inhibitory channels. For the 56 neurons with improved performance by the local STP model (see 

Figure 4, above), we compared STP parameters (release probability and recovery time constant, 

see Eq. 6) and the overall adaptation index between highest- and lowest gain channels. The 

adaptation index was measured as one minus the ratio of the output to input of the synapse for a 
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standard test input (Figure 6 A, (S. V David & Shamma, 2013)). Index values greater than zero 

indicated depression, and values less than zero indicated facilitation. When we compared STP 

properties between channels, we observed that release probability and adaptation index were 

both stronger, on average, for excitatory versus inhibitory channels (p = 0.0011 and p = 4.3 x 10-

4, respectively, sign test, Figure 6 C, E). The mean adaptation index of excitatory channels (0.27) 

was more than twice that of inhibitory channels (0.13). These results suggest that excitatory 

responses in A1 tend to adapt following sustained input, while concurrent inhibition undergoes 

little or no adaptation. Mean recovery time constant did not differ between excitatory and inhibitory 

channels, possibly because the value of the time constant has little impact on model behavior 

when adaptation is weak (Figure 6 D).  

We also tested whether the magnitude of STP-like adaptation predicted the relative 

performance of the local STP model. A comparison of average adaptation index versus change 

in prediction accuracy between the LN and local STP model for each neuron shows a small but 

significant correlation (r = 0.17, p = 0.023, n = 187, Wald Test for non-zero slope, Figure 6 F). 

When we considered neurons for which local STP model performance was not greater than the 

LN model, no mean difference was observed between excitatory and inhibitory channels (Figure 

6 C-E, dark bars). However, the local STP models did tend to show non-zero STP strength, even 

if there was no significant improvement in performance. While many neurons did not show a 

significant improvement in prediction accuracy for the local STP model, the vast majority showed 

a trend toward improvement (168/187, Figure 4 A). If more data were available, permitting more 

robust model estimates, the number of neurons showing significant STP effects could be larger. 

Spectrally tuned adaptation supports contextual effects of stimulus-specific adaptation 

Nonlinear adaptation has previously been proposed to play a role in contextual effects on 

auditory cortical responses (Asari & Zador, 2009). One common measure of contextual influences 

on auditory activity is stimulus specific adaptation (SSA, (Pérez-González & Malmierca, 2014; 

Ulanovsky et al., 2003)). When two discrete stimuli are presented in a regular sequence, with a 
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standard stimulus presented more frequently than an oddball stimulus, responses to the standard 

tend to undergo adaptation, but responses to the oddball stimulus can be less adapted or even 

facilitated relative to a silent context. Effects of SSA have been attributed to feedforward 

adaptation and/or lateral inhibition (Carbajal & Malmierca, 2018; Natan et al., 2015; Nelken, 2014; 

Yarden & Nelken, 2017).  

To test for SSA effects, for a subset of neurons we presented standard/oddball sequences of 

noise bursts, falling in the same spectral bands as the vocalization-modulated noise stimuli. We 

measured SSA for these responses by an SSA index (SI) that compared responses to noise 

bursts when they appeared as standards vs. oddballs (Ulanovsky et al., 2003). Adaptation effects 

were weaker than previously been reported for A1 in anesthetized animals, but SI was 

significantly greater than zero in 43% of neurons (p<0.05, standard/oddball permutation test, n = 

44/102). We tested whether models including STP could predict responses to oddball stimuli and 

explain SSA effects. LN, global STP, and local STP models were fit to data collected during the 

presentation of the oddball sequences. Because the design of the oddball stimulus experiments 

did not include repetitions of the same sequences, models were fit and tested using single trials. 

This design precluded correcting the prediction correlation for variability in the neural response 

(Hsu et al., 2004; Thorson et al., 2015), leading to comparatively lower correlation values than for the 

other stimulus sets. Nonetheless, the introduction of nonlinear model elements improved 

prediction accuracy. Between the LN model vs. local STP model, 46% of the cells responses were 

significantly better predicted by the local STP model (p < 0.05, jackknifed t-test, n = 47/102, Figure 

7 A). Each model showed a significant improvement in accuracy over the simpler one (LN vs 

global STP model, p = 1.7 x 10-4; global STP model vs local STP model, p = 1.9 x 10-13, sign test, 

Figure 7 C). This pattern of improvement closely parallels the vocalization-modulated noise data 

(Figure 4). 
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Figure 7 
A. Scatter plot compares prediction accuracy for the LN model and local STP model, estimated using 
oddball stimuli for each neuron. Black markers indicate significant difference in the performance between 
models (p<0.05, jackknifed t-test). B. Scatter plot compares SSA index (SI) calculated from actual 
responses against SI from responses predicted by LN model (orange) and local STP model (blue) for 
neurons with significant actual SI (p < 0.05, standard/oddball permutation test). The LN model is unable 
to account for any stimulus specific adaptation, while the SI predicted by the local STP model is 
correlated with the actual values (LN: r = 0.011, p = 0.95; local STP: r = 0.636, p = 3.4 x 10-6, Wald Test 
for non-zero slope). C. Summary of the mean prediction correlation for all cells across all tested models 
(LN model vs. global STP model, p = 1.7 x 10-4, global STP model vs. local STP model, p = 1.9 x 10-13 , 
LN model vs local STP model, p = 1.1 x 10-15, sign test). D. Mean SI prediction error for each model 
architecture. The prediction error for each cell is the mean standard error (MSE) between actual and 
predicted SI (LN model vs. global STP model, p = 0.024; global STP model vs. local STP model, p = 
0.005, LN model vs. local STP model, p = 1.5 x 10-4, sign test). E. Example actual (black), LN model-
predicted (yellow) and local STP model-predicted (blue) PSTH response to standard (continuous line) 
and deviant (dashed line) noise bursts. Shaded areas standard error on the mean (bootstrap p = 0.05). 
Vertical lines mark sound onset and offset. For the LN model, both standard and oddball predictions are 
close to the actual standard response, but the local STP model predicts the enhanced oddball response. 
Example cell is highlighted in red in panels A and B. *p <0 .05, **p < 0.01, ***p < 0.001. 

Because the models could predict time-varying responses to the noise stimuli, we could 

measure SI from responses predicted by the models. For neurons with significant SI (p < 0.05, 
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permutation test, n = 44/102) we measured the correlation between actual and predicted SI 

values. The best performing model, the local STP model, was able to significantly predict the SI 

(n = 44, r = 0.636, p = 3.4 x 10-6, Wald Test for non-zero slope, Figure 7 B, blue). On the other 

hand, the LN model was unable to predict SI (n = 44, r = 0.011, p = 0.95, Wald Test, Figure 7 B, 

orange). When comparing the SI prediction error across model architectures, the mean population 

error consistently decreased with the addition of spectrally tuned adaptation (LN vs global STP 

model, p = 0.024; global STP model vs local STP model, p = 0.005, sign test, Figure 7 D). Thus, 

A1 neurons that showed evidence for nonlinear STP-like adaptation also exhibited SSA, indicating 

that the two phenomena may share common mechanisms. 

Nonlinear adaptation is robust to changes in behavioral state 

Several previous studies have shown that the response properties of neurons in A1 can be 

affected by changes in behavioral state. When animals engage in a task that require 

discrimination between sound categories, neurons can shift their gain and selectivity to enhance 

discriminability between the task-relevant categories (Fritz et al., 2003; Niwa et al., 2012; Otazu 

et al., 2009). Changes in overall gain are observed most commonly. Effects on sensory selectivity 

have been more variable and difficult to characterize. 

We tested if changes in behavioral state influence the nonlinear STP-like adaptation we 

observed in A1. We trained ferrets to perform a tone detection task, in which they reported the 

occurrence of a pure tone target embedded in a vocalization-modulated noise sequence (Figure 

8 A). We recorded neural activity during passive listening to the task stimuli and during active 

performance of the tone detection task. We then estimated STP models in which the model 

parameters were either fixed between behavior conditions (passive listening versus active 

behavior) or allowed to vary between conditions. Because identical stimuli were used in both 

conditions, differences in the model fit could be attributed to changes in behavioral state. As in 

the case of SSA data, noise stimuli were not repeated within a behavioral block. Thus prediction 
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accuracy was assessed with single trial data, and absolute prediction measures were lower than 

for the passive data reported above (Figure 4). 

 

Figure 8 
A. Schematic of alternative behavior-dependent local STP models that account for changes in sound 
encoding between passive and active tone detection conditions. The behavior-independent model was 
fit independent of behavior state. For the behavior-dependent NL model, the static nonlinearity was fit 
separately for passive and active conditions but all other parameters were constant. Subsequent models 
introduced the active/passive split prior to earlier stages. B. Scatter plot compares prediction accuracy 
between the behavior-independent LN model and full behavior-dependent STP model for each cell in the 
set (pooled across on BF and away from BF target blocks). 122/207 neurons show a significant increase 
in prediction accuracy for the behavior-dependent model (p<0.05, jackknifed t-test). C. Relative change 
in prediction accuracy for each neuron from incorporating STP (LN vs. local STP model, x axis) versus 
incorporating behavior dependence (behavior independent vs. –dependent, y axis). The small number 
of units that show improvement for both models (black), is in the range expected by chance if STP and 
behavior effects are distributed independently across the A1 population (p>0.2, permutation test). D. 
Comparison of mean prediction accuracy for each model reveals a significant increase in performance 
for STP model over the LN model, as in the passive-only dataset in Figure 4 (mean 0.13 vs. 0.15, p < 
10-10). In addition, for the STP model, the behavior-dependent NL model shows improved performance 
over the behavior-independent model (mean 0.150 vs. 0.159, p = 2.2 x 10-7, sign test). However, no 
further improvement is observed if the linear filter or STP parameters are made behavior-dependent 
(p>0.05, sign test). E. Comparison of passive vs. active model gain (amplitude of the static nonlinearity) 
between active and passive conditions shows an increase in the mean response during behavior (mean 
NL amplitude 24 vs. 27 spikes/sec, p = 2.0 x 10-5, sign test). Gray lines show passive vs. active amplitude 
for each neuron. F. Comparison STP index for behavior-dependent model shows a small decrease in 
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STP in the activity condition (mean 0.31 vs. 0.30, p = 0.002). This small behavior-dependent change 
does not impact mean prediction accuracy, as plotted in D. 

When the parameters of the static nonlinearity were allowed to vary between passive and 

active states, allowing changes in gain between the passive and activate conditions, the models 

showed a significant improvement in predictive power when compared to the behavior-

independent model (mean single trial prediction correlation 0.13 vs. 0.15, p = 7.1 x 10-13, sign test, 

Figure 8 B-D). However, allowing other model parameters to vary with behavioral state provided 

no additional improvement in model performance (p > 0.05, sign test, Figure 8 D). Thus, the 

changes in behavioral state influence the overall gain of the neural response without affecting the 

linear filter or nonlinear adaptation captured by the STP model. 

We also considered whether the presence of STP-like adaptation in a neuron predicted its 

tendency to show behavior-dependent changes in activity. When we compared the incremental 

change in prediction accuracy resulting from addition of nonlinear STP or behavior-dependent 

gain to the encoding model, the relationship was highly variable (Figure 8 C). Some neurons 

showed improvement only for STP or behavior-dependence, and just a small number showed 

improvements for both. Overall, these effects occurred independently across the population (p > 

0.1, permutation test). Thus the improved performance of the STP model does not predict the 

occurrence of behavior-dependent changes in activity.  

The comparison of prediction accuracy between behavior-dependent models suggests that 

the response gain can change between passive and active conditions but STP parameters do 

not. When we compared parameters between models fit separately under the different behavioral 

conditions, we found this to be largely the case. The average gain of the auditory response 

increased when animals engaged in behavior (mean amplitude of static nonlinearity: 24 vs. 27 

spk/sec, p = 2 x 10-5, n = 50 neurons with significant improvement in behavior-dependent vs. 

behavior-independent model, sign test, Fig 8E). The average STP index showed a small decrease 

during task engagement (mean STP index 0.31 vs. 0.30, p = 0.0016, n = 10 neurons with 
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significant improvement in local STP vs. LN model, sign test, Figure 8 F, right panels). While this 

change in STP index was significant, allowing it to fluctuate did not significantly impact prediction 

accuracy (Figure 8 D). A larger dataset may uncover significant influences of behavior-dependent 

nonlinear adaptation. However, the current analysis suggests that changes in STP play an overall 

smaller role in mediating behavioral effects in A1 than changes in overall response gain (Figure 

8 E). 

Natural stimuli reveal nonlinear adaptation of spectrally overlapping channels in A1  

The vocalization-modulated noise data reveal that spectrally distinct inputs can undergo 

independent adaptation in A1, supporting contextual coding phenomena such as SSA. In order 

to understand these nonlinear adaptation effects in a more ethological context, we also recorded 

the activity of 499 A1 neurons from 5 awake, passive ferrets during presentation of fully natural 

sounds. The natural stimuli were drawn from a large library of natural sounds (textures, ferret 

vocalizations, human speech and recordings of the ambient laboratory environment), chosen to 

sample a diverse range of spectro-temporal modulation space. 
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Figure 9 Performance of a local STP model on for A1 encoding of natural sounds. 
A. The encoding model for natural sounds resembled reweighted STP model for vocalization-modulated 
noise, except that the spectral filters at the first stage were two independently fit Gaussian functions that 
required two free parameters each (mean, standard deviation) and provided a simple tuning function for 
each spectral channel. B. Scatter plot compares prediction accuracy between the LN model and local 
STP model for the natural sound data. Across the entire set, 143/499 neurons showed a significant 
improvement in prediction accuracy for the local STP model (p < 0.05, jackknife t-test). Mean prediction 
accuracy for the local STP model was significantly greater than the LN model (0.517 vs. 0.563, p < 10-

10, sign test). C. Example spectral weights and temporal filters for one LN model (top) and spectral 
weights, STP, and temporal filters for the local STP model for the same neuron. Maximum gain is 
normalized to 1, but the relative gain between channels is preserved. As is typical in the vocalization-
modulated noise data, the highest gain filter (red) shows relatively strong STP, and the lowest gain (blue) 
shows weaker STP. D. Predicted PSTH responses for each model for one natural sound stimulus, 
overlaid on the actual PSTH (gray). The LN model prediction (orange) undershoots the initial transient 
response and over-predicts the sequence of transient responses later in the stimulus (arrows), while the 
STP model predicts these features more accurately (blue). E. Comparison of gain for the most positive 
(max normalized gain) and most negative (min normalized gain) linear filter channels for STP models 
reveals that the majority fits contain one excitatory and one inhibitory channel. F. Comparison of STP 
strength between excitatory and inhibitory channels shows consistently stronger depression for the 
excitatory channels (mean 0.30 vs. 0.22, p = 4.1 x 10-3, sign test, n = 143 units with significant 
improvement for the STP model). G. Scatter plot compares overlap of E and I spectral channels for each 
STP model (x axis) and relative difference in STP index between the E and I channels. There is no 
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correlation between tuning overlap and STP index difference, suggesting that A1 neurons represent 
incoming sound with a diverse combination of spectral tuning and nonlinear adaptation. 

Neural encoding properties were modeled by a reduced-rank model (Figure 9 A, (Simon et 

al., 2007; Thorson et al., 2015)). For the LN model, the sound spectrogram passed through a 

bank of J = 4 spectral filters, each of which computed a linear weighted sum of the spectrogram 

at each time bin. The spectral filter output then passed through a linear temporal filter (constrained 

to be a damped oscillator, Eq. 3) and static nonlinearity, identical to elements in the vocalization-

modulated noise models. To test for nonlinear adaptation, local STP was introduced to the model 

following the spectral filtering stage (Figure 9 A). 

The STP model predicted time-varying natural sound responses more accurately, on average, 

than the LN model (Figure 9 B). The STP model performed significantly better for 143/499 of the 

A1 neurons studied, and the average prediction accuracy was significantly higher for the STP 

model (mean noise-corrected prediction correlation 0.517 vs. 0.563, median: 0.540 vs. 0.583, p 

< 10-20, sign test). Thus, introducing local nonlinear adaptation to a spectro-temporal model for 

encoding of natural sounds provides a similar benefit as for encoding of vocalization-modulated 

noise.  

An example comparing LN and local STP model fits for one neuron shows a similar pattern of 

spectrally tuned adaptation as observed for the vocalization-modulated noise data (Figure 9 C). 

In this example, the spectral channel with strongest positive gain (red) shows relatively strong 

STP, while the channel with strongest negative gain (blue) shows very little evidence for STP. 

The net effects of this tuned STP can be observed in the predicted PSTH response to a natural 

sound (Figure 9 D). The LN model fails to predict the strong transient response at the sound onset 

and over-predicts the sequence of transients 1-2 sec after sound onset. The local STP model 

captures these dynamics more accurately. 

As in the case of the vocalization-modulated noise data, we compared STP effects between 

excitatory and inhibitory channels. Temporal filters were ordered by their average gain, and the 
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highest- and lowest gain filters were selected for comparison of STP properties (Figure 9 E). This 

comparison revealed that mean STP index was significantly larger for excitatory channels (mean 

0.30) than for inhibitory channels (mean 0.22, p = 4.1 x 10-3, sign test, Figure 9 F). As in the case 

of vocalization-modulated noise (Figure 6), the weaker STP for inhibitory channels suggests that 

these inputs tend to undergo little or no adaptation, while excitatory inputs undergo stronger 

adaptation. These effects did not depend on spectral tuning of the filters, as the differences in 

STP for excitatory versus inhibitory channels were consistent across filter center frequencies. 

There was also substantial heterogeneity in the strength of STP and the degree of overlap 

between spectral filters in a model fit (Figure 9 G). Thus, while many A1 neurons showed evidence 

for STP-like adaptation, especially in excitatory channels, the amount of adaptation and spectral 

overlap varied widely between neurons. 

Discussion 

We found that the adaptation of neurons in primary auditory cortex (A1) to natural and 

naturalistic sounds is spectrally selective. These adaptation effects can be modeled by a neuron 

with multiple input synapses that independently undergo short-term plasticity (STP). Spectro-

temporal receptive field models that incorporate nonlinear, spectrally tuned adaptation predict 

neural responses more accurately than the classic linear-nonlinear (LN) model for both naturalistic 

vocalization-modulated noise and for fully natural stimuli. They also predict responses more 

accurately than models that undergo a global (non-spectrally tuned) adaptation. These adaptation 

effects are stable across changes in behavioral state, even as neurons undergo task-related 

changes in the gain of sound-evoked responses (Otazu et al., 2009; Schwartz & David, 2018). 

While the observed adaptation could be produced by a mechanism other than STP, these results 

demonstrate a general principle, that spectrally tuned adaptation plays an important role in 

encoding of complex sound features in auditory cortex. Across a variety of stimulus conditions 
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(Figure 4, Figure 7, Figure 9) and models of varying complexity (Figure 4, Figure 10), a simple 

STP-like mechanism provides a consistent improvement in the performance of encoding models. 

 

Figure 10 
A. Impact of model output nonlinearity on prediction accuracy. Groups of bars compares mean prediction 
accuracy of LN (orange) and local STP models (blue) with different output nonlinearities using the 
vocalization-modulated noise data. In both the LN and STP architectures, the double exponential sigmoid 
shows better performance than a model with no output nonlinearity (linear), linear rectification (relu), and 
a logistic sigmoid (***p<10-5; NS: p>0.05 sign test). B. Comparison of initialization method and 
parameterization on LN (orange) and local STP model (blue) performance. Full models used non-
parameterized temporal filter functions, and DO indicates model in which the temporal filter is constrained 
to be a damped oscillator. Single fits started from a single initial condition, and random fits stated a 10 
different initial conditions, selecting the best-performing model on the estimation data. Initialization and 
parameterization had little impact on LN model performance, but both random initialization and DO 
parameterization improved performance for the local STP model (**p<10-4; ***p<10-5; NS: p>0.05 sign 
test). 

Spectrally tuned adaptation may support perception of complex sound features, such as 

phonemes in speech and vocalizations (Mesgarani, Cheung, et al., 2014), and may be of 

particular importance for hearing in noisy environments (Mesgarani, David, et al., 2014; R. C. 

Moore et al., 2013; Rabinowitz et al., 2013). Evoked activity in A1 rarely has latency longer than 

50 ms, but adaptation lasting several tens to hundreds of milliseconds can modulate these short-

latency responses. Neurons that undergo adaptation will change their effective spectro-temporal 

tuning while non-adapting neurons will not. By comparing responses of adapting and non-

adapting neurons, a decoder can infer information about stimuli at longer latencies (S. V David & 

Shamma, 2013). Thus adaptation can operate as an encoding buffer, integrating stimulus 

information over a longer time window than the latency of the evoked response. 
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Neural coding of auditory context 

Studies of contextual effects on auditory neural coding have shown that the spectro-temporal 

selectivity can change with statistical properties of sound stimuli, including temporal regularity 

(Pérez-González & Malmierca, 2014; Ulanovsky et al., 2003), contrast (Dean et al., 2005; 

Rabinowitz et al., 2012), intensity (Dean et al., 2008; Lesica & Grothe, 2008b; Nagel & Doupe, 

2008), and noisy backgrounds (Mesgarani, David, et al., 2014; Rabinowitz et al., 2013). These 

contextual effects are typically measured in the steady state: neural activity is characterized 

during discrete epochs in which the statistical properties defining context are held constant. The 

current results suggest that the same mechanisms that affect activity in the steady state also 

operate dynamically during the encoding of complex natural stimuli. Spectrally tuned adaptation 

supports a rich spectro-temporal code in which a continuously changing sensory context, 

reflecting the previous 100-1000 ms, modulates short-latency (0-100 ms) responses to continuous 

natural sounds (Ulanovsky et al., 2004).  

The timecourse of STP-like adaptation occurs over tens to hundreds of milliseconds, 

consistent with the timecourse of adaptation in encoding models that incorporate contrast gain 

control (Rabinowitz et al., 2012). These effects may also share dynamics with models in which 

local sensory context of synthetic tone stimuli modulates sound-evoked activity (Williamson et al., 

2016; Yaron et al., 2012). Previous studies of gain control and contextual modulation have 

suggested, variously, that either feed-forward adaptation of inputs (in cortex or midbrain), spike-

frequency adaptation locally, or recurrent cortical circuits could shape the encoding of spectro-

temporal sound features (Keine et al., 2016; Rabinowitz et al., 2012; Ulanovsky et al., 2004; 

Williamson et al., 2016; Willmore et al., 2016). In all cases, relatively slow changes in stimulus 

contrast or power around the neurons receptive field can influence sensory selectivity. Thus 

mechanisms other than STP may be able to support adaptation with similar dynamics. Further 

study is required to determine if these different models are functionally equivalent or how 

feedforward and feedback elements of the auditory network contribute to this dynamic coding.  
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An adaptation-based contextual code produced by mechanisms such as STP may extend 

broadly across the brain (Buonomano & Maass, 2009; Rothman et al., 2009). As a general 

computation, this nonlinear adaptation may serve to remove temporal correlations from upstream 

inputs. Theoretical studies of the visual cortex have argued that variation in synaptic depression 

across neurons can explain differences temporal frequency tuning across neurons (Chance et al., 

1998; Fortune & Rose, 2001). Synaptic depression has also been implicated in producing gain 

control in hippocampus (Rothman et al., 2009). Thus an auditory code that uses spectrally tuned 

adaptation provides an example of a computational process that may occur generally across 

neural systems. 

Dynamic reweighting of excitatory and inhibitory input 

While the STP model used in this study supported both depression and facilitation, the vast 

majority of measured adaptation effects were consistent with depression. Moreover, the strength 

of depression was generally much stronger for spectral inputs that produced an increase rather 

than decrease in neural firing rate. While the underlying mechanisms producing increases versus 

decreases in spike rate cannot be fully determined from extracellular recordings, we interpret 

these components of the model algorithmically as excitatory versus inhibitory responses, 

respectively. The predominance of adaptation in excitatory channels is consistent with a coding 

system in which responses to the onset of sound are broadly tuned, but as excitation adapts, the 

sustained inhibition sculpts responses so that sustained activity is tuned to a narrower set of 

sound features (Kudela et al., 2018). It has been established that the precise timing and relative 

strength of inhibition versus excitation can substantially impact tuning in A1 (Wehr & Zador, 2003); 

thus, dynamic changes in their relative strength during natural sound processing could 

substantially change encoding properties compared to what is measured in more traditional 

stimulus paradigms.  

The relative tuning, strength, and adaptation properties of excitatory versus inhibitory inputs 

are not stereotyped, but instead they vary substantially across A1 neurons. In most neurons, the 
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STP model revealed at least partially overlapping excitatory and inhibitory inputs (Figure 9), 

consistent with previous work (Froemke et al., 2007; Wehr & Zador, 2003). However, across 

individual neurons, the best frequency and bandwidth of excitatory channels can be greater or 

smaller than those of the inhibitory channels. Thus, instead of reflecting a fixed pattern of 

selectivity, neurons display a diversity of tuning properties that supports a rich code of distinct 

spectro-temporal patterns. This diversity of synaptic properties may explain the differences in 

selectivity across A1, including spectro-temporal tuning (Chi et al., 2005), monotonic versus non-

monotonic level tuning (Schinkel-Bielefeld et al., 2012; Watkins & Barbour, 2011) and temporal 

versus rate coding of temporal modulations (Bendor, 2015; L. Gao et al., 2016). 

The present study was performed on serial recordings of isolated single units, ignoring 

possible interactions between neurons that could influence sound coding (See et al., 2018). 

Simultaneous recordings of neural populations will illuminate the role of adaptation on network 

connectivity and population dynamics that likely contribute to context-dependent encoding (Pillow 

et al., 2008; Stringer, Pachitariu, Steinmetz, Carandini, et al., 2019). 

Minimal complexity for auditory encoding models 

A broad goal motivating this study is to identify the essential computational elements that 

support nonlinear sound encoding in auditory cortex, in particular, under natural stimulus 

conditions. While several complex, nonlinear models have been shown to predict auditory neural 

activity better than the LN model (Ahrens et al., 2008; Atencio et al., 2008; Harper et al., 2016; 

Kozlov & Gentner, 2016; Rabinowitz et al., 2012; Rahman et al., 2019; Williamson et al., 2016; 

Willmore et al., 2016), no single model has been adopted widely as a new standard. One reason 

a replacement has not been identified may simply be that the auditory system is complex and that 

current data are not exhaustive enough to determine a single model that generalizes across 

stimulus conditions, species, and behavioral states. Indeed, only a few encoding models have 

been tested with natural stimuli (Kozlov & Gentner, 2016), and these tests have often been 



   
 

55 
 

performed in anesthetized animals (Harper et al., 2016; Rahman et al., 2019; Willmore et al., 

2016). In addition to data limitations, proposed models are built around different nonlinear 

elements, but it is likely that they exist in overlapping functional domains. That is, two different 

models may both perform better than the LN model because they capture the same adaptation 

process or nonlinear scaling of response gain. A comprehensive comparison of models using the 

same natural sound data set will help determine the best performing models and their degree of 

equivalence. To support such an effort, data from this study is publicly available, and the open 

source toolbox used for model fitting has a modular design, allowing testing of other model 

architectures in the same computational framework (Pennington & David, 2022). 

The current study took steps for testing an encoding model that have not typically been 

followed in previous studies. First, the local STP model was tested using multiple different types 

of stimuli (vocalization-modulated noise, oddball sequences, natural sounds), and it was shown 

to perform better than the LN and global STP models across stimulus conditions. Second, it 

compared models of varying complexity. For both low- and high-parameter count models, the 

addition of a relatively simple STP component provides an improvement in performance. Previous 

studies have suggested that nonlinear adaptation can improve encoding model performance 

(Rahman et al., 2019; Willmore et al., 2016). These alternative models are sometimes much 

higher dimensional than standard LN formulations, and it is not clear how complex a model is 

required to account for adaptation properties. The current study supports the adaptation 

hypothesis, but it also shows that the adaptation can be implemented with just a small number of 

additional free parameters, as long as adaptation occurs independently for input spectral 

channels.  

Stimulus specific adaptation 

Stimulus specific adaptation is one of the best-studied contextual effects in auditory cortex 

(Carbajal & Malmierca, 2018; Pérez-González & Malmierca, 2014; Ulanovsky et al., 2003; Yarden 

& Nelken, 2017). The STP model developed in the current study is able to account for SSA during 
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steady state sound presentation. At the same time, the STP model reveals that the same 

adaptation mechanisms support a broader dynamic code, in which the degree of adaptation is 

continuously updated to reflect the history of the changing stimulus. This adaptation represents a 

generalization of SSA, as it does not depend strictly on the regularity the sensory input (Rui et al., 

2018). In this way, STP parameters provide a complementary metric to SSA, able to explain 

nonlinear adaptation for a broader set of stimuli and readily scalable to analysis at a population 

level. 

While nonlinear adaptation and SSA effects are correlated, the strength of this relationship 

varies across individual neurons. This variability supports the possibility that mechanisms other 

than STP contribute to SSA. The idea that synaptic depression alone can support SSA has been 

also disputed because oddball stimuli can sometimes evoked responses that are enhanced 

relative to those stimuli presented in isolation (Nelken, 2014). However, for a neuron with 

inhibitory inputs that undergo adaptation, a recurrent disinhibition mechanism could produce 

enhanced oddball responses (Natan et al., 2015). The data in the current study suggest that 

inhibitory inputs generally show weaker adaptation than their excitatory partners, which is 

consistent with other modeling studies (Kudela et al., 2018). However, even inhibitory inputs do 

tend to undergo some depression, leaving open the possibility that they could explain the 

enhanced oddball responses during SSA. Inhibitory interneurons in auditory cortex have been 

shown to contribute to SSA (Natan et al., 2015), but their role in natural sound coding has yet to 

be characterized. 

Robustness of adaptation effects across changes in behavioral state 

Studies in behaving animals have shown that gain and selectivity of A1 neurons can be 

influenced by changes in behavioral state, such as arousal, task engagement, and selective 

attention (Fritz et al., 2003; Kuchibhotla et al., 2016; Niwa et al., 2012; Schwartz & David, 2018). 

We observed changes in response gain during task engagement, consistent with this previous 

work, and incorporating behavior state-dependent gain into the LN model improved prediction 
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accuracy. However, average adaptation properties did not change across behavioral conditions. 

Moreover, allowing nonlinear adaptation to vary between behavior conditions did not improve 

model performance. Thus, STP-like adaptation properties appear to be largely stable across top-

down changes in behavioral state. It remains to be seen if they change over longer time scales, 

but the relative stability of tuning suggests that nonlinear adaptation contributes to a veridical code 

of sound features in A1 that is selectively gated into high-order, behavior-dependent features in 

downstream auditory fields (Elgueda et al., 2019). 

The approach of incorporating behavioral state variables into sensory encoding models may 

be useful for integrating bottom-up and top-down coding more broadly (S. V. David, 2018). As 

sound features take on different behavioral meanings, such as when selective attention is 

engaged, coding in the auditory system must also shift to represent the behaviorally relevant 

sound features (Fritz et al., 2007; Mesgarani et al., 2010). A complete understanding of state-

dependent changes in sound encoding thus requires models of how neurons change their coding 

properties in different behavioral states.  

Conclusion 

How the brain represents complex natural stimuli remains an open question in research 

across sensory systems. The current study provides evidence that nonlinear adaptation, modeling 

short-term synaptic plasticity and lasting tens to hundreds of milliseconds, supports a rich code 

for spectro-temporal sound features in auditory cortex. A simple extension of the classic LN model 

that allows spectral inputs to undergo independent adaptation provides a consistent improvement 

in encoding model performance for A1 neurons across a wide range of synthetic and natural 

stimuli. In addition to providing a more accurate, generalizable encoding model, these findings 

also provide a framework for linking encoding model analysis to studies of how context influences 

sound coding. 
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Methods 

Ethics Statement 

All procedures were approved by the Oregon Health and Science University Institutional 

Animal Care and Use Committee (protocol #IP00001561) and conform to standards of the 

Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC). 

Animal preparation 

Eleven young adult male and female ferrets were obtained from an animal supplier (Marshall 

Farms, New York). A sterile surgery was performed under isoflurane anesthesia to mount a post 

for subsequent head fixation and to expose a small portion of the skull for access to auditory 

cortex. The head post was surrounded by dental acrylic or Charisma composite, which bonded to 

the skull and to a set of stainless steel screws embedded in the skull. Following surgery, animals 

were treated with prophylactic antibiotics and analgesics under the supervision of University 

veterinary staff. The wound was cleaned and bandaged during a recovery period. Starting after 

recovery from implant surgery (about two weeks), each ferret was gradually acclimated to head 

fixation using a custom stereotaxic apparatus in a plexiglass tube. Habituation sessions initially 

lasted for 5 minutes and increased by increments of 5-10 minutes until the ferret lay comfortably 

for at least one hour.  

Acoustic stimulation 

Five awake, passively listening, head-fixed animals were presented with vocalization-

modulated noise (S. V David & Shamma, 2013; Lesica & Grothe, 2008a; Schwartz & David, 2018) 

(Figure 1). The stimuli consisted of two streams of narrowband noise (0.25-0.5 octave, 65 dB 

peak SPL, 3 s duration). Each stream was centered at a different frequency and modulated by a 

different envelope taken from one of 30 human speech recordings (Garofolo, 1988) or ferret 

vocalizations from a library of kit distress calls and adult play and aggression calls (S. V David & 

Shamma, 2013). Envelopes were calculated by rectifying the raw sound waveform, smoothing 
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and downsampling to 300 Hz. Each envelope fluctuated between 0 and 65 dB SPL, and its 

temporal modulation power spectrum emphasized low frequency modulations, with 30 dB 

attenuation at 10 Hz, typical of mammalian vocalizations (Singh & Theunissen, 2003). Thus, the 

spectral properties of the noise streams were simple and sparse, while the temporal properties 

matched those of ethological natural sounds. 

For three animals, vocalization-modulated noise was presented during passive listening and 

during active performance of a tone detection task (see below). During passive experiments, both 

noise streams were positioned in non-overlapping frequency bands in a neuron’s receptive field 

(0.25-1 octave center frequency separation) and were presented from a single spatial location, 

30 deg contralateral from the recorded hemisphere. During behavioral experiments, the streams 

were centered at different frequencies (0.9-4.3 octave separation) and presented from different 

spatial locations (±30 degrees azimuth), such that one stream fell outside of the spectral tuning 

curve. Spectral properties of the individual vocalization-modulated noise streams were otherwise 

identical to those used in the passive experiments above. 

In a subset of experiments (two animals), an oddball stimulus was presented to passively 

listening animals to characterize stimulus-specific adaptation (Ulanovsky et al., 2003). Stimuli 

consisted of a sequence of regularly repeating noise bursts (100 ms duration, 30 Hz), with the 

same center frequency and bandwidth as the vocalization-modulated noise presented during the 

same experiment. On each 20-second trial, 90% of the noise bursts fell in one band (standard) 

and a random 10% were in the other band (oddball). The spectral bands of the standard and 

oddball streams were reversed randomly between trials.  

Finally, in a different set of experiments, six passively listening animals were presented a 

library of 93, 3-sec natural sounds. The natural sounds included human speech, ferret and other 

species’ vocalizations, natural environmental sounds, and sounds from the animals’ laboratory 

environment. 
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In all experiments, the majority of stimuli (28 vocalization-modulated noise samples and 90 

natural sounds) were presented a few times (2-5 repetitions). The remaining samples from each 

sound library (2 vocalization-modulated noise samples and 3 natural sounds) were presented 10-

30 times, allowing for robust measurement of a peri-stimulus time histogram (PSTH) response 

(Figure 2). These high-repeat stimuli were used for measuring model prediction accuracy (see 

below). 

Experiments took place in a sound-attenuating chamber (Gretch-Ken) with a custom double-

wall insert. Stimulus presentation and behavior were controlled by custom software (Matlab). 

Digital acoustic signals were transformed to analog (National Instruments), amplified (Crown D-

75A), and delivered through free-field speakers (Manger W05, 50-35,000 Hz flat gain) positioned 

±30 degrees azimuth and 80 cm distant from the animal. Sound level was calibrated against a 

standard reference (Brüel & Kjær 4191). Stimuli were presented with 10ms cos2 onset and offset 

ramps. 

The vocalization-modulated noise and natural sound data used in this study are available for 

download at https://doi.org/10.5281/zenodo.3445557. A python library for loading data and fitting 

encoding models is available at https://github.com/LBHB/NEMS/. 

Neurophysiological recording 

After animals were prepared for experiments, we opened a small craniotomy over primary 

auditory cortex (A1). Extracellular neurophysiological activity was recorded using 1-4 

independently positioned tungsten microelectrodes (FHC). Amplified (AM Systems) and digitized 

(National Instruments) signals were stored using MANTA open-source data acquisition software 

(Englitz et al., 2013). Recording sites were confirmed as being in A1 based on dorsal-ventral, 

high-to-low frequency tonotopy and relatively reliable and simple response properties (Atiani et 

al., 2014; Shamma et al., 1993). Some units may have been recorded from AAF, particularly in 

the high frequency region where tonotopic maps converge. Single units were sorted offline by 

bandpass filtering the raw trace (300-6000 Hz) and then applying PCA-based clustering algorithm 

https://doi.org/10.5281/zenodo.3445557
https://github.com/LBHB/NEMS/
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to spike-threshold events (S. V David et al., 2009). Neurons were considered isolated single units 

if standard deviation of spike amplitude was at least two times the noise floor, corresponding to > 

95% isolation of spikes. 

A pure-tone or broadband noise probe stimulus was played periodically to search for sound-

activated neurons during electrode positioning. Upon unit isolation, a series of brief (100-ms 

duration, 100-ms interstimulus interval, 65 dB SPL) quarter-octave noise bursts was used to 

determine the range of frequencies that evoked a response and the best frequency (BF) that 

drove the strongest response. If a neuron did not respond to the noise bursts, the electrode was 

moved to a new recording depth. Thus our yield of 187/200 neurons responsive to vocalization-

modulated noise overestimates the rate of responsiveness across the entire A1 population. 

Center frequencies of the vocalization-modulated noise stimuli were then selected based on this 

tuning curve, so that one or both of the noise bands fell in the frequency tuning curve measured 

with single noise bursts. 

Tone detection task 

Three ferrets were trained to perform a tone in noise detection task (Schwartz & David, 2018). 

The task used a go/no-go paradigm, in which animals were required to refrain from licking a water 

spout during presentation of vocalization-modulated noise until they heard the target tone (0.5 s 

duration, 0.1 s ramp) centered in one noise band at a random time (1, 1.5, 2, … or 5 s) after noise 

onset. To prevent timing strategies, the target time was distributed randomly with a flat hazard 

function (Heffner & Heffner, 1995). Target times varied across presentations of the same noise 

distractors so that animals could not use features in the noise to predict target onset. 

In a block of behavioral trials, the target tone matched the center frequency and spatial 

position of one noise stream. Behavioral performance was quantified by hit rate (correct 

responses to targets vs. misses), false alarm rate (incorrect responses prior to the target), and a 

discrimination index (DI) that measured the area under the receiver operating characteristic 

(ROC) curve for hits and false alarms (Schwartz & David, 2018; Yin et al., 2010). A DI of 1.0 
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reflected perfect discriminability and 0.5 reflected chance performance. A detailed analysis of 

behavior is reported elsewhere (Schwartz & David, 2018). In the current study, only data from 

blocks with DI significantly greater than chance and correct trials were included in the analysis of 

neural encoding. 

During recordings, one noise stream was centered over a recorded neuron’s best frequency 

and the other was separated by 1-2 octaves. The target tone fell in only one stream on a single 

block of trials. Identical task stimuli were also presented during a passive condition, interleaved 

with behavioral blocks, during which period licking had no effect. Previous work compared activity 

between conditions when attention was directed into versus away from the neuron’s receptive 

field (Schwartz & David, 2018). Because of the relatively small number of neurons showing both 

task-related and STP effects in the current study (see Figure 8), data were collapsed across the 

different target conditions. Instead, neural activity was compared for the vocalization-modulated 

noise stimuli between active and passive listening conditions. 

Spectro-temporal receptive field models 

Linear-nonlinear spectro-temporal receptive field (LN model). Vocalization-modulated noise 

was designed so that the random fluctuations in the two spectral channels could be used to 

measure spectro-temporal encoding properties. The LN model is a widely viewed as a current 

standard model for early stages of auditory processing (Aertsen & Johannesma, 1981; Machens 

et al., 2004; Radtke-Schuller et al., 2009; Theunissen et al., 2001). The LN model is an 

implementation of the generalized linear model (GLM), which is used widely across the auditory 

and other sensory systems (Calabrese et al., 2011; Paninski et al., 2004). In the first, linear stage 

of this model, a finite impulse response (FIR) filter, h(x,u), is applied to the stimulus spectrogram, 

s(x,t), to produce a linear prediction of time-varying spike rate, rL(t), 

 𝑟𝐿(𝑡) = ∑ ∑ ℎ(𝑥, 𝑢)𝑠(𝑥, 𝑡 − 𝑢)

𝑈

𝑢=0

𝐽

𝑥=1

 (1) 
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For the current study, the time lag of temporal integration, u, ranged from 0 to 150 ms. In the 

auditory system, this first, linear component of the LN model is commonly referred to as the 

spectro-temporal receptive field (STRF). In typical STRF analysis, the stimulus is broadband and 

variable across multiple spectral channels, x. Here, the stimulus spectrogram was composed of 

just two time-varying channels, and a simplified version of the linear filter was constructed in which 

x spanned just these two channels (i.e., J = 2), but we used larger values following spectral 

reweighting, below. A log compression was applied to the spectrogram to account for cochlear 

nonlinearities (offset 1 to force the compressed output to have nonnegative values, (Thorson et 

al., 2015)). Otherwise, this model functions as a traditional STRF. 

In the second stage of the LN model, the output of the linear filter, rL(t) is transformed by a 

static, sigmoidal nonlinearity, which accounts for spike threshold and saturation. The current study 

used a double exponential sigmoid, 

 𝑟(𝑡) = 𝑏 + 𝐴 exp[−exp(𝜅(𝑟𝐿(𝑡) − 𝑏))] (2) 

where r0 is the baseline (spontaneous) spike rate, A is the maximum evoked rate,  is the 

slope, and b is the baseline. The specific formulation of the output nonlinearity does not 

substantially impact relative performance of models in which other aspects of model architecture 

are manipulated (see Output nonlinearity controls, below). 

 

Temporal filter parameterization and spectral reweighting. As models become more complex 

(i.e., require fitting more free parameters), they become more susceptible to estimation noise. 

While our fitting algorithm was designed to prevent overfitting to noise (see below), we found that 

constraining the temporal form of the linear filter in Eq. 1 improved performance over a model in 

which the filter was simple as set of weights for each time lag. Each spectral channel of the linear 

filter was constrained to be a damped oscillator, ℎDO(𝑥, 𝑢), 

 ℎDO(𝑥, 𝑢) = 𝐺 exp(−𝜏|𝑢 − 𝑢0|+) sin(𝑓|𝑢 − 𝑢0|+), (3) 
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Requiring four free parameters: gain, G; latency, u0; duration, ; and modulation frequency, f.  

Because the damped oscillator constrains temporal tuning, we then considered the possibility 

that more than J = 2 spectral channels might be optimal for explaining neural responses to the 

two band vocalization-modulated noise stimulus. To allow for more than two spectral channels, 

we defined a reweighted stimulus, sR(j,t), computed as the input stimulus scaled by coefficients, 

w(i,j), 

 
𝑠𝑅(𝑗, 𝑡) = ∑ 𝑤(𝑖, 𝑗)𝑠(𝑖, 𝑡)

2

𝑖=1

 (4) 

where j = 1…J maps the stimulus to a J-dimensional space. This reweighted stimulus provides 

input to the a damped oscillator, now also with J channels, 

 𝑟𝐿(𝑡) = ∑ ∑ ℎDO(𝑥, 𝑢)𝑠𝑅(𝑥, 𝑡 − 𝑢)

𝑈

𝑢=0

𝐽

𝑥=1

 (5) 

For the current study (except for controls, see below), the output of Eq. 5 is then transformed 

by the output nonlinearity (Eq. 2) to produce a predicted time-varying spike rate.  

While we describe the LN model as a sequence of linear transformations—spectral filtering 

followed by temporal filtering—these two stages can be combined into a single linear spectro-

temporal filter. We describe them as separate stages to frame the local STP model, below, where 

nonlinear adaptation is inserted between the two linear filtering stages.  

Local short-term plasticity (STP) model. As several studies have demonstrated, the LN model 

captures import aspects of spectro-temporal coding but fails to account completely for time-

varying sound evoked activity in auditory cortex (Atencio et al., 2008; Machens et al., 2004; 

Rabinowitz et al., 2012; Williamson et al., 2016). In particular, the LN model fails to account for 

the temporal dynamics of sound-evoked activity (S. V David et al., 2009; S. V David & Shamma, 

2013). Short-term synaptic plasticity (STP), the depression or facilitation of synaptic efficacy 

following repeated activation, has been proposed as one mechanism for nonlinear dynamics in 

neural networks (Angeloni & Geffen, 2018; Tsodyks et al., 1998). A previous study showed that 
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an LN model for A1 that incorporated STP was able to better explain the dynamics of responses 

to a single noise band with natural temporal modulations (S. V David & Shamma, 2013). However, 

because that study utilized vocalization-modulated noise comprised of only a single noise band, 

it was not clear whether the nonlinear adaptation was global, affecting responses to all stimuli 

equally, or local, affecting only a subset of inputs independently. Because the current study used 

multiple noise channels, it could compare a global STP model, in which adaptation affected all 

input channels, to a local STP model, in which adaptation was spectrally tuned and could affect 

just a subset of inputs. 

The effects of nonlinear adaptation were captured with a simple, two-parameter model of STP 

(Tsodyks et al., 1998), 

 𝑑(𝑖, 𝑡) = 𝑑(𝑖, 𝑡 − 1) + 𝑠𝑅(𝑖, 𝑡 − 1)[1 − 𝑑(𝑖, 𝑡 − 1)]𝑣𝑖 −
𝑑(𝑖, 𝑡 − 1)

𝜏𝑖
 (6) 

where d(i,t) describes the change in gain for stimulus channel i at time t. The change in 

available synaptic resources (release probability), i, captures the strength of plasticity, and the 

recovery time constant, i, determines how quickly the plasticity returns to baseline. Values of d 

< 1 correspond to depression (driven by i > 0) and d > 1 correspond to facilitation (i < 0). In the 

local STP model, each input channel of the stimulus is scaled by d(i,t) computed for that channel,  

 𝑠𝑆𝑇𝑃(𝑖, 𝑡) = 𝑑(𝑖, 𝑡)𝑠𝑅(𝑖, 𝑡) (7) 

This nonlinearly filtered stimulus is then provided as input to the LN filter (Eqs. 5, 2) to predict 

the time-varying response. Note that if the strength of STP is 0 (i.e., 𝑣𝑖 = 0), then the STP model 

reduces to the LN model.  

We also note that the local STP model uses the reweighted stimulus as its input. The 

reweighting allows the model to account for adaptation at multiple timescales on inputs from the 

same spectral band. Although the input is comprised of just two channels, the subsequent 

nonlinear filtering means that allowing the reweighted stimulus channel count, J, or rank, to be 

greater than two can increase model predictive power. In the current study, we evaluated models 
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with rank J = 1-5. Predictive power was highest for J = 5. Higher values of J could, in theory, 

produce even better performance, but we did not observe further improvements for the current 

dataset. 

Global STP model. We considered two control models to test for the specific benefit of 

spectrally tuned adaptation on model performance. One possible alternative is that a single, global 

adaptation is able to account for nonlinear temporal dynamics. To model global adaptation, the 

global STP model applied STP to the output of the linear filter (Eq. 5) before applying the static 

nonlinearity (Eq. 2). Thus, a single adaptation term was applied to all incoming stimuli, rather than 

allowing for the channel-specific adaptation in the local STP model. There is no simple biophysical 

interpretation of the global STP mechanism, but it can be thought of as a postsynaptic effect, 

capturing nonlinear dynamics similar to STP, but after integration across spectral channels. We 

compared performance of this model to a variant in which stimulus gain is averaged across 

spectral channels before scaling the input stimulus,  

 𝑑̅(𝑡) = 〈𝑑(𝑖, 𝑡)〉𝑖 (8) 

We found no difference between this common input STP model and the global STP model. 

Because the global model required fewer free parameters, we focused on this model for the 

comparisons in this study. 

Local rectification model. Although spectral reweighting can improve the performance of the 

LN model by increasing the rank of the linear filter, it can still only account for linear 

transformations of the input stimulus. The STP model could, in theory, benefit simply from the fact 

that reweighted spectral inputs undergo any nonlinear transformation prior to the temporal filter. 

To control for the possibility that the STP nonlinearity is not specifically beneficial to model 

performance, we developed a local rectification model, in which the reweighted spectral inputs 

were linearly rectified with threshold s0 prior to temporal filtering,  
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𝑠+(𝑗, 𝑡) = |𝑠𝑅(𝑗, 𝑡) − 𝑠0(𝑗)|+ (9) 

The rectified reweighted stimulus then provided the input to the LN model specified in Eqs. 7 

and 2. 

The set of encoding models described above represents a hierarchy of model architectures 

with increasing complexity, in that each successive model requires additional free parameters. 

Each model can be cast as a sequence of transformations applied to the stimulus, and the output 

of the final transformation is the predicted time-varying response (Figure 3).  

Fit procedure. Spike rate data and stimulus spectrograms were binned at 10 ms before 

analysis (no smoothing). The entire parameter set was fit separately for each model architecture. 

Data preprocessing, model fitting, and model validation were performed using the NEMS library 

in Python (Pennington & David, 2022). Identical estimation data from each neuron and the same 

gradient descent algorithm were used for each model (L-BFGS-B, (Byrd et al., 1995)). The 

optimization minimized mean squared error (MSE) with shrinkage, a form of early stopping in 

which the standard MSE value is scaled by its standard error (Thorson et al., 2015). The use of 

parameterized temporal filters provided an effective regularization, as it constrained the shape of 

the temporal filter to be smooth and sinusoidal. Models were initialized at 10 random initial 

conditions (except for local minimum controls, see below), and the final model was selected as 

the one that produced the lowest MSE with shrinkage for the estimation data. Scripts 

demonstrating model fits using the NEMS library are available with the data at 

https://doi.org/10.5281/zenodo.3445557. 

The ability of the encoding model to describe a neuron’s function was assessed by measuring 

the accuracy with which it predicted time varying activity in a held-out validation dataset that was 

not used for model estimation. The prediction correlation was computed as the correlation 

coefficient (Pearson’s R) between the predicted and actual PSTH response. Raw correlation 

scores were corrected to account for sampling limitations that produce noise in the actual 

https://doi.org/10.5281/zenodo.3445557
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response (Hsu et al., 2004). A prediction correlation of R=1 indicated perfect prediction accuracy, 

and a value of R=0 indicated chance performance. All models were fit and tested using the same 

estimation and validation data sets. Significant differences in prediction accuracy across the 

neural population were determined by a Wilcoxon sign test. 

In a previous study involving just a single stream of vocalization-modulated noise, we tested 

our fitting procedure on simulated data produced by either an LN model or STP model. The 

estimated models captured the presence or absence of the STP nonlinearity accurately (S. V 

David & Shamma, 2013). In addition, the simulations revealed that LN models could capture some 

aspects of the nonlinear adapting data, but estimated temporal filter properties did not match the 

actual temporal filter properties. 

For data from the behavior experiments, which was all fit using single trials, 10-fold cross 

validation was used, on top of the procedure described above. Ten interleaved, non-overlapping 

validation subsets were drawn from the entire passive plus active data. The above fit algorithm 

was then applied to corresponding 90% estimation set, and the resulting model was used to 

predict the validation subset. Prediction accuracy was assessed for the conjunction of the 10 

validation sets. Model parameters were largely consistent across estimation sets and average fit 

values are reported in the Results. 

Output nonlinearity control. In a previous study, we compared performance of a variety of 

different static nonlinearities for LN models and found that the double exponential sigmoid (Eq. 2) 

performed slightly, but consistently, better than other formulations of the output nonlinearity for 

A1 encoding models fit using natural vocalization stimuli (Thorson et al., 2015). We performed a 

similar comparison using the speech-modulated vocalization data, comparing LN and local STP 

models with four different output functions (Figure 10 A): linear pass-through, 

 𝑟(𝑡) = 𝑟𝐿(𝑡); (10) 

linear rectification, 
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 𝑟(𝑡) = |𝑟𝐿(𝑡) − 𝑏|+ + 𝑟0, (11) 

with threshold b and spontaneous rate r0; logistic sigmoid (Fitzgerald et al., 2011; Rabinowitz 

et al., 2012), 

 𝑟(𝑡) = 𝑟0 +
𝐴

1+exp[−(𝑟𝐿(𝑡)−𝑏) 𝜅⁄ ] 
, (12) 

and the double exponential sigmoid (Eq. 2). As in the previous study, the double exponential 

sigmoid performed best for the LN model. The STP model incorporating a given output function 

always performed better than the corresponding LN model with the same output function, and the 

double exponential performed best overall. Thus for the rest of the study, we focused on models 

using the double exponential nonlinearity. 

Temporal parameterization control. The use of a damped oscillator to constrain model 

temporal dynamics could, in theory, be suboptimal for describing neural response dynamics. We 

compared performance of the damped oscillator models to LN and local STP models with 

nonparametric temporal filters, that is, where the temporal filter was simply a vector of weights 

convolved with the stimulus at each time point (Figure 10 B). For the LN model, the 

parameterization had no significant impact on average model performance (p > 0.05, sign test). 

For the local STP model, performance was higher for the parameterized model (p < 10-5, sign 

test), indicating that the parameterization was an effective form of regularization. 

Local minimum control. While it has been shown that linear filters are well-behaved (i.e., 

convex) and thus not subject to problems of local minima during fitting, it is more difficult to 

determine if local minima are adversely affecting performance of nonlinear or parametric models, 

such as the STP and damped oscillator, respectively, used in the current study. To determine if 

these models were negatively impacted by local minima during fitting, we compared performance 

of models fit from a single initial condition to the best model (determined using only estimation 

data) starting from 10 random initial conditions. Performance was compared for 4 different 

architectures: LN and local STP models, each with parametric (damped oscillator) or 
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nonparametric temporal filters (Figure 10 B). Each model was tested with the validation data. For 

the LN models, we saw no significant effect of using multiple initial conditions. For the local STP 

model, we saw a small but significant improvement when multiple initial conditions were used. 

Thus for the majority of results presented here, models were fit using 10 random initial conditions. 

Stimulus specific adaptation analysis 

Sound-evoked activity recorded during presentation of the oddball noise burst sequences was 

modeled using the LN model, global STP model, and local STP model, as described above. To 

assess stimulus specific adaptation (SSA) , an SSA index (SI) was used to measure the relative 

enhancement of responses to oddball versus standard noise bursts (Pérez-González & 

Malmierca, 2014; Ulanovsky et al., 2003). 

 𝑆𝐼 =
𝑟̅odd − 𝑟̅std

𝑟̅odd + 𝑟̅std

 (13) 

Here 𝑟̅odd and 𝑟̅std are the average response across bursts of both center frequencies, in the 

oddball and standard conditions, respectively. Neuronal response was calculated as the integral 

over time of the PSTH during the sound presentation. Significance SI was calculated with a shuffle 

test in which the identity of tones (oddball or standard) was randomly swapped. To determine how 

well each model could account for SSA, SI was calculated for model predictions, also using Eq. 

13. We then assessed the accuracy of SI predicted by models in two ways: First we computed 

the correlation coefficient between actual and predicted SI for all the recorded cells that showed 

significant SI. Second, as the population mean of the squared difference between the actual and 

predicted SI calculated individually for each cell. 

Behavior-dependent encoding models.  

To measure effects of behavioral state on spectro-temporal coding, we estimated behavior-

dependent models, by allowing some or all of the fit parameters to vary between passive and 

active behavioral conditions (Schwartz & David, 2018). Having established the efficacy of the 

reweighted STP model for passive-listening data, analysis focused on this architecture for the 
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behavioral data. First, a behavior-independent model provided a baseline, for which all model 

parameters were fixed across behavior conditions. Second, a behavior-dependent static 

nonlinearity allowed parameters of the static nonlinearity (Eq. 2) to vary between behavior states 

but kept all other parameters fixed between conditions. Third, both the linear filter parameters and 

static nonlinearity (Eqs. 5, 2) were allowed to vary between behavior conditions, with reweighting 

and STP parameters fixed across conditions. Finally, all model parameters were allowed to vary 

between behavior conditions. Thus, this progression of models explored the benefit of allowing 

increased influence of changes in behavioral state on spectro-temporal coding.  

Behavior-dependent models were fit using a sequential gradient descent algorithm in the 

NEMS library. All models were initially fit using a behavior-independent model. The specified 

behavior-dependent parameters were then allowed to vary between behavioral states in a 

subsequent application of gradient descent. Model performance was compared as for the 

passive-listening data described above. For each neuron, prediction accuracy was assessed 

using a validation set drawn from both active and passive conditions, which was excluded from 

fitting, and was always the same across all models. Significant behavioral effects were indicated 

by improved prediction correlation for behavior-dependent models over the behavior-independent 

model. Changes in tuning were measured by comparing model fit parameters between behavior 

conditions. 

Nonlinear encoding models for natural sounds 

Encoding of natural sounds was modeled using a similar approach as for the vocalization-

modulated noise. Here we focused on two models, a baseline LN model and a local STP model 

(Figure 9). Because natural sounds contain spectral features that vary across a large number of 

spectral channels, a different spectral filtering process was required prior to the STP stage. This 

was achieved using a reduced-rank model, where the full spectro-temporal filter in the linear stage 

was computed from the product of a small number of spectral and temporal filters (Simon et al., 

2007; Thorson et al., 2015). The input spectrogram was computed from a bank of log-spaced 
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gammatone filters, s(i,t), with N = 18 spectral channels (Katsiamis et al., 2007). Spectral tuning 

was modeled with a bank of J weight vectors, w(i,j), each of which computed a linear weighted 

sum of the log-compressed input spectrogram,  

 
𝑠𝑁(𝑗, 𝑡) = ∑ 𝑤(𝑖, 𝑗)𝑠(𝑖, 𝑡)

𝑁

𝑖=1

 
(14) 

The reweighted stimuli, sN(i,j), were provided as inputs to the LN and STP models (see above). 

Each spectral filter was initialized to have constant weights across channels. Model fitting and 

testing were performed using the same procedures as for the vocalization-modulated noise data 

(see above). 

Statistical methods 

To test whether the prediction of a model for a single neuron was significantly better than 

chance (i.e., the model could account for any auditory response), we performed a permutation 

test. The predicted response was shuffled across time 1000 times, and the prediction correlation 

was calculated for each shuffle. The distribution of shuffled correlations defined a noise floor, and 

a p value was defined as the fraction of shuffled correlations greater than the correlation for the 

actual prediction. The Bonferroni method was used to correct for multiple comparisons when 

assessing significance across any of multiple models.  

To compare the performance of two models for a single neuron, we used a jackknifed t-test. 

The Pearson’s correlation coefficient between the actual response and response predicted by 

each model was calculated for 20 jackknife resamples. We then calculated the mean and 

standard error on the mean from the jackknifed measures (Efron & Tibshirani, 1986). The 

prediction of two models was considered significantly different at p<0.05 if the difference of the 

means was greater than the sum of the standard errors.  

To test whether the calculated SSA Index (SI) was significantly different than chance, we 

performed a permutation test in which the identity of tones (standards, oddball) was shuffled, and 

the SI was calculated 1000 times. The real SI value was then compared to the noise floor 
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distributions. Finally, for comparing model performance across collections of neurons, we 

performed a Wilcoxon signed rank test (sign test) between the median prediction correlation 

across neurons for each model.  
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Chapter 3. Sensory context for coding of natural sounds in auditory cortex 

Abstract 

Discriminating sound objects lasting seconds or fractions of a second requires integrating 

information over these time scales. Prior studies have shown the extent of this integration in single 

cells, and some of the synaptic mechanisms responsible for it. Here we explore how these 

neuronal responses are coordinated from the perspective of circuits and neuronal populations. 

We used the difference in response to a single probe sound after two different contextualizing 

sounds as a proxy to the memory and temporal integration of a neuron. We found context 

dependent differences that lasted past the temporal window of a traditional spectrotemporal 

receptive field. Individual neurons showed contextual effects restricted to specific stimuli 

combinations. However, different neurons within a population showed different stimuli 

preferences, thus forming a sparse code that covered more of the stimulus space than any 

constituent neuron. Through modeling, we posit neuron specific spectro-temporal tuning, 

alongside network connections, as the underlying mechanisms forming this sparse long-lasting 

representation of past context. 

Introduction 

Natural sounds are characterized by diverse temporal dynamics, like amplitude modulation at 

different rates. In behaviorally relevant sounds like speech, these dynamics span a range of 

timescales, from tens of milliseconds for phonemes, to hundreds of milliseconds for syllables and 

longer times for words, phrases and so on (Chomsky & Halle, 1968). Keeping track of temporal 

information over these diverse timescales is critical for computation and discrimination of 

important sound features (Norman-Haignere et al., 2022). Hearing impairment can impair 

temporal integration, and this deficit is likely to impair speech comprehension (Albouy et al., 

2020). 
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Neurons in the auditory cortex respond to specific spectrotemporal features of ongoing sound. 

Prior studies have characterized auditory neuronal tuning with a linear model called the spectro-

temporal receptive field (STRF) (Aertsen & Johannesma, 1981). These models can account for 

temporal integration up to about 150 ms (Atiani et al., 2014), and therefore accurately capture the 

response of neurons in early stages of the auditory pathway, which linearly respond to sound and 

quickly track its changes over time (Aertsen & Johannesma, 1981; Escabí & Read, 2003; 

Kowalski et al., 1996). However, these models cannot describe several known nonlinear response 

properties in auditory cortex (Atiani et al., 2014; Christianson et al., 2008), including nonlinear 

coding of modulation rate (Joris et al., 2004; T. Lu et al., 2001; Sharpee et al., 2011), adaptations 

to particular parts of the stimuli (Ulanovsky et al., 2003), invariance to background noise 

(Rabinowitz et al., 2013) and other sound features that might last hundreds of milliseconds 

(Sharpee et al., 2011), likely to be nonlinear functions across longer timescales. 

Model-free analysis has shown that neurons in the auditory cortex have memories longer than 

those described by STRFs. Both subthreshold potentials (Asari & Zador, 2009) as well as spikes 

(Asokan et al., 2021) can hold memory of prior stimuli lasting more than 1 second. One well-

known integration property is the reduced neuronal response to repeated but not novel sounds, 

denominated stimulus specific adaptation or SSA (Ulanovsky et al., 2003). These studies have 

focused on simplified sounds with controlled parameters, which might not capture the more 

complex interaction associated with natural sounds (Theunissen et al., 2000). 

Several neuronal and synaptic mechanisms that can contribute to temporal integration have 

been elucidated (Silver, 2010). This neuronal integration is likely to be amplified and modulated 

by circuit and population dynamics (Buonomano & Maass, 2009), thus extending the 

computational and representational capabilities of a whole population of neurons. Recordings 

from large populations of neurons shed light on sensory representation at this larger scale (Du et 

al., 2011; Steinmetz et al., 2021). Among other phenomena, this approach demonstrates the 

existence of sparse codes in touch (Lyall et al., 2021), the dimensionality of representations in 
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vision (Stringer, Pachitariu, Steinmetz, Carandini, et al., 2019), and a distributed encoding of time 

(Runyan et al., 2017). The characteristics of temporal integration in population of neurons across 

different auditory cortex regions, and the strategies taken by these populations to represent 

natural stimuli remain an open question. 

To gain a better insight into the mechanisms underlying temporal integration, we used linear 

microelectrode arrays to record the activity of multiple neurons in auditory cortex and quantify the 

influence of recent stimuli on the response to ongoing natural sounds. We observed effects of 

sensory context (temporal integration) lasting up to several hundred milliseconds in primary and 

secondary fields, with a tendency toward stronger and longer-lasting effects in secondary fields. 

Individual neurons tended to be sensitive to a small number of contexts, but the aggregate 

population activity formed a sparse representation tiling a much larger space of sensory context. 

Using encoding model analysis, we determined that local population dynamics can account for 

these long-lasting contextual effects, which cannot be explained by a traditional STRF model 

Results 

Responses of neurons in auditory cortex to natural sounds are modulated by sensory 

context  

To measure the effects of sensory context on neural coding of sound, we recorded single-unit 

neural activity in auditory cortex (AC) of awake, passively listening ferrets during the presentation 

of sequences of 1-s natural sound samples. Activity was recorded from neurons in primary 

auditory cortex (A1) and a secondary auditory cortical field (peri-ectosylvian gyrus, PEG). Sounds 

were presented repeatedly and in varying order, so that the neural response to the same probe 

sound was recorded following many different contexts, defined as the immediately preceding 

sound (Figure 11 A). Neural activity was recorded from linear microelectrode arrays so that the 

activity of tens of single units were collected simultaneously (Figure 11 B, 1724 units, 64 recording 

sites, 5 animals).  
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To measure the contextual integration window of an auditory cortex (AC) neuron, we 

computed the difference in response to a probe sound following different context sounds (Figure 

11 D,H). A contextual modulation profile was calculated as the timewise difference between probe 

PSTHs following two different contexts. We computed a T-score for each time bin (Figure 11 F,J). 

Significant differences across multiple consecutive timepoints were identified using a cluster mass 

method (Maris & Oostenveld, 2007). We performed this comparison for each contextual instance, 

defined as a pair of contexts preceding a probe. 

 

Figure 11. Effect of preceding sensory context on the response to a probe stimulus. 
A. Example sequences composed from four 1-second natural sounds. Sounds were ordered such that every 
different sound (indicated by color) followed every other sound, silence, and itself exactly once B. Sounds 
were played to passive listening ferrets while recording from the auditory cortex with a multi electrode array. 
Pupillometry and photo-tagging of inhibitory interneurons were also performed. C. For analysis we considered 
the response to one probe (brown, dotted boxes on a.) after all contexts: different sounds, silence, or the 
same sound. D. Raster of an example neuron response to multiple repetitions of the same probe (brown) after 
two different contexts (teal and yellow, 20 trials per context). E. Trial average response (PSTH) of the data in 
(C.) showing the mean (line) and SEM (shading). Line color indicates the context stimulus. F. Quantification 
of context effects: a T-score between the probe response after two contexts was calculated for every time bin 
(solid black line). Clustered T-scores over a threshold (dashed black line, α=0.05) were summed (solid green 
line). The significance of cluster scores was determined through a shuffle test (dashed green line, α=0.05). 
G. The magnitude of significant contextual effects (Δ firing rate, black solid line) was quantified as its amplitude 
(green area under the curve, 0.559 Z-score*s) and duration (last significant bin, purple star, 450ms) H,I,J,K. 
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Same as D,E,F,G. For a different set of two contexts and one probe for the same neuron as in (d.) (integral: 
1.508 Z-score*s, last bin: 900ms). 

Neurons were presented with 50 or 550 context-probe instances, depending on the number 

of distinct sounds presented (N=4 or 10 distinct sounds, respectively). We recorded the activity 

of 1724 AC neurons, yielding a total of 502537 combinations of context pair, probe, and neuron. 

In total, only 9.135% (n=45905) of all these contextual instances showed significant modulation. 

However, 71.52% of all neurons showed significant effects for at least one contextual instance 

(n=1233/1724, p<0.05, multiple comparisons correction). Because effects were highly variable 

within and across neurons, we analyzed each contextual instance as a distinct data point. 

Amplitude and duration of contextual modulation varies across neurons. 

Contextual modulation profiles tended to be strongest immediately following probe onset and 

then decay over time (Figure 11 E, H). These dynamics are consistent with the idea of a finite 

integration window (Asari & Zador, 2009; Atiani et al., 2014; Norman-Haignere et al., 2022). 

However, the time-course showed great diversity across contextual instances and could be 

complex. For example, some modulation profiles had multiple peaks and valleys (Figure 11 F, J). 

We therefore used a non-parametric approach to quantify their amplitude and duration. Amplitude 

was defined as the integral of the absolute delta firing rate (∫∆ Z-score), across the probe response 

time bins with a significant difference between contexts, as identified with the T-score cluster 

mass test. Duration was defined as the last significant bin (Figure 11 G, K). 

The amplitude and duration of contextual effects were distributed unimodally and were 

correlated with across the neural population (Figure 12 A. r=0.479, p=0, Pearson’s correlation). 

Some contextual effects lasted only briefly after probe onset and therefore had relatively small 

amplitude, while long lasting effects generally had greater overall amplitude. However, there were 

many examples of long lasting, low amplitude effects due to late onset of the contextual effect. 

Across all significant contextual instances in AC (A1 and PEG), both duration and amplitude were 

highly variable (mean±std, duration: 249.25±208.70ms. Amplitude: 0.236±0.189 Z-score*s). In 
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many instances (n=667, 1.4% of all significant instances), the contextual modulation spanned the 

entire probe duration (1s), suggesting that contextual effects can last seconds, consistent with 

previous reports of AC integration windows in other preparations (Asokan et al., 2021; Norman-

Haignere et al., 2022). 

Context effects are stronger and longer-lasting in secondary auditory cortex 

Compared to A1, neurons in PEG have complex receptive fields, associated with longer 

response latencies and longer integration windows (Atiani et al., 2014; Bizley et al., 2005; 

Norman-Haignere et al., 2022). Consistent with these previous observations, PEG neurons 

showed longer-lasting contextual effects than A1 (Duration, mean±SEM. A1: 244.97±1.36, PEG: 

254.25±1.40ms. Figure 12 E). In addition, we observed a striking difference in the amplitude of 

the contextual effects (mean±SEM. A1: 0.23±0.001, PEG: 0.25±0.001 Z-score*s, Figure 12 C). 

This result suggests that the relative weight given to representing past memory versus current 

stimuli differs between areas, in addition to the duration of the integration window. 

Magnitude of contextual effects depends on context category 

We speculated that short term stimulus-specific adaptation could contribute to contextual 

effects. When the preceding context is silence, a probe would be a novel stimulus to which 

responses are not adapted and are therefore salient (onset response). In contrast, a probe that 

is a repeat of the context sound would be one for which responses are already adapted, similarly 

to what is observed in the case of stimulus-specific adaptation (Carbajal & Malmierca, 2018; 

Ulanovsky et al., 2003). To explore this possibility, we compared contextual effects after grouping 

by the relationship of context to the probe: Silence, the Same sound as the probe, or a Different 

sound than the probe (Figure 11 B). We used multivariate regression to quantify the contribution 

of the different context categories to the probe response. According to this model, context effect 

amplitude and duration were each a weighted sum of the categories comprising a contextual 

instance. Amplitude and duration were highest when Silence was one of the contexts being 
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compared (Amplitude: +21.43%, p<0.001; Duration: +20.58%, p<0.001. Change relative to 

Different, T-test). Effects were weakest when one context was the Same sound as the probe 

(Amplitude: -3.26%, p<0.001; Duration: 1.31% p=0.176. Change relative to Different, T-test). 

When one of the contexts was a Different sound, the effect fell between the extremes of Silence 

and Same sound. Differences in duration of context effects were less systematic than for 

amplitude. Duration did not change between Silence and Different conditions. Since the 

distribution of amplitude and duration were highly non normal, we validated the results from the 

multivariate regression with a nonparametric ANOVA and post hoc test, which confirmed the 

regression results (Figure 12 B, D. integral mean±SEM. same: 0.23±0.0018, diff: 0.24±0.0009, 

silence: 0.27±0.0021 Z-scores; last_bin mean±SEM. same: 246.92±2.16, diff: 247.83±0.98, 

silence: 285.79±2.08 ms). This pattern of greater modulation following sharper transitions is 

consistent with the possibility that adaptation to the spectro-temporal features of the context 

sound contributes to contextual effects. 

 

Figure 12. Context effects magnitude across cortical regions and context types. 
A. Distribution of amplitude and duration of contextual effects. Each dot indicates magnitude and duration 
for one contextual instance—a combination of a neuron, a context-pair, and a probe. The two example 
instances from fig.1 are highlighted. Dot color indicates data from primary auditory cortex (A1, blue) and 
a secondary region of auditory cortex (peri ectosylvian gyrus, PEG, orange). For display clarity the 
duration values have been jittered (actual values are discrete in the 20Hz sampling rate) and the data 
was decimated by taking a random subset of 1000 instances per brain region (A1: n=24711 instances, 
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n=709 neurons. PEG: n=21195 instances, n=523 neurons). The dashed gray line indicates the standard 
temporal integration window of standard LN STRFs. B. Mean contextual effect amplitude as a function 
of one of the contexts being silence or a sound equal (same) or different (diff) than the probe (mean and 
SEM, Kruskal Wallis p<0.001. Dunn post hoc with Bonferroni correction, all p<0.001). C. Difference in 
mean context effect amplitude between brain regions, plotted as in (b.) (Kruskal Wallis p<0.001) D,E. 
Same as B,C but for contextual effect duration (Context type: Kruskal Wallis p<0.01, Dunn post hoc with 
Bonferroni correction: diff-vs-same p=0.563, diff-vs-silence p<0.001, silence-vs-same p<0.001. Region: 
Kruskal Wallis p<0.001) 

Sparse representation of context 

We exposed each neuron to multiple combinations of pairs of contexts and probes, which we 

defined as the context space (40 and 550 combinations for datasets composed of 4 and 10 

different natural sound samples, respectively). Not all sound combinations elicited significant 

contextual effects; therefore, individual neurons were modulated in a limited extent of the context 

space (Figure 13 A, 4-sound examples). On average, a neuron covered only 11.2 ± 0.374% (Mean 

± SEM) of the space (Figure 13 C). However, different neurons from the same recording showed 

effects in different regions of context space. We thus hypothesize that neurons belonging to the 

same local population represent context using a sparse code (Olshausen & Field, 2004).  

 

Figure 13. Sparse population code for contextual effects. 
A. Contextual coverage, illustrated with the amplitude of contextual effects for all instances of context 
pairs and probes (4 distinct probes and 10 context pairs) for 8 example neurons recorded simultaneously. 
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Y-axis pairs indicate indices of sounds defining the context pair, with 0 denoting silence as a context. 
Only significant contextual effects are colored. The number of significant instances varies from 5 to 17 
across neurons. B. Union of contextual effects across all neurons in the recording site (top, number 
denotes total of neurons showing significant effects per stimulus combination with further Bonferroni 
correction for number of neurons) and computed from the first principal component (PC1) of the 
population activity (bottom) C. Distribution of percent significant context instances across recorded 
neurons (yellow, n=1722, mean=11.20) and a null distribution obtained by randomly permuting trial 
context (black, mean=0.04) D. Distribution of percent contextual coverage for single neurons (A1 
n=1006, PEG n=716 neurons), and neurons pooled across each recording site (A1 n=36, PEG n=28 
sites. Blue: A1, Orange: PEG. Dashed colored lines indicate the region mean. Black square and error 
bars show mean and SEM for data pooled across regions). All population summaries showed greater 
contextual coverage than single neurons (p<0.001, Wilcoxon rank sum test, Bonferroni corrected). The 
best neuron from each site showed greater contextual coverage than PC1, but less than the union (PC1 
vs best neuron: p<0.001, best neuron vs union: p<0.001. Wilcoxon signed-rank test, Bonferroni 
correction). PEG showed greater contextual coverage relative to A1 for individual neurons, but not for 
the population summaries (single neuron: p<0.001, mean A1=9.1, PEG=14.04; PC1: p=0.21, mean 
A1=31.43, PEG=36.24; best neuron: p=0.23, mean A1=39.84, PEG=43.50; union: p=0.32, mean 
A1=51.80, PEG=55.46. Wilcoxon rank sum test, Bonferroni correction). 

It has been proposed that sparse codes are widely prevalent across sensory systems (Lyall 

et al., 2021; Olshausen & Field, 1996; Zhang et al., 2019). Sparse codes provide multiple 

advantages in associative learning, storage capacity, energy efficiency and facility to read out the 

encoded information (Beyeler et al., 2019; Olshausen & Field, 2004). To be useful for guiding 

behavior, sensory context must be read out by downstream neurons. We constructed two 

hypothetical decoders. A generalized decoder utilizes the pooled activity of a local population (first 

principal component, Figure 13 B bottom), and a specialized decoder takes into account the 

modulations distinct to each neuron (Union, Figure 13 B top). 

The generalized decoder showed greater coverage of contextual space than the average 

single neuron. However, in most cases it was outperformed by the best neuron in the population, 

i.e., the single neuron with the greatest contextual coverage. Moreover, the Union, which can be 

thought of as an optimal context decoder, showed a significantly greater coverage of contextual 

space than both the first PC and the best neuron in population (Figure 13 E). The greater coverage 

by the Union is consistent with a sparse code, in which individual neurons each are modulated by 

a small number of contexts, but their joint activity provides information about a wide range of 

contexts. 
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Context effects are weaker but more common in putative inhibitory interneurons 

Previous work has implicated inhibitory interneurons as having specialized roles in temporal 

processing of sound (Wehr & Zador, 2003), SSA (Natan et al., 2015; Yarden et al., 2022) and in 

sensory integration (Studer & Barkat, 2022). Thus, we hypothesized that they also play a distinct 

role in the representation of sensory context. We used a viral approach to express 

Channelrhodopsin (ChR2) selectively in inhibitory interneurons (Dimidschstein et al., 2016), which 

were then identified by optotagging (Figure 14 A). Putative inhibitory interneurons and pyramidal 

cells are also distinguished by the width of their spike wave form (Figure 14 B, C, (Trainito et al., 

2019)). The narrow spike shapes of the optotagged neurons were consistent with that of putative 

inhibitory interneurons.  

 

Figure 14 Context effects are weaker but more common in inhibitory interneurons. 
A. Example single trial responses (top) and average PSTH (bottom) of a photo-tagged neuron to silence 
(gray) or a continuous 20ms light flashe (blue). Vertical dashed lines show light onset and offset. The 
inset in the lower panel shows the average spike waveform. A neuron was classified as optotagged if it 
responded with sustained spiking, starting <5ms after the light onset, and showing a reliable spiking 
pattern between trials. B. Example mean waveforms (thin lines) and average (thick lines) for neurons 
classified as narrow spiking (gray), broad spiking (black), and photoactivated neurons (blue). Waveforms 
normalized to a fixed peak. For clarity, only 500 random individual examples are shown per color. C. 
Histogram of spike peak-to-trough delay colored by cell type: narrow-spiking (n=301 neurons; peak-to-
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trough delay<0.37ms; putative inhibitory; gray), broad-spiking (n=1172 neurons, peak-to-trough 
delay>0.47ms; putative excitatory; black) and photoactivated inhibitory interneurons (n=51 neurons, 
blue). Single units with intermediate peak-to-trough values were unclassified. D,E,F. Cumulative 
histogram of the contextual amplitude (D. Median ± SE ΔZ-score*s: activated=0.169±0.005, 
narrow=0.176±0.002, broad=0.185±0.001), duration (E. Mean ± SE last bin ms: activated=252.42±5.76, 
narrow=246.01±2.03, broad=252.90±1.83) and contextual coverage (F. Median ± SE, percent significant: 
activated=2.00±0.62, narrow=3.91±1.10, broad=2.14±0.59) for the classified cell types. The insets show 
the median for amplitude and coverage, and mean for duration, whit the 100-jackknife confidence interval 
(ns: non-significant, *: p<0.05, ***: p<0.001. Kruskal-Wallis with post hoc Dunn test). 

Both optotagged and narrow spiking neurons showed contextual effects of significantly 

reduced amplitude relative to putative pyramidal cells (Figure 14 D). However, a difference in 

duration was only significant for inhibitory neurons identified by waveform classification (Figure 

14 E). This discrepancy might be a consequence of viral manipulation, or the relatively small 

number of optotagged neurons. Despite having smaller contextual effects, putative inhibitory 

interneurons showed contextual effects more often. That is, they showed modulation over a 

greater proportion of the context space (narrow=10.7+-1.2, broad=8.9+-0.5, activated=5.2+-1.1 

percent significant, median and 100-jackknife confidence interval. Kruskal Wallis p=0.02, Dunn 

post hoc: narrow vs broad p=0.02, all other comparisons non-significant. Figure 14 F). 

Pupil effects 

 Internal states like attention, arousal and task engagement have been associated with 

changes in the representation of sounds by the auditory cortex (S. V. David et al., 2012; Saderi 

et al., 2021), through mechanism like increase in firing rate and desynchronization of neuronal 

activity (Schwartz et al., 2020). We explored the relation of pupil dilation, a correlate of arousal, 

with the magnitude of contextual effects.  

 To quantify the effect of pupil on firing rate and context effects, we calculated pupil modulation 

index (MI) for both probe responses, independent of context (MI-fr), and context effect amplitude 

(MI-ce) in non-overlapping, 250ms intervals (A:0-250, B: 250-500, C: 500-750, D: 750:1000 ms 

following probe onset Figure 15 D). We observed a significant positive MI-fr during large pupil 

(Mean MI-fr: A=0.057, B=0.065, C=0.069, D= 0.079. p<0.001 for all time intervals, one sample T-

test). This change recapitulates previous findings of higher firing rate in states of high arousal 
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||REFS||. The dependence of context effects on pupil size was more complex. Context effects on 

large pupil trials were larger during interval A, early after the probe onset (MI-ce>0). However, at 

later time points large pupil was associated with a reduction in context effect amplitude (MI-ce<0. 

Mean MI-ce: A=0.016, p<0.001; B=0.001, p=0.7, C=-0.019, p<0.001, D=-0.042, p<0.001. one 

sample T-test). 

We also compared MI-fr and MI-ce across the dataset to determine if they were correlated 

within contextual instances. These difference effects of pupil size were significantly correlated 

during early intervals but not late intervals (A: r=0.17, p<0.001; B: r=0.11, p<0.001; C: r=-0.01, 

p=0.5; D: r=-0.03, p=0.3. Pearson’s correlation and Wald test for nonzero slope). Activity during 

interval A may partially reflect an offset response to the context stimulus. The observation that 

MI-ce during this interval is correlated with MI-fr is consistent with a direct modulation of sound 

evoked activity by pupil size. The decrease in context effects for large pupil during later intervals 

is not correlated with MI-fr, suggesting that this change arises from a different mechanism, 

including an interaction of pupil effects and context information in the local population (see below). 

 

Figure 15. Large pupil is correlated with changes in contextual effects. 
A,B. Example PSTH response of one neuron (line: mean, shade: SEM) to a probe sound following two 
contexts (color) for trials with large (d, solid lines) and small (e. dashed lines) pupil. When pupil is small, 
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an overall reduction in firing rate pushes both responses towards zero and reduces the amplitude of early 
contextual effects. C. Context-dependent difference (purple – yellow) for large (solid line) and small 
(dashed lines) pupil trials of the same neuron show in panels A,B. D. Comparison between pupil 
Modulation Index of firing rate (MI-fr) and context effects (MI-ce) at juxtaposed 250ms time intervals A to 
D after probe onset (the number of dots displayed has been decimated for clarity). Vertical and horizontal 
dashed gray lines indicate MI=0 (no pupil effect). Green crosses indicate means on x and y. Significant 
difference from zero on x and y is indicated with green asterisks on the top and right sides (p<0.001. ***: 
p<0.001, ns: non-significant. One sample T test). Black lines indicate linear regression with associated 
significance indicated (Pearson’s r. ***: p<0.01, ns: non-significant. Wald test for nonzero slope). 

Encoding model analysis indicates a role of population activity in representing context 

Next, we used an encoding model approach to evaluate mechanisms underlying the observed 

contextual modulation. We hypothesized several possible mechanisms that could contribute to 

the context effects: (i) long-latency receptive field properties, (ii) feed-forward adaptation to 

sensory inputs, (iii) and modulation by the local neural population. To evaluate the role of these 

mechanisms, we fit a set of generalized linear models (S. V. David, 2018; Thorson et al., 2015) 

that successively incorporated terms to account for different sources of modulation (Figure 16 A). 

The STRF model described the activity of a neuron based only on the sound spectrogram. This 

provided a baseline, reflecting a standard model of sound encoding in AC (Atiani et al., 2014; 

deCharms et al., 1998). To account for possible adaptation effects, the Self model included an 

additional input based on the past spiking activity of the neuron being modeled. To account for 

local population effects, the Pop model incorporated past activity of the simultaneously recorded 

neurons. Finally, the Full model incorporated both the neuron’s own activity as well as the local 

population activity. 

This set of models can be described as an STRF plus optional inputs for self- and population 

history. To balance parameter count between models, all models contained parameters for the 

addition inputs, but the inputs were temporally scrambled when the term was not included in that 

model. Because all models had the same number of free parameters, differences in their 

performance were a direct consequence of value of the predictors, and not differences in 

estimation noise. 
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Models were fit using a separate set of natural sounds that were presented to the same 

neurons but not used to measure context effects. We then used the models to predict the time-

varying spike rate response to the context-probe stimuli. Overall performance was calculated as 

the Pearson’s correlation between real and predicted activity. This performance measurement 

was agnostic to context and probe classification or transitions. Models incorporating past neuronal 

activity as predictors performed significantly better (Figure 16 C, Full>Pop>Self>STRF). 

To measure our models' ability to capture contextual effects, we compared the amplitude of 

contextual modulation to between real and predicted responses. Due to the deterministic natures 

of our models, we could not measure contextual modulation for the predictions using the same T-

Score cluster mass method as for the actual data. Instead, we simply measured the amplitude of 

the difference in predicted probe response between context conditions. To discriminate the 

temporal profile of contextual effects captured by the models, we computed the amplitude of 

context differences separately for non-overlapping 250ms intervals (intervals A-D, Figure 16 B). 

Consistent with the overall measures of prediction accuracy, models with access to information 

about history of neural activity better predicted the amplitude of contextual effects at all time 

intervals: The baseline STRF model could capture some contextual modulation soon after probe 

onset (interval A), but it failed to capture later effects. In contrast, the full model captured these 

later contextual effects, with peak performance during interval B, between 250 and 500ms (Figure 

16 D), but with significant improvement also during later intervals C and D (Figure 16 E). 
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Figure 16. Contextual effects are supported by local population. 
A. Architecture of encoding models predicting neuronal responses as a function of sound and the past 
activity of the neuron (self) and its neighbors (pop). Sound information (spectrogram) was weighted with 
a spectrotemporal receptive field (STRF) with 18 spectral channels over a period of 300 ms prior 
prediction. Past activity of the predicted neuron and its neighbors was time averaged over a window 
extending from 150 ms to 300 ms prior prediction and multiplied with neuron specific weights (colored 
vectors). The weighted sound and past neuronal activity were summed and passed through a rectifying 
linear unit (ReLU) to generate the prediction. To test the predictive value of past neural activity, these 
inputs were time-shuffled (dice) or not (plus sign), defining four different models (left side glyphs. STRF: 
both shuffled, Self: population shuffled, Pop: neuron shuffled, Full: no shuffling). B. Example neuron 
response (left) and predictions for the STRF (center) and Full (right) models to a single probe after two 
contexts (blue, teal). The contextual effect (gray area) was calculated for 250ms intervals (A to D). C. 
Quantification of different models' prediction accuracy (cross validated Pearson's r) as a fraction of the 
Full model accuracy. Colored circles connected by gray lines represent models fit to individual neurons 
(n=275. Black squares and error bars are the mean and SEM with a corresponding trend line (STRF vs 
Self: p<0.001, Self vs Pop: p<0.001, Pop vs Full p<0.001. Wilcoxon signed-rank test, Bonferroni 
corrected). D. Comparison of context-depended difference measured and predicted by the STRF 
(orange) and Full (purple) models, at time intervals A (left) B (center) and C (right). Data wase pooled 
across all significant instances for all fitted neurons(n=15176). For display clarity dots were decimated 
by taking a random 1000 points subset. The linear regression and Pearson’s correlation coefficients were 
calculated over all the data (colored lines). E. Pearson’s correlation coefficient as calculated in d. for all 
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models and time intervals (A-D). Error bars are the standard deviation calculated from the 200-fold 
jackknifed distribution of the Pearson's r. Model were compared within each time interval. Comparisons 
not showing in the figure were significant with p<0.001 except A-Self vs A-Pop p<0.01, B-Self vs B-Pop 
p=0.8, C-Self vs C-Pop p<0.01 and D-Self vs D-Pop p=0.1 (ns: non-significance, *: p<0.05, **:p<0.01, 
***:p<0.00. Student’s T-test with Bonferroni correction) 

The Self and Pop models, which incorporated only one history term, also performed better 

than the baseline STRF at most time intervals. Moreover, the Self and Pop models approached 

the Full model performance during different intervals. The Pop model explained most of the 

performance gain of the full model early (Pop vs Full, interval A, non-significant difference), but 

the Self model matched the Full model during later intervals (Self vs Full, interval C and D, non-

significant differences). This dynamic suggests distinct roles for population activity and the 

neuron’s own history (adaptation, plasticity), with population dynamics carrying most contextual 

information early on, and later being superseded by the neuron’s internal state. 

Discussion  

A sparse representation of natural auditory context 

We observed integration of preceding context stimuli in ongoing sound representations in 

auditory cortex, lasting hundreds of milliseconds. Neurons showing this integration often only did 

so under the right stimulus conditions, i.e., differences occurred only for very specific 

combinations of two context sounds preceding a probe. However, across a population of 

simultaneously recorded neurons, different neurons showed distinct context sensitivity. The 

diversity of effects across neurons supports a sparse code for contextual integration at the 

population level, where the population activity is modulated by more stimulus combinations than 

any of its constitutive neurons. The sparse representation of significant contextual effects is 

reminiscent of sparse codes observed for the receptive fields of neurons in the visual, 

somatosensory and auditory cortices (Lyall et al., 2021; Olshausen & Field, 1996; Zhang et al., 

2019). Sparse codes are an efficient representation strategy, which yields independent 

representations that can be read out during decoding and are redundant and robust (Beyeler et 

al., 2019). 
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Effects of context transition types 

These contextual effects depend on the spectrotemporal differences between contexts and 

probe. The amplitude of effects was greater when one of the contexts was silence, and smaller 

when it was the same sound as the probe. This pattern is reminiscent of the response to oddball 

or standard sounds traditionally used to study stimulus-specific adapation (SSA). We argue that 

the contextual effects we observe here are a superset of SSA, since the natural sounds used in 

our experiments have greater complexity than the parametrically controlled oddball experiments 

(Natan et al., 2015; Yarden et al., 2022). It follows that the mechanisms underlying SSA, i.e., short 

term synaptic plasticity, distinct synaptic input, top-down control (Malmierca et al., 2015) are likely 

to participate in generating contextual effects. 

Context effects are larger in non-primary fields of auditory cortex 

Secondary auditory regions showed greater contextual effects, in amplitude and to a lesser 

degree in duration. This result supports the view of a hierarchically organized auditory cortex. 

More abstract representations emerge at secondary regions following longer and more complex 

integration (Atiani et al., 2014; Bizley et al., 2005; Norman-Haignere et al., 2022), which is 

consistent with stronger contextual effects. The regional differences in contextual effects were 

more prominent in their amplitude rather than duration. We speculate that this difference is due 

to an increase in the weighting of past vs ongoing stimuli in PEG, rather than a simple increase 

in the integration window. It is worth noting that PEG is a relatively early secondary region, which 

shares some tuning features with A1 (Atiani et al., 2014). Our findings suggest that one of these 

gradual shifts is the stronger weighting of auditory context in PEG representations.  

Inhibitory interneurons 

Inhibitory interneurons tended to show greater context space coverage, but context effects 

with smaller amplitude than pyramidal neurons. This seemingly paradoxical behavior can be 

reconciled if we consider that inhibitory interneurons pool the activity of the local neighborhood, a 
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phenomenon implicated in normalization of local activity levels (Carandini & Heeger, 2012). We 

hypothesize that pooling increases the size and complexity of inhibitory interneuron receptive 

fields (A. K. Moore & Wehr, 2013), thus making them respond to more sounds and contextual 

interactions. Meanwhile, the same pooling might keep the inhibitory interneuron in a 

homogeneous state of adaptation, less likely to respond strongly to changes in sound and 

produce large contextual effects. However, the distinct connectivity and response to thalamic 

input, with quickly depressing and facilitating PV and SOM interneurons respectively (Tan et al., 

2008), might play a role in their expression of contextual effects. 

Pupil and arousal promote edge detection but not integration 

An increase in pupil-indexed arousal modulates contextual effects in AC bimodally, increasing 

their amplitude soon after the probe onset (0-250m), and decreasing them later (500-1000ms). 

We hypothesize that a mode of heightened attention promotes the detection of novelty, which 

explains the early (probe onset) increase in amplitude. However, to detect novelty, the brain must 

quickly adapt to the recognized sound statistics to prepare for new deviations. This quick return 

to a baseline translates into reduced contextual effects at later timepoints. A prediction for this 

hypothesis is an increase in the response to deviant sounds on the classic SSA-oddball 

experiment during large pupil trials. This experiment, to our knowledge, has not yet been 

performed. 

Preceding neuronal population activity explains contextual effects 

Our models demonstrate that recent past neuronal activity, both from the predicted neurons 

and its neighboring neurons, is implicated in generating contextual effects. These modes offer an 

algorithmic explanation rather than a physiological implementation. However, we can draw 

connections between these two. The effect of the past activity of the predicted neuron relates to 

its short-term plasticity, where positively weighted past activity relates to potentiation and negative 

to depression, and therefore to the multiple physiological mechanisms, like synaptic plasticity, 
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working at in this temporal regime (150–300 ms). The predictive value of past population activity 

early during probe response, can be related to feedforward computation (Wehr & Zador, 2003), 

whereas the latter effects are likely to be consequence local recurrent computation (Carandini & 

Heeger, 2012; Oldenburg et al., 2022), and longer loops through the midbrain (Malmierca et al., 

2015) or other cortical regions. 

Methods 

Animal preparation 

Adult male ferrets over 6 months old were surgically implanted with a head post to stabilize 

the head and enable multiple small craniotomies for acute electrophysiological recordings. 

Anesthesia was induced with ketamine (35mg/Kg) and xylazine (5mg/kg) and maintained with 

isoflurane (0.5-2%) during the surgical procedure. The skin and muscle on top of the cranium 

were removed and the surface of the skull was cleaned. Ten to twelve small surgical screws were 

placed on the edge of the exposed skull as anchor points. The surface of the skull was chemically 

etched (Optibond Universal. Kerr) and a thin layer of UV-cured dental cement (Charisma Classic. 

Kultzer) was applied over the exposed surface. Two stainless steel head posts were aligned along 

the midline and embedded with additional cement. Finally, cement was used to build a rim 

extending out from the edges of the implant. The rim served the dual purpose of holding bandages 

over the implant margin wounds and creating wells to hold saline over the recording sites. Once 

the implant was finished, excess skin around it was removed, the wound around the implant was 

closed with sutures and the animal was bandaged. Antibiotics and analgesics were administered 

as part of the post-op recovery. 

After >2 weeks following surgery the animals were acclimated to a head-fixed posture, during 

intervals starting at 5 minutes and increased 5 to 10 minutes every day. Food and liquid rewards 

were given during these acclimation sessions to help the animals relax under restraint. Animals 
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were considered ready for recording when they could be restrained for more than 3 hours without 

signs of distress (e.g., the animals being relaxed enough to fall asleep). 

Sound presentation 

Acoustic stimuli were either synthesized or drawn from a library of pre-recorded samples and 

presented using custom Matlab software. Digitized signals were converted to analog (National 

Instruments) and amplified (Crown). They were presented to head-fixed animals in a sound 

attenuating chamber (Gretch-Ken or Acoustic Systems), using calibrated free-field speakers 

(Manger) positioned at 30-deg contralateral azimuth, 0-deg elevation, and 80 cm distant from the 

animal.  

Auditory stimuli used for measuring sensory context effects were sequences of 1-sec natural 

sounds, which we refer to as context-probe pairs. Sequences were constructed so that each 

probe sound was preceded by several different context sounds. To maximize efficiency of context-

probe sampling, we generated sequences of N different sounds, such that any sound acted as 

the probe following a preceding context, or as the context for the following sound (Asari & Zador, 

2009). Each sound was also played at the beginning of the sequence, therefore acting as a probe 

following a silent context. Sounds were also repeated so that a probe could also provide its own 

context. 

For N different sounds, full sampling of context-probe combinations was achieved with N 

sequences of N+1 sounds (Figure 11 A)(Asari & Zador, 2009). Finding sound sequences fulfilling 

these conditions poses a mathematical problem known as “exact coverage”, which we solved 

using the dancing links algorithm (Knuth, 2000). We created sequences from N=4 or 10 1-second 

sound samples. In each experiment, sounds were drawn from a set of 16 natural sounds, based 

on their ability to drive neuronal activity in the recording site. This 16-sound set was chosen from 

a large library, selected for their ability to drive activity across many neurons in previous 

recordings in the laboratory. It contained music, speech, ferret vocalizations and environmental 

noise such as gravel and brushes. We defined three broad categories of context based on their 
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relationship to the probe: silence, a different sound than the probe, and the same sound as the 

probe (Figure 11 C). 

Neurophysiological recording 

The putative location of A1 and PEG was determined during the implantation surgery based 

on external landmarks: the posterior and medial edges of A1 falling, respectively, 13 mm anterior 

to the occipital crest and 8 mm lateral to the center line, and PEG immediately antero-lateral to 

A1 (Bizley et al., 2005). To functionally confirm recording locations, we opened small craniotomies 

of ~1mm diameter and performed preliminary mapping with tungsten electrodes (FH-Co. 

Electrodes, AM Systems Amp, MANTA software (Englitz et al., 2013)). We measured the tuning 

of the recording regions using rapid sequences of 100ms pure tones and used tonotopy to identify 

cortical fields (Bizley et al., 2005). We specifically looked for the frequency tuning inversion: high-

low-high moving in an antero-lateral direction, which marks the boundary between primary (A1) 

and secondary (PEG) fields. At tonotopically mapped sites, we performed acute recordings with 

64-channel integrated UCLA probes (Du et al., 2011), digital head-stages (RHD 128-Channel, 

Intan technologies) and OpenEphys data acquisition boxes and software (Siegle et al., 2017). 

Raw voltage traces were processed with Kilosort 2 (Stringer, Pachitariu, Steinmetz, Reddy, et 

al., 2019), clustering and assigning spikes to putative single neurons. The clusters were manually 

curated with Phy (Rossant et al., 2016). Units were only kept for analysis if they maintained 

isolation and a stable firing rate over the course of the experiment. Unit isolation was quantified 

as the percent overlap of the spike waveform distribution with neighboring units and baseline 

activity. Isolation > 95% was considered a single unit and kept for analysis. We further filtered 

neurons based on the reliability of their responses, requiring a Pearson’s correlation > 0.1 

between PSTH responses to the same stimuli (10 repetitions, 20 Hz sampling) drawn from 

random halves of repeated trials. 
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Evaluating significance of sensory context effects 

To measure effects of sensory context on sound-evoked activity, spike times for each unit 

were binned at 20 Hz. Activity was normalized as a z-score based on mean and standard 

deviation of single-trial spike rate across the entire duration of the recording (spontaneous activity 

and during sound presentation). We define a contextual instance as a probe sound preceded by 

a pair of context sounds. Experiments using N=4 distinct sound samples produced 50 distinct 

contextual instances, and experiments using N=10 sounds produced 550. For each contextual 

instance, we computed the difference in the response to the probe between the two contexts. To 

track contextual effects over time, we calculated this difference at every 50-ms time bin (∆ Z-

score).  

To evaluate the significance of differences in spike rate, traditional analysis might use a T or 

U test for the response difference at every time bin. However, this approach leads to the problem 

of multiple comparisons or reduced sensitivity if using the Bonferroni corrections across many 

time points in the probe response. To maximize statistical power, instead, we used a cluster mass 

quantification of significance (Maris & Oostenveld, 2007), which corrects for multiple comparisons 

in the time domain, without sacrificing sensitivity. 

For each contextual instance, we first calculated the T-score during each time bin of the probe 

response between each context. We then found groups of one or more contiguous time bins with 

significant T-scores of the same sign (p<0.05). Each of these groups defined a cluster with an 

associated score computed as the sum of the T-score for all time bins in the cluster. Each cluster, 

finally, was assigned a p-value calculated by comparing the cluster score to its null distribution. 

This null distribution was obtained by calculating the maximum cluster statistic value (following 

the same procedure as above) for 11000 random shuffles of the context identity (Figure 11 F, J). 

We calculated this cluster-mass T-score and p-value for all contextual instances for a given 

neuron. We used the Bonferroni method to correct for multiple comparisons across contextual 

instances with a family error of alpha=0.05. 
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Amplitude and duration of context effects  

The temporal profiles of the context dependent differences in firing rate were diverse and 

irregular; therefore, we avoided describing them with monotonic distributions, e.g., exponential 

decay. Instead, we quantified the amplitude of contextual differences as the sum of the absolute 

difference (|∆ Z-score|) across significant time bins and their duration as the time of the last 

significant time bin (Figure 11 G, K). 

Context type and region effect 

We performed categorical multivariate linear regression to quantify the dependence of the 

amplitude and duration of contextual modulation on context type (Silence, Different, Same) and 

cortical region (A1, PEG). The amplitude and duration metrics for each contextual instance were 

normalized by dividing by the grand mean amplitude or duration across all neurons and contextual 

instances, thus scaling them to the percent change relative to average. Most contextual instances 

were comprised of two Different contexts. Since Different was the most common context, it was 

assigned as the base, dummy variable. Categorical inputs for Silence and Same were then set to 

a value of 1 for instances that included one or both of these categories. Significance of the 

regressed coefficients was quantified with a T-test over the residuals of the regression. Linear 

regression, using Ordinary Least Square minimization, and significance statistics were calculated 

using the python package Statsmodels (Seabold & Perktold, 2010).  

Because the distributions of contextual amplitude and durations were strongly skewed and 

non-Gaussian, we validated the significance of context type and region differences with a non-

parametric ANOVA (Kruskal-Wallis) and Dunn post hoc tests. 

Sparse population coding analysis 

For every neuron, the significant contextual modulation at every contextual instance yielded 

a coverage of the contextual modulation space (all probes by all context-pairs, Figure 13 A). In 
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each site, the best neuron had the greatest contextual coverage, i.e., had the greatest number of 

contextual instances with significant contextual modulation. 

To describe the optimal contextual coverage of a site we took the union of the contextual 

coverage of the individual constitutive neurons (Figure 13 B top). For every contextual instance, 

we took the value with the highest amplitude amongst all neurons. For this union we also 

considered neurons as another source of multiple comparisons and corrected for it alongside the 

prior correction for number of contextual instances. 

To describe contextual modulation of population activity in a low dimensional space, we used 

Principal Components Analysis (PCA, Figure 13 B bottom). We fitted the PCA transformation 

matrix on trial-averaged responses to n-sound sequences for all neurons in a recording site. Thus, 

we included all the information available about sensory responses, while eliminating trial to trial 

variations. We used the transformation matrix to project single-trial responses onto the first 

principal component. These projections were then used to calculate contextual modulation 

following the same procedure as for single neurons. 

Viral injection 

For one animal, we injected into the cortex an adeno-associated virus serotype 2 (AAV2) 

containing channelrhodopsin 2 (ChR2), and mCherry under the inhibitory interneuron specific 

promote mDlx (Dimidschstein et al., 2016). Two craniotomies were drilled and adequate injection 

sites spanning A1. The injection locations were validated as for electrophysiology. The injections 

were performed under Ketamine-Xylazine anesthesia and vitals were tracked through the 

procedure. The animal head was fixed using the previously implanted headcap. A glass injection 

needle with a beveled tip of ~30µm diameter, was coupled with flexible tubing to a 100µl syringe 

(Hamilton, 7656-01), controlled with an automated injector (New era pump systems, NE-1000). 

The syringe was preloaded with mineral oil (Sigma-Aldrich), which was used to prime the whole 

hydraulic system. 10µl of virus were back loaded, and ~5µl were injected in each craniotomy. The 

injections were performed at a depth of ~1.5mm, roughly in the middle of the cortical depth. To 
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improve the coverage of the viral injection, we used a convection enhance delivery strategy 

(Weiss et al., 2020), where the delivery rate started from 0.5µl/min and was incremented by 

0.5µl/min every 3 minutes until the desired volume was injected. The incubation period between 

injections and photo stimulation was 2 weeks. 

Optotagging 

To photo stimulate and record from neurons simultaneously we attached an optic fiber (24 

mm, 0.66 NA, 400µm inner diameter, 430µm cladding, 1.25 zirconia ferrule. Doric lenses 

MFC_400/430-0.66_24mm_ZF1.25(G)_FLT) to UCLA 64 channel probe using nonconductive, 

encapsulating epoxy (Resinlab EP965). The optic fiber laid parallel and in contact with the probe 

shank, leaving ~1.5mm of clearance between the fiber face and the electrodes. This clearance 

was enough so the array could be introduced into the cortex, and the optic fiber would lay on top 

of, or close to the dura. the ferrule was connected to a laser (Ikecool, IKE-473-100-OP) with an 

optic patch cord (2.5m, 0.57na, 400 µm inner diameter, 430 µm cladding. Doric lenses 

MFP_400/430/3000-0.57_2.5mm_FC-ZF1.25). Laser power delivered close to the dura was 

calibrated between 200-250 mW/mm2. 

The photo-stimulation consisted of 40 trials of a single 20ms flash delivered during silence. 

The inter trial interval was 1s, and the flash trials were randomly interspersed with control trials 

with no light. The light stimulation generated a significant photoelectric artifact consisting of high 

amplitude and low duration on and offset transients, and a sustained lower amplitude noise. The 

transients were eliminated by removing the 2ms right after laser on and off and interpolating to fill 

missing values. The lower amplitude ongoing noise was reduced by subtracting the common 

average of laser trials. Preprocessed data was then spike sorted as before, and the remaining 

artifacts appearing as spike clusters or outlier spikes on good cluster were discarded. Neurons 

were considered opto-tagged if they responded within 5ms to the light onset, with a train of action 

potentials reliable across trials (Figure 14a). 
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Spike wave form analysis 

Neurons were classified based on their average spike waveform width, which was calculated 

as the time between the depolarization valley and the hyperpolarization peak (Trainito et al., 

2019). The spike width was calculated for all neurons with amenable waveforms (inverted mostly 

positive waveforms with multiple inflections, associated with axonal spikes (Sibille et al., 2022), 

were difficult to interpret and excluded). The distribution of spike widths followed a clear bimodal 

distribution. The width threshold was defined as the valley in the kernel density estimation, and a 

safety range of 0.1 ms around the threshold was kept as unclassified. 

Pupillometry 

To obtain a measure of global changes in arousal, pupil was recorded during experiments 

with a video camera (Adafruit TTL Serial Camera 397, M12 Lenses PT-2514BMP 25.0 mm) 

placed 10 cm from the eye. An infrared light was used to improve the contrast of the image. The 

pupil was kept partially contracted with an ambient light set to ~1500 lux at the eye being recorded, 

this increased the dynamic range of pupil size. The pupil size was measured offline using software 

detailed in (Schwartz et al., 2020). 

Trials were classified by the median pupil size yielding a balanced number of large and small 

trials. This classification was performed independently for each contextual instance, considering 

the mean pupil size across the time interval containing both context and probe. 

The context-independent pupil-dependent firing rate (mean Z-score) was calculated for all 

combinations of neurons and probes, averaging across contexts (Figure 15 A), and over the 1s 

probe duration. Nonresponsive neuron-probes (mean Z-Score<0.1) were filtered out for further 

analysis. 

The pupil-dependent contextual modulation (mean ∆ Z-score) was calculated for significant 

contextual instances identified previously using the cluster mass analysis (see above). The 

magnitude of the pupil dependent effect was computed by averaging the Z-scored contextual 

modulation across the entire probe response. This metric was also calculated for non-overlapping 
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250ms time intervals (A:0-250, B:250-500, C:500-750, D:750-1000). Values with low firing rate 

(mean Z-score<0.1) and small contextual modulations (mean ∆ Z-score<0.3) were filtered out. 

Prior to computing pupil effects, the sign of contextual modulation was flipped to be positive, so 

that the corresponding pupil-dependent contextual modulation was also positive on average. 

A pupil modulation index (MI) was calculated for firing rates and contextual modulation. MI 

was defined as (large – small) / (|large| + |small|), where |·| denotes the absolute value of the 

relevant statistic. This rectification accounted for instances where the value was close to zero and 

fell to a negative value for one pupil condition. MI close to zero indicates no pupil effects, while 

negative and positive values indicate an increase for small and large pupil respectively. 

Model architecture  

We trained encoding models to predict the activity of a neuron as a function of sound stimuli, 

its own past activity and that of other neurons in the population. All models followed the same 

Generalized linear model architecture: 

Input sound was transformed into a log-spaced, 18-channel spectrogram (approximately 1/3 

octave per channel) with amplitude log compression emulating cochlear dynamics (Pennington & 

David, 2022). Stimulus and spike signals were binned at 100 Hz. Spike data was averaged across 

trials and normalized to the peak value for each neuron. We used a standard linear-nonlinear 

spectro-temporal receptive field (STRF) as a baseline model of sensory encoding. The STRF 

spanned the 18 spectral channels over a window 300 ms (30 10-ms bins) before the neuron 

response. A predicted response was computed by treating the STRF as a filter, convolving with 

the stimulus spectrogram in time and summing across spectral channels (Figure 16 A, top STRF).  

To model the effect of the past neuronal activity, the response of all recorded neurons 

(including the neuron being predicted) was read over a time window spanning150-300 ms before 

the neural response. Neuronal activity was averaged over this time window, and the weighted 

sum of these averages was added to the STRF output (Figure 16 A, past neuron, and population 

activity). Using the neuronal activity time average instead of every time point reduced the number 
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of parameters, making the model more interpretable, where every parameter is an average 

synaptic strength in the population. 

Traditional STRFs of 150 ms can best capture the auditory driven responses in A1 and PEG 

(Atiani et al., 2014), which happen in that time regime. Therefore, we used the population filters 

that were offset 150 ms into the past to avoid capturing correlated sound evoked activity in the 

other neurons, and rather focus on the effect of recent population activity, i.e., a proxy for network 

activity. To disambiguate changes in model performance due to a longer temporal window 

extended by the population filter, we also extended the STRF to 300 ms into the past, so its first 

half overlapped with the population filters. Ideally these “far past” sounds should carry little 

information about the sound evoked response, therefore, these weights tend to zero, and the 

nonzero weight of the STRF remain at short time lags (< 150 ms). Finally, the summed output of 

the STRF and the neural filters was then passed through a rectified linear unit (ReLU) to account 

for spike threshold (Thorson et al., 2015). 

We defined 4 different models based on this same architecture, by temporally scrambling 

different parts of their input: 1. a base STRF, achieved by scrambling both the self and population 

response 2. a “Self” model, where only the other neurons response was scrambled 3. a 

“Population” model (pop), where the self-response was scrambled 4. a Full model, with no 

scrambling (Figure 16 A, left sigils). 

This scrambling effectively removes the predictive value of the scrambled data, while keeping 

the total number of parameters unchanged. Thus, since all models have the same number of 

parameters, a direct comparison of their performance is valid (Figure 16 C). Temporal scrambling 

was done by independently shifting neuronal responses by random tens of seconds. We chose 

to shift instead of shuffling the data to keep the short-term temporal structure of the data and 

prevent the models from fitting to the grand average of the scrambled predictors. 
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All models were implemented using NEMS (Pennington & David, 2022), a flexible and readily 

available software developed in the lab. Optimization was performed using the ADAM gradient 

descent algorithm (Kingma & Ba, 2017). 

Model Performance quantification 

Model performance was quantified as the prediction correlation, computed as Pearson’s R 

across a predicted response assembled from N cross-validated model estimates (N=4 or 10, the 

number of different stimulus sequences).  

To further quantify the ability of the different models to account for long-lasting contextual 

effects, we compared the context driven difference for neuronal responses and model predictions 

in each contextual instance. For the predictions, context modulation was computed similarly to 

the sum of absolute ∆ Z-score calculated from the actual response. However, there are two main 

differences. First, we used 0 to 1 normalization, instead of Z-scores, as models performed better 

this way. Second, there was no associated significance test (e.g., cluster mass analysis), due to 

the deterministic nature of our models.  

We evaluated the accuracy with which models predicted contextual effects by calculating the 

Pearson correlation between the amplitude of contextual effects in the real data and those 

predicted by the model. This correlation was also calculated separately for 4 non- overlapping 

250ms time intervals spanning the probe response, named A to D (Figure 6 d, e). This analysis 

was performed only on contextual instances that were significant according to the cluster mass 

test performed on the original data. 

Chapter 4. Conclusions and Future Directions 

Coordinated cortical integration windows 

Previous work has demonstrated the existence of long-lasting temporal integration in the 

auditory cortex from the perspective of individual neurons (Asari & Zador, 2009) or local field 
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potentials (Norman-Haignere et al., 2022). However, how this integration contributes to the 

representation of natural sounds by populations of neurons has remained unexplored. 

Here we demonstrate that adaptation, a mechanism tied to temporal integration, happens 

independently for different spectral inputs to AC neurons. This spectrally tuned adaptation 

contributes to a diversity of integration properties across neurons, which is necessary to capture 

the rich spectrotemporal patterns present in natural sounds. Furthermore, we studied how 

adaptation of individual neurons interacts though local connectivity, giving rise to population 

dynamics and diverse integration windows and sound representations across sensory contexts. 

Our results recapitulate prior quantifications of temporal integration windows. However, by 

looking across a population of neurons and a diversity of natural stimuli, our findings show 

complex and variable integration. During natural sound processing, the representations of context 

that emerge from this integration are distributed through the population in a sparse code. Finally, 

we also show that these integration properties depend on cortical region, cell type, and the 

spectrotemporal characteristics of the sounds being integrated. 

A loose definition of context 

We have treated context as the recent, < 1 sec acoustic history in which sound has to be 

interpreted. This definition, however, is just a sliver of a much broader setting in which hearing 

occurs. A holistic view of context needs to include sound history at longer time scales, of tens of 

seconds and beyond (Bianco et al., 2020; K. Lu et al., 2018a). It also must consider the context 

of background or competing sounds that occur simultaneously (Micheyl et al., 2007; R. C. Moore 

et al., 2013). More broadly, sound acquires different meanings based on a multisensory context 

(Choi et al., 2018), which defines space, our position inside it, and the embodied percept of 

sources. Hearing the roar of a tiger coming from a speaker at the comfort of our desk is very 

different from an invisible source in a dense jungle. 
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Any meaningful distinction between these multiple aspects of context should be found in the 

mechanisms and physiology underlying them. For example, it is likely that representations of the 

recent temporal context and the context of background noise are supported by the same 

mechanisms of adaptation, circuit connectivity, and hidden population states (Buonomano & 

Maass, 2009). Therefore, these two contexts are probably strongly coupled. We ought to study 

both processes together. Conversely, the recent temporal context, likely encoded in the local 

hidden state of a cortical column, will be loosely tied with an longer-lasting temporal context, likely 

captured by the recurrent interactions between regions in the auditory pathway (Heilbron & Chait, 

2018; Malmierca et al., 2015). 

In our current approach, we have focused exclusively on the recent temporal context, however 

we could extend this approach to capture the context other sound playing simultaneously. This 

can be achieved by overlapping parts of contexts and probes, instead of simply juxtaposing them. 

Considering the hierarchical organization of temporal integration along the auditory pathway, 

we can investigate the emergence and interactions between time scales by recording the 

coordinated activity across sequential regions of the auditory pathway. This has been recently 

enabled by improvements in our recording paradigm using neuropixels (~1cm), with a length that 

permits simultaneous recordings from cortex and subcortical regions: A1 and MGB with precise 

positioning.  

New protocols for chronic recording also permit studying neural activity in freely moving 

animals. Free moving experimental approach enables questioning multisensory integration (Choi 

et al., 2018), and particularly the context of behavior and motor feedback, which plays a critical 

role in attenuating the response to self-generated sound (Schneider et al., 2021). Free moving 

experiments present a tradeoff between the richness and naturality of behavior, and the difficulty 

of analyzing an increased number of uncontrolled parameters. This increased experimental 

complexity can be addressed with novel artificial intelligence (AI) tools, which permit the unbiased 

quantification of uncontrolled variables like of motion and behavior (Mathis et al., 2018), which 
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can be readily related to neuronal activity (Syeda et al., 2022). Automated video annotation is just 

one of the recent developments in AI that will contribute to the analysis of data in ever growing 

quantities and complexity. However, analysis tools are not the only machine learning development 

relevant to neuroscience. 

Implications of deep learning 

We are in a significant historical and technological moment, as artificial intelligence rushes 

through a renaissance, supported by the development of training algorithms like backpropagation, 

deep net architectures, and increasingly powerful and specialized hardware, which on consumer 

GPUs reaches ~35x1012 FLOPS. An example of the most recent advances of these renaissances 

includes large language models and latent diffusion, capable of creating “novel” art based on just 

a text prompt (Nichol et al., 2022), approaching the flexibility, creativity, and performance of 

humans in specific tasks. 

The success of these models comes in part from the increasing size of datasets used to train 

them. However, these models cannot be scaled indefinitely: error decreases as a power (or an 

exponent in the best of cases (Sorscher et al., 2022)) of the model and training set size, i.e., there 

are diminishing returns, and as model performances increase by small fractions, the model 

complexity and training dataset become prohibitively big. This brings significant ethical 

implications. We cannot disregard the carbon footprint, the questionable large scale data mining, 

and the vast (exploitative) labelling effort (Williams, 2022) required to train these models. The 

question becomes not if we can, but if we should continue progress on machine learning through 

scale alone. 

Furthermore, the success of these models lies in specific architectures discovered by trial and 

error. For example, in time series forecasting, recurrent neural networks (RNN) were soon 

replaced by short and long short term memory (LSTM) networks (Yu et al., 2019), which in time 

were replaced by transformers (Vaswani et al., 2017). Similarly, in image generation, generative 
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adversarial networks (GAN) (Goodfellow et al., 2020) were quickly outperformed by latent 

diffusion (Nichol et al., 2022). To continue this brute force exploration rather than drawing 

inspiration from the brain is inefficient considering eons of evolution’s brute force, parallelized 

optimization. Departure from biological inspiration is not limited to architecture, but also includes 

the predominance of continuous rather than spiking networks, and the use of global error 

assignment – back propagation – instead of local, biologically realizable, Hebbian plasticity. 

This departure from neuroscience is recent. Early developments in AI were catalyzed by 

discoveries in neuroscience which inspired the perceptron, an idealized point neuron (Rosenblatt, 

1958), and Hopfield networks reminiscent of the hippocampal architecture (Hopfield, 1982). More 

recent AI developments have also drawn inspiration from the brain: deep-net architectures, like 

convolutional neural networks reminiscent of the retinal architecture (LeCun et al., 1989), and 

transformers, loosely inspired by the concept of attention (Vaswani et al., 2017). 

The current neuro-AI schisms need to be reconsidered, and there are already people doing 

it. New theoretical works look to explain fundamental rules of intelligence in both brains and 

computers. Some of these ideas posit parsimony and self-consistence as common organizational 

principles in the brain, and in successful AI architectures. Parsimony as “… to identify low-

dimensional structures in observations of the external world and reorganize them in the most 

compact and structured way.” and self-consistecy as a “... model for observations of the external 

world by minimizing the internal discrepancy between the observed and the regenerated.” (Ma et 

al., 2022). Interestingly, these principles recapitulate principles of brain activity, like sparseness, 

and general theories of brain function like the free-energy principle (Friston, 2010) which explains 

intelligent systems as trying to sustain homeostasis by avoiding unexpected conditions, i.e., 

minimizing entropy and (sensory) surprise. 
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Predictive coding 

These general intelligence theories have direct connections to experimentally backed brain 

function theories. Such is the case of predictive coding (PC), which is supported by observations 

across multiple sensory systems (Carbajal & Malmierca, 2018; Heilbron & Chait, 2018; Rao & 

Ballard, 1999). In general terms, PC posits top-down activity in the brain corresponds to world 

predictions, which are continuously trying to match the bottom-up activity elicited by sensing the 

world, such that when predictions are incorrect, this error is propagated to correct the top-down 

model of the world. 

From the PC perspective, neurons are not representing sound (sensory) features but rather 

hypotheses and predictions about sound. The temporal integration, and contextual effects we 

observe, can be interpreted within this framework as deviations from the expected continued 

sound, and the time it takes the auditory brain to recalibrate its expectations to statistics of the 

novel sound. 

PC states that there is a distinct distribution of neurons representing predictions and errors. 

In the canonical view, cortical superficial layers sending bottom-up projections contain error 

neurons, while deeper layer sending top-down projections contain prediction neurons. If 

contextual effects are an expression of prediction errors, they should be enriched on the surface 

layers of the cortex (Heilbron & Chait, 2018). We are currently working towards the identification 

of cortical layers based on current source density and oscillation frequency analysis, which would 

enable the localization of recorded neurons in the cortical column. 

A main criticism of predictive coding has been the lack of evidence for an actual efferent 

prediction which recapitulates the expected sensory input. If we consider the precise reciprocal 

wiring required to achieve this, and the clear asymmetry between ascending and descending 

pathways, the lack of this exact efferent copy seems unavoidable. This vertical asymmetry is 

present not only in the wiring between regions, but also in the temporal dynamics of transmission: 
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bottom-up transmission is associated with the fast gamma band, while top-down works on the 

slower alpha band (van Kerkoerle et al., 2014). 

Slower top-down predictions will fail to track faster variation in sensory signals; however, we 

argue that some of these faster predictions might be locally encoded in the hidden state of the 

network, better suited for faster computation through local synapses, i.e., the contextual effects 

we observed. There is a division of temporal labor with local, fast, prediction of small deviation, 

and a top-down prediction, much slower, but on a much broader space of possibilities. As 

mentioned above, Recordings of populations of neurons across successive regions in the auditory 

pathway are necessary to test this hypothetical division, and the contribution of these modes of 

PC in natural sound representation. 

Sparse code 

We have described sparseness of contextual effects. However, the specificities of the sounds 

that elicit these effects, i.e., the dimension(s) of these contextual effects, are to be more 

exhaustively explored. One possible approach is to identify the receptive fields of changes in 

sound, or tuning to context, that elicits activity beyond first order (STRF) sound-evoked activity. 

Finding the specific dimensions is fundamental, as the representations of different sound 

dimensions will show different degrees of sparseness at different brain regions. For example, the 

joint dimension of sound phase and frequency, understood as gammatones, are sparsely 

represented in the auditory nerve (Lewicki, 2002), but frequency by itself, is represented by a 

tonotopic map of labeled lines, i.e., a local code.  

Some attempts at capturing these temporally dynamic receptive fields have made use of deep 

learning, with model architectures designed such that the weights of the model can be visualized 

as a classic STRF that is dynamically changing over time, as sound progresses (Keshishian et 

al., 2020). With these dynamic STRFs (dSTRF), it is possible to determine the fraction of the 
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receptive field caused by contexts independent of ongoing sound, similar to the idea of a 

contextual receptive field. 

Formally capturing and describing contextual receptive fields is a necessary step to determine 

sparseness in its strict and classical meaning, i.e., as captured by a generative model with 

enforced sparseness. Some of the more recent deep sparse modes (Zhang et al., 2019), capable 

of recapitulating first order STRFs across the auditory pathway, might also recapitulate these 

contextual receptive fields.  

Sound diversity and encoding models 

Dynamic STRFs and the deep biological networks in which they are based suffer the same 

hunger for data as the bigger deep learning models discussed above. Auditory neurophysiological 

models have the extra limitation that experimental constraints make it difficult to acquire large 

datasets of neuronal sound responses. There are competing interests for the experimentalists: 

On one hand, classical approaches required low dimensional stimulus sets, like pure tones or 

trains of clicks which unequivocally dissect particular response properties. On the other hand, the 

need to use a sound set that is diverse enough to encompass the fraction of the sound space to 

which a neuron or population is tuned. 

Classically, diversity is achieved with large libraries of natural sounds, likely capturing relevant 

sound statistics to which neurons evolved in nature. However, this also means playing sounds 

which do not drive neurons and dismissing well known tuning properties of neurons like their 

preferred frequency. To efficiently stimulate a neuron, a compromise must be found. 

Closed loop in line sound generation  

We can leverage deep learning and online closed loop sound generation such that the 

response of neurons to a sound influence the next stimulus. This establishes an iterative process 

to explore a sound space, and select sound that better drives a given neuron, or perhaps elicits 

any arbitrary pattern of activity across neurons in the recorded population. This approach had 
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some success with on-line closed loop image generation in macaques and mice (Ponce et al., 

2019; Walker et al., 2019). However, it is based on GANs, notorious for their instability and 

tendency to mode collapse, i.e., finding a single solution (image) and sticking with it, thus failing 

to explore more of the stimulus space. Furthermore, these generator models lacked information 

of what visual neurons respond on average. 

We can leverage historical recordings of sound evoked activity of thousands of neurons 

across animals, and train newer alternatives to GANs. The expectation is that these models will 

capture a latent space describing the preferred sound features of neurons at specific auditory 

regions (Pennington & David, 2022). This assumes common rules of tuning across large pseudo 

populations of neurons recorded in the same region across multiple recording sites and animals. 

Moreover, we can make models unconstrained by physiology and interpretability, which will be 

likely to capture the more elusive nonlinearities that determine complex receptive fields. 

Using such a tool we can find very precise sounds that drive specific patterns of activity. This 

can yield more focused stimulation sound sets, with more repetitions and greater statical power. 

Furthermore, this can transform the process of understanding neuronal tuning into a more 

trackable analysis of the spectrotemporal properties of the generated sounds. Finally, it will let us 

directly listen to what neurons care for.  
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