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Applied deep learning is an area that has been evolving rapidly in recent years and is now ubiquitous

within the machine learning and artificial intelligence communities. Deep learning has made its

way into every part of modern life, from the pictures we take, to the way our devices operate, to

the very information we are exposed to. In this work we aim to contribute meaningful innovations

to the field of applied deep learning with an emphasis on healthcare applications. In the following

chapters we present original research in clinical representation learning, clinical predictive modelling,

and efficient adaptation of large neural networks. First, we explore several methods for learning

meaningful representations of clinical events. We show that the resulting learned representations

contain semantic relationships, and can be leveraged to effectively perform a range of downstream

clinical tasks. Next, we propose a deep learning based approach to sleep behavior disorder event

detection, which has been correlated with a later onset of neurodegenerative diseases such as

Parkinson’s and Alzheimer’s. Our approach to sleep behavior disorder event detection is both

efficient and accurate, with the potential to save countless human hours, healthcare costs, and

ideally contribute to higher quality patient care through early detection, and broader accessibility.

Lastly, we propose a novel approach to efficient fine-tuning of deep neural networks under parameter

budget constraints. There are many issues associated with fine-tuning deep neural networks,
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due in part to the shear scale of modern architectures, and compounded by a lack of adequate

task-specific training data which is particularly prevalent in healthcare applications. We build

upon the fundamental concepts of parameter efficient fine-tuning to present a novel approach in

which the allocation of trainable parameters over a network is learned during training, alongside

the network weights. We feel that the original work presented in this thesis contributes to the

advancement of healthcare AI, and applied deep learning in the following ways: by learning robust,

and flexible representations of clinical events we enable the democratization of clinical data, which

can in turn empower a range of downstream applications; by providing a effective and efficient

machine learning solution to the problem of sleep behavior disorder event detection we empower

clinicians to better serve their patients; and by providing a mechanism for efficient, large model

adaptation without loss of performance we are lowering the bar for adoption of state of the art

deep neural networks, and empowering more advanced, and flexible applications.
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Chapter 1

Introduction

A Deep Neural Network (DNN) is a neural network comprising at least three layers. Deep Learning

(DL), a sub-field of machine learning (ML) which employs DNNs, has been highly successful across

the pillars of modern ML including Computer Vision (CV), Natural Language Processing (NLP),

and Reinforcement Learning (RL). DL is responsible for many of the most useful features of tools

we use everyday including our cameras, TVs, security systems, appliances and gaming consoles to

name a few. Consider the technological advancement that modern DL has given society. Scientific

progress empowering individuals to do previously unimaginable things through simple physical

interfaces like the touch of a button on a smart phone. Such capabilities would not be possible

without the innovative technologies empowering these devices, of which many are rooted in DL.

A differentiating characteristic of DL compared to traditional ML algorithms, and a common

theme throughout this dissertation, is the ability of DNNs to learn effective feature representations

that generalize well to new and diverse tasks. In traditional ML, features typically need to be

identified and/ or engineered by an domain expert before they are useful for ML models. Feature

engineering serves to reduce the complexity of raw data, and makes patterns more identifiable to

learning algorithms. DNN, on the other hand, naturally learn feature representations. Feature

learning in DNNs can be the primary goal of lower network layers, and more complex feature

representations can be learned incrementally through many hidden layers which become increasingly

more focused. For example, a DNN tasked with image recognition may have shallow layers which

only identify light or dark areas within the input image before passing the output on to intermediate

layers which detect edges, or lines, followed by layers tasked with shape detection and finally the

recognition of actual faces. The ability to learn effective feature representations is one of the biggest

advantages of DL, as it serves to mitigate issues inherent to complex feature engineering processes.

For example, while domain expertise is invaluable for formulating solutions within any problem

space, domain experts may not be able to construct meaningful, complex feature representations

up-front that are most useful for ML models. Moreover, by learning feature representations
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incrementally from large amounts of data, DL is able to fuel more robust, flexible solutions.

The ability of DNNs to learn feature representations makes them well suited to healthcare

tasks. Healthcare data can be notoriously difficult to understand, and by extension, to leverage

for real-world applications. Feature engineering for healthcare applications requires a great deal

of domain expertise, and continued understanding of the problem space. In addition to learning

feature representations, DL solutions typically out-perform other ML methods by a large margin

in areas of healthcare such as medical imaging. A good example of the successful application of

DL in medical imaging is semantic segmentation [96, 135, 189]. Semantic segmentation refers to

a class of problems in CV where the goal is to predict the label for each pixel in an image. As

previously mentioned, a DNN tasked with segmenting a region of interest in a medical image is

able to incrementally learn useful features such as neurons capable of identifying edges, which are

then used to recognize shapes, and finally, to segment the original input image.

One problem in healthcare that we explore in this dissertation is how to leverage a patient’s

clinical history. We aim to learn representations of clinical events which can in-turn be used in

diverse downstream applications, like clinical predictive modelling. Clinical events are represented

by collections of standardized medical codes, which are used throughout the healthcare system.

While using standardized codes to represent clinical events serves to insure consistency, accuracy,

and efficiency, the codes themselves are not able to represent the complex relationships that clinical

events have with one another. Moreover, medical codes representing clinical events cannot be used

directly in ML models. Past attempts have tried to create various hand-engineered features to

represent a patient’s clinical history, but the task is not trivial, and poor quality features can lead

to poor performance. Hand-engineering features results in solutions which are restricted by the

availability and quality of subject matter expertise, and typically result in features which are less

expressive, and less useful than features automatically learned by DNNs. It follow that the ability

of DNNs to learn effective feature representations can be very useful in this setting.

Another problem in healthcare that we explore in this dissertation is automatic diagnosis of

sleep behavior disorder. Such diagnosis are commonly made through manual inspection of multi-

channel sensor data collected during overnight sleep studies. Past attempts have used traditional

algorithmic approaches which enforce various rule and standards, or statistical features which are

hand-engineered from the raw sensor signals. This task is not only very challenging, but often

results in systems which are not able to generalize to a representative patient population. DL offers

the potential to learn features directly from multi-channel sensor data which are both performant

and generalizable, resulting in superior overall systems.

As with many healthcare problems, we struggled with DL’s need for massive amounts of data.
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In healthcare, it is not uncommon to have very small datasets for training and evaluation. The

current trend in the field is to use transfer learning, where a pre-trained model, trained on massive

amounts of data, is then adapted to a new task in part to alleviate much of the original high

data requirement. High performing pretrained base models are typically very large, which leads to

extremely large task specific models that can easily have over 100 million parameters. Large DNNs

have high requirement for GPU memory, storage and compute time, making them very difficult to

adapt to new tasks, and to deploy in production systems.

To overcome this issue, the field is currently exploring parameter efficient fine-tuning (PEFT)

[93, 89, 136], which aims to supplement a large, pretrained base model (DNN) with supplemental

parameters that are learned for task adaptation. The problem with these approaches is they require

a pre-determined parameter budget, which is distributed uniformly across the network. A more

flexible approach would allow for the distribution of parameters to be determined by the network

dynamically during training, thereby allowing the network to allocate “help” to areas that need it

the most.

1.1 Dissertation Problem and Statement

This dissertation focuses on two problems. The first problem is that many computational healthcare

solutions rely on hand-engineered features and/ or large sets of rules. Relying on hand-engineered

features results in solutions which are restricted by the availability, and quality of domain expertise.

Moreover, it’s simply not feasible to consider all possible feature representations in hopes of finding

the most useful one, even for the most competent domain expert. By using DL, these features, along

with their interactions and combinations, are learned automatically. It follow that DL is capable of

capturing underlying semantic relationships, and rich representations that a domain expert might

not be aware of, or able to adequately express. In Chapter 3, we learn representations of clinical

events that capture semantic similarities between them. Furthermore, we demonstrate that these

representations can be used to improve downstream applications, such as clinical prediction. In

chapter 4, features are learned directly from multiple channels of wearable sensor data to detect

individual abnormal sleep events automatically.

The second problem addressed in this dissertation is with transfer learning in the context of

PEFT. The pretrained base models leveraged by modern applications are very well trained on

massive amounts of data, and therefore should not require much adaptation in order to perform well

on a new task. Chapter 5 presents a method to learn the distribution of trainable parameters in

PEFT for optimal performance with the smallest parameter budget. We provide empirical evidence
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that our method outperforms PEFT and full FT on a range of common benchmark tasks in CV.

We speculate that preserving the base model as much as possible, by updating the smallest number

of parameters needed for task adaptation, and allowing the network to allocate these parameters

in the most beneficial way, can help to mitigate sequential training issues such as catastrophic

forgetting, and enable the most effective level of knowledge transfer from these powerful, underlying

base models.

1.2 Learning Representations of Clinical Events

The level of domain expertise required to hand-engineer meaningful features in healthcare effectively

raises the bar for development of high-performing clinical models. Alternatively, one could try

a “kitchen sink” approach to creating features where one simply adds a feature for every clinical

event that could be in a patient medical history, such as diagnosis, procedures and prescriptions.

However, the number of combinations required to represent an inclusive set would be much too

large for practical use. For example, creating an indicator feature (0/ 1 representation) for every

possible event that could be in a patient’s clinical history would result in an exponentially large,

redundant, and highly sparse feature vector. A high dimensional feature vector also incurs the

curse of dimensionality, requiring a huge number of training examples to fit a model.

In contrast, by representing a patient’s medical history as a sequence of embedded clinical

events, DL systems can be better trained on many downstream tasks such as the next most likely

clinical event, or the likelihood of a specific event happening within a certain amount of time (e.g.,

an emergency room visit in the next week). Effective clinical predictive models allow for early

detection of healthcare related events at the patient level, which in-turn allows for more effective

prevention, treatment, and design of interventions. We show that learning clinical event embeddings

not only provides an effective representation that can be leveraged by downstream applications, but

allows for identification of features and relationships that were previously unknown, even to subject

matter experts. Individual clinical events can be inherently related to one other, yet ontologies of

such events contain no semantic information. Three methods are for learning embeddings from

clinical events are showcased in Chapter 3: Event2Vec, autoregressive embedding, and a hybrid

approach which combines the two.
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1.3 Automatic Event Detection in Multi-Channel Sensor

Data

REM sleep disorder, which will be discussed in detail in Chapter 4, is a sleep disorder which has

been correlated with a later onset of neurodegeneartive disease such as Alzheimer’s and Parkinson’s,

which are conditions that come with different treatment options if detected early on. The standard

way to diagnose RSWA is by identifying events indicative of the condition, contained within

many hours of multi-channel sensor data which is annotated by a trained sleep clinician. This

process is costly and time consuming, as well as prone to human error. We propose an effective

DL solution capable of automatically detecting RSWA events from wearable sensor data without

hand-engineering features. Our solution has the potential to save countless human hours as well as

healthcare dollars, and widen the availability of treatment to maximize the potential for positive

patient outcomes. By detecting individual events, which can be used for diagnosis, we also allow

for the duration, magnitude, and frequency of events to be quickly reviewed by clinicians in order

to glean additional insights into patients level of severity, thereby empowering clinicians with a

more rounded set of assessment tools. Moreover, by automatically detecting individual events we

are better able to gain the trust of the clinicians who would use such a tool, as they are given a

much more interpretable, verifiable output compared to a system tasked with automatic binary

diagnosis of a condition. We evaluate and analyze several DL architectures for automatic RSWA

event detection, and show that our approach can not only perform at a level on par with trained

human clinicians, but is efficient enough to be deployed at scale.

1.4 Parameter Budget Allocation in PEFT

The common strategy in modern DL is to leverage a large, pretrained DNN, which is then fine-tuned

to customize or “adapt” the network to a new task. Fine-tuning (FT) is an example of “transfer

learning,” which will be discussed in detail in Section 2.7. The result of FT is usually a model

capable of out-performing an identical architecture trained from scratch on only task-specific data

(i.e., without pretraining). This differentiation is significantly more pronounced when task-specific

training data is scarce, as is common in the healthcare setting, where data can be very expensive

to procure, and relevant examples are rare. We aim to introduce algorithmic innovations aimed at

addressing these issues by efficiently adapting large models to new tasks by updating only a small

number of parameters. Specifically, we introduce a novel, innovative contribution to the paradigm

of PEFT, which allows for a fixed parameter budget to be optimally distributed across a network
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by learning parameter allocation alongside traditional weight updates. We show that our method is

capable of outperforming full FT as well as well known PEFT methods across a range of common

benchmark tasks. Our method aims to improve upon efficient large model adaptation methods

by preserving as much of the powerful base model as possible, and only adapting the areas of the

network that need it the most. While the methods proposed in Chapter 5 are evaluated in the

domain of CV, they represent a general algorithmic approach which can be applied to a broad set

of diverse problems and DNN architectures.
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Chapter 2

Background

This chapter is an overview of the material and methods which will be showcased in this thesis. In

order to give context around the methods used in later chapters, the next few sections will cover

fundamental neural network concepts at a high level; introduce related topics in deep learning such

as attention, transfer learning, and mixture of experts; describe relevant architectures including

feed-forward, recurrent, convolutional, and transformer networks; and introduce the paradigm of

parameter efficient fine-tuning of large scale, deep neural networks.

2.1 Neural Networks

Neural networks, also referred to as artificial neural networks (ANNs) are a subset of ML and

represent the meat of the field of deep learning (DL). The basics of neural networks discussed

below can be found in a number of textbooks such as [72]. The name “neural networks”, as well

as their basic structure are inspired by the way in which biological neurons exchange information

in the human brain. A neural network can be represented as a weighted, directed graph, where

each node is an artificial neuron. Each neuron can receive information from other neurons, and is

equipped with an activation function to regulate the information which is passed on. In the next

few sections we will discuss some fundamental concepts of neural networks including the idea of

an artificial neuron, the methods by which neural networks are optimized, and common neural

network architectures.

2.1.1 Perceptron

One of the earliest, foundational ideas of what has evolved into modern neural networks, is the

perceptron [150, 67]. Originally proposed as a simple computational model of a biological neuron,

the job of a perceptron, as shown in shown in Figure 2.1, is to take a vector of binary inputs

[x1, x2, . . . , xn], and produce a single binary output y. This process is analogous to the “firing” of a

9
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biological neuron, and is accomplished by creating a weighted sum of the inputs, and comparing that

sum to a threshold value. A perceptron is therefore parameterized by a set of weights [w1, w2, ..., wn],

and a threshold tr, which it uses to determine the value of its binary output y as follows:

output =

0, if
∑

i wixi ≤ tr

1, if
∑

i wixi > tr

(2.1)

Figure 2.1: The perceptron is a simple artificial neuron parameterized by a set of weights w and
a threshold th. The output of the perceptron is binary, and “fires” if the weighted combination of
inputs

∑
i wixi surpasses the threshold tr.

2.1.2 Multi-Layer Perceptron

A neural network, as the name indicates, is a collection of connected neurons. The neurons in a

neural network, as will be seen, are typically organized into groups called layers. It follows that a

neural network comprising more than one layer, and utilizing the perceptron definition of a neuron,

is referred to as a multi-layer perceptron or MLP. It should be noted that the term MLP is often

overloaded within the DL community, and in modern DL, the term is typically associated with a

feed forward neural network (FFNN).

FFNNs were first developed in the 1980’s and were famously proven to be universal approximators

[87]. That is, given some function f(X), there exists a FFNN that can approximately approach

the result. This is not to say that a FFNN can be successfully applied to any practical problem.

While a FFNN network with a single layer is sufficient to represent any function, the layer may be
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infeasibly large and may fail to learn and generalize correctly [72]. A simple FFNN architecture

with an input layer, a single hidden layer, and an output layer is shown in Figure 2.2.

Figure 2.2: A simple FFNN with 1 hidden layer (image from [154]).

Another term which is ubiquitous within the DL community is deep neural networks (DNN),

which gives the field of deep learning its “deep,” and simply refers to a neural network with more

than one hidden layer. In its simplest form, the output from each layer l in a FFNN is a linear

transformation of the output from layer l − 1 passed through an activation function, which is

typically, but not always, a non-linear function such as a rectified linear unit (ReLU) [157]. That is:

zl = wlal−1 + bl (linear layer output)

al = g(zl) (“activation” output)
(2.2)

A key design consideration for neural networks is determining the architecture, or overall

structure of the network. For example, how many neurons should the network be composed of,

how should individual neurons be connected, and how many layers should the network comprise

(i.e. network depth). Neural network architectures will commonly organize layers sequentially in a

chain structure, where each layer is defined recursively as a function of the layer that preceded it.

In this structure, an arbitrary layer l is given by

hl = gl(Wl⊺hl−1 + bl) (2.3)
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It can be see from Equation 2.3 that the output of layer l, hl is dependant on the output from layer

l − 1, or hl−1. The input to the first layer (i.e., input layer) are the model inputs x.

The function g is referred to as the “activation” function for the layer, which is typically a

nonlinear function such as the Rectified Linear Unit (ReLU), where ReLU(x) = max(0, x) [157],

or the sigmoid function σ(x) = 1
1+e−x . An activation function does not have to be nonlinear by

definition, but nonlinear activation functions or “nonlinearities” allow for the modeling of non

linear problems. There is naturally a trade off between network width (i.e., the number of neurons

in a layer), and network depth (i.e., the number of layers in the network). A neural network with a

single layer has famously been shown to be a universal approximator [87]. In other words, a single

layer neural network, equipped with enough neurons, can be fit perfectly to any data. The caveat

is that such a perfect fit equates to extreme overfitting, and therefore very poor generalization to

new data. Deeper networks, on the other hand, are often able to employ much narrower layers

(i.e., fewer neurons per layer), and by extension far fewer network parameters. In addition, deeper

networks frequently show better generalization to new data (i.e., better performance), but also

tend to be harder to optimize. Neural networks have many hyperparameters which can be tuned

to optimize performance (e.g., number of layers), and each configuration can be computationally

expensive, and time consuming, to evaluate via common parameter search methods.

2.1.3 Empirical Risk Minimization

Empirical Risk Minimization (ERM) is a fundamental concept in ML which is well documented in

many textbooks [72, 230]. The typical setup of a supervised ML task consists of a domain space X ,

and a label space Y , along with a model h (hypothesis) mapping the domain space to the label space

h : X → Y. The model h outputs an object y ∈ Y given x ∈ X , and the goal within the context

of ERM is to find h which minimizes error. For example, labeling spam emails can formulated as

a classification problem where the objective is to map a vector of features x, extracted from an

email, to a value ŷ = p(y|x1, ..., xn) ∈ [0, 1], indicating the relative likelihood of being spam. A

fundamental assumption in ERM is that there is a join distribution P (x, y) over X and Y which is

not known, but which can be approximated by an independent and identically distributed (i.i.d)

sample S = [(x1, y1), ..., (xn, yn)] drawn from P (x, y). Let L(ŷ, y) be a loss function whose job is to

output a measure of the difference between the predicted value h(x) = ŷ, and the actual value y.

The risk R (also referred to as cost) associated with a model h can now be defined as:

R(h) = E[L(h(x), y)] =

∫
L(h(x), y)dP (x, y)
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As previously mentioned, the true joint distribution P (x, y) is not known, hence the true risk R

cannot be computed directly. However, the empirical risk Remp, which is an approximation of the

true risk R, can be minimized by taking the average over n training examples. In short, a ML

problem can be effectively converted into an optimization problem by minimizing the expected

loss on the training set. Essentially, this requires replacing the true distribution P (x, y), which is

unknown, with the empirical distribution p̂(x, y), which is defined by the training set. The empirical

risk Remp is defined as the average over n training examples.

Remp(h) =
1

n

n∑
i=1

L(h(xi), yi)

A drawback of ERM is that it is prone to overfitting as models with high capacities, such as

neural networks, can memorize the training data exactly. In addition, since the data in ERM

represents a sample from the true distribution P (x, y), the situation can arise where the empirical

error is reduced, but the true error is increased. Furthermore, in many cases ERM is not unfeasible,

and most modern optimization algorithms used in DL are based on gradient descent.

2.2 Neural Network Optimization

In DL, as in ML problems in general, the true distribution of the underlying data is not known. As

a result the objective, or loss function, to be optimized is represented as an average over examples

in the training data, similar to the empirical risk discussed above. There are two key topics which

are commonplace in modern neural network optimization: back propagation, and gradient descent.

2.2.1 Back Propagation

The workhorse of DNN optimization is the back propagation algorithm (back-prop). This algorithm

was popularized in the 1980s by Rumelhart et al. [191], and is the backbone of all modern iterative

methods used in DL, which will be discussed further in Section 2.2.2. The meat of the back-prop

algorithm is to calculate ∂J
∂θ , where J is the overall loss (or “risk” in the context of ERM), and θ

are the network parameters (i.e., weights and biases). Back propagation, at a high level, consists

of passing data (information) forward through a network, calculating the overall loss J , and then

using that value to calculate partial derivatives with respect to each of the weights, all the way

back through the network via the chain rule of differentiation.

∂z

∂x
=

∂z

∂y
· ∂y
∂x

(2.4)

The partial derivative of the loss with respect to a network parameter (i.e., weight or bias) yields

the amount by which the overall loss changes when the network parameter changes. Intuitively,
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one can think of the partial derivative of the overall loss with respect to the network parameter

as the amount of influence that each network parameter has on the overall objective. While back

propagation is architecture agnostic within the realm of DL, without loss of generality, and for the

purpose of illustration, we will refer to a vanilla FFNN architecture with a single hidden layer for

the remainder of this section.

The first step in the back-prop algorithm is to pass information forward through the network and

output the associated loss, which is a scalar. Consider the simple, single hidden layer FFNN shown

in Figure 2.2. At each layer l, the activation (output) from the previous layer l−1 is multiplied by a

weight matrix Wl, which is offset by a bias bl, and in-turn passed through an optional non-linearity.

We will use g to denote an arbitrary activation function, which in practice has many choices. The

output of the final network layer is then input to a loss function L, which compares the predicted

output ŷ to the actual output y, and calculates a scalar value. There are many loss functions which

are typically suited to certain types of problems (e.g., binary classification vs. regression), but for

this example we will use the simple Mean Squared Error MSE = 1
2 (y − ŷ)2 which is common in

regression problems. The forward pass in this case is derived as follows:

zh = Whx + bh

ah = g(zh)

ŷ = σ(W oah + bo)

L(ŷ, y) =
1

2
(y − ŷ)2

(2.5)

We can now update the weights and biases by calculating the gradients with respect to all network

parameters (i.e., ∂L
∂W l and ∂L

∂bl
for all layers l) using the chain rule:

∂L

∂W o
=

∂L

∂ŷ
· ∂ŷ

∂W o
= (ŷ − y)ah

∂L

∂bo
=

∂L

∂ŷ
· ∂ŷ

∂bo
= (ŷ − y)

∂L

∂bo
=

∂L

∂ŷ
· ∂ŷ

∂ah
= (ŷ − y)W o

(2.6)

∂L

∂Wh
=

∂L

∂ŷ
· ∂ŷ

∂ah
· ∂a

h

∂zh
· ∂zh

∂Wh
= (ŷ − y)W og′(zh)x

∂L

∂bh
=

∂L

∂ŷ
· ∂ŷ

∂ah
· ∂a

h

∂zh
· ∂z

h

∂bh
= (ŷ − y)W og′(zh)

(2.7)

We have now quantified the degree to which a change in each network parameter will effect the

output. We will use these values (gradients) to update the network parameters by iterative taking
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a step in the direction of greatest decent, recalculating, and stepping again towards network

optimization. This process forms the basis of the iterative optimization algorithm known as gradient

descent.

2.2.2 Gradient Descent

DNNs are most commonly optimized via gradient descent based algorithms, as second order

algorithms such as Newton’s method are not computationally feasible in real-world, high dimensional

problems. Gradient descent is guaranteed to converge to the global minimum for convex error

surfaces and to a local minimum for non-convex surfaces [190]. There are many flavors of gradient

descent, but in this section the focus will be on a select subset including momentum, RMSProp

and Adam which are all modifications to mini-batch gradient descent.

Mini-Batch Gradient Descent

Gradient descent uses the partial derivatives calculated by back-prop, along with a fixed learning

rate η, to update a network’s weights and biases by iteratively moving in the direction of steepest

descent. The most common variant used in practice is mini-batch gradient descent, where network

parameters are updated for every mini-batch of training examples, each of size n. In mini-batch

gradient descent the update rule at each step is given by:

θ = θ − η∇θL(θ;x(i:i+n); y(i:i+n)) (2.8)

Mini-batch updates have been shown to have several advantages over batch gradient descent,

where the entire training set is used for each update (i.e. one update per epoch), and stochastic

gradient descent where parameters are updated for each training example. One such advantage is

more stable convergence due to a reduced variance with respect to parameter updates. Moreover,

it is believed that using mini-batches helps to avoid getting stuck in local optima, and makes use

of highly optimized matrix optimizations making computation more efficient. However, there are

several challenges to this approach as previously mentioned including initial learning rate selection,

learning rate scheduling, and difficulty getting out of saddle points (i.e. points where one dimension

slopes up and another slopes down). To address these challenges, several modifications to mini-batch

gradient descent have been proposed. For the remainder of this section it will be assumed that

mini-batches are being used, so the notation L(θ;x(i:i+n); y(i:i+n)) will be shortened to L(θ). It

should be noted that, in practice, the term stochastic gradient descent (SGD) is commonly used in

place of mini-batch gradient descent, even though the formal definition of SGD includes updates
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after each example. In the remainder of this section, SGD and mini-batch gradient descent will be

used interchangeably.

Momentum

As previously noted, one issue with SGD is navigating portions of the optimization landscape where

the surface curves more steeply in one direction than another. These areas, which are local optima,

cause SGD to oscillate across the slopes, resulting in a very slow progression towards the local

optima. The primary job of momentum [207] is to accelerate SGD in the direction of greatest

benefit, and to dampen oscillations. This modification to SGD, which is shown in Figure 2.3, is

akin to taking an exponentially weighted moving average and is accomplished as follows: at time

step t, momentum takes a portion γ of the previous update at time step t− 1 and adds it to the

current update. In practice, γ is usually set to ≈ 0.9 and η is the learning rate as in SGD.

Figure 2.3: SGD without momentum (left), and with momentum (right). The ellipses represent
the error surface. Figures adapted from [190].

vt = γvt−1 + η∇θL(θ)

θ = θ − vt

(2.9)

The concept of momentum can be thought of as rolling a ball down a hill. The ball will accelerate in

the direction of steepest decline, picking up speed until a terminal velocity is reached. A commonly

used modification to SGD with momentum is Nesterov accelerated gradient (NAG) [158]. NAG

can be thought of as a way to empower the momentum term with knowledge of what’s coming up,

in order to better accommodate changes in direction. The term θ − γvt−1 is used to provide an

approximation of where the updates are going. This provides a pseudo “look ahead” capability,

and calculates the gradient with respect to the approximate future position of the parameters as

opposed to the current parameters θ. A NAG update is defined as follows:

vt = γvt−1 + η∇θL(θ − γvt−1)

θ = θ − vt

(2.10)
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RMSProp

The core contribution of RMSProp is to compute adaptive learning rates for each parameter to

allow for variable size updates depending on parameter importance. It was first introduced in a

lecture by Geoff Hinton [81], and remains unpublished to this day. RMSProp is a very popular

flavor of mini-batch gradient descent due to its simplicity and effectiveness in practice. Moreover,

RMSProp solves problems inherent to other adaptive learning rate methods such as Adagrad [53],

which will not be discussed in this section, namely rapidly diminishing learning rates. At each

iteration of RMSProp, the learning rate is divided by an exponentially decaying average of squared

gradients.

E[g2t ] = 0.9E[g2]t−1 + 0.1g2t

θt+1 = θt −
η√

E[g2]t + ϵ
gt

(2.11)

Adam

Like RMSProp, Adaptive Moment Estimation (Adam) proposed by D. Kingma and J. Ba in [116]

is also a flavor of mini-batch gradient descent that computes adaptive learning rates for each

parameter. Adam stores an exponentially decaying average of past gradients mt in addition to an

exponentially decaying average of past squared gradients vt which are defined as follows:

mt = β1mt−1 + (1 − β1)gt

vt = β2vt−1 + (1 − β2)g2t

(2.12)

As seen from these definitions, the terms mt and vt are essentially estimates of the mean and

variance of the gradients. In order to correct for some biases related to the initialization of mt and

vt, as well as choice of β1 and β2, Kingma and Ba introduced the following corrections, which are

used in place of the original mean and variance estimates:

m̂t =
mt

1 − βt
1

v̂t =
vt

1 − βt
2

(2.13)

These modified estimates are then used to construct a final update rule:

θt+1 = θt −
η√

v̂t + ϵ
(2.14)

The authors propose values of 0.9, 0.999 and 10−8 for β1, β2 and ϵ respectively.
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2.3 ℓ1 and ℓ2 Regularization

Regularization is a technique which was introduced in part as a way to obtain results for ill-posed

problems, and is commonly used in ML to prevent overfitting [163]. Regularization theory is a

broad area of research with an extensive history, but only a small subset of the field will be discussed

here, namely ℓ1 and ℓ2 [168, 155, 39] regularization, as they are highly relevant to the work which

will be presented in Chapter 5. The terms ℓ1 and ℓ2 regularization come from that fact that they

are based on the ℓ1 and ℓ2 norms respectively, which are both specific instances of the more general

ℓp norm. Let x = [x1, ..., xn], then:

ℓp = ||x||p = (

n∑
i=1

|xi|p)

1
p

Therefore

ℓ1 = ||x||1 =

n∑
i=1

|xi| = |x1| + |x2| + · · · + |xn|

and

ℓ2 = ||x||2 =

√√√√ n∑
i=1

|xi|2 =
√

x2
1 + x2

2 + · · · + x2
n

Both ℓ1 and ℓ2 regularization work by adding a penalty term to a model’s objective function as

follows: Let J be the model’s overall objective, L be the loss function, and w be a weight matrix.

For mathematical convenience, when applying ℓ2 regularization the square root is removed, which

does not change the optimization as the result is still monotonic increasing. The new objective

function is now:

(ℓ1) J =
1

N

N∑
i=k

Li + λ||w||1

(ℓ2) J =
1

N

N∑
k=1

Li + λ||w||22

While ℓ1 and ℓ2 regularization both serve to control complexity, ℓ1 will encourage network

parameters (i.e., weights and biases) to be pushed to zero, whereas ℓ2 will encourage small values,

but will rarely push them to 0. This behavior can be inferred from Figure 2.4 which shows a plot

of model loss (in red), represented in 2D for the purpose of illustration, along with the ℓ1 and

ℓ2 constraint functions respectively. The objective of this optimization is to minimize the loss

while respecting the regularization constraint. In the case of ℓ1 the constraint is represented by a

diamond. It can be seen from Figure 2.4 that the contours of the loss function will often intersect

the the ℓ1 constraint region at an axis, which results in the corresponding parameter being pushed

to 0 (either W1 or W2 in this example). In a high dimensional space, as is common in practical
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DNNs, many parameters can equal zero simultaneously. It follows that ℓ1 regularization is better

suited to tasks where parameter reduction is desirable since it can remove parameters all together.

ℓ2 on the other hand, is an effective regularization method where model parameter contributions

are effectively regulated, but almost never removed completely.

Figure 2.4: ℓ1 (left) and ℓ2 (right) regularization. For visualization purposes only two network
parameters are assumed, W1 and W2. The model loss is represented by the red ellipses, with the ℓ1
and ℓ2 constraint functions centered at the origin. Figure taken from [?].

2.4 Additional Neural Network Architectures

In this section, the primary architectures used throughout this work will be discussed. While low

level details are not elaborated on, the base architectures discussed herein are foundational within

DL and are discussed in great detail in many DL texts, such as [72].

2.4.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a family of neural networks designed for processing

sequential data (i.e., sequences of values x1, x2, ..., xn, where each xt is an input vector for time

step t). A key concept which make RNNs a powerful architecture for sequence problems is internal

memory, which allows RNNs to “remember” what it deems important about its input which can

then be used to predict what’s coming next. The input to a RNN at time step t includes both

the input xt, and the previous state of the network ht, referred to as the “hidden state”, therefore

ht+1 = f(θhhht, θxhxt+1). The previous equation, representing a single time step t in a vanilla

RNN, illustrates the recurrence relation responsible for giving the RNN its “R.”. Consider the
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classical form of a dynamical system, which has the same form as that of a single RNN step:

st = f(st−1; θ) (2.15)

This definition is recurrent because the definition of the state of the network s at time t includes

the previous state st−1, and a RNN can be “unfolded” by repeatedly applying this definition.

For example, with t = 3 Equation 2.15 becomes s3 = f(s2; θ) = f(f(s1; θ); θ). Unfolding the

equation like this yields an expression that does not involve recurrence, and can be represented by

a traditional acyclic computational graph as can be seen in the unrolled RNN cell shown in Figure

2.5. Unrolling a RNN is meant to provide a better view into how the architecture works, and can be

used under the hood by DL frameworks such as pytorch [169] when constructing computation graph

representations of a network. The unrolled view of the network also serves to show how RNNs

handle sequential inputs, and inputs of different lengths, by taking advantage of parameter sharing

over different parts of the network. That is, an unrolled RNN has a step t for each element i in the

input sequence, and each step t shares the same weights (U, V and W in Figure 2.5). RNNs are

Figure 2.5: Unrolling a RNN cell (image borrowed from [159]).

very versatile and can be successfully applied to many diverse problems involving sequential inputs

and / or outputs as eluded to by Figure 2.6. The first sub-figure shows the high level flow of a vanilla

FFNN (i.e., one-to-one). The remaining figures show common RNN setups including one-to-many,

which is used for problems like image captioning; many-to-one, such as in text classification; and

many-to-many as is standard in machine translation and natural language generation.

There are several key issues associated with vanilla RNNs. First, they do not deal well with

long term dependencies, i.e., cases where the input is long, and the correct output prediction is

dependant on information contained early on in the sequence. Second, RNNs are known to have

issues with “exploding” and “vanishing” gradients, which can result from performing a large number

of multiplication operations with very small values when back propagating through the unrolled

RNN. In practice, the vanilla RNN is typically replaced by a variant of Long Short-Term Memory
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Figure 2.6: FFNN flow (one-to-one) compared to RNN variations: one-to-many, where a single
input is used to generate a sequence output (i.e., decoder only); many-to-one, where the input is
a sequence and the output is a single prediction (e.g., binary text classification); many-to-many,
where the input and output are both sequences.

Networks (LSTM), which were introduced in part to deal with the before mentioned issues.

Long Sort-Term Memory

LSTMs [86, 192, 229] were introduced in the 1990s and are arguably the most popular, and versatile

flavor of RNN. In a LSTM, the single RNN recurrent layer is replaced with four layers that interact

with each other. The key to LSTMs is cell state and gating mechanisms, which serve to regulate

the amount of old information left in, and new information let in. To manage the cell state

contribution from past steps, the LSTM employ a forget gate ft, whose job is to regulate the

amount of information from step t − 1 which is retained in step t. Equipped with the before

mentioned gating mechanisms, the cell state can be updated in the following sequential steps: first,

the input gate it decides how much information should be updated which is subsequently passed

though a hyperbolic tangent activation (tanh) that outputs new candidate values C̃t which can be

added to the cell state. Next, the new cell state Ct is defined as the combination of the old cell

state Ct−1, regulated by the forget gate ft, and the new candidate state values C̃t. Finally, the new

cell state is put through another tanh activation to scale the values to [−1, 1], and the output gate

ot is used to regulate what information is passed on (ht). Under the hood, each “gate” is a separate

layer with its own set of parameters W and b, and activation, as can be seen from Equation 2.16. A

gate activation is typically a sigmoid function, which “squashes” its input to a value ∈ [0, 1]. This
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has the intuitive interpretation of a gate which allows a proportion of the input through.

ft = g(Wf [ht−1, xt] + bf )

it = g(Wi[ht−1, xt] + bi)

C̃ = tanh(WC [ht−1, xt] + bC)

Ct = ftCt−1 + itC̃t

ot = g(Wo[ht−1, xt] + bo)

ht = ottanh(Ct)

(2.16)

An example of a generic LSTM cell is shown in figure 2.7. LSTMs are the primary RNN architecture

utilized in Chapter 3, and are leveraged for the task of creating embedded representations of clinical

events, as well as for clinical predictive modeling. LSTMs are also employed as an event detection

method in Chapter 4, where the input consists of multiple channels of time series sensor data

collected from overnight sleep studies, and the output is the location of events, and corresponding

event type.

Figure 2.7: Anatomy of an LSTM cell. In this figure the arrow passing through the top portion
of the cell represents the cell state from step t− 1 to step t where i(t), f(t) and o(t) are the input,
forget and output gates respectively. Figure borrowed from [229]
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Figure 2.8: 2D CNN for image classification (figure borrowed from [142]).

2.4.2 Convolutional Neural Networks

The first work on modern convolutional neural networks (CNNs) was arguably contributed by

Lecun et al in the 1990s [131]. CNNs were introduced in the context of image recognition, and

served to improve upon well known shortcomings of densely connected, FFNN applied to images.

FFNNs can be an appropriate choice for tasks where the input data consists of examples which

all have the same set of predefined features such as with tabular data. While it’s quite possible

that the patterns hidden within data of this type contain feature interactions, there is no inherent

feature interaction structure which is assumed a priori. In contrast, images do have structure which

is known a priori, and which can be exploited. Furthermore, consider a typical CV task where the

inputs consist of n× n images where n can realistically be 256, 512, or much larger in the case of

high resolution. The resulting input dimensionality of a traditional FFNN can easily surpass 1M in

this case, making training infeasible, if not intractable.

CNNs are essentially a specialized neural network variant for processing data that has a known

grid-like topology [72]. CNNs, and 1D CNNs in particular, are the primary architecture employed

in Chapter 4 for the task of event prediction from multi-channel sensor data. The most common use

of CNNs is within the domain of computer vision where inputs are commonly images represented

by a 2D grid of pixel intensities, as illustrated in Figure 2.8. CNNs can also accommodate 3D

inputs, which are employed for tasks such as semantic segmentation [35], and image classification

in medical imaging domains such as radiology. Figure 2.9 shows an example of a 3D CNN used for

the medical imaging task of CT-based parametric response mapping for classifying COPD. CNNs

have also been successfully applied to time-series problems, where data can be thought of as a 1D

grid where samples are taken at evenly spaced time intervals as shown in Figure 2.10.

The architecture of a CNN was meant to mimic connectivity patterns found in the brain, and

was inspired by the primate visual cortex [97, 66]. Individual neurons in a CNN respond to stimuli
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Figure 2.9: A 3D-CNN model with CT-based parametric response mapping for classifying COPD.
Figure taken from [84]

Figure 2.10: A 1D CNN for time series classification. Image taken from [145]

only in a restricted region of the visual field known as the “receptive field.” A CNN differs from a

FFNN in that it can capture spatial dependencies in an input. This is accomplished via the primary

building blocks of CNNs: convolutional layers and pooling layers. CNNs, and CNNs augmented

with residual connections, a concept which will be introduced in Section 2.4.3, will be leveraged

extensively in Chapter 4.

Convolutional Layers

The convolutional layer [4, 166] is arguably the core building block of a CNN, which comprises

a set of relatively small, learnable filters (or kernels, or neurons). For example, a common 2D

convolutional filter size is 3 × 3 × d, where d is the depth of the corresponding input. In the 2D

case, during the forward pass, each filter is applied across (i.e., slid over) the width and height of

the input volume, computing the dot product at each position, thereby producing a 2D activation

map with respect to each filter. In other words, each filter is slid over the input from left-to-right,
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top-to-bottom, performing a computation between the filter and the input at each position. The

output is a 3-dimentional “convolutional volume” of activation maps with a depth d = n, where n

is the number of filters in the corresponding layer. During training, a CNN learns features that

respond to a particular type of stimuli at some spatial position in the input (e.g., edge detection).

Convolution in CNNs constrains the network connections such that they innately capture a property

known as translational invariance [132], which is essentially the idea that an object can slide around

an image while maintaining its identity.

Pooling

Pooling is essentially a kind of non-linear down-sampling that comes in many flavors [228, 162].

While there are many choices of pooling function which can be used in a pooling layer, the commonly

used max-pool function will be used in this section for the purpose of illustration. Max-pooling

function is one of the most popular pooling choices, and works by simply partitioning an input

volume into a set of continuous rectangular regions, and calculating the maximum value with respect

to each. The key idea in pooling is that the approximate location of a feature with respect to other

features is more important that the exact location of the feature itself. Another job of pooling

layers is to progressively reduce the spatial size of the overall representation, which serves to reduce

parameters. A max-pool operation only passes on one value for each n×m region, which translates

to a large parameter reduction. Moreover, pooling regions do not commonly overlap, which also

contributes to the parameter reduction. That is, if each pooling filter is n× n, then the stride will

commonly be n as well. For example, a common choice for filter size in a max-pool is 2 × 2, which

is illustrated in Figure 2.11. It can be seen from Figure 2.11 that a max-pool layer with a 2 × 2

filter and a stride of 2 will effectively discard 75% of the original input. Parameter reduction also

translates to a lower computational overhead, as well as less model complexity, thereby helping to

control overfitting. Pooling layers are commonly inserted between successive convolutional layers. A

typical “convolutional block” often includes stacks of a(l) = g(pool(conv(a(l−1))) operations, where

g is a nonlinearity such as ReLU, and a is a convolutional volume. Pooling contributes to local

translation invariance, and commonly operates independently on every slice of the input.

Key Characteristics of a CNN

The following key characteristic of CNNs differentiate them from traditional FFNNs, and make

them better suited to inputs such as images:

• Feature Learning: The input to a CNN is a grid of values which rarely represent hand

engineered features. This is in contrast to FFNNs which commonly use the same set of
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Figure 2.11: A max-pooling layer with 2 × 2 filter and stride of 2 (image taken from [42]). Each
2×2 colored section on the left corresponds to a portion of the input which is being max-pooled. The
right-hand-side shows the output from max-pooling, where each position represents the maximum
value of its corresponding section from the left-land-side.

features for each input example, such as with tabular data. Each convolutional filter is a

learnable feature with weights that are updated during network optimization.

• Local Connectivity and Parameter Sharing: High-dimensional data, such as images,

are ill-suited to traditional FFNNs which employ dense connections, making them very

computationally expensive given such inputs. Moreover, an architecture which connects each

neuron (i.e., filter) in layer l to all neurons in layer l+ 1 is impractical because it does not take

into account the spatial structure of the input data. CNNs exploit spatially local correlation

by enforcing a sparse local connectivity pattern between neurons of adjacent layers. That is,

each neuron, or filter, is connected to only a small region of the input volume, and the same

filter weights are shared by all local regions of the input as the filter is convolved, or slid over

the entire input to generate an output activation map.

2.4.3 Residual Networks

It seems reasonable to assume that increasing the depth of a DNN will yield better performance.

In theory, one can construct a very deep network without loss of performance by simple adding

more complexity control via mechanisms such as regularization. In practice however, one of the key

issues with increasing the depth of DNNs is that at some point the performance starts degrade,

regardless of regularization or others means of controlling model complexity. Residual connections

were first introduced in the domain of CV to address this issue, and have been shown empirically to

help increase performance of very deep networks [78, 193, 137]. A DNN with residual connections is
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known as a residual network or “ResNet.” The residual, or “skip” connection allow for information

from a previous layer to be combined with the output of a subsequent layer, which results in a more

resilient, and robust network. It can be seen from the FFNN description given in Section 2.1.2,

that for information to flow from layer l − 2 to layer l it must pass through layer l − 1. That is:

a(l) = g(z(l)) = g(θ(l)a(l−1) + b(l)) = g(θ(l)(g(z(l−1)) + b(l)) = g(θ(l)(g(θ(l−1)a(l−2) + b(l−1)) + b(l))

Residual connections are sometimes referred to as “short-cut” connections since they allow an

output activation a(l−2) from layer l − 2, to be combined with the output activation a(l) from layer

l as shown in Figure 2.12. That is, in a residual layer l, the output is a linear combination of the

Figure 2.12: Example of the flow of information in a residual connection. Image taken from [78]

output activation from layer l, and the output activation from layer l − 2.

al = g(z(l) + a(l−2)) = g(θ(l)a(l−1) + b(l) + a(l−2))

An intuitive explanation for why residual connections allow for increased depth without decreased

performance is as follows: A DNN with residual connections can essentially learn the identity

function (i.e., g(x) = x) for all layers beyond a certain depth if they do not benefit to the overall

network objective. That is, past a certain depth the additional layers may not help the objective, so

the network can simply pass the information forward from that point unchanged without effecting

performance. This is a powerful addition to a DNN as it eliminates some of the need to search for

an optimal depth up front, which can be costly and time consuming. ResNets in practice have been

scaled to extreme depths without the potential for degraded performance, which can be beneficial

in many cases [220]. An example of ResNet50, a moderately deep ResNet variant, is shown in

Figure 2.13.
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Figure 2.13: ResNet50 architecture applied to brain tumor classification (image taken from [112])

2.5 Attention in Neural Networks

Attention in DNNs [27] is a very important concept, and has been integrated into many modern

DNN architectures including attention augmented RNNs [7, 165], and Transformers networks [211]

which will be introduced in Section 2.6. Attention in DNNs is a general concept meant to mimic

cognitive attention by quantifying the idea of “importance” of an input. Attention in DNNs provides

the network with a way to focus on certain subsections of the input, while diminishing others.

Attention mechanisms can be added to a range of DNN architectures, and vary in complexity from

a simple dot product, to a composition of simple functions, to a full DNN tasked with outputting

attention scores. While attention mechanisms vary in complexity, their objective is to quantify

the similarity between a set of entities (typically two), which is used as a proxy for the idea of

importance. While attention has been integrated into most modern DNN architecture, we will

focus the remainder of this section on seq2seq attention and self-attention, which are the flavors of

attention most relevant to Chapter 3, and Chapter 5 respectively.

2.5.1 Seq2Seq Attention

Attention was first introduced within the domain of machine translation (MT). In Bahdanau et

al., MT is posed as a sequence-to-sequence (seq2seq) task where the base architecture used for

modelling is a RNN augmented with attention (seq2seq attention) [7, 174, 37]. Seq2seq attention

is also one of the primary methods by which semantic relationships are encoded into vectorized

representations of medical events in Chapter 3. While MT is not the only use case for seq2seq

attention, it is an effective way to illustrate the concept, and will be used for the remainder of this

section. However, in order to introduce seq2seq attention, we must first introduce seq2seq models.

Seq2seq models, in the space of DL, simply refer to DNNs which receive sequential inputs,

and produce sequential outputs. For example, in the MT setting, the input and output represent
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the same chunk of text in different languages. A key insight from Bahdanau et al. is that

seq2seq modelling becomes more difficult as inputs get longer. One intuitive reason for this is

that traditionally, the decoder side of the network, which is the side responsible for generating

the output, only had access to a single, globally encoded representation of the input at the start

of decoding. That is, the network would encode an input sequence into a fixed length vectorized

representation, which is in-turn used to start the decoding process. After the first step, the decoder

only has access to the previous hidden state at each subsequent step with no memory of the original

inputs. Seq2seq attention in RNNs was introduced to address this issue by providing the decoder

with a way utilize the inputs during each decoder step, via a weighted combination of the input

states. In other words, the decoder has access to the entire input sequence at each decoding step,

and can use the seq2seq attention mechanism to focus more attention on elements from the input

which are most relevant with respect to the current decoder step.

It is our opinion, although shared by many in the ML community, that seq2seq attention more

closely resembles the way that a human would perform a seq2seq task. Consider the MT case,

a human translating a long piece of text would likely reference back to the input many times

while performing the translation as opposed to simply reading the input, and then translating it

accurately without a second glance. The basic idea is as follows: at each decoder step t, we calculate

the “relevance” (also referred to as importance, or compatibility) between the decoder hidden

state (discussed in Section 2.4.1), and each of the encoder states (i.e., encoded representations of

each position). That is, for encoder states s1, ..., sn, and decoder (hidden) state ht = f(xt, ht−1),

we calculate a score(ht, sk) which represents how relevant token k is at decoder step t. Note, as

mentioned previously, score can be a range of functions that infer similarity or “importance.” These

scores are then normalized by passing them though a softmax activation:

a
(t)
k =

escore(ht,sk)∑n
i=1 e

score(ht,si)
∀k ∈ [1, ..., n]

The attention weighted input context for decoder step t can now be given by:

c(t) = a
(t)
1 s

(t)
1 + · · · + a(t)n s(t)n =

n∑
k=1

a
(t)sk
k

Seq2seq attention in a MT system is shown in Figure 2.14.

A good way to visualize the concept of attention in a seq2seq model is via the problem of

text alignment. Alignment, which is generally defined as the task of finding lexicon translation

equivalents from a parallel corpus, is a fundamental problem in NLP [19]. While alignment is

useful in many scenarios, we will stick with the ongoing example of MT to illustrate this concept.

Consider a single sentence, or section of text in two languages A and B. Depending on the languages,
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Figure 2.14: An attention mechanism in a seq2seq style RNN used for machine translation. At
each decoder step t, the network calculates an attention score for each input with respect to the
current output, and creates an attention weighted combination of the inputs in order to make a
better prediction (figure taken from [7]).

there are several common scenarios that can arise: first, the individual tokens that make up the

input statement in language A do not line up exactly (i.e., word for word) with their counterpart

tokens in language B; second, there are multiple tokens in one of the languages which are needed

to represent a single token in the other, therefore a single token in language A could be highly

important to several tokens in language B. Since attention allows for inputs to be re-weighted by

importance with respect to each time step, it can be very effective in reducing poor alignment by

putting more weight on a position, or positions in the input which correspond to the current output

position. The problem of alignment in MT is visualized in Figure 2.15.

2.5.2 Self-Attention

Self-attention is one of the primary building blocks of the Transformer architecture, which will

be introduced in Section 2.6 and is arguably the most important architecture in modern NLP. A

primary focus of Chapter 5 is to take Transformers, which have been so successful in NLP, and

apply them within the domain of CV.

Consider the following example: “The duck did not swim across the pond because it was too

tired”. In this example, how does one know that “it” is referring to the duck and not the pond?

While this is a trivial task for a human, to a DNN the differentiation is not so straight forward.

Self-attention is a flavor of general attention which aims to address this problem by creating a

representation of each element of an input sequence as a weighted combination of all the other
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Figure 2.15: The attention map shown text alignment between the same input sentence in two
languages (taken from [7]).

elements. That is, as each position in a sequence is processed by the network, self-attention allows

the network to look at all other positions in the input sequence for clues that can help lead to a

better encoding for this word. The way that this is accomplished in practice is by projecting each

element of the input sequence to three vectors denoted as q (query), k (key), and v (value). These

vectors are created by multiplying the embedded representation of each input position by three

projection matrices that are learned as part of the overall network optimization. The next step is

to calculate a score which determines how much focus to place on other parts of the input sequence

in order to encode a given position. The score can be calculated by any appropriate compatibility

function, as previously discussed in Section 2.5.1, but is traditionally calculated by a simple dot

product of the query vector with the key vector of the respective input being scored. That is, for

processing self-attention scores for the input at position i in a sequence of length n where i < n,

the scores would be < qi, k1 >,< qi, k2 >, ..., < qi, kn >. These scores are then normalized by

passing them through a softmax function and used to weigh the value vectors, which are then

aggregated to create a final representation of the input at position i. The flow of an input X

through a self-attention layer is shown in Figure 2.16 and the output from a self-attention layer

with respect to a single input from our original example is shown in Figure 2.17..
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Figure 2.16: A transformer self-attention layer (left) employs three projection matrices which all
act on the same input X. The resulting projections Q, K and V are then used to calculate attention
weights, which serve to create a representation of each input position based on it’s relevance with
respect to every input position in the sequence. The right shows the structure of a multi-headed
attention layer which applies h separate attention projections to the same input in parallel, and
aggregates the outputs (images from [211]).

Figure 2.17: The idea of self-attention is to represent each input word (“it” in this example) as a
weighted combination of all input words. It can be seen from this example that “the,” “monkey”
and “banana” are given more importance with respect to the word “it.” Higher weighted tokens are
deemed more relevant to the token in question and appear darker in this figure, taken from [223]
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2.6 Transformer Networks

At its core, a Transformer is a DNN used for processing sequential data. Transformer networks

[211], which are the core architecture used in Chapter 5, have seen a great deal of success in

recent years across a range of tasks in NLP, as well as other domains with tasks having sequential

inputs [138, 114]. Transformers have been noted to have several advantages over RNN based

models including their ability to better handle long-term dependencies, thereby allowing for longer

input sequences without degraded performance. Moreover, the Transformer does not rely on a

recurrence relationship, so the architecture is easily parallelalizable which allows for distributed

computation, in particular, GPU accelerated training. One key innovation of Transformer networks

which contribute to their ability to better handle long-term dependencies is that they take in an

entire sequence simultaneously, as opposed to the step-by-step processing done by RNNs. This

is aided by self-attention, which was introduced in Section 2.5.2, and positional encoding, which

supplements the embedded representation of each input position with information related to its

relative position within the sequence.

Originally introduced in the domain of seq2seq, in particular neural machine translation (NMT),

transformers have produced SOTA results across a range of tasks including question answering,

summarization, natural language understanding and natural language generation. Since transformer

networks were originally introduced to solve problems in the space of seq2seq they were proposed

with the encoder-decoder style architecture shown in Figure 2.18. However, the Transformer encoder

or decoder can be used as a stand alone architecture, and commonly is, in many applications which

will be further discussed below.

While the original Transformer paper showcased an encoder-decoder style architecture, the

encoder or decoder network can be used as a stand-alone architecture to learn general, as well as

task specific representations of sequential inputs which can then be applied to a range of downstream

tasks. A key difference between a Transformer encoder and decoder is in the self-attention layers.

In a Transformer encoder, the network is provided access to the entire sequence up front, and can

therefore attend to elements on the left or the right of a given element at position i. Self-attention

which can look to the left and the right is referred to a “bi-directional” attention. On the other

hand, a Transformer decoder is only given the partial sequence up to the element at the current

position i, and can therefore only attend to elements to the left. For example, in NMT the encoder

is given the entire sequence of text in language A and creates an encoded representation, but the

decoder will generate the output in language B one token at a time.

Transformers, like many DNN architectures, are very versatile and model adaptation can be
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Figure 2.18: Transformer encoder-decoder architecture. This encoder-decoder architecture was
proposed in the original Transformer work within the context of machine translation. Image is
taken from [211].

done by simply adding task specific “heads” (i.e., sets of supplemental, task-specific layers) to the

end of the base Transformer. For example, to construct a document classifier, we could leverage

a generally pretrained Transformer encoder and feed the output representation through a set of

m additional, task-specific layers, the last of which would output a vector of C class probabilities,

where C represents the number of possible document classes. The approach of adapting a pretrained

Transformer to a new task became widely popular within the NLP community after the introduction

of Bidirectional Encoder Representations from Transformers (BERT) [48]. The original BERT

model was pretrained on the multi-task objective of masked language modelling (MLM), and next-

sentence prediction. The “bi-directional” part of BERT refers to the fact that the architecture is a

Transformer encoder. Therefore each self-attention layer can attend to context to the left and the
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right as shown in Figure 2.19. As previously mentioned, the decoder portion of an encoder-decoder

Figure 2.19: BERT encoder only style architecture (image taken from [48]). Attention in this
case is bi-directional so can attend to position to the left and the right.

style Transformer can also be leveraged as a stand-alone architecture. The pretraining objective

in this case is typically the autoregressive task of next token prediction. Arguably the most well

known example of autoregressive transformers is the Generative Pretrained Transformer (GPT)

family of models, which includes GPT-2 [179] and GPT-3 [20]. Autoregressive Transformers have

been leveraged with a great degree of success within NLG (e.g., chatbots, dialog systems and digital

assistants). An example of a Transformer decoder-only block is shown in Figure 2.20.

As previously mentioned, the key difference between a Transformer encoder and decoder based

architecture is their respective self-attention layers. The encoder self-attention is bi-directional, and

can attend to the left and right since the entire input is accessible by the network. The decoder, on

the other hand, is responsible for generating new tokens, and can therefore only see tokens to the

left of the current position as tokens to the right have not yet been generated.
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Figure 2.20: GPT2 style decoder only architecture (image taken from [48]). The GPT family of
models are autoregressive with a next token prediction objective. Attention is not bi-directional in
this case as only inputs to the left can be attended.

2.7 Transfer Learning and Robust Pretraining

A big problem in training DNNs is that they are complex models with a large number of parameters,

and can therefore take a huge amount of data to train. Since large amounts of task-specific training

data is not always available, we need ways to achieve good performance with less. In recent

years it has become increasingly popular to leverage large, pretrained models in order to achieve

better performance across many diverse tasks, and often with a shortage of task-specific examples

[20, 134, 6]. This practice, commonly referred to as fine-tuning, works because of concepts from

transfer learning. At a high level, transfer learning is the idea that the knowledge gained by learning

an initial task A can aid in the more effective, and efficient learning of a new task B. This makes

sense intuitively as it more closely resembles the way that humans learn. For example, think about

learning to stand, and then learning to hop on one leg. Through the process of learning to stand,

which is a very general task, we gain knowledge of necessary and fundamental skills such as balance,

which making the process of learning to hop on one leg, a task which also requires balance, that

much easier. The concept of leveraging a pretrained model to better perform a new task will be

a primary focus of Chapter 5, in which large, pretrained DNNs are adapted to new tasks in an

efficient manner, where very few parameters are updated during training. Transfer learning is also

showcased in Chapter 3, where embeddings are learned from clinical event codes, and the resulting

embeddings are used to train a clinical predictive model.

An ideal scenario in ML is that an abundance of labeled training instances not only exists, but
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is accessible and has the same distribution as the test data. In practice however, collecting sufficient

training data can be expensive, time-consuming, or even unrealistic in many scenarios [234]. The

lack of adequate training data is particularly prevalent in healthcare, where data is notoriously

scarce due to the rarity of relevant examples, and the cost associated with data collection. The

basic flow of transfer learning versus traditional supervised ML is show in Figure 2.21.

Figure 2.21: A comparison of traditional ML and transfer learning [167]
.

2.7.1 Formal Definition

A formal definition of transfer learning was provided in [167], which involves the concepts of domains

and tasks as follows:

A domain D consists of a feature space X and a marginal probability distribution P (X)

over the feature space, where X = x1, ..., xn ∈ X . Given a domain D = {X , P (X)}, a

task T consists of a label space Y and a conditional probability distribution P (Y|X)

that is typically learned from training data consisting of (x, y) pairs, where xi ∈ X and

yi ∈ Y. Given a source domain DS and source task TS , as well as a target domain DT

and a target task TT , the objective of transfer learning is to enable the learning of the

target conditional distribution PT (YT|XT) in DT with the information gained from

DS and TS , where DS ̸= DT or TS ̸= TT .

Given the preceding definition of transfer learning there are four key scenarios that arise:

1. P (YS |XS) ̸= P (YT |XT ). The conditional probability distributions of the source and target
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tasks are different. This is a very common scenario in practice and is often accommodated

via artificial balancing techniques such as over sampling, under sampling, or SMOTE [28].

Consider the task of classifying malignant tumors from MRIs. Positive examples in this case,

as in many healthcare problems, can be very scarce.

2. YS ̸= YT . The label spaces between the two tasks are different. Consider again the binary

classification problem of identifying malignant tumors from MRIs, and then a multi-class

classification problem where a severity 1 − 5 is assigned.

3. XS ≠ XT . The feature spaces of the source and target domain are different. An example of

this case is document classification where the documents are written in different languages.

4. P (XS) ̸= P (XT). The marginal probability distributions of source and target domain are

different (domain adaptation). For example, consider a collection of electronic health records

discussing different topics (e.g., diabetes and weight management, COPD and smoking, or

Alzheimer’s and Dementia).

2.7.2 Pretrained Language Models

Since the introduction of the Transformer [211], introduced in Section 2.6, we have witnessed huge

advances in the field of NLP. Such breakthroughs have been attributed in large part to leveraging

huge, pretrained, Transformer-based language models. It can be concluded that Transformers lend

themselves well to transfer learning strategies such as fine-tuning, which was not as common or

successful in NLP when the field was dominated by RNNs. In order for pretrained base models

to be robust and generalizable with respect to a range of diverse downstream applications, they

are typically trained in a self-supervised fashion using a large amount of general purpose data.

For example, a common pretraining task in NLP is masked language modelling (MLM) using

an immense, diverse corpus such as Wikipedia. In MLM a proportion of each input sequence

is hidden from the model (i.e., n input tokens are “masked”), and the objective is to correctly

predict the missing tokens. Another common pretraining task in NLP is predicting the next token

in a sequence in an autoregressive fashion. That is, the pretraining task in an autoregressive

language model is to simply predict the token at position i given the preceding n tokens (i.e.,

P (xi|xi−1, ..., xi−n)). Fine-tuning is not only effective in boosting model performance with respect

to task-specific applications, but also in better handling tasks that fall into the low-data regime,

where training data is scarce, which is a common scenario in healthcare.
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2.7.3 Robust Pretraining Strategies

While fully supervised pretraining is a popular strategy when labeled training data is available,

the base task used for knowledge transfer is not dependant on supervision (i.e., labels). That is,

with the abundance of general purpose, open source data available online it is common to train

highly effective base models in an self-supervised fashion when large scale labeled data is not

available. A well known example of self-supervised pretraining is contrastive representation learning

[216, 104, 76], where the goal of the resulting network is to effectively differentiate between positive

and negative examples. That is, the network is trained via an optimization objective where the goal

is to minimize the distance between embedded positive pairs of examples (xi, xj), and maximize

the distance otherwise. Contrastive loss is commonly defined as:

li,j = −log
esim(zi,zj)/τ∑2N

i=1 1k ̸=iesim(zi,zk)/τ

where temperature (τ) is a scalar, and sim is a similarity metric, such as cosine similarity given by:

sim(A,B) = cos(θ) =
A ·B

||A||||B||

Consider the domain of CV, where pretrained models have long been used as starting points for

task specific training. In this case, the input is an image, positive pairs are augmentations of

the original input with various augmentation strategies (e.g., rotation, cropping, distortion), and

negative examples are selected from a pool of candidate images which are not inherently related to

the original image. Another example of contrastive learning is in NLP, where examples are pairs of

input queries and their user selected retrieval results (i.e., click through pairs), obtained through

web logs. In this case positive pairs are given by the user, and negative pairs can be sampled from

a pool of seemingly unrelated candidates, as in the CV example.

It makes intuitive sense that negative examples that are “too different” from positive examples

would not help the model very much, since they are easy for the model to differentiate. As a result,

it’s wise to employ smart sampling techniques to extract negative examples that are more useful to

the models learning task. So called “hard” negative examples can be mined in an online fashion

(i.e., while the model is training) by using a similarity metric to calculate a score between the

current positive example and all of the examples in the negative pool, and then using this score as

a sampling probability, or by simply selecting from the top-k most similar negative examples. By

hard-negative mining, the model is able to learn to differentiate between true positive and negative

pairs much more effectively, and to generalize better to new data.

A popular contrastive pretraining method is momentum contrast [76]. The basic idea of

momentum contrast is to use contrastive learning, as described above, but to employ a memory
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bank in order to accumulate a larger pool of negative candidates to choose from, thereby allowing

the model to ideally select better negative examples at each iteration. The basic flow of momentum

contrast is shown in figure Figure 2.22.

Figure 2.22: Momentum contrast, as in contrastive learning in general, aims to maximize similarity
between positive pairs and minimize similarity between negative pairs (image from [76]).

To summarize, transfer learning is powerful and versatile in that it not only allows for knowledge

to be transferred across tasks, but across diverse domains. The idea of using knowledge gained

during the learning of one task, and applying that knowledge to another task makes intuitive sense

as it’s aligned with the way humans learn. Most tasks are related to other tasks in some way,

and exploiting such complimentary, overlapping knowledge seems naturally beneficial to efficient

learning.

2.7.4 Semi-Supervised and Multitask Learning

Several important areas of ML, including semi-supervised learning (SSL) and multi-task learning

(MTL), are highly related to transfer learning. Semi-supervised learning serves to bridge the gap

between supervised learning, where all instances are labeled, and self-supervised learning where no

labels are available. It’s common in practical SSL to have access to only a small number of labeled

examples, which are supplemented with a large set of unlabeled examples to use for model training.

SSL relaxes the dependence on labeled instances, and thus reduces the considerable expense of

labeling data. It should be noted that, in SSL, both labeled and unlabeled instances are drawn

from the same distribution. In contrast, in transfer learning, the data distributions of the source
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and the target domains are usually different [234].

MTL can be differentiated from transfer learning in that tasks are learned in parallel in the multi-

task setting as opposed to sequentially. That is, a set of tasks T1, ..., Tn are learned simultaneously

whereas in transfer learning, a model is first trained on task T1, and then fine-tuned on task

T2. MTL reinforces each task by taking advantage of the interconnections between task, and

averaging the noise across tasks which serves to aid in generalization. That is, MTL tends to add

a regularization effect by forcing the model to consider multiple tasks at the same time, instead

of focusing on a single task, which is related to the concept of implicit data augmentation. To

elaborate, implicit data augmentation refers to the fact that all tasks contain some degree of noise.

As tasks T1, ..., Tn will have different noise patterns, a model that learns these tasks simultaneously

should learn a more general representation. That is, learning a single task Ti in isolation runs the

risk of overfitting to task i, while learning tasks i and j together allows the model to average the

different noise patterns, yielding a more generalizable representation, and effectively increasing the

sample size used for model training. Other benefits of MTL include concepts such as eavesdropping,

wherein there exists a learned feature F , which is mutually beneficial to multiple tasks, say Ti and

Tj , but one of the tasks is harder to learn, say Tj . It follows that the model may not be able to learn

feature F if trained on Tj in isolation, but learning both tasks simultaneously allows for feature F

to be learned more easily, which in turn benefits both tasks. Another beneficial quality of MTL is

known as attention focusing [23], which can be summarized as follows: In cases where training data

is high-dimensional and scarce, it can be difficult for a model to differentiate between relevant and

irrelevant features. Attention focusing refers to the ability of MTL to prioritize relevant features by

collectively taking into account all tasks, each of which provides its own evidence for the relevance

of individual features.

We note that while the definition of MTL and transfer learning are not interchangeable, models

trained in a multi-task fashion are commonly used as base models for subsequent fine-tuning. One

of the most widely used examples of a base model trained with a multi-task objective is BERT,

which was pretrained using a dual-objective and was introduced in Section 2.6. The main difference

between transfer learning and MTL is that the former transfers knowledge contained in the related

domains, while the latter transfers knowledge by simultaneously learning multiple tasks. At the

end of the day, both transfer learning and MTL aim to improve the overall performance of a model

via knowledge transfer.
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2.8 Mixture of Experts

We introduce Mixture of Experts in this section as it motivated methods which will be showcased

in Chapter 5, although it was not leverage directly. Mixture of Experts (MoE) is a paradigm,

motivated by ensembling, which has existed in the ML community since the 1990s [101, 149, 95].

The general idea behind MoE is fairly straightforward: instead of using a single global model (e.g.,

DNN), or many local models (e.g., KNN), one can use several models of intermediate complexity

which are referred to as “experts.” This is advantageous if the input data comprises multiple regimes,

where each regime has a different relationship between input and output. Under such conditions,

each “expert” could learn to specialize in one regime, thereby achieving better performance across

the dataset versus a single global model tasked with learning a representation that can adequately

accommodate the full dataset.

One of the primary goals in MoE is encouraging the experts to specialize instead of cooperate

(i.e., focus on a regime instead of averaging across predictors as in a traditional ensemble)? If the

predictors are simply averaged, each expert is trying to compensate for the combined error made

by the rest of the group. The goal is to make each expert focus on predicting the right answer with

respect to cases where it is already doing better than the other experts.

A MoE layer, which can be a single block within a larger network, is composed of a set of n

“experts” E1, ..., En (e.g., n separate networks), and a gating network G ∈ Rn. The job of G is to

regulate the contribution of each of the experts with respect to the current input. Let Ei(x) and

G(x) be the output of the ith expert network and the gating network respectively. The output y of

the MoE layer can now be written as:

y =

N∑
i=1

G(x)iEi(x)

A simple gating function is softmax gating Gσ(x) = Softmax(x ·Wg), where the softmax function

is applied to the product of the input x and a trainable weight matrix Wg. Differentiating with

respect to the outputs of the experts yields a signal for training each expert, and differentiating

with respect to the outputs from the gating network provides a signal for training the gates. The

basic structure of an MoE layer is shown in Figure 2.23.

One of the first practical, and wide reaching examples of MoE in modern DL was through the

introduction of sparsely gated MoE by Shazeer et al. in 2017 [202]. A key contribution of this

work was in the sparsification of the gating network G, which allowed for the use of a very large

number of experts without the high computational overhead. The idea of sparsely gated MoE is

as follows: the output of G will be a sparse n-dimensional vector to save computation by only
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Figure 2.23: Mixture of Experts layer.

retaining k of the n experts, where k << n, at each iteration. In other words, ∀G(x)i = 0 the

corresponding expert Ei does not need to be computed. This is accomplished via a mechanism that

the authors refer to as “noisy top-k gating.” Noisy top-k gating adds two additional components to

basic softmax gating function defined above. First, before the softmax is applied, tunable Gaussian

noise is added. Second, only the top-k values are kept. All other values are set to −∞ which causes

the gate to zero them out. The gating function is now:

G(x) = Softmax(KeepTopK(H(x), k) where

H(x)i = (x ·Wg)i + StandardNormal() · Softplus((x ·Wnoise)i) and

KeepTopK(v, k)i =

vi if vi is in the top-k elements of v

−∞ otherwise

(2.17)

The sparsity condition is primarily a means to save computation, while the noise aids in load-

balancing. The latter will not be discussed here, but is elaborated on in detail in [202]. In addition

to introducing this modified gating network Shazeer et al. also identify the following phenomenon:

the gating network tends to converge to a state where it always produces large weights for the same

small subset of experts. This imbalance is self-reinforcing, as the favored experts are trained more

rapidly and thus are selected even more by the gating network. To accommodate this behavior

a penalty term Limportance is added to the overall objective, and serves to encourage importance
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equality across experts. Limportance is defines as:

Limportance = wimportance · CV (Importance(X))2 where

Importance(X) =
∑
x∈X

G(x)
(2.18)

MoE is an effective way to scale models and achieve better performance. However, increasing

model scale comes with its own set of challenges which need to be taken into account alongside

performance gains. Effective ways to make practical use of massive, modern DNNs is a theme which

is central to Chapter 5, for which Sparsely gated MoE served as motivation. More specifically,

the idea of over-parameterizing a network, and then reducing network parameters during training,

which is a central concept in Chapter 5, is related to reducing an initially huge number of candidate

“experts” to a more manageable, and practical subset.

2.9 Parameter Efficient Fine-Tuning

Transfer learning via fine-tuning a large, pretrained DNNs is a common, and highly effective

technique for adapting a model to a new task (i.e., model customization). Modern transfer learning

strategies have yielded SOTA results across a range of domains and tasks. As the best performing

pretrained models increase in size, as is the trend in DL, new issues become increasingly evident.

Some key issues related to model size include, but are not limited to, high storage overhead, high

GPU memory requirements, long training times, and the potential for catastrophic forgetting, where

beneficial knowledge can be lost as a result of sequentially training the same model on different

tasks [64].

One of the most useful lessons from transfer learning is that a single, generally pretrained DNN

can be adapted to perform many diverse, downstream tasks extremely well. However, adapting

and deploying a model of immense size in a real-world production system is not a trivial task.

With traditional fine-tuning, every parameter in the base model is updated during adaptation.

It follows that a full copy of the base model is required for each task adaptation, resulting in a

fine-tuned model variant for each task which is the same size as its base model counterpart. In

short, adapting a pretrained base model for n different tasks via traditional fine-tuning quickly

becomes prohibitively expensive as n gets large.

Parameter efficient fine-tuning (PEFT) is a methodology which has evolved alongside massive

pretrained DNNs in order to enable practical adaptation to downstream tasks. Some popular

methods of PEFT are Adapters [89], PrefixTuning [136], and Low-Rank Adaptation [93]. A key

concept in PEFT is that a large, pretrained model can be adapted to a new task by updating a
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small number of parameters compared to the overall network size. This idea of PEFT is in contrast

to full fine-tuning, wherein all network parameters are updated during adaptation. PEFT will be

elaborated on in Chapter 5, where the primary theme is parameter budget allocation during PEFT

or large vision models.

Adapters

Adapters, which were introduced by Houlsby et al. in 2019 [89], are one of the earliest practical

implementations of PEFT. In Adapters the base model is frozen, and only a small set of supplemental

parameters are updated to help the model adapt to a new task. Freezing, or “preserving” base

model parameters is a tactic which is commonly employed in PEFT. Supplemental parameters

are added to the base model by inserting trainable layers (adapter layers) between consecutive

base model layers at strategic points in a network. Although Adapters are a highly effective PEFT

method, their sequential application effectively increases the depth of the resulting network, which

can incur unwanted penalties such as increased latency. The basic anatomy of an Adapter layer is

shown in Figure 2.24.

Figure 2.24: Design of the adapter module (right) and placement within a transformer block
(left). Each adapter is inserted between two subsequent layers in the base model.
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Prefix Tuning

Prefix tuning was introduced withing the domain of NLP by Li et al. [136], and has become a

popular PEFT method in the last few years. In Prefix Tuning [136], the basic idea is that a language

model can better perform the task of generating an appropriate completion if it’s provided with

a context (prompt) which contains enough information to steer the model in the right direction.

Consider an example where the prompt is “the sky is” and the desired completion is “dark.” If the

model is fed this prompt as is, it will most likely yield fairly high likelihoods for multiple candidate

tokens including “blue,” “clear,” “cloudy” and others. Now, if the prompt was supplemented with

the prefix “At night” to make it “At night the sky is,” the likelihood of returning “dark” as the

next token becomes much higher. The concept of providing helpful hints to a language model

to help guide its behavior is the intuition behind prefix tuning. This concept can be made even

more efficient by adding trainable embeddings to only the first layer in the network, which was

demonstrated in [133], and can be leveraged to further reduce the number of trainable parameters.

The general idea of prefix tuning is illustrated in Figure 2.25.

Figure 2.25: In prefix tuning, a small number of learnable parameters are prepended to each
prompt. For the example of table-to-text, each example is fed into the model as prompt, which is
the linearlized representation of the table, followed by a special token to separate the prompt and
completion (i.e., [SEP]) in this example, followed by the completion, which is a natural language
description of the table. A similar input representation can be followed for other common tasks
such as translation, where the prompt is the statement in language A and the completion is the
statement in language B, or summarization, where the prompt and completion are the full text,
and the summarized version respectively.
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Low-Rank Adaptations

Low-Rank Adaptations (LoRA) [93] borrow from the layer structure introduced in Adapters, but

add several notable innovations.1 It can be seen from Figure 2.26 that LoRA layers are applied in

parallel, which allows for weights to be merged during inference thereby bypassing the increased

latency associated with adding depth to the network, which is a drawback of Adapters. Moreover,

LoRA layers can be thought of as factorizations of their base model counterparts, therefore LoRA

can be merged and unmerged with the base model via simple linear operations, which makes task

switching highly efficient in practice. That is, LoRA weights can be “folded” back into the base

model during inference, yielding a forward pass which is computationally identical to that of the

base model. As such, a single base model with many LoRA customization’s (i.e., n different task

specific applications), can efficiently switch between tasks with very low computational overhead.

Figure 2.26: In a LoRA layer, the input x is passed simultaneously through the LoRA layer and
the corresponding base model layer. The output signals are then combined into a single output
activation via component-wise addition.

LoRA is a simple, elegant, and highly effective approach to PEFT which was shown in [93] to

outperform other methods including Adapters, PrefixTuning, and full fine-tuning across several

common benchmark tasks in NLP. In short, LoRA is highly scalable, versatile, and can be employed

as a drop-in replacement for any dense layer in a DNN. It’s also worth noting that while this section

1The author of this thesis was also a co-author of the original LoRA paper, but the work was done as part of the
author’s work at Microsoft, and was not done in association with OHSU as part of this thesis.
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discusses LoRA in the context of dense DNN layers, this method can easily be extended to other

commonly used layers, such as 1D and 2D convolutions.
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Chapter 3

Learning Representations of Clinical

Events

3.1 Motivation

In many clinical modeling efforts, researchers are tasked with hand engineering features from the

medical histories of patients. Examples of such features can include type and/ or frequency of

visits, quantity and characteristics of prescriptions, proximity to care, and patient demographics.

While hand-engineered features can be used to create highly effective clinical models, the manual

process of creating meaningful representations of a patient’s medical history in this way is not

trivial, and requires a great deal of domain expertise. Moreover, creating features by aggregating

events will squander most of, if not all of the temporal information contained in the underlying

data. Hand engineering sequential features to preserve some temporal information, such as

surgeryA → prescriptionB, would require an exponentially large number of features including

many which could be irrelevant. The ability to automatically learn meaningful representations

from clinical data allows for complex relationships to be identified and leveraged, even those not

immediately apparent to a subject matter expert (SME).

In this chapter we propose methods to learn clinical event embeddings, which we define as dense,

vectorized representations of the standardized medical codes discussed in Section 3.2.1. In order to

learn such meaningful, and robust embeddings in an automated fashion we leverage techniques from

modern NLP, in particular neural language modeling1. We will show that embedded representations

from different clinical event domains including diagnosis, procedures and prescriptions, can be

learned jointly in order to infer semantic relationships within, as well as between domains. We

1The work in this chapter was previously published in [213]: P. Wallis, P. Danaee, Learning Semantic Relationships
from Medical Codes in AAAI Publications, as part of the Thirty-Second International FLAIRS Conference, Special
Track on Artificial Intelligence in Healthcare Informatics 2019

50
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present three methods for learning clinical event embeddings from sequences of medical codes which

we refer to as event2vec embeddings, autoregressive embeddings, and a combination of the two

which we refer to as “hybrid” embeddings. Each embedding method is evaluated, with the help

of a SME, to determine if the resulting representations are meaningful and informative from a

clinical perspective. We will also demonstrate how meaningful embeddings of clinical events can be

used directly as inputs to clinical predictive models, thereby eliminating the need to hand-engineer

features based on intuition, heuristics, and/ or domain expertise. The ability to represent medical

codes, which are ubiquitous in healthcare, in a way that embeds semantic meaning is crucial to

effectively leverage the rich, meaningful, and complex information they represent. We aim to

provide evidence that clinical event embeddings are useful, robust, and interpretable representations

of clinical events, which can be leveraged by many diverse applications. The work presented in this

chapter exemplifies the broad power of DNNs in healthcare as a tool for advancing healthcare AI

towards the common good.

In Section 3.2.1 we discuss medical coding, in part to illustrate some of the challenges associated

with using such representations in practical machine learning systems. We then introduce several

established methods for creating embeddings from sequences of including word2vec in Section 3.2.2,

and RNNs in Section 3.2.3, both of which we later extend to learning meaningful embeddings of

clinical events. Finally, we evaluate the effectiveness of such learned representations on the practical

application of clinical event prediction in Section 3.7.

3.2 Background

Much of a patient’s medical history is documented using coded representations of clinical events

(i.e., medical codes), treatment locations, and provider notes along with corresponding timestamps.

Codes for diagnosis, procedures and prescriptions represent conditions, as well as interventions.

There are several well-known and widely used methods for learning embeddings from words including

Word2Vec [148] and Global Vectors (GloVe) [170]. Due in part to the prevalence of electronic health

records (EHRs), researchers have begun to widely explore the use of established NLP methods, such

as embeddings and neural language models, in healthcare. The sequential nature of clinical events

lends itself naturally to established natural language embedding methods such as word2vec, which

is discussed in Section 3.2.2 and which forms the basis of our first approach, showcased in Section

3.5.1. Moreover, sequences of clinical events can be used as inputs to seq2seq models including

RNNs, which were discussed in Section 2.4.1, and which are the DNN architecture leveraged for

our second embedding method in Section 3.5.2, and which are further showcased in the context of
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clinical predictive modelling in Section 3.7.2.

3.2.1 Medical Coding

Ontologies of medical concepts such as the Unified Medical Language System (UMLS), the Inter-

national Classification of Diseases (ICD-10-CM and ICD-10-PCS), and the National Drug Code

(NDC) are used throughout the healthcare system by insurance providers and medical providers

alike. On the provider side, medical codes are used for billing, and by doctors, nurses and clinicians

to document clinical actions. On the insurance side, these same medical coding systems are used to

document and summarize clinical events for insurance claims.

With these standardized coding systems, a patient’s medical history can be represented by a

sequence of diagnosis, procedure, and prescription codes. Medical ontologies however, are large,

which can make them challenging to use in machine leaning systems. There are roughly 70K

diagnosis codes alone, with an equally large number of procedure codes, and over 360K NDC

codes making for a very large vocabulary for practical purposes (i.e., |V | ≈ 500K). To provide

some perspective, modern tokenization strategies such as the word-piece tokenizer used in [48], or

byte-pair tokenizer introduced in [179] will require ≈ 30K − 50K tokens to represent the English

language. A multilingual tokenizer, capable of handling dozens of different languages, and utilizing

a similar tokenization strategy may have |V | ≈ 250K.

Medical codes are the standard for representing clinical information across the healthcare system,

and while these schemes are created to encode relevant information, they do not contain clear

semantic relationships. The hierarchical structure of standard clinical ontologies allows for the

identification of certain types of relationships, but they are limited by their top-down structure. It

follows that individual codes have meaningful relationships within, and across clinical domains,

which are not inherent in the codes themselves.

3.2.2 Word2Vec

Word2vec, which was introduced by Mikolov et al. in [146], was a seminal work within the field

of NLP, and described two methods for learning dense representations of words: skip-gram, and

continuous bag-of-words. Both methods are unsupervised neural language embedding techniques

which are themselves very closely related. We will focus on the skip-gram method here as it is more

relevant to this work.

2It should be noted that modern language models, and models that take sequential data in general are typically
transformer based. At the time of this research the transformer, while having recently been proposed in [211], was
still a new DNN architecture and was not used during this research.
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The objective of the skip-gram model, as illustrated in Figure 3.1, is to output higher probabilities

for vocabulary words which are more likely to be seen in close proximity to a given target word.

In other words, we would ideally like the model to output a high value for P (cj |wi) for all j such

Figure 3.1: Skip-gram architecture taken from [144]. The input is a one-hot vector for the word
“ants” in this example. The ouput of the network is the probability that a randomly selected
vocabulary word is “close” to the given target word. In this figure each input is |V | dimentional,
where V is the vocabulary. M is the number of neurons in the hidden layer, which equates to the
embedding size.

that cj appears within a reasonably sized context window around wi, which is the center word or

“target.” For example, if the target word is “pool” it should be more likely that the word “swimming”

appears within a small context window (say within two words), compared to the word “fire.” A

common window size in practice is 2 to 5. Larger context windows typically increase performance,

up to a point, but increasing window size adds significantly to the training set size. During training,

individual tokens are input as one-hot vectors of size [1, |V |], where V is the vocabulary. Each

one-hot vector is passed through a hidden layer (i.e., embedding layer) Wh ∈ R|V |×M , where M is

the embedding size, which is then fed to an output layer W o ∈ RM×|V | with softmax activation.

Given an input target word, the network will output a vector where each position i represents

the probability that a randomly selected word close to the given target is the vocabulary word wi.

Once the network is trained, the output layer is discarded so only the hidden layer is retrained as it
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represents a lookup table of embeddings for each vocabulary word.

To train a skip-gram model, a large training corpus (i.e., collection of documents) is converted

into a set of (target, context) pairs, which are used as training examples. A |V | ×M matrix, even

with a moderate vocabulary size (say 10K) and reasonable embedding dimension (e.g., 200) is

still fairly large, and would require a huge number of samples to train without overfitting to the

training data. To address this large data requirement, two methods were introduced by Mikolov

et al.: subsampling frequent words to decrease the number of training examples, and negative

sampling, which is essentially a modification to the models optimization objective, wherein each

training sample updates only a small percentage of the model’s total weights.

Subsampling

With any training corpus there will inevitably be tokens that appear much more frequently than

others (i.e., common tokens). For example, in a typical English language corpus the token “the”

will appear in the context with respect to the majority or target tokens. It follows that the network

will naturally see many more examples containing common tokens during training. The idea of

subsampling was proposed as a way to address this issue. At a high level, each token is assigned

a probability that it will be effectively deleted from the text. This probability, denoted P (wi), is

directly proportional to the token’s frequency f(wi), as defined by:

P (wi) = (

√
z(wi)

s
) · s

z(wi)

In this equation s is a sampling rate, originally set to 0.001 by default, and z(wi) = 1
f(wi)

is the

inverse frequency of occurrence for token wi in the corpus.

Negative Sampling

During skip-gram model training, all model parameters will be updated for each example by default.

Updating a large number of parameters slightly for each example is clearly not efficient. The idea

of negative sampling is to reduce this overhead by only updating a small percentage of the total

network parameters at each step. The correct label for each example pair is a one-hot vector, hence

we want the neuron in the output layer corresponding to the correct vocabulary word to be 1,

and all others to be 0. When we employ negative sampling, we randomly select a small number

of“negative” words (e.g., 5) to update the weights for. By “negative” words we are referring to

words for which we want the network to output a 0. Of course we will still need to update the

weights for “positive” word, which is the correct context word. In the hidden layer, only the weights

for the input word are updated (this is true whether you’re using Negative Sampling or not). The
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“negative samples” (that is, the 5 output words that we’ll train to output 0) are chosen using a

“unigram distribution”. Essentially, the probability for selecting a word as a negative sample is

related to its frequency, with more frequent words being more likely to be selected as negative

samples. The probability of selecting a negative example wi in a corpus is given by:

P (wi) =
f(wi)

3/4∑n
j=0 f(wi)3/4

The power 3
4 was arrived at empirically by the authors of the original paper.

3.2.3 Recurrent Neural Networks

Another method for learning embeddings in an unsupervised fashion is by training an autoregressive

language model. At the time of this research RNNs were the dominant architecture for problems

involving sequential inputs, and LSTMs in particular, which were introduced in Section 2.4.1, will

be the RNN variant used in this chapter. Although LSTMs can be used for many common NLP

problems including machine translation, question answering, text classification and others, the

applications in this chapter will be focused on next token prediction, and sequence classification

(i.e., the task of assigning a class label to a sequence) which is illustrated in Figure 3.2.

Figure 3.2: An example of an LSTM used for sequence classification. Tokens are input as one-hot
encodings.

To train a RNN for the task of predicting the next most likely token, it suffices to break up

sequences of inputs into input-target pairs where input = [xn−k, xn−k+1, ..., xn−1] and target = xn.

That is, the network will be tasked with generating P (xn|xn−1, ..., xn−k). Cross-entropy loss is

commonly used with this setup, where at each step the network produces a probability distribution

over each token in the input vocabulary, which is penalized based on how different it is from the
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actual distribution. Since the true distribution would have a 1 in the position corresponding to the

correct token and 0’s everywhere else, this comparison only needs to the output probability of the

correct token.

L(θ) = −
∑
i

yi log ŷi = − log ŷi

With m training examples this becomes the average negative log probability of correct prediction.

L(θ) = − 1

m

m∑
i=1

log ŷi

Once the RNN is trained, the frozen embedding layer can be extracted and used to map new

sequences of tokens (clinical event codes in our case) to embedded representations for use in

downstream applications.

3.3 Related Work

Deep Patient

Deep Patient by Miotto et al. [151] proposes a general-purpose patient embedding approach using

EHR data. The resulting learned patient level representations were empirically shown be useful in

downstream clinical predictive modeling tasks. Specifically, patient representations were used to

infer the probability of a patient to develop various diseases. Miotto et al. collected EHR data

from around 700K patients which was aggregated, and fed to a stacked denoising autoencoder

tasking with capturing hierarchical regularities, and dependencies contained within the aggregated

patient records. EHR data was aggregated by extracting general demographic information such

as age, gender and race, as well as clinical descriptors for diagnosis, medications and procedures,

along with lab tests and clinical notes. To reduce the vocabulary size needed for EHR aggregation,

ICD-9 codes were mapped to a disease categorization structure used at Mount Sinai comprising

231 general disease definitions, which was further filtered to 78. The final vocabulary size was

approximately 41K. Even so, the final patient dataset used for representation learning was still

≈ 99% sparse (i.e., 1% of the data in the patient-descriptor matrix was populated with values ¿ 0).

Evaluation was performed using roughly 76K test patients, spanning 78 disease classes from

a range of diverse clinical domains including diabetes, schizophrenia, and various cancers. The

likelihood of developing a certain disease was performed in a one-vs-all fashion using a random

forest classifier which was fed the patient level representations described above. The proposed

representation learning approach was shown empirically to outperform other feature learning
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methods such as PCA and GMM with respect to the clinical predictive modeling task. While

the results of this study showed promise for patient level representation leaning, the authors do

not attempt to lean representations while performing a clinical predictive modeling task in an

end-to-end fashion, and do not compare their results to those obtained by other well known neural

language modelling approaches such as Word2Vec. Moreover, aggregating EHRs to the patient

level before learning embeddings results in a loss of valuable longitudinal information contained in

the time-coded sequences of clinical events that comprise a patient’s clinical history.

Patient Similarity via Medical Concept Embedding

Zhu et al. present a DL approach to learn contextual embeddings of medical concepts. The

leaned embeddings are then used to assess clinical similarities between pairs of patients, which is a

fundamental problem in healthcare informatics [233]. Like Deep Patient, Zhu et al. leverage EHRs

to extract relevant training data. However, their data processing involves extracting sequences

of events from EHRs by timestamp, thereby preserving longitudinal information rather than

aggregating the full EHR to the patient level. Unlike traditional word2vec variants, which uses

a fixed sized context window and consider successive sequence elements to be evenly spaced (i.e.,

no notion of time between events), the authors propose a variation of word2vec, in particular

skip-gram, which incorporates an adaptive method for determining context window length with

respect to an event in the EHR of a specific patient. This methods relies on various heuristics. For

example, chronic conditions are more likely to occur repeatedly in an EHR as compared to acute

conditions. The window length L with respect to an event i and a patient p is then represented

as L(i, p) = f(i, p) × a + θ, where a and θ are constants and f(i, p) is the frequency of event i

in the EHR for patient p. Once medical concept embeddings have been trained, each patient is

represented by a sequence of “visit” embeddings. That is, for each visit in a patient EHR, the

embedded visit is calculated as the sum of the embedded representations of all medical concepts

that occurred during that visit. It’s unclear if the authors evaluated other embedding pooling

methods such as mean, and max-pooling to compare to summing of embeddings. Zhu et al. then

propose a dual-encoder style CNN architecture which encodes each patient embedding matrix and

then uses the encoded representation of each patient to measuring distance between patient vectors.

The network is trained in a supervised fashion, hence requires a label for each patient-pair. Second,

the authors proposes unsupervised methods for assessing patient similarity which including the use

of RV coefficient, defined as RV (X,Y) = tr(XX′YY′)√
tr(XX′)2tr(YY′)2

where X ∈ Rn×k and Y ∈ Rm×k are

matrix representations for a pair of patients.

Zhu et al. use around 200K EHRs in total for model training and evaluation, with patients
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belonging to four cohorts: Chronic Obstructive Pulmonary Disease (COPD), Diabetes, Heart

Failure, and Obesity. Evaluation of the proposed embedding method was performed on the basis of

patient cluster quality as measure by three popular cluster evaluation criteria: Rand Index , Purity

and normalized mutual information(NMI). While the proposed method showed more desirable

cluster characteristics compared to baseline methods such as KMeans, the learned embeddings are

not applied to downstream applications to assess their effectiveness with respect to broader clinical

tasks such as diagnosis, or more general clinical event prediction.

Doctor AI

In Doctor AI [31], Choi et al. present an effective RNN based approach to clinical predictive

modeling which leverages longitudinal, time-stamped EHR data from 260K patients spanning an

eight year period. Choi et al. extracted diagnosis, medication and procedure data, which was

then fed to a RNN based model tasked with multi-label, next event prediction of all medications

and diagnosis. That is, the model outputs a prediction for each event that could come next (i.e.,

can predict more than one next event) as opposed to a probability distribution over a vocabulary

of clinical events which would be output in the multi-class setting. In order to mitigate issues

related to large vocabulary size, Choi et al. reduce the dimentionality by using 3-digit ICD-9 codes

resulting in 1183 unique codes, versus around 11K. For medication codes, they used the coarser

Generic Product Identifier Drug Class as opposed to the more granular GPI, which reduced the

total number of medication codes from roughly 19K to around 600. The authors reported a 79%

top-30 recall which outperformed baseline approaches, where top-k recall=TP in top-k predictions
TP on a

held out test set. While this study highlights the predictive power of DNN based sequence modeling

approaches applied to clinical events, the embeddings themselves are not extracted, evaluated, and

applied to downstream applications to assess the generalizability of the learned representations.

Low Dimensional Representations of Medical Concepts

In Choi et al. the authors aim to learn effective embeddings from collections of medical journals,

clinical notes, and medical codes. The authors speculate that such learned embeddings could be

highly useful in medical informatics for tasks such as cohort selection and patient summarization.

Another contribution of this work is a simple method for learning medical concept embeddings

from co-occurrence counts extracted from clinical narratives with the goal of preserving privacy.

Choi et al. learn medical concept embeddings via a modified skip-gram style approach which uses

partitioning and random-shuffling. Specifically, given a time interval T used for partitioning, they

partition the data into intervals of size T , and then remove duplicate mentions of a concept within
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each partition si (sub-sequence). The resulting concepts within each partition are then randomly

shuffled yielding a new sequence s′i, which is subsequently treated as a single sentence to be used

for model training. Choi et al. assess the embedding method by quantifying “medical relatedness”

between clinical events, but do not apply the leaned representations to downstream tasks such as

clinical predictive modeling. Moreover, while the proposed method serves to add an element of

privacy by partitioning and randomizing sub-sequences, it also results in a loss of some temporal

information contained in the specific event orderings, as well as a loss of event magnitude which

could be gleaned from the frequency by which events occur.

Medical Concept Embedding with Time-Aware Attention

Cai et al. propose a variation of word2vec, specifically CBOW [148], which aims to learn embeddings

of medical concepts which take into account the non-uniform time between medical concepts in

EHRs. Like the related studies outlined above, Cai et al. extract sequences of medical concepts

from EHRs, and use said sequences to train a word2vec style model. However, they replace the

fixed context window employed by traditional CBOW by what the authors define as a time-aware

attention mechanism tasked with learning attention weights with respect to sequences of medical

concepts, and their associated timestamp. The authors define a “temporal context scope” as

the largest number of time units between a target medical concept, and its corresponding set of

context medical concepts. Essentially, each EMR is converted to a sequence of medical concepts,

ordered by timestamp, where sub-sequences of medical concepts that fall within a time interval t

are represented by the sequence Et = [ct,1, ct,2, ..., ct,Kt
] where Kt is the total number of medical

concepts in Et. The authors note that relations between medical concepts and time periods can be

learned from the correlations between medical concepts (e.g., a common cold may be correlated to

context concepts that happen in the following week). They use this observation to build what they

refer to as a time-aware attention model to learn non-uniform attention weights within a temporal

context scope. The goal of attention in this setup is to allow the model to pay more attention to

contexts within the deemed “relevant” this time period with respect to each target. In order to

avoid issues like a very large number of contexts for a given target, Cai et al. define a predefined

threshold to cap the maximum number of context medical concepts. The embedding layer in

the resulting modified CBOW formulation is composed of non-uniform weighted context vectors,

incorporating the time-aware attention model, which is parameterized by the target medical concept

and the time gap between the target concept and each context concept. The result is essentially an

attention weighted sequence which is used to train a CBOW style embedding network.

The learned embeddings are evaluated on clustering and nearest neighbour search tasks. While
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the proposed method does outperform comparable embedding methods which do not utilize time-

aware attention, such as word2vec and Glove [170], the evaluation is limited to vector search

and clustering, and the leaned embeddings are not evaluated on a broader, more diverse set of

downstream tasks.

3.4 Data

3.4.1 Description of the Data

Healthcare data can be notoriously high dimensional, sparse, and heterogeneous, which requires

thoughtful preprocessing. All data used in this chapter was extracted from anonymized, historical

medical claims which were used to extract sequences of clinical events, represented by diagnosis,

procedures, and pharmacy codes at the patient level. All data used in this research was accessed

with permission from Regence BCBS while the author was employed at Cambia Health Solutions

in Portland, OR. All data extraction and processing procedures were created by the author as part

of this research.

A typical medical claim contains collections of medical codes representing low-level clinical

events, such as diagnosis, which are grouped together in time by higher-level events, such as an

office visit or hospital stay. By extension, a patient’s claims history comprises a sequence of clinical

events, along with their respective timestamps, over a certain time period. In this work, only the

clinical events themselves were used to create sequences, not the timestamps. That is, high level

groupings as well as time deltas between subsequent events were discarded during training.

The data described in this section was used for all three embedding methods described in Section

3.5, and each of the predictive modelling experiments showcased in Section 3.7. Since all data used

in this chapter originated from insurance claims, clinical events that were grouped within the same

high level event, such as a diagnosis and prescription occurring during the same office visit, were

associated with the same timestamp by convention. Although this issue affected < 1% of the events

in our filtered training set, we attempted to deal with the ambiguity in several ways: First, we

simply filtered out sequences that contained multiple events under the same timestamp. Second,

when a group of clinical events associated with a common timestamp were encountered (for a

single patient) we either (1) randomized the events, or (2) randomly selected a single event for each

group. Last, we used a set of simple rules to prioritize the order of events by domain. For example,

diagnosis < procedure < prescription. If more than one event from the same domain occurred in

the same visit, they would be randomly assigned order. Since the number of sequences effected was

small, we decided to determine the ordering of simultaneous events using the rule-based system.
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We collected up to one years worth of data from ≈ 1M patients having at least three months of

eligibility (potential claims) between Jan 2016 to Jan 2018. For each patient, we selected a random

date from the patient’s set of eligible claims, and pulled all claims going back up to one year from

that date. By doing so, we allowed for each patient to have a different start and end date with

respect to their individual clinical snapshots. The rational for distributing patient claims over time

in this way was to mitigate the effects of seasonality that could have been an influencing factor if

all patient data was restricted to the same date range. Figure 3.3 shows how the historical data

can be distributed in time. Figure 3.4 provides an example of a timeline of clinical events for a

hypothetical patient. The patient represented in Figure 3.4 corresponds to patient1 in Figure 3.3.

We can see that this patient’s clinical snapshot is taken going back up to one year from 07/07/2016,

and that the patient only had around 6 months of prior clinical history. Hence a full year snapshot

is not given for this patient.

Figure 3.3: A random sample of 1M patient with eligibility between Jan 2016 and Jan 2018 was
used for all experiments. For each patient, a random date was sampled from the patients eligibility
range, and all claims going back up to one year were used for subsequent analysis and modelling.
The above figure shows how each patient can have a different date range. This was done to avoid
issues related to seasonality.

Figure 3.4: An example of an individual patient timeline (patient 1 from Figure 3.3). This
patient has 3 clusters of clinical events: first, a wrist fracture diagnosis followed by casting and a
prescription for pain medication (all happen during the same visit); second, a diagnosis of strep
throat and a prescription for antibiotics (both events occur during the same visit); third, a seasonal
flu shot

.
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3.4.2 Data Preprocessing

Within the full patient sample there were ≈ 20K unique procedure codes, ≈ 40K unique diagnosis

codes, and over 300K unique pharmaceutical codes, yielding a large total vocabulary size of

|procedures| + |diagnosis| + |pharmacy| > 360k. In order to get the raw data into a format which

could be processed by the models, several preprocessing steps were performed: First, to make the

large initial vocabulary more manageable, highly sparse, fine grained codes were clustered into

coarser groupings. The overall vocabulary size was reduced by grouping diagnosis and procedure

codes using the Clinical Classifications Software (CCS) for ICD-9-CM, developed and maintained

by the Healthcare Cost and Utilization Project (HCUP), which is sponsored by the Agency for

Healthcare Research and Quality (AHRQ) [164]. CCS categories for diagnosis are generated

based on the International Classification of Diseases (ICD-9 and ICD-10), and Current Procedural

Terminology codes (CPT) for procedures,3 which are widely used standard grouping techniques in

clinical applications. Pharmaceutical codes were also grouped, in part to eliminate duplication (i.e.,

there can be many NDC codes used for the same medication), and to further reduce the vocabulary

to a manageable size. This step helped decrease complexity and improve generalization of the

models. Next, we estimated the mean and standard deviation of the number of events in a patients

clinical history (up to one year) via bootstrapping. We then filtered out examples with clinical

event sequences that were not within three standard deviation from the mean by number of events,

or that had less than 15 events in total. That is, if a patient had a very high, or very low number

of events in their claims history, with respect to the estimated population statistics, they were

excluded from the training set.

3.5 Embedding Methods

General purpose embeddings of clinical events have many practical, and beneficial uses in healthcare

AI. In this section we present three methods for learning embeddings of medical codes (i.e., clinical

events) in a manner which takes clinical context into account. Different embedding methods were

considered as we did not know which would be the most effective a priori. The three embedding

methods employed are Event2Vec, autoregressive, and hybrid embeddings which will be described

in Section 3.5.1, Section 3.5.2 and Section 3.5.3 respectively.

3CPT is a registered trademark of the American Medical Association, All Rights Reserved
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3.5.1 Event2Vec Embedding

Out first embedding approach, which we will refer to as event2vec, is based on word2vec and utilizes

a skip-gram style architecture with negative sampling. As discussed in Section 3.2.2, the skip-gram

approach is an efficient and effective method for learning dense representations from sequences

of tokens where embeddings are learned by considering the context in which each code appears

over time. In other words, if the model sees a particular clinical event, say event A, what’s the

likelihood of seeing clinical event B within a window of size w. We can think of such embeddings

as “general purpose” as they are trained in an unsupervised fashion, with no specific task being

optimized for in the models objective.

Data for Event2Vec Embeddings

Data used for event2vec embedding training was created in a similar fashion to sequences of words

used in the traditional skip-gram method. Specifically, given a sample of a patient’s clinical history

as described in Section 3.4 (up to one year), which is a sequence of clinical events, and a context

window size w, we slide over the sequence in chunks of 2×w+ 1 generating (target, context) groups.

For each chunk there is at most 2 ×w + 1 events corresponding to upwards of 2 ×w context events

(w to the left and w to the right of the target) and a single target event. The number of context

events can be less than 2×w if the target is at a low or high position in the sequence. For example,

given a sequence length l ≥ 2 ×w + 1 and a target wi, if i < w or i > l−w, there will be less than

2 × w context events. Next, each (target, context) group is broken out into (t, ci) pairs, where t

is the target event in each case, and ci is the ith context event. We chose a window size of 3 for

event2vec, resulting in a maximum of 6 context events for each target.

3.5.2 Autoregressive Embedding

In recent years, sequence to sequence (seq2seq) models have gained popularity in language modeling,

image captioning, and speech recognition [33, 225, 26]. The nature of the seq2seq framework

involves addressing the problem of variable length inputs and outputs [206]. Our second approach

explored learning embeddings as a byproduct of training a LSTM, as described in Section 3.2.3,

tasked with next event prediction. The training of our LSTM variant is similar to autoregressive

language model pretraining, wherein the pretraining objective is to correctly predict the next token

in a given sequence from left to right. The key difference is that the vocabulary in our case is

a collection of clinical events represented by medical codes, as opposed to a language such as

English as is commonly the case in language model pretraining. As such, we refer to the learned
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representations as “autoregressive” embeddings.

The seq2seq learning strategy includes an encoder (e.g., embedding layer or full encoder network),

where raw inputs are converted to fixed-length, dense, vectorized representations. To further improve

the model, we incorporate seq2seq attention, as discussed in Section 2.5.1, which serve to assist

the predictive task [7]. We utilize the LSTM architecture with attention for the purpose of next-

clinical-event prediction. First, the sparse data representation of a medical code (one-hot encoding)

is passed to an embedding layer. Next, the resulting dense representation is fed into a bidirectional

LSTM layer which further encodes the data. Then, the attention mechanism calculates scores

(coefficients) which are used to construct a linear combination of the output vectors. Finally, the

raw output scores are passed through a softmax activation to normalize them into probabilities,

which are used to make a final prediction.

Data for Autoregressive Embeddings

For the purpose of autoregressive embeddings, it’s acceptable to use multiple examples from a single

patient, given that the patient has an acceptably large number of events in their clinical history. In

other words, in order to inflate the number of examples we have for training, we can specify a fixed

sequence length, and cut each patient’s full clinical event sequence, descbed in Section 3.4, into many

sub-sequences. To accomplish this, we specify a fixed window size w, corresponding to the desired

sub-sequence length, and slide the window over a patients year long clinical history, generating

(x, y) pairs of training samples in the process where x = [xi, xi+1, ..., xi+w] and y = xi+w+1. That

is, each x is a sequence of w clinical events and y is the next event in the sequence. We used a value

of w = 25 in this experiment, but in general the choice of w can be thought of as a hyperparameter,

and determined empirically through experimentation. Patients with year long clinical histories

consisting of less than w+ 1 events were left-padded with zeros, where the last event in the sequence

would be used as the target. The preprocessed data was split randomly by patients into a training

set (80%), a validation set (10%) used for hyperparameter tuning, and a test set (10%) used for

final model evaluation. This dataset was also used for the experiments discussed in Section 3.7.1.

3.5.3 Hybrid Embedding

Lastly, we explored combining event2vec and the autogressive embeddings, which we refer to as

hybrid-embeddings. This was done in part to evaluate the potential to improve a subsequent

classification task via transfer learning, discussed in Section 2.7, as well as to asses the overall

effectiveness of combining different representations. We combined the event2vec embeddings

learned from the initial skip-gram style model with a new, untrained embedding layer as part of a
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sequence model for next event prediction. For simplicity, we used the same architecture and data

as the autoregressive model described in Section 3.5.2, but replaced the embedding layer with two

concatenated embeddings. The first was the frozen embeddings learned by the event2vec model,

and the second was left free to be learned as part of the overall network optimization. The network

architecture with a hybrid embedding layer is shown in Figure 3.5.
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Figure 3.5: The network architecture takes sparse medical codes as input, followed by a hybrid
embedding layer: pre-trained event2vec embeddings and autoregressive embeddings. The encoder
is a bidirectional LSTM with attention. The output layer is passed through a softmax function to
normalize the scores into probabilities.

3.6 Analysis of Embedding Methods

3.6.1 Analysis

Empirical evaluation of each embedding method was performed with the help of a clinical SME4.

To allow for a focused assessment of the individual embedding methods, one example from each

clinical event category was selected for closer analysis: Esophgeal Disease was chosen as an example

diagnosis, Human Insulin for prescription, and Anthroplasty for procedure. In order to obtain

different views of the learned embeddings we sanctioned two analysis from our clinical SME. Both

SME aided analysis were manual in nature, and designed to determine if the representations made

semantic sense to a human with expert knowledge of the domain.

Identification of Clusters

The first clinical analysis required the SME to provide a list of 10-15 events, not necessarily from the

same category and preferably non-obvious, that an expert would deem “related” to each example

4Analysis of clinical event embeddings was done with the help of by Dr. Malhar Jhavei, Internal Medicine Resident
at University of Michigan Health



3.6. ANALYSIS OF EMBEDDING METHODS 66

(anchor) event. To visualize the results, we applied Principle Component Analysis (PCA) [106] to

the embedded representations of each example in order to project the examples, and each of the

“related” event embeddings to 2D for visualization. The resulting plots with respect to each model,

and each example can be seen in Figure 3.6a (Event2Vec), Figure 3.6b (autoregressive), and Figure

3.6c (hybrid). We see that the embeddings for each example group form obvious clusters, implying

that each of the methods was able to learn strong relationships within, and across domains.

(a) Event2Vec Embeddings (b) Autoregressive Embeddings

(c) Hybrid Embeddings

Figure 3.6: PCA plots of “most similar” events by embedding method.

Similarity Analysis

For the second embedding analysis we leveraged the same SME, and tasked them with determining

the relevance of clinical events identified by the model. That is, we first selected the top-5 “most

similar” events to each example by cosine distance between embeddings, and then asked the SME

to determine the relevance of each candidate event to its corresponding anchor event. One notable

finding is that “similar” events to Esophgeal disease and Human Insulin are closer to each other

as compared to Arthroplasty procedures. This result would make sense to a SME familiar with
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studies such as [224], which have shown that diabetes, in many cases, carries the risk of Esophgeal

disease. In contrast, the relevance of this analysis would not be at all clear to someone tasked

with analysis of the data without such expertise. It is notable that the distinction between the

clusters for Esophgeal and Human insulin with Arthroplasty in the hybrid embedding model is

even more pronounced, suggesting that this model may have learned a slightly more effective, or at

least nuanced representation of the data.

Esophgeal Disease
Event2Vec Autoregressive Hybrid
Gasduo Ulcer Other stomach disease Gasduo Ulcer
Gastritis Gastritis Anti-ulcer
Proton Pump Inhibitor Gasduo ulcer Gastritis
Other stomach disease Pancreas disease Other stomach disease
Esophageal dilatation Anti-ulcer Nausea/vomiting

Table 3.1: “Top-5 Most Similar” clinical events with respect to a diagnosis of Esophgeal Disease.

To supplement the before mentioned figures, the top 5 most similar code descriptions by example

for the event2vec, autoregressive, and hybrid embeddings models are shown in Table 3.1, Table

3.2, and Table 3.3 respectively. The tables serve to reinforce the conclusion that all three methods

learned representations that contain valid semantic relationships.

Human Insulin medication
Event2Vec Autoregressive Hybrid
Needles/Syringes Needles/Syringes Sodium-Glucose Co-

Transporter
Diagnistic Tests Diabetic Other Needles/Syringes
Diabetic Other Diagnostic Tests Biguanides
Incretin Mimetic Agents Diabetes Mellitus with Com-

plications
Sulfonylureas

Diabetes Mellitus with Com-
plications

Sodium-Glucose Co-
Transporter

Antidiabetic

Table 3.2: “Top 5 Most Similar” clinical events with respect to a prescription for human insulin

3.6.2 Summary

In this section we investigated the effectiveness of various techniques for learning embedded

representations from medical codes. Validation of the results with respect to each embedding

method was done by a clinical SME, confirming that all of the embedding methods showcased in

this section captured meaningful, yet slightly different relationships within, and across domains.
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Arthroplasty Procedure
Event2Vec Autoregressive Hybrid
Hip Replacement Hip Replacement Hip Replacement
Arthroplasty other than hip
or knee

Arthroplasty other than hip
or knee

Arthroplasty other than hip
or knee

Other therapeutic procedures
on musculoskeletal system

Treatment, fracture or dislo-
cation of hip and femur

Other therapeutic procedures
on joints

Other therapeutic procedures
on joints

Arthroscopy Knee Arthroscopy Knee

Arthroscopy Knee Other therapeutic procedures
on joints

Excision of semilunar carti-
lage of knee

Table 3.3: “Top 5 most similar” clinical events with respect to an Arthroplasty procedure (i.e.,
the surgical reconstruction or replacement of a joint).

Moreover, since each embedded representation is slightly different, combining these approaches

yielded a unique, relevant view into the underlying connections between clinical events.

3.7 Clinical Predictive Models

In this section we will evaluate the effectiveness of our clinical event representations on two tasks.

The first task we evaluate is next clinical event prediction, where a clinical event is defined as a

diagnosis, procedure, or prescription, represented by a standard medical code (as in Section 3.5).

Second, we use our general purpose embeddings as input to a model tasked with predicting non-

urgent Emergency Room (ER) visits. While the task of next event prediction requires outputting

a distribution over the vocabulary of clinical events, here we are concerned with predicting the

likelihood of a single event (which is not part of the input vocabulary), hence the output is a single

score.

3.7.1 Next Clinical Event Prediction

In NLP, the performance of a next-token prediction model is routinely evaluated based on whether

the true target exists in the top− k most probable outputs. This is done in part due to the high

dimensionality of the vocabulary being used, as well as the fact that there can be multiple plausible

answers. That is, if we have a vocabulary consisting of 10K tokens, the output of the model will be

a probability distribution over 10K positions, where each position corresponds to a token in the

vocabulary. The model could then output the token corresponding to the highest probability. The

issue is that with a large vocabulary, the distribution is spread very thin over the many potential

tokens. Assigning a winner by top− k allows for a range of tokens to be considered, as opposed to
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a single token. This is certainly the case with medical data, which is sparse, high dimension, and

therefore challenging to predict precisely down to the individual code. As a result, we report on

top-5, top-10, and top-20 accuracy for each model.

All evaluation metrics shown below are with respect to a held-out test set, which was not

used in training or hyperparameter tuning. Hyperparameters, such as initial learning rate and

regularization coefficients, as well as network architecture were tuned via random search, using

the the validation set for intermediate evaluation. Table 3.4 shows evaluation of the autoregressive

model, which is a “next clinical event” prediction model using Bidirectional LSTM with attention.

Top N Accuracy (Autoregressive)
N Accuracy(%)
5 61.31
10 72.12
20 81.09

Table 3.4: Top N accuracy for autoregressive model

Table 3.5 illustrates the performance of the “next clinical event” prediction model using hybrid-

embeddings. These preliminary results indicate that combining the event2vec and autoregressive

embeddings helped the overall performance compared to using the autoregressive embeddings alone,

although the performance is fairly close, and further investigation would be needed to be fully

confident in this conclusion.

Top N Accuracy (hybrid embedding)
N Accuracy(%)
5 62.33
10 73.22
20 82.20

Table 3.5: Top N accuracy for hybrid embedding model.

3.7.2 Predicting Non-Urgent ER Visits

Non-urgent ER visits are typically defined as visits for conditions for which a delay of several

hours would not increase the likelihood of an adverse outcome [209]. Since non-urgent ER visits

are defined by a collection of possible medical codes along with a temporal factor, they are not

represented in the data used to train the embedding models. For each patient in the train, validation
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and test set we pulled three months of medical history (via claims data as described in Section

3.4), as well as an indicator of whether a non-urgent ER visit occurred in the subsequent two week

period.

For the task of predicting non-urgent er visits, we compared several models: First, we trained a

traditional clinical predictive model using a standard FFNN architecture with hand-engineered

features. Input features were created with the help of our clinical SME, and comprised demographic

information, indicators of prior and current clinical events, time-since-last features and more. In

total around 500 features were engineered to represent a three month period in a patient’s clinical

history. It’s notable that the final ≈ 500 hand engineered features required a good deal of feature

selection and pooling. That is, creating indicator features representing the presence of all diagnosis,

procedures and prescriptions would require hundreds or thousands or features as described in

Section 3.2.1. To reduce this number we pooled all clinical events that were deemed to be “rare”

into a single “uncommon” indicator feature. This was done by pulling a random sample of patients,

calculating a percentage, or pseudo-likelihood of each event being in a three month history with

respect to the sample, and then bucketing the collection of clinical events with a pseudo-likelihood

≤ 1%. The presence of rare events alone can be a powerful predictor, but not all rare events are

meaningful. We speculate that information is inevitably lost by bucketing so many events, which is

not the case when using clinical event embeddings. Moreover, even with the extreme reduction

in hand-engineered features described above, the input layer must still comprise > 500 neurons,

which is over twice the size of our clinical event embeddings. It follows that the use of clinical event

embeddings not only allows for the nuances of rare events to be retained, but that a comparable

network architecture employing clinical event embeddings requires considerably less parameters

compared to its hand-engineered couterpart.

Next, we constructed patient level embeddings by aggregating the individual event level embed-

dings described in Section 3.5. As in the case of hand-engineered features, we aggregated clinical

event embeddings over a three month period in a patient’s clinical history, which was then used as

input to a standard FFNN architecture with three hidden layers of size 128, 128 and 64 respectively.

Both FFNN architectures, with the exception of the input layer size, were identical to allow for

a fair comparison. Several pooling strategies were attempted including average-pooling, where

embeddings are simply averaged, and max-pooling, in which we take the maximum value across

embedding dimensions. Max-pooling was selected as the final pooling method.

Lastly, we used our pretrained embeddings as input to a LSTM based sequence classification

model tasked with predicting non-urgent ER visits. That is, a LSTM was trained on sequences

of clinical events, represented by our pretrained embeddings, to produce a score representing the
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“likelyhood” of a non-urgent ER visit. This is in contrast to the patient level embeddings described

in the second method above, in which the embeddings were aggregated. For each patient we used a

sequence of clinical events representing up to three months of claims data. Each input sequence was

left padded (if the history was too short) as needed to achieve a consistent input sequence length of

128. Initial exploratory analysis was done to upper bound the number of events in a three month

history at 128. We then used the pretrained embeddings as initial inputs to a LSTM based model,

which was trained to output a single score indicating the “likelyhood” of a non-urgent ER visit.

The performance of the resulting clinical predictive models, trained with each of the strategies

described above, is shown in Table 3.6. We see that performance is similar using a comparable

Model Comparison
Features ROC (AUC)
FFNN with hand-engineered 0.7427
FFNN with patient embeddings 0.7434
LSTM with event embeddings 0.7531

Table 3.6: Comparison of clinical predictive models trained on the task of predicting non-urgent
er visits using (a) FFNN with hand-engineered features, (2) FFNN with aggregated embeddings
(i.e., patient-level embeddings) (3) LSTM sequence classification model with event-level embeddings

FFNN architecture with hand-engineered features versus patient level embeddings, although the

model with patient level embeddings slightly outperforms its hand-engineered counterpart. What’s

more notable is that the performance gain was more noticeable when using a sequence model fueled

by pretrained, event-level embeddings.

A key takeaway here is that hand engineering features from clinical data is difficult, and time

consuming. Hand engineering clinical features for a task like clinical predictive modeling requires a

great deal of subject matter expertise to ensure that the resulting features are meaningful, and

appropriate for the given task. Moreover, hand-engineered features require significantly higher

dimentionality compared to event embeddings, and still likely lose information related to rare,

but meaningful events. In contrast, learning useful embeddings requires considerably less subject

matter expertise (with the exception of interpretation), and therefore effectively lowers the bar

for development of high quality clinical predictive models. In addition, clinical event embeddings

are capable of learning semantic relationships that may be previously unknown, even to a clinical

SMEs, and can result in a more efficient, powerful network requiring fewer parameters.

Leveraging clinical event embeddings can improve the learning process for a predictive model,

since the input features already encompass information about the relationships between data points.

Pretrained embeddings can prove especially useful in cases where a SME is not available to aid in
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the features engineering process. This is not to say that leveraging effective embeddings will always

result in a high quality ML model, and there are many factors that contribute to the formulation of

a clinical problem as a ML system, aside from the feature representations alone. It is our opinion

that neither deep knowledge and understanding of the underlying clinical problems, or the methods

being applied to solve them should be discounted when approaching problems in healthcare AI.

3.8 Conclusion

Embedded representations learned from sparse, high dimensional medical data can be effectively

leveraged by a broad range of downstream tasks such as cohort selection, patient similarity mapping,

and clinical predictive modeling. In this chapter we took the idea of learning general representations

from medical codes a step further as part of a task specific modeling effort. Moreover, we showed

that informative general representations can be achieved by combining event2vec and autoregressive

embeddings into a hybrid representation of clinical events. Finally, we gave empirical evidence that

knowledge learned during general pretraining can be successfully transferred to new tasks, such as

clinical predictive modeling, via embeddings which are capable of out-performing their traditional

hand-engineered feature counterparts.

3.9 Future Work

The bulk of the work reflected in this chapter was done prior to 2018, and leaves much room for

further exploration. One area which was investigated during the time of this research, but that was

not fully explored, was how to effectively deal with the problem of unevenly spaced events. Some

sequences, such as text, have no inherent concept of time associated with the individual elements,

and therefore no ”time between” elements. Sequences of clinical events on the other hand are not

evenly spaced, which introduces its own set of challenges. For example, how does one interpret the

time delta between subsequent events? At the time of this research, we investigated two simple ways

to deal with the problem of unevenly spaced events. First, for the purpose of learning clinical event

embeddings, we ignored the time component and treated the events as evenly spaced. Second, we

modified the approach outlined in Section 3.7.1 by supplementing each input and output event with

a corresponding time delta. That is, the model is fed sequences of (et, dt) where et is the clinical

event at time t, and dt is the time since et−1 with d0 = 0. The goal of this modified formulation

was to predict not only the next clinical event, but the amount of time from the last event as well.

While this simple approach was fairly effective at predicting both next clinical event and time delta
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simultaneously, we felt that the degradation in next clinical event prediction was significant enough

to abandon the join-prediction model in favor of the better performing, single-prediction model

described in Section 3.7.1, along with the clinical event prediction model from Section 3.7, which

predicts a specific clinical event within a predefined time window.
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Chapter 4

Deep Learning Approaches to RSWA

Event Detection

4.1 Motivation

Rapid eye movement (REM) sleep is a stage of sleep that features random and rapid movement of

the eyes, low muscle tone or atonia (extremely relaxed muscles), and, commonly, vivid dreaming.

All other stages of sleep are collectively referred to as “non-REM” (NREM) sleep. REM and NREM

sleep alternate within ultradian sleep rhythms, each cycle of which lasts about 90 minutes in an adult

human. REM sleep behavior disorder (RBD) is a parasomnia (disruptive sleep-related disorder)

characterized by repeated episodes of dream enactment behavior and REM sleep without atonia

(RSWA). RSWA is detectable during polysomnography (PSG) recording [143], and is typically

diagnosed through the detection of individual events indicative of the disorder from PSGs.

The standard way to identify RSWA events from PSGs is through manual inspection by a

certified sleep technician, or otherwise qualified clinician. The process of manually annotating

PSGs is costly, time consuming, and prone to human error. Sleep technicians identify individual

RSWA events by adhering to a set of standardized rules governed by the American Association for

Sleep Medicine (AASM). However, multiple technicians analyzing the same PSG may not yield

a consistent labelling. That is, a certain amount of inter-labeler disagreement is common when

manually inspecting many channels of time-series data in an overnight study, even among highly

trained technicians. Such inter-labeler disagreement could be indicative of the inconsistencies

that human labelers display when applying a predefined set of rules to multidimensional data.

Moreover, there may be more complexity to the task of identifying RSWA events that cannot

be captured by applying a simple set of rules. Inconsistencies among human labelers is a serious

issue as accurate identification of RSWA, and diagnosis of RBD by extension, is crucial for proper

treatment planning.

75
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The design and implementation of effective, efficient, and accurate machine learning solutions

for the problem of RSWA event detection has the potential to significantly reduce human hours,

human error, and ultimately, overall healthcare costs. A direct result of more efficient, less costly

RSWA assessment and diagnosis is increased identification of effected patients across a broader

patient population. Furthermore, a diagnosis of RSWA is thought, within the sleep medicine

community, to be correlated with an increased risk of neurodegeneartive disease such as Alzheimer’s

and Parkinson’s later in life. More treatment options are available to patients who suffer from such

diseases if they can be anticipated, or diagnosed early on [182, 44]. It follows that the efficient and

accurate detection of RSWA related events is critical for providing the highest level of care to the

affected patient population.

The goal of this chapter is to provide automated and reproducible quantification of RSWA to

establish more objective criteria for analysis. Specifically, this work proposes a novel method for

RSWA event detection from PSGs using DNN based approaches1. Previous supervised learning

approaches related to RSWA, or by extension RBD, attempted to predict only binary, patient

level diagnosis. In contrast, this work presents methods to predict the individual locations within

EMG sequences (signals) where phasic (P) or tonic (T) activity is present. We refer to such events

as “signal-level” RSWA events. We speculate that RSWA event detection is preferable to binary

diagnosis prediction for several reasons: first, RSWA event detection is more robust, flexible, and

generally useful as compared to binary diagnosis prediction since RSWA events, once detected,

can be converted into patient level diagnoses by subsequent application of the AASM guidelines

[13]; next, RSWA event detection allows for the quantification of event duration and frequency. By

extension, the quantification of event duration and frequency can in-turn help to quantify disease

load and severity, as well as provide useful statistics for downstream tasks such as population

studies. Finally, a model capable of RSWA event detection that aligns with expert annotations

may be more trusted by clinicians, and therefore more widely used compared to models that use

obtuse, or hidden features to directly predict binary diagnosis.

1The work in this chapter was previously published in [215]: P. Wallis, D. Yaeger, A. Kain, X. Song, and M. Lim,
Miranda Automatic Event Detection of REM Sleep Without Atonia From Polysomnography Signals Using Deep
Neural Networks in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2020
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4.2 REM Sleep Behavior Disorder

4.2.1 RBD as an Early Warning

RBD is a serious clinical diagnosis with significant implications. It can lead to dream enactment,

from simple limb twitching to violent behaviors, sometimes resulting in injuries [194]. RBD is

widely considered a prodromal synucleinopathy, one of the earliest symptoms of the family of

neurodegenerative disorders which include Parkinson’s Disease, Lewy Body Dementia and multiple

system atrophy [195, 196, 99, 143]. To put this in perspective, in some studies nearly 50% of

patients with Parkinson’s Disease have RBD [71]. In Postuma et. al [173], patients showed an

overall conversion rate of 6.3% from RBD to an overt neurodegenerative syndrome, with 73.5% of

individuals converting after a 12 year follow up. It follows that symptoms of RBD may begin years

or decades before the onset of a neurodegenerative disease. Moreover, RBD diagnosis may provide

insights into the development of neurodegenerative diseases, as is invaluable with respect to early

detection.

RBD affects 1–3% of the population [74, 197, 199], and is particularly prevalent in patients

with trauma, e.g., traumatic brain injury and post-traumatic stress disorder, both of which are

particularly common in military veterans [226, 55].

4.2.2 RBD Diagnosis

Currently, a diagnosis of RBD is characterized by both having a report, or video observation

of dream enactment, and observing events related to RSWA, such as excessive chin and limb

muscle activity, in a PSG. Muscle activity is divided into two primary classes: phasic (P), which is

associated with short bursts of activity, and tonic (T), which means longer, sustained segments of

activity [143]. Within the context of PSGs, and sleep studies in general, an “epoch” is defined as

a short interval of arbitrarily defined length (usually 20-60 seconds), but is commonly associated

with a 30 second interval as is the convention in sleep staging. With respect to RSWA event

detection, the American Association for Sleep Medicine (AASM) standard requires that, within a

single 30-second epoch of REM sleep, at least 5 of 10 mini-epochs of 3-second duration contain

phasic muscle activity (P events), or at least 15 seconds contain sustained tonic muscle activity (T

event) for the epoch to be classified as abnormal [13]. By extension, a single abnormal REM epoch

in combination with dream enactment garners the diagnosis of RBD.

As previously noted, the current gold standard for diagnosis of RSWA is through manual, visual

scoring of PSGs by a trained clinician which is labor-intensive, costly, time-consuming, and error

prone. For example, it can take many hours for a qualified sleep lab technician to annotate a single
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PSG, and agreement amongst scorers in labeling signal-level T and P events is low [15]. It follows

that the development of an accurate, effective, and automated method for detecting events related

to RSWA would allow for faster, less costly, reproducible and more objective diagnosis of RBD.

4.3 Previous Approaches and Related Work

Several semi, or fully-automated methods have been previously proposed for RBD detection. These

approaches fall into two general categories: rule-based, such as a traditional algorithmic approach

which implements the existing AASM definition, and machine learning based, which includes flexible

supervised methods such as support vector machines (SVM), random forest (RF), and DNNs. It’s

worth emphasizing that many methods for automated RBD detection predict final diagnoses, not

signal-level events. While the task of predicting a final diagnosis is a more straightforward approach,

it’s also less robust, and less flexible compared with predicting individual signal-level events which

can in-turn be used to make clinical diagnoses.

4.3.1 Rule-Based Methods

There have been numerous attempts over the years to develop a rule based system for diagnosing

RSWA, and more generally RBD. We will discuss several such methods in more detail.

STREAM

In 2007, Burns et al. [21] proposed a rule-based method for identifying PSG evidence of RBD.

For the purpose of algorithmic development and assessment, they collected data from 23 subjects:

17 with neurodegenerative disorders including 9 with probable or possible RBD, and 6 controls.

Qualified medical professionals visually scored two PSGs from each subject for the purpose of

comparing the effectiveness of the rule-based approach versus expert human labeling. The algorithm

consisted of three primary steps: first, each 30 second epoch was divided into 10 three-second

mini-epochs; next, variance of the chin EMG was calculated with respect to each mini-epoch;

finally, variances during REM sleep were compared to a threshold defined by variances during quiet

NREM sleep. The job of the algorithm was to calculate a metric which the authors refer to as

Supra-Threshold REM EMG Activity Metric (STREAM), which was calculated for each subject.

STREAM is defined as the percentage of all REM mini-epochs with variance above the pre-defined

threshold, and was found to be highly correlated with the manual, visually-derived score for RBD

severity (Spearman ρ = 0.87, P < 0.0001). With an optimal cutoff, STREAM was able to identify

probable or possible RBD with 100% sensitivity and 71% specificity. While the authors looked at
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several metrics for evaluating the effectiveness of STREAM, with respect to the task of diagnosing

RBD the authors used area under the receiver operating curve (AUROC), for which STREAM

achieved a score of 0.84.

Although the evaluation results reported in Burns et al. seem impressive, the study was

conducted with a very small sample (23 subjects in total). Cesari et al. [24] did a comparison

of computerized RSWA detection methods, including STREAM, using a sample of 146 subjects

including 27 healthy control patients and reported average values for sensitivity, specificity and

accuracy of ≈ 70% when employing STREAM, which is significantly less than the 100% sensitivity

reported in the original paper.

Sleep Atonia Index

Sleep Atonia Index (SAI) is a metric which was proposed by Ferri et al. [58, 59], who conducted a

study to quantitatively evaluate the submentalis muscle (chin) EMG activity during sleep in patients

with RBD, or with RBD and multiple system atrophy (MSA). Ferri et al. suggest SAI should be

used in conjunction with the other criteria for clinical evaluation, and for patient diagnosis with

respect to RBD. The study included 21 patients with RBD, 10 patients with MSA, as well as 34

controls. The over arching goal of Ferri et al. was to provide practical indices for EMG activations,

and for the objective evaluation of EMG atonia during REM sleep. The authors calculated the

percentage of 1-second segments of REM sleep with rectified amplitude greater than 1 mV. The

average amplitude of the rectified chin EMG was used to develop a SAI, which was able to clearly

distinguish REM from NREM sleep in normal controls, with values very close to 1 in young normal

subjects and only slightly (but significantly) lower in age-matched controls. RBD patients showed

an additional, significant decrease in SAI; MSA patients showed the lowest values of REM SAI,

which were distinguishable from those of normal controls and of RBD patients. The distribution of

the duration of chin activations was mono-modal in all groups, with RBD patients showing the

highest levels.

Frauscher Scoring Algorithm

Frauscher et al. [62, 63] developed a rule-based algorithm to score polysomnographic EMG signals

according to the Sleep Innsbruck Barcelona (SINBAR) group criteria with the goal of detecting

RSWA. Researchers collected and analyzed the PSGs of 20 patients with RBD and 60 healthy

volunteers. Motor activity during REM sleep was quantified manually, and algorithmically according

to the SINBAR criteria for the mentalis (“any”, phasic, tonic EMG activity) and the flexor digitorum

superficialis (FDS) muscle (phasic EMG activity). Computer-derived indices for “any,” phasic, tonic
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mentalis EMG activity, phasic FDS EMG activity, and the SINBAR index, which is “any” mentalis

+ phasic FDS, correlated well with manually derived indices yielding a Spearman ρ ∈ [0.66, 0.98].

In contrast with computerized scoring alone, computerized scoring plus manual artifact correction

(median duration 5.4 min) led to a significant reduction of false positives for “any” mentalis (40%),

phasic mentalis (40.6%), and the SINBAR index (41.2%).

Conclusion

While some of the existing automated methods for RBD detection discussed in the preceding sections

showed impressive evaluation metrics for their respective test populations, all were developed using

very small datasets with fewer than 40 participants. When applied to larger datasets, the same

rule-based methods yielded less impressive results, with none of the before mentioned methods

achieving specificities and sensitivities above 80% in diagnosing RBD [24]. We speculate that

the task of detecting RBD is more complicated and diverse across larger populations, hence a

simple rule-based approach is not robust enough to accommodate such a range of cases. While

the performance of rule-based methods developed on large, diverse data is not known, it seems

reasonable to assume that scaling up the data would also require scaling the number of rules,

making the algorithm difficult to maintain. It follows that, given a population of adequate size, ML

approaches are better suited to the task of RBD detection in complex, real-world populations.

4.3.2 Machine Learning Methods

In this section we look at previous applications of ML in sleep medicine. Up to this point such

applications had been focused on RBD diagnosis and sleep stage classification, not RSWA event

detection.

One-Class SVM

Kempfner et al. [108, 109] conducted a study on a sample comprising 16 subjects with idiopathic

REM sleep behavior disorder, 16 subjects with periodic limb movement disorder, and 16 healthy

control subjects. While the study proposed a semi-automatic algorithm for the early detection

of Parkinson’s disease, it was not explicitly designed for RSWA event detection. Kempfner et al.

claimed that RSWA could be detected by distinguishing between normal REM sleep and RSWA

by considering muscle activity as an outlier detection problem. Different combinations of five

surface electromyographic channels, including the EOG, were tested. A muscle activity score was

automatically computed using manually scored REM sleep, by way of a one-class SVM trained with

subject-specific features. Kempfner et al. then computed the mean of each three-second mini-epoch



4.3. PREVIOUS APPROACHES AND RELATED WORK 81

during REM sleep relative to the minimum of a surrounding 30 second window and using a one-class

SVM, and the percentage of min-epochs classified as outliers were used to differentiate patients with

an AUROC of 0.99. Similar to the examples of rule-based systems described in Section 4.6.1, this

study was conducted using a very small sample, and results reported therein may not generalize

well to larger populations.

Random Forest

Cooray et al. [38] developed a RF based approach for predicting RBD diagnosis. For model training,

a total of 156 features were hand engineered from EEG, EOG, and EMG signals. Analysis was

performed using PSGs from 53 participants with RBD, and 53 age-matched healthy controls. RBD

diagnosis requires analysis of a patient’s PSGs during REM sleep. In order to remove the need for

manual sleep stage annotation, Cooray et al. trained an RF classifier on the task of sleep stage

classification which achieved a Cohen’s Kappa score of 0.62. The sleep stage and RBD classifiers

used a similar set of input features, and differed primarily by target. While manual annotations

can be more time consuming and expensive to obtain compared to a classification model, Cooray et

al. found that RBD diagnosis accuracy improved from 86% to 96% when using manually annotated

sleep staging. It follows that automatic sleep stage classification by way of this particular RF

classifier significantly hindered performance with respect to the primary task of RBD diagnosis.

The classification accuracy reported by the authors sounds very good, but there are several

factors to be considered: First, it is important that the test set class distribution is representative

of the actual population when assessing the effectiveness of a ML model. An even binary class

split is not common in the real world where the proportion of positive examples may be very small.

Second, when a target distribution is highly skewed, as is the case for RBD diagnosis, accuracy can

be a very deceptive metric. There are many metrics more appropriate for evaluating a classifier

with skewed target data, such as precision-recall, and F −measure = 2∗Precision∗Recall
Precision+Recall . Lastly,

this study employed a very small sample where the number of subjects was less than the number

of input features to the model (i.e., 106 subjects with 156 features for each). In other words, the

dimentionality is higher than the sample size so the training data cannot provide an adequately

representation of the domain, and the model would be very prone to overfitting. In such a situation

it would be advisable to either increase sample size (e.g., resampling), reduce the dimentionality

(e.g., PCA), or performing a preliminary feature selection. In either case, 106 examples is a very

small sample for ML model training, validation and testing. A follow up analysis would be required

to assess the degree to which the model overfit to the data, as well as how generalizable the trained

model would be given a larger, more diverse population.
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Deep Neural Networks

Up to this point, the sleep medicine and machine learning research community has not focused on

designing systems to automatically detect individual RSWA events. With that said, there have

been several studies which used DNNs for automatic sleep stage classification.

Yildirim et al. [227] successfully trained a DNN, composed primarily of 1D CNN blocks, to

classify sleep stages with a high degree of accuracy. Data used for this study was taken from two

open source sleep datasets: sleep-edf and sleep-edfx [172]. The first dataset consists of PSG signals

of eight healthy males and females, while the second dataset (extended version) contains PSG

records for 61 subjects in total. This study considered sleep stage classification with five classes, W

(wake), S1, S2, SWS and REM, as well as six classes, where the single class SWS was replaced with

S3 and S4. The network architecture employed in this study comprised several 1D CNN blocks,

each of which contained two 1D conv layers, followed by a max-polling layer. The first block in the

network used dropout following the max pooling layer, and the last block was flattened and fed

into two additional dense layers. The researchers in the study used the following combinations of

PSG signals to train the network: single-channel EOG, single-channel EEG, and single-channel

EOG + single-channel EEG. Hyperparameter tuning was performed via brute force. The network

performance showed high sensitivity for the W class, which was by far the dominant class in both

datasets. Reported sensitivities for the remaining classes were 0.48, 0.84, 0.77 and 0.81 for the five

class, and 0.41, 0.89, 0.35, 0.78 and 0.84 for the six class network respectively.

Malafeev et al. [141] outfitted a DNN composed of 1D CNN blocks, similar to that of Yildirim

et al., but with a RNN layer to classify sleep stages. In this study Malafeev et al. used two datasets:

the first contained 54 whole night sleep recordings of healthy participants, and the second consisted

of 22 whole night sleep recordings, as well as 21 recordings of a multiple sleep latency test (MSLT)

for patients with sleep disorders. Malafeev et al. tried two CNN - LSTM architectures: the first

took as input a single-channel EEG which was passed through a series of 1D CNN blocks, the last

of which was fed into an LSTM which output a probability distribution over five target classes

(W, S1, S2, S3 and REM). The second architecture used single-channel EEG, EOG and EMG

signals as input. The EEG and EOG were passed through separate 1D CNN encoder branches

with residual connections, which were discussed in Section 2.4.3. The encoded EEG and EOG

signals were then concatenated together along with the original EMG signal, and passed to a final

LSTM which output probabilities over the same five classes. For the purposes of this study each

epoch was considered to be independent, not taking the temporal structure of sleep into account.

The two DNN architectures were evaluated for each sleep stage via Kohens Cappa. Evaluation
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results varied considerably by population, showing best results for the healthy population, and

lowest results for the patient group. In addition, the models also showed variable performance with

respect to sleep stage, with stages W, S2, S3 and REM all receiving relatively high Kohens Cappa

scores, while stage S1 consistently scored significantly lower, indicating that some sleep stages may

be considerably harder for a DNN of this type to classify. Malafeev et al. noted that training

on a mixture of the two datasets resulted in an increased performance, which suggests that the

underlying population is diverse, and therefore better generalization and overall performance is

achieved when the model is trained on a more representative, diverse dataset.

We took inspiration from Malafeev et al. when constructing several of the architectures used in

our work. Specifically, the second architecture discussed above employed a separate encoder for the

EEG and EOG signals. Several of the model we present in Section 4.6.2 utilize a similar technique,

which we refer to as “multi-branch” encoding.

4.4 Data Description

The overnight PSG data used in this chapter was collected from an approved protocol performed

according to the Declaration of Helsinki with approval of the Veterans Affairs (VA) Portland Health

Care System Institutional Review Board (#3641). All participants provided verbal and written

informed consent prior to participation. Participants in this study were US Veterans and enrolled

prospectively in a cross-sectional manner through the VA Portland Health Care System Sleep Clinic

[153]. Data collection was not done as part of this body of work, but was made available through

a partnership with the Portland VA hospital to be used for scientific research and development

related to automatic detection of RDB related events.

The final dataset used in this work consisted of 843 anonymized PSG studies. Nineteen

channels were recorded in all PSG studies including standard electroencephalography (EEG) and

electrooculography (EOG) channels, as well as EMG recordings of the submentalis (chin), and the

left and right anterior tibialis (L leg and R leg). Single-channel EMG, EOG, and EEG signals

were all sampled at 200 Hz. Sleep staging and annotation of respiratory events, mainly consisting

of apneas and hypopneas, were performed by a certified sleep technologist according to AASM

scoring guidelines [13]. Annotation of EMG recordings for P and T events were performed by a

trained research assistant under the supervision of a board certified sleep physician,2 according

to AASM scoring guidelines [13]. P events were defined as short bursts of elevation in EMG tone

2Dr. Miranda Lim was the board certified sleep physician that oversaw this project. Dr. Lim was the head of the
sleep lab at Portland VA Hospital at the time of this research, and oversaw the work conducted during this time.
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lasting 0.1–5 seconds with an amplitude of at least four times that of the baseline during REM

sleep. T events were defined as tonic elevation in EMG tone higher than the NREM baseline lasting

longer than 5 seconds. Baselines were gathered via AASM guidelines, and are discussed further in

Section 4.6.1. While REM and NREM segments of sleep are needed to calculate baselines for P

and T events respectively, actual P and T events can only occur during REM sleep. The beginning

and end of T events were always labeled. All P events had a labeled beginning, but ≈ 60% of P

events lacked a labeled ending due to a problem with the software used by the sleep technician to

manually annotate RSWA events. More specifically, for P events, the quick burst of activity could

appear to be almost instantaneous to a human labeler, therefore a P event annotation could be

logged as a single location pointer within a PSG, without a corresponding end time. In the case of

seemingly instantaneous P events, the event would be logged with a start time and no end time

by the software, as opposed to simply setting the end time to be the same as the start time to

indicate that the associated duration was zero. A strategy for accommodating a slight uncertainty

in human labeled events will be discussed in Section 4.5.

Of the 843 total PSGs that were collected, 802 met the inclusion criteria of being at least 4 hours

long, and containing at least 5 minutes of REM sleep. Of these 802 PSGs, 110 were subsequently

excluded due to data corruption issues. The remaining 692 studies were partitioned into train,

validation and test sets with the following split: 554 patients were used for training (≈ 80%), 78

patients were designated for validation (≈ 11%), and the remaining 60 patients were held out for

testing (≈ 9%). Each PSG study contained a average of 8.3±5 (mean±std) unique REM periods,

each of which lasted an average of 420±495 seconds. Across the dataset, there were 3,915 labeled T

events that lasted 5.6±11.1 seconds on average, and 13,600 labeled P events with a mean duration

of 0.6±0.7 seconds. P events where the duration was not entered were assigned a duration of 0

seconds, and ≈ 5% of PSG studies contained no labeled P or T events. Only REM regions, and up

to two minutes of NREM sleep immediately preceding a REM region were used as input to the

models discussed in Section 4.6. We discarded the first REM regions from a PSG study if they

were not preceded by NREM sleep of any duration, which occurred in 3 of the 692 PSGs.

4.5 Data Preprocessing

EMG signals were filtered using a zero-phase FIR high-pass filter with a cut-off frequency of 20 Hz.

Signals were further processed by rectifying the chin, L leg, and R leg EMG signals [58, 108, 109],

and down-sampling to 10 Hz for all channels. Overlapping labeled P and T events were rare

(< 0.01%), and P events that overlapped with T events were dropped. Outputs were 3-dimensional
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vectors representing probabilities of each event class: “no event,” “P,” and “T.”

One-hot encoding were not used in order to accommodate a software issue associated with P

events having duration between 0 and 1 second, and also to reflect the timing imprecision of human

labelers. The before mentioned issues were addressed by assigning a probability to each event,

which was linearly ramping up or down within an ϵ-neighborhood of the labeled event. The value

of ϵ was determined empirically, and set to ϵ = 0.1 seconds across experiments. The ramp-up /

ramp-down around labeled events can be seen in Figure 4.1).
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Figure 4.1: EMG signals and targets. For both sub-figures, Chin, L leg, and R leg rectified EMG
signals are shown in the top three panels. Target probabilities are shown in the bottom panels.
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4.5.1 Artifact Reduction

During preliminary data analysis we observed the presence of artifacts in EMG signals that appeared

to be rooted in the ECG signal. That is, the heart signal was noticeably present in EMGs. In order

to mitigate this effect, we developed a method to reduce these artifacts as follows: Let x be the

source signal that drives the appearance of artifacts in a given channel z. In our case, x was the

ECG signal, and z was any one of the EMGs. We assumed that there existed an artifact signal a

that was added to the artifact-free signal z̃ such that the observed signal z = z̃ + a. Furthermore,

we assumed that the artifact in question was the result of a linear convolution of the source signal

x with impulse response h, or a = x ∗ h. In regions where z shows no muscle activity, we can

assume that z contains only noise, and thus we can solve for h via a finite impulse-response system

identification approach using least-squares in the time domain [177]. We adaptively calculated

h on NREM regions immediately preceding REM regions. The length of time used to calculate

h was treated as a hyper-parameter, and chosen as the minimum value that achieved maximum

performance on validation data using a metric that measured the decrease in overall root-mean-

squared (RMS) energy. The average “best” duration was found to be approximately 80 ms. Finally,

the artifact-reduced signal in a subsequent REM region was estimated as z̃ = z − x ∗ h (see Figure

4.2).

To evaluate the proposed method, we processed 164 regions of REM sleep with 0.5–2 minutes

of preceding NREM sleep, and found that, on average, RMS energy was reduced by 35.4±13.9,

2.0±2.4, and 3.6±2.6 percent for the chin, L leg, and R leg channels respectively. We speculate that

the greater distance between the heart and the legs relative to the distance between the heart and

the chin contributed to the difference in severity of artifact influence, and thus subsequent artifact

reduction performance.

4.5.2 P and T Event Baselines

AASM rules for detecting P and T events require constructing an appropriate baseline with respect

to each event type. In this section we provide specifics around the process that was used to construct

the baselines used in subsequent experiments. While there are many differences between baselines

used to detect P versus T events by AASM rules, one differentiating characteristic is that baselines

used for detecting P events are based on REM sleep segments, while T event baselines use NREM

sleep.

AASM guidelines were used to calculate appropriate baselines. To calculate a baseline for

T events, the tenth percentile of the chin EMG signal from up to 120 seconds of NREM sleep
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(a) Original ECG signal (b) Original Chin EMG signal

(c) Estimated artifact signal (d) Processed Chin EMG signal

Figure 4.2: Artifact reduction example.

immediately preceding a REM region is used. If no NREM sleep immediately precedes a REM

region, then the baseline from a previous NREM region is used. In contrast, P event baselines

are initially the initial 120 seconds from the first REM region. After 120 seconds of REM sleep

is been analyzed, the P baseline is taken as the preceding 120 seconds of REM sleep, which may

include REM sleep from one or more previous REM regions. The REM baseline for each channel is

determined separately as the qth percentile of the EMG signal, where q is a configurable parameter.

We interpreted the AASM rules to imply a q value of 50 for the median. Events identified as P

were excluded from the REM baseline.

4.6 RSWA Event Detection Methods

In this section we will use the term “RSWA event” or “signal-level RSWA event” interchangeably

with a single P or T event. Recall from Section 4.2.2 that a diagnosis of RBD is largely based on

the presence of RSWA events in a PSG. It follow that the accurate detection of RSWA events can

be directly used for downstream RDB diagnosis. The goal of this section is to present DL based

approaches to the task of RSWA event detection by leveraging several DNN architectures capable

of handling sequential inputs, which in our case are processed signals from PSGs.
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In order to evaluate the effectiveness of automatic, signal-level RSWA event detection, we

investigated several methods. We first established a simple baseline for the task of RSWA event

detection by implementing a rule-based system designed to mimic the AASM standards. Next, we

constructed a fairly straight forward FFNN to gauge the effectiveness of a basic DNN architecture

on the task of detecting RSWA events. Finally, we implemented and trained several DNN variants,

leveraging more advanced architectures that we speculated would be better suited to the non-trivial

task of RSWA event detection. In all cases, the DNNs we leveraged were capable of learning

effective feature representations, hence no hand-engineered features were required.

4.6.1 Rule-Based

To establish a performance baseline, we first implemented a rule-based algorithm to detect RSWA

signal-level events using the rules outlined in the AASM manual [13]. The algorithm used a sliding

window approach to compare the amplitude of the rectified EMG signal to baselines calculated

separately for T and P events. Section 4.5.2 provided details as to how baselines with respect to P

and T events were calculated.

Using the before mentioned baselines, chin signals were considered to contain a T event if dT

consecutive seconds of the signal exceed the product of a threshold parameter θT and the NREM

baseline. AASM rules specify dT and θT to be 1 second and 1.0 respectively, although they can be

considered configurable parameters. Signals from the chin or legs were considered to be signal-level

P events if dP consecutive seconds of signal were greater than the product of a threshold parameter

θP and the REM baseline. AASM rules specify a value of 0.1 second for dP and 4.0 for θP . Detected

P and T event labels were combined into a sequence of predicted events according to the following

rules: (1) A P event is recorded if a P event is detected in the Chin, L leg, or R leg channel and no

overlapping T event occurs. (2) A T event is recorded if a T event is detected in the Chin channel,

regardless of whether a P event was detected in any other channel. P and T events were ignored if

they occurred within 15 seconds of an annotated apnea or hypopnea event.

Optimal values for q, θT , dT , dP , and θP were selected via grid search over the parameter space

using balanced accuracy score, which was calculated over the combined training and validation set.

The optimal parameters found were q = 0.9, θT = 4.0, dT = 25, dP = 10, and θP = 6. Optimized

there parameters effectively increased evaluation on the combined training and validation from 0.42

to 0.49.
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4.6.2 Deep Neural Networks

We evaluated several DNN architectures on the task of predicting signal-level RSWA events from a

common set of input channels C. Each architecture used a consistent data representation (X,y),

where X ∈ RC×10n was a n-second window for each channel down-samples to 10hz, and y ∈ R1×3

represented the three target class probabilities (no event, P, and T). Each input channel was

processed as described in Section 4.5 with the exception of the baseline calculation discussed

in Section 4.5.2, which was only used in the rule-based methods. With three input channels

down-sampled to 10hz, and three output classes, we have X ∈ R The job of each DNN architecture

described in the following sections was to take in a n−second context window of processed signal

from each channel, and correctly classify the event at the center of the window. Window size

was treated as a hyperparameter, with a final window size of 20 seconds used in all reported

experiments. Samples were taken via a sliding window approach with overlap. We compared several

DNN architectures in the following experiments, each of which used the same train, validation and

test data. The following is a brief discussion of our approaches:

Feed Forward Neural Network (DNN Baseline)

For a baseline DL approach we employed a traditional FFNN. The FFNN first encodes the three

input channels, each consisting of 10n values, separately using different sets of weights. Each

encoder branch consisted of two dense blocks, where a dense block was constructed from a dense

layer with 128 neurons, ReLU activation and dropout. The output from each encoder branch was

concatenated, and the resulting intermediate representation was then passed through two additional

dense blocks with 128 and 64 neurons respectively, followed by an output dense layer with softmax

activation to normalize the output values.

Recurrent Neural Networks

RNNs, which were introduced in Section 2.4.1, have long been used with great success for tasks

involving sequential input data such as language modeling [147] and speech recognition [73]. We

chose to leverage the LSTM flavor of RNN and constructed a DNN composed of two LSTM layers,

each with 128 units, followed by two dense blocks with 128 and 64 neurons respectively and an

output layer with softmax activation. While we chose the dense layer sizes to be consistent with

the baseline FFNN. However, unlike the baseline, which encoded each input separately and then

combined the outputs, all channels were input to the LSTM simultaneously.
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Convolutional Neural Networks

CNNs, which were introduced in Section 2.4.2, were first popularized for computer vision applications

[124], and are now commonplace in modern technology from consumer smart phone cameras, to

industrial video monitoring systems. In addition to the 2D CNNs which have dominated the field

of CV for many years, 1D CNNs have also seen success in sequence modeling tasks such as time

series modeling [115, 175]. We experimented with three 1D CNN variants in this section:

1D CNN (multi-channel): We constructed a DNN composed of 1D Conv blocks, each of which

comprised a 1D convolutional layer, followed by a batch normalization layer, ReLU activation,

and a pooling layer. This variant is referred to as “mutli-channel” as processed signals from

all channels were simultaneously input to the network, and passed through a single encoder

branch. The encoder branch was composed of a 1D Conv input block with din convolutional

filters of size h× w × 3 (for the Chin, L Leg and R Leg channels), followed by an additional

1D Conv blocks consisting of 64 5×5×din filters. The output activation was then propagated

forward through two additional 1D Conv blocks with 128 3 × 3 × 64 and 128 3 × 3 × 128

filters respectively. This was followed by a max-pooling layer, and then two final 1D Conv

blocks with 256 3 × 3 × 128 and 256 3 × 3 × 256 filters with subsequent pooling. The output

from the final 1D Conv block was then flattened, and passed through several dense blocks,

the last of which output a 1 × 3 vector of normalized scores for each of the 3 independent

event classes. The basic architecture of the multi-channel 1D CNN is shown in Figure 4.3.

Figure 4.3: In the mutli-channel 1D CNN variant all channels are input to a single encoder branch.
Each filter in the first Conv layer of the joint encoder is h× w × 3.

1D CNN (multi-branch): For this next 1D CNN variant, we kept the encoder architecture

consistent with that of the 1D CNN multi-channel variant, but encoded each input channel

separately using a different set of weights, in the same fashion as the baseline FFNN [231].
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That is, instead of 1 encoder for N signals, we employed N separate encoders, each of

which was tasked with encoding 1 signal. The outputs from the encoder branches were then

individually flattened, concatenated, and passed through the same sequence of dense blocks

as the multi-channel network. The architectural choices for this variant were made in order to

allow for fair comparison with the multi-channel variant. A multi-branch 1D CNN is shown

in Figure 4.4.

Figure 4.4: In the mutli-branch 1D CNN variant each channel is encoded by a different encoder
branch. Each filter in the first Conv layer of each encoder is h× w × 1.

1D CNN (multi-channel with residual connections): As discussed in Section 2.4.3, the

residual, or “skip” connection, allows for information from a previous layer to be combined

with the output of a subsequent layer, which in-turn allows for a more resilient network that

is robust to increased depth. This approach utilized three times as many convolutional blocks

as the 1D CNN multi-channel approach, but with residual connections added. While residual

connections are an effective way of learning much deeper networks, which in many cases

outperform their shallower counterparts, they are not necessarily appropriate for relatively

small networks, hence the increased depth of this variant.

Each network described above was trained with the Adam optimizer [116] for up to 200 epochs,

using a mini-batch size of 128, and an initial learning rate of 1e−3. Early stopping was employed

with cut-off of 20 epochs, as well as learning rate decay with a decay factor of 0.1. A test set

comprising ≈ 600 REM regions from ≈ 60 patients was used for evaluation, with each REM region

representing ≈ 4, 000 samples. The test set therefore consisted of ≈ 240k examples in total.
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4.7 Experiments

4.7.1 Metrics

Two metrics were used to quantify the performances of the proposed event detection models, using

signal-level, human labels as ground truth:

1. Balanced Accuracy: Balanced Accuracy (BAC) was selected as a primary evaluation metric

due to the highly skewed nature of the data. That is, the likelihood of observing “no event”

is far higher than that of a P or T event. BAC avoids inflated performance estimates on

imbalanced datasets by taking into account the frequency of occurrence with respect to each

class. In the case of multiclass classification, BAC equates to the average of recall obtained

on each class, which is essentially accuracy if the dataset is balanced, but provides a much

more fair assessment of performance when a dataset is skewed. BAC in our case is defined as

follows:

BAC =
(recallnone + recallP + recallT )

3

where

recall =
TP

TP + FN

2. Inter-Labeler Agreement: For Inter-Labeler Agreement we used an approach similar to

the human inter-labeler metric used to certify new technicians for scoring apneas, and assessed

agreement between each model and the human labeler using Cohen’s Kappa coefficient [100],

which is defined as follows:

K =
po − pe
1 − pe

= 1 − 1 − po
1 − pe

In the above equation po is the relative observed agreement among raters, and pe is the

hypothetical probability of chance agreement, using the observed data to calculate the

probabilities of each observer randomly seeing each category. Epochs are classified as T, P, or

None, according to the following rules: (a) T epoch: At least one T event in the epoch, and

the total duration of the T events is longer than the total duration of the P events in the

epoch. (b) P epoch: At least one P event in the epoch, and the total duration of the P events

is longer than or equal to the total duration of the T events in the epoch. (c) None: No T or

P events in the epoch.

4.7.2 Results

Results of each metric are shown in Table 4.1. The deep learning approaches achieved better

BAC scores than the rule-based approach. Regardless of variant, the 1D CNNs were better able
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to classify events at the sample level than were the LTSM and FFNN variants. Despite similar

BAC scores, the 1D CNN variants were differentiated by inter-labeler agreement, where the best

performance was observed for the multi-channel 1D CNN with residual connections. Although the

Cohen’s Kappa values reported here are modest, this measure can yield small values (≈ 0.6) even

when agreement is excellent (≈ 90%) [152]. To our knowledge, inter-labeler agreements has not

been quantitatively measured for human labelers on the task of RSWA event detection, but the

agreement would likely be low [15].

Method / Metric Signal-level BAC Inter-Labeler Agreement

Rule-based 0.73 (0.27) 0.52 (0.47)
FFNN 0.85 (0.19) 0.60 (0.40)
LSTM 0.89 (0.16) 0.52 (0.41)

1D CNN (MC) 0.91 (0.14) 0.47 (0.40)
1D CNN (MB) 0.91 (0.15) 0.61 (0.40)

1D CNN (MC + res) 0.91 (0.15) 0.68 (0.39)

Table 4.1: Performance comparison of RSWA event detection methods. Methods are evaluated
by mean balanced accuracy (BAC) and inter-labeler agreement (Cohen’s Kappa) on the test set
(standard deviation in parentheses). MC, MB, and res stand for multi-branch, multi-channel, and
residual connections, respectively.

4.7.3 Discussion of Results

The rule-based system performed relatively poorly in signal-level event prediction, similar to

previously reported results, suggesting that rule-based systems may be too simplistic, and lack the

flexibility to achieve human-level performance in detecting RSWA events. Human labelers may

use other implicit criteria or contextual cues, in addition to clinical rules, to detect RSWA events.

For instance, PSG recordings are often contaminated by cardiac noise. While human labelers may

perform robustly when assessing noisy PSG recordings by mentally filtering out the noise, the

rule-based systems may fail unless it is explicitly programmed to do so. DNNs on the other hand,

and CNNs in particular are capable of sophisticated feature learning, and may be able to effectively

learn the relevant features and contextual cues used by human labelers in distinguishing between

true RSWA events, and contaminating noise.

We speculate that the similarity in performance of the multi-channel and multi-branch models

without residual connections was primarily the result of their similar encoder architectures. We

note that there is little difference between the encoding achieved by passing all channels through a

layer consisting of N M × 1 × C sized filters simultaneously, and that achieved by passing each of

the C channels though a separate layer comprising N M × 1 × 1 filters individually. After the first
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layer, the comparison between subsequent encoding layers diverged between the two approaches,

which may have helped the multi-branch network achieve a better inter-labeler agreement than its

multi-channel counterpart. Increasing the network depth and adding residual connections resulted

in significantly better inter-labeler agreement, but comparable signal-level accuracy. This may

be in part because the signal-level accuracy of the networks without residual connections was

already quite high, so the depth of these networks may have already been adequate to optimize

signal-level balanced accuracy for the detection problem with the given inputs. Although we

did not attempt to classify patients based on signal-level events, we speculate that the relatively

high inter-labeler agreement of the residual network, in conjunction with the strong signal-level

classification performance, may enable more accurate diagnosis.

4.8 Summary

Existing automated methods are largely focused on RDB diagnosis as a binary classification problem.

Instead of patient-level binary diagnosis, the methods proposed in this chapter are capable of

creating a much finer-grained analysis by detecting the location and class of all RSWA related

events in a sleep study. In addition, the more granulated detection allows for the quantification of

event duration, and frequency, which in-turn can help quantify disease load and severity, and can

provide characterizing statistics for tasks such as population studies. Signal-level event detection

also allows clinicians to compare their own scoring of events with the events identified by the model.

It follows that utilization of our method by clinicians may enable better explainability of RSWA

diagnoses by combining the results of our model with patient-level, binary classification systems

using hidden, or obtuse features.

In this chapter we demonstrated that modern DNNs can perform very well on the task of

automatic RSWA event detection at the signal level (i.e., an event of type x at time t). In addition,

or method takes sensor data as input and automatically learn feature representations. The end

result is a capable system which is efficient and objective. While a skilled sleep lab technician can

spend hours to manually annotate a single study, our DL based approach, by comparison, is capable

of doing the job, well, in a matter of seconds on a single commodity machine. By significantly

reducing the overall cost of PSG annotation, both in human hours and in healthcare costs, we

allow for RSWA event detection, and by extension RBD diagnosis, to be applied to a much broader

patient population. By empowering clinicians with a tool for fast, accurate RSWA event detection

we aim to lower the bar for early diagnosis, and better overall patient care.
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Chapter 5

Parameter Efficient Fine-Tuning of Deep

Neural Networks with Budget Allocation

5.1 Motivation

Since the resurgence and subsequent mainstream popularization of neural networks, DL has become

the dominant paradigm in ML. DL has been extremely successful across the primary domains of

ML including natural language processing (NLP), automatic speech recognition (ASR), computer

vision (CV), reinforcement learning (RL) and more. While DNNs are becoming more powerful,

robust, and generalizable, they are also getting significantly larger. In recent years we have seen

DNNs with hundreds of millions of parameters, such as GPT-2 [179], evolving into networks with

hundreds of billions of parameters, like GPT-3 which was proposed by Brown et al. in [20]. One of

the most notable accomplishments of DNNs like GPT-3 is that they have been shown to perform

reasonably well in few-shot settings where the pretrained “base” network is evaluated on a new task

(not seen in training), with no additional task-specific adaptation, by providing only a few examples.

One few-shot method proposed by Brown et al. is known as prompt engineering. Essentially,

the goal of prompt engineering is to illicit a desired output by constructing a small set of “good”

examples (i.e., prompts in the case of language modelling), consisting of formatted input/ output

pairs concatenated together, which are then given to the model with the last output omitted for

the model to generate. While the performance of GPT-3 in the few-shot setting is impressive, such

methods are rarely on par with smaller, task-specific models, and show inconsistent performance

from task to task.

On the other end of the spectrum we have full fine-tuning (FT), where all network parameters

are updated to adapt the network to a new task. Full FT is capable of out-performing few-shot,

and smaller task-specific models, but becomes a challenge in itself when the model being fine-tuned

is huge. Models of large scale bring their own set of challenges through massive storage overhead,

96
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and the shear amount of GPU memory required for training.

As mega-scale DNNs achieve increasingly impressive performance, researchers and product

groups alike are posing the questions: (1) how can such models be adapted to new tasks, and (2)

what would it take to deploy such a model a production system? Consider a DNN like GPT-3

Divinci, which is a 175 billion parameter transformer-based language model requiring around 350G

to store a single copy, and close to 1TB of GPU memory to train. Working with models of this

size requires access to huge amounts of resources, making them prohibitively expensive for many

within the ML and AI community to leverage. In other words, such models may be out of reach

for all but the biggest tech companies who have the resources to utilize them. A high bar for

adoption of top-performing technologies equates to an uneven playing field, and the slowing of

scientific progress. Moreover, in addition to the shear amount of resources required to leverage a

modern, mega-scale DNN, there are other problems that can arise out of sequentially training a

model on different tasks. Catastrophic forgetting [64], for example, is a problem which can arise

where knowledge of a previously learned task, or tasks, is lost as information relevant to a new task

is incorporated.

The work in this chapter was proposed in part as a solution to the problems discussed above,

as well as a way to adapt pretrained DNNs to new tasks in a more efficient way, without loss of

performance as compared to full FT1. We take the basic ideas and designs of Parameter Efficient

Fine-Tuning (PEFT) of transformers, which has been successfully demonstrated in NLP, and apply

them to the domain of CV. PEFT was outlined in Section 2.9, and transformers were discussed in

Section 2.6. We then propose a novel approach to learning a parameter budget allocation, which is

done as part of the overall network optimization, in order to make PEFT even more efficient and

powerful. We show empirically that our method does not under-perform, and often outperforms

base PEFT methods, as well as full fine-tuning. Moreover, we show that our method is particularly

effective in closing the performance gap between full FT and PEFT in cases where the deficiency

between the two is more pronounced.

The methods we propose in this chapter are relevant to the domain of healthcare AI for several

reasons. While healthcare AI, much like AI in general, can benefit from efficient model adaptation,

healthcare problems are much more commonly associated with other challenges that make them

well suited to PEFT. First, healthcare problems often fall into the low data regime, as data can

be expensive to collect, and relevant examples can be extremely rare. Second, task-specific data

1The work in this chapter was previously published in [214]: P. Wallis and X. Song Efficient Fine-Tuning of Deep
Neural Networks with Effective Parameter Allocation in IEEE International Conference on Image Processing (ICIP)
2022
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in healthcare applications can differ greatly from the general purpose data used in base model

pretraining, making effective model adaptation critical.

5.2 Background and Related Work

To learn complex tasks well in an ML setting, it’s common to employ highly complex models

such as DNNs. While DNNs have been shown to be high performing, they are also known to

be notoriously data hungry, and often require a huge number of training examples to converge.

As discussed in Section 2.9, there are many problems that arise out of a large data requirement

including availability of labeled data, and computational resources needed for training. In this

section we highlight several key concepts and DNN architectures which are crucial to understanding

the primary contribution of this chapter, which is the PEFT method we propose in Section 5.3.2.

To that end, we will summarize some of the key concepts of transfer learning and PEFT, which

were first introduced in Sections 2.7 and 2.9 respectively. We will also introduce the concept of

“parameter budget allocation” with respect to PEFT, as well as Vision Transformers (ViT), the

primary DNN architecture used in Section 5.4.

5.2.1 Transfer Learning

A key lesson from transfer learning is that knowledge gained while solving one problem can later be

applied to a different, but potentially related problem. The concept of knowledge transfer in ML is

not new. The basic ideas that are commonly associated with transfer learning have been around

since the 1970s [16], popularized in the 1990s in part through the paradigm of multi-task learning

[23], and are now ubiquitous within the ML and AI communities. In modern DL, fine-tuning a

pretrained base model, trained on a general task with a large amount of diverse data, has become a

highly successful, and widely used strategy.

Pretrained Vision Models

Transfer learning has been applied in CV with great success for many years, and has traditionally

employed the CNN style architectures discussed in Section 2.4.2. Transformers, on the other hand,

were initially proposed for seq2seq tasks such as machine translation (MT) or time series modeling,

and were overlooked by CV researchers. More recently, ViTs, which will be discussed more in

Section 5.2.6, have been shown to outperform CNNs across a range of common CV tasks [113].

Much like the various objectives used to pretrain transformer-based language models (Section 2.7.2),

ViTs can be pretrained in a number of ways including: fully supervised (when labels are available),
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such as in the widely used ImageNet dataset [45]; unsupervised, which has been shown to be highly

effective through approaches such as Momentum Contrast [76] and Masked Autoencoders [75]; and

even in multi-modal setting as demonstrated in CLIP [178], where inputs are pairs of text and

images. In short, modern transformer fueled applications have reinforced the principals of transfer

learning. In particular, models trained on large amounts of diverse, general purpose data can be

leveraged to learn new tasks more effectively, and efficiently.

5.2.2 Parameter Efficient Fine-Tuning

PEFT, which was discussed in Section 2.9, is a methodology where a pretrained base model is

adapted to a new task by updating a small number of parameters as compared to the full model

size. PEFT can dramatically reduce storage and memory requirements, significantly lower training

time, and has been shown, in many cases, to result in a better performing model when compared

with full fine-tuning [89, 136, 93]. Hu et al. [93] showed that the reduction in storage required for

top-performing PEFT models can be upwards of 10, 000x (for GPT-3 Divinci) versus traditional

fine-tuning, with an accompanying drop in GPU memory of ≈ 1
3 . The large drop in storage

associated with PEFT is attributed to the fact that a PEFT checkpoint, or single model adaptation,

requires a very small number of parameters to be stored compared to the base model size. The drop

in GPU memory, on the other hand, is the result of the optimizer not needing to store gradients

with respect to the base model’s parameters, as they are frozen, or “preserved” during training and

are therefore not updated. As a result, PEFT serves to significantly lower the bar for adoption

of massive, highly performant DNNs, thereby providing a more inclusive research landscape, and

allowing for such models to be practically deployed in production systems. Furthermore, since

PEFT preserves a base model’s weights, we speculate that models adapted via PEFT should be

less prone to catastrophic forgetting compared to their fully fine-tuning counterparts.

While the benefits of low GPU memory overhead and reduced training time are obvious, one

could argue that storage savings are of less importance, as the costs associated with storage are very

low compared to the cost of memory. For example, the cost of 1G of storage from a modern cloud

provider can be as little as $0.02 per month at the time of this writing, while the cost of a single

compute node outfitted with 4 to 8 NVidia A100 GPUs can cost upwards of $40 per hour. While this

argument is certainly valid, consider the case where a single pretrained DNN will be used as a base

model with respect to a large number of task-specific applications. One such example is the case of

personalization in digital assistants. In an extreme example such as personalization, a collection

of user level, or user-segment level models may be required, resulting in a huge number of model

variants. In such a case, a traditional fine-tuning approach would require a full sized copy of the
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model for each adaptation. Therefore, with n model variants (i.e., customizations) and a base model

size of Smodel, the application would require Smodel+n×Smodel = (n+1)×Smodel storage. The same

application would only need Smodel +n×Speft where Speft << Smodel. That is, m = Smodel

Speft , where

m >> 1 (e.g., 1K-10K). This represents a significant savings as m becomes large. For example, with

1K tasks (e.g., users in the previous example), and a base model on the scale of GPT-3 Divinci (i.e.,

350G), one would need 350G + 1, 000 × 350G ≈ 350T of persistent storage. With PEFT, which has

been shown to reduce the checkpoint size of a GPT-3 Divinci adaptation by 10, 000x [93], the same

model requirement would carry a storage overhead of 350G+ 1, 000× 350G
10,000 = 350G+ 35G ≈ 385G.

Hence, if we assume 1TB
Month ≈ $5, our example application would cost roughly $21K/year for storage

of the models alone, whereas with PEFT the annual model storage costs would be < 100. Moreover,

a large model checkpoint can be very slow to load, and expensive to keep in memory, especially

when switching between many tasks since each task requires a different full sized model. In contrast,

switching between tasks via merging and un-merging a base model’s weights in memory with a

small supplemental set of task-specific parameters, is significantly more efficient.

Parameter Budget Allocation

While prior PEFT methods have provided a solid foundation, they leave room for improvement

in a few key areas. One such area is the distribution of trainable parameters over a network,

which we will refer to as “parameter budget allocation.” There are many practical reasons, such

as storage availability (e.g., on-device) or latency (e.g., near real-time applications) to impose a

hard constraint on the parameter budget. Popular PEFT approaches such as Adapters [89] and

Low-Rank Adaptation (LoRA) [93] allocate parameters based on the size of the layer being adapted

and the rank of the adaptation layer, which is fixed regardless of the type of layer being adapted,

or its depth in the network.

One of the early lessons from transfer learning in CV is that we can often freeze entire layers

during fine-tuning, updating only a select subset. For example, in a pretrained CNN with n + m

layers, we may be able to freeze the first n layers, responsible for general sub-tasks such as edge

detection, and tune only the last m. By extension, it seems reasonable to assume that not all

layers in a complex DNN will require the same degree of adaptation with respect to a given task.

Moreover, it’s possible that different tasks may require different parameter budget allocations, even

when leveraging the same pretrained base model.
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5.2.3 Adapters

One of the most popular PEFT methods is known as Adapters tuning, or simply Adapters [89]. In

this approach, a pretrained base model is equipped with “Adapter” modules which are inserted

between consecutive layers at strategic points in a network. In the original work, Adapter modules

were inserted after each MLP layer, within each transformer block as shown in Figure 5.1 (repeated

from Section 2.9). Each Adapter module is composed of a bottleneck projection (i.e., one down

projection and one up), a non-linearity, and a residual connection. The original work also employed

layer normalization at the output. In an Adapter module, the bottleneck dimension is treated as

a hyperparameter which can be tuned for performance, and / or chosen to regulate the number

of trainable parameters being allotted for model adaptation. Adapters are a simple and highly

effective PEFT method, capable of achieving results on par with, or even exceeding full fine-tuning.

However, the sequential application of supplemental Adapter layers effectively adds depth to the

network, which can result in increased latency.

Figure 5.1: Design of the Adapter module (right) and placement within a transformer block (left).
Each Adapter is inserted between two subsequent layers in the base model. Figure taken from [89].
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5.2.4 Low-Rank Adaptations

Low-Rank Adaptations (LoRA) [93] is a PEFT method introduced by Hu et al. in 2021 2. LoRA

was inspired by Aghajanyan et al [2], who showed that pre-trained language models have a low

“intrinsic dimension” and can still learn efficiently despite a random projection to a smaller subspace.

Hu et al. hypothesize that the weight updates for a pretrained weight matrix W0 could have

low “intrinsic rank” during adaptation. In LoRA, the weight updates ∆W with respect to W0

are constrained by representing them as a low-rank decomposition W0 + ∆W = W0 + BA, where

W0 ∈ Rd×k (where d and k are the layer input and output sizes respectively), B ∈ Rd×r, A ∈ Rr×k,

and r << min(d, k).

The structure of a LoRA layer is shown in Figure 5.2 (repeated from Section 2.9), which depicts

an arbitrary base model layer with weights W ∈ d× k. A LoRA layer has a high level structure

similar to the Adapter layer discussed in Section 5.2.3, but the method itself has several notable

differences. One such difference is that LoRA layers are applied in parallel, while Adapter layers are

applied sequentially. It follows that each Adapter layer effectively adds to the overall depth of the

resulting network, which can increase latency as well storage requirements. The parallel application

of LoRA allows for such issues to be bypassed completely during inference. More specifically, for

a base model layer W0 and a corresponding LoRA layer ∆W = BA, the forward pass becomes

h = W0x + ∆Wx = W0x + BAx. That is, during training, both W0 and ∆W are fed the same

input, and their outputs are summed component-wise. Each LoRA A matrix is initialized with

a random Gaussian distribution, while B is initialized to 0 so that only the base model will be

contributing to the loss at the start of training for stability.

Another key difference between LoRA and Adapters is that a LoRA layer can be viewed as a

factorization of its base model counterpart layer, which is not the case with Adapters. It follows

that LoRA weights can be easily merged (and un-merged) with those of its base model counterpart

via simple linear operations (i.e., W0 ± ∆W ). Hence, during inference, the forward pass through

a task-specific adaptation is computationally identical to a forward pass through the base model,

and a base model with many LoRA variants (i.e., task specific adaptations) can be efficiently

switched between tasks with low computational overhead. In addition, since a LoRA layer is

essentially a factorization of its base model counterpart, the effect of full fine-tuning should be

theoretically recoverable as r (i.e., LoRA rank) approaches Dout. That is, if LoRA was applied

to each base model layer, and if the shape of each LoRA layer was equal to the shape of its base

2The author of this thesis was also a co-author of the original LoRA paper, but the work was done as part of the
author’s work at Microsoft, and was not done in association with OHSU as part of this thesis.
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Figure 5.2: This figure depicts a single LoRA layer on the right, which is essentially a factorization
of the corresponding single base model layer on the left. In a LoRA layer, the input x to
layer l, which represents the output from layer l − 1, is passed forward through the LoRA layer
∆W (l) = BA and corresponding base model layer W (l) simultaneously. The output signals
are then combined into a single output activation h(l), which is propagated forward. That is,
h(l) = W (l)x + ∆W (l)x = W (l)x + B(l)A(l)x.

model counterpart, the result of training should be equivalent to that of fully fine-tuning the base

model. Adapter layers, on the other hand, come with no such assurances. While Hu et al. proposed

a solution in LoRA which improved upon some of the shortcomings inherent in Adapters, one issue

that remains in both is the use of a fixed rank across all adapted layers. That is, both LoRA and

Adapter layers are instantiated with the same rank r across all layers being adapted regardless of

the base model layer type, or depth in the network. It may be more efficient and effective to let

the network decide the rank it needs at each layer, and therefore the amount of help a given layer

requires to be adapted to a new task.

5.2.5 Sparsely Gated Mixture of Experts

Sparsely Gated Mixture of Experts (MoE) was introduced by Shazeer et al [202] in 2017, and was

discussed in more detail in Section 2.8. The key idea behind Sparsely Gated MoE is to add one or

more MoE layers to a network, where each MoE layer comprises many smaller “expert” networks
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that learn to specialize in different data regimes in order to perform the overall network objective

better. In each MoE layer, the output from the previous layer is fed into n “expert” layers, denoted

as Ei, ..., En, simultaneously. The corresponding outputs y1, ..., yn are then aggregated by taking

a weighted combination. The weights used for aggregation are output from a gating network G,

with learnable parameters Wg, whose job is to regulate the contribution of each “expert.” That

is, each MoE layer l outputs a y(l) where y(l) =
∑N

i=1 G(x)iEi(x). To achieve SOTA performance

in practice, MoE networks often contain many individual MoE layers, each of which consists of

thousands of individual “experts,” therefore requiring a huge amount of computation to optimize.

For example, a single DNN could utilize 5 MoE layers, where each MoE layer employs 1K individual

expert networks. The solution to this computation bottleneck proposed by Shazeer et al, which

also encourages specialization, is to replace the standard gating mechanism with a sparse gating

mechanism, wherein only the top-k experts are used for each iteration, hence the computation

of n − k of the original experts is eliminated making the computational overhead much more

manageable. A single sparsely gated MoE layer embedded within a recurrent language model is

shown in Figure 5.3.

Figure 5.3: A Sparsely Gated MoE layer embedded within a recurrent language model.

Sparsely gated MoE was inspirational to our work in learning to allocate parameters in PEFT,

which will be discussed in Section 5.3.2. At a high level, like sparsely gated MoE, we also employ

gates to regulate the contribution of individual parameters, but the parameters in our case are

individual LoRA vectors, not entire networks, and sparsity is obtained through very different means.

Specifically, we use regularization to encourage gate sparsity, as opposed to sparsely gated MoE

where an explicit gating function is employed whose job is to weigh the “relevance” of each expert
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with respect to the current example, which is then used to select the top-k. Therefore the “gates”

in sparsely gated MoE do not actually remove experts from the network as much as allow for

candidate selection by assigning a weight to each expert. Moreover, in sparsely gated MoE the

number of experts is a hyperparameter, which does not allow for the number of experts to vary by

layer.

5.2.6 Vision Transformers

Much like the Transformer itself, PEFT has commonly been associated with NLP, in part due to

the massive scale of modern language models. In this work we aim to extend the success of PEFT

in NLP to the domain of CV. While PEFT is an architecture agnostic methodology, we will use

Vision Transformers (ViTs) [51] as the base architecture to showcase the effectiveness of PEFT

in CV for the remainder of this chapter. ViTs were chosen in part due to their recent success

across many common CV problems, coupled with the fact that PEFT of Transformers has been

successfully demonstrated within NLP.

Since the introduction of ViTs in 2020, we have seen variants of the Transformer architecture

applied to a range of common CV tasks including image classification [51, 218], semantic segmen-

tation [181, 205], and image retrieval [54]. A Transformer encoder is composed of one or more

Transformer blocks, and utilizes the following key concepts and components of the Transformer

architecture which were introduced in Sections 2.5.2 and 2.6: self-attention, multi-head attention,

and positional encoding.

In a transformer-based language model, the initial inputs are sequences of tokens. ViTs on the

other hand start with an input image, which is not naturally interpreted as a sequence. While

various encoding methods have been proposed (e.g., [218]), the simplest mechanism for converting

an image into a sequence in ViTs consists of the following steps: break the input image into an n×n

grid of patches (where each patch is contiguous region of pixel intensities); convert each patch into

an embedding via linear transformation; add a positional encoding to each patch representing the

position of the patch in the original input image. This process produces an input which is analogous

to the sequence of token embeddings which are fed into a transformer-based language model. One

advantage of ViTs over CNNs is that the former uses a global representation of the input image

throughout the network. That is, CNNs have a relatively small receptive field, proportional to

kernel size, and a global representation of the input is only obtained late in the network. ViTs

on the other hand use self-attention to represent each patch in the input image as a weighted

combination of all input patches, hence the entire image is taken into account at each stage of the

network. The basic ViT architecture is shown in Figure 5.4.
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Figure 5.4: Basic flow of a Vision Transformer (ViT) for image classification. Left hand side shows
the flow of information though the network: The input image is divided into an n×n grid of patches,
which are then flattened out into patch embeddings via linear transformation (i.e., projection of
flattened images), and combined with positional encodings. The resulting input sequence of patch
+ positional embeddings are then fed to a task-specific Transformer, which is a transformer encoder
for image classification in this case. The output from the transformer encoder in this case is passed
though a classification head (MLP with softmax), which outputs a distribution over the image
classes. The right hand side shows the high level architecture of the transformer encoder, which
takes embedded image patches as inputs and outputs embeddings.

5.3 Methods

In order to maximize performance with a fixed parameter budget, we propose a simple yet effective

solution. Inspired by regularization based feature selection methods such as Lasso [208], and sparsely

gated MoE [202] which was discussed in Section 5.2.5, we extend upon the matrix factorization

design of LoRA [93] by inserting a gating mechanism between each bottleneck projection, and

encouraging sparsity over the gates via ℓ1 regularization. This differs significantly from sparsely

gated MOE, which learns a gating function which is used to select a subset of “experts” via ranking

and top-k selection. While our approach can be applied to Adapters and LoRA alike, we choose to

leverage LoRA as the basic building block for this work as it has other desirable characteristics

as noted in Section 5.2.4. The goal of the proposed method is to maximize performance while

adhering to a fixed parameter budget by gating parameter vectors in a LoRA influenced layer. We

therefore refer to this new method as Gated Low-Rank Economical Adaptations, or GLoREA.
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5.3.1 Encouraging Sparsity through Regularization

ℓ1 regularization, which was discussed in Section 2.3, is not only an effective approach for preventing

overfitting, but can also be leveraged as a flavor of feature selection due to its sparsity encouraging

behavior. Feature reduction in a model can be accomplished by adding a ℓ1 penalty term to the

model’s overall objective, which effectively pushes less influential parameter weights to 0 during

optimization. Given a loss function L, the ℓ1 penalized objective J is defined as follows:

J =
1

N

N∑
i=1

Li + λ||w||1 =
1

N

N∑
i=1

Li + λ
∑
j

∑
k

|wjk|

For the purpose of illustration, a 2D example of ℓ1 regularization is shown in Figure 5.5, where the

ellipses represent the model loss to be minimized, and the diamond centered at the origin is the

ℓ1 constraint. It follows that, in order to minimize the loss while respecting this constraint, the

optimal solution must be at an intersection of the two. Since this intersection will often be at an

axis, the corresponding parameter will be set to 0. When data is high dimensional, as is commonly

the case in DNNs, many parameters can be set to 0 simultaneously.

Figure 5.5: Overall model loss with L1 constraint

5.3.2 GLoREA

The goal of LoRA, as discussed in Section 5.2.4, is to efficiently adapt a pretrained base model to a

new task by outfitting a subset of the base model’s layers with low-rank decompositions. That is,
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for each base model layer being adapted, a small set of additional parameters are allocated and

updated during training, while base model weights are preserved. While LoRA has several key

advantages over related methods such as Adapters and PrefixTuning, the base approach leaves

room for improvement. Notably, each LoRA layer is parameterized by a rank r, which is directly

proportional to the number of parameters the layer is allotted. Moreover, in LoRA this value

is fixed for all layers being adapted. To the best of our knowledge, a fixed rank allows for a

simple implementation in practice, but carries with it no concrete theoretical justification. It seems

reasonable to assume, in the presence of a hard parameter budget constraint, that a variable r

would be better equipped to maximize model performance versus a fixed r. That is, it may be more

beneficial to allow the value of r to be different from layer to layer.

Recall, each LoRA layer has fixed rank r, corresponding to r independent weight vectors. We

extended upon the idea of LoRA by equipping each low-rank adaptation with a vector of gates

g, whose job is to regulate the contribution of each corresponding weight vector. By empowering

a LoRA-style layer with the ability to regulate its component vectors via gating, the base LoRA

forward pass h = W0x + BAx now becomes h = W0x + BGAx, where G = ReLU(gI) (i.e., the

matrix G is diagonal with weights g). A ReLU non-linearity is applied to the gates to enforce a rule

that a negative gate will effectively remove the contribution of its associated weight vector. In a

GLoREA layer, each weight vector is meant to help the base model adapt to a new task. Intuitively,

for each layer l being supplemented with a GLoREA module, each gate gli can be thought of as a

gauge of the relative importance of its associated weight vector. It follows that a weight vector

corresponding to a higher gate value can be considered more influential to the network, and vectors

corresponding to non-positive gate weights (i.e. where gi <= 0) should be removable without

hindering overall network performance. During training it is sufficient to simply zero out GLoREA

vectors with non-positive gate values. Once training is complete, we can simply remove the set

of weight vectors for each GLoREA layer corresponding to zero valued gates, thereby reducing

the corresponding adaptation layer’s rank, and by extension, the overall GLoREA model size in

proportion to the number of “zero-gates”. For example, consider a case where GLoREA is used to

supplement all MLP layers in a ViT where all MLP layers have the same size, say N parameters.

With an initial GLoREA rank r, if k gates are zeroed out on average from each adapted layer, the

overall GLoREA model size is reduced by k
r . By allowing the network to decide where to allocate

trainable parameters, and discouraging the retention of non-essential parameters, the network can

learn more task-specialized features. In other words, in a GLoREA layer with an appropriate gate

regularization coefficient, parameters that are deemed to be non-beneficial to the overall network

objective are removed. We speculate that removing “non-essential” parameters should equate
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to the remaining parameters being more specialized to the current objective, with little to no

parameters being squandered. We note that only weight vectors in GLoREA layers are removed

by the zero-gates. Each corresponding base model layer remains untouched. The Anatomy of a

GLoREA layer is shown in Figure 5.6.

Figure 5.6: A GLoREA layer adds a set of r learnable gates between A and B to regulate
the contribution of each individual weight vector. In GLoREA, A and B are encouraged to be
orthogonal to promote diversity and reduce redundancy across dimensions.

Encouraging Orthogonality Through Regularization

Encouraging orthogonality in DNNs has been shown to encourage more effective feature learning,

and boost overall network performance [9, 222]. We adapt this idea to PEFT by encouraging the

vectors in each GLoREA projection matrix to be orthogonal. That is, we aim to enforce A⊺A ≈ I

and BB⊺ ≈ I by adding two additional penalty terms to the network objective function:

λAortho
||A⊺A− I||2F and λBortho

||BB⊺ − I||2F
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|| · ||F is the Frobenius norm, which is an extension of the Euclidean norm to Kn×n. That is:

||A||F =

√√√√ n∑
i,j=1

|ai,j |2 =
√

trace(A∗A) =

√√√√min(m,n)∑
i=1

σ2
i (A)

where σi(A) are the singular values of A. This is referred to as “soft orthogonality regularization”

in Bansal et al. [9], which was inspired by Xie et al. [222], who proposed that the Gram matrix of

a DNN weight matrix should be close to I. In the basic LoRA setup, allowing for some redundancy

across weight vectors may be acceptable since budget allocation is not a factor. With GLoREA

however, we want to remove unneeded parameters in order to stretch our budget. Hence, the

orthogonality condition is imposed to empower the network to make more informed decisions around

which dimensions to remove during optimization. In other words, encouraging GLoREA vectors to

be independent serves to remove some of the ambiguity associated with rank reduction.

5.3.3 Training Procedure

Since GLoREA reduces the initial parameter budget by removing entire weight vectors during

training, we can over-parameterize our network at first by initializing each GLoREA layer with

a fixed rinit, so that ri = rinit ∀i, where rinit is the initial bottleneck dimension. Once training

begins, the optimizer is free to update individual gates as it deems beneficial to the overall objective,

which in-turn can reduce individual ri values. It follows that when training is done, ri <= rinit ∀i,

and ri = rinit only when no gates are set to 0. In addition to regularizing the weights and gates,

we add additional regularization terms to encourage A and B to be orthogonal. The reason for

encouraging orthogonality is to keep the vectors of A and B independent so that their respective

contributions are more diverse, and less redundant. We speculate that the set of weight vectors

that are retained in an orthogonal factorization are more meaningful, and specialized. We will show

that this method can, in many cases, achieve better performance compared to baseline methods

with the same number of parameters, and often times fewer.

The objective function for GLoREA training takes the following form:

J =
1

N

N∑
i=1

Li + λ2||∆W ||22 + λ1||g||1 + λorth(||A⊺A− I||2F + ||BB⊺ − I||2F ) (5.1)

The first term in Equation 5.1 is the empirical loss, or mean loss over all input samples. The

second term is a regularization penalty which acts only on the trainable parameters ∆W (which

does not include gates). This penalty is imposed to keep the ∆W weights from getting too big,

and to reduce the potential for overfitting, but not to remove weights completely. The third term

represents the ℓ1 penalty imposed on the gates g. The primary role of the gate penalty term is to
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to drop GLoREA weight vectors which are determined to be non-essential for network adaptation

with respect to the current task, as well as to regulate the contribution of the GLoREA vectors

which are retained. The last term is meant to encourage orthogonality of GLoREA vectors, as

discussed in Section 5.3.2. The hyperparameters λ1, λ2, and λorth serve to weigh the contributions

of each penalty term on the overall objective.

5.4 Experiments

We evaluate our approach across a range of common benchmarks tasks in image classification

and semantic segmentation. As a side note, image classification and semantic segmentation are

two tasks which are highly relevant in medicine. For each benchmark, we select an architecture

and train three variants using different adaptation methods: first, a fully fine-tuned (FT) model

where all parameters are updated during training; second, a LoRA variant which has fixed, uniform

parameter budget allocation; lastly, a GLoREA variant (our method) which allows for parameter

budget allocation to be learned. We allow for an equal number of trainable parameters to be used

for LoRA and GLoREA in each experiment in order to make a comparison which is not biased by

parameter budget. GLoREA does not have a mechanism to enforce a pre-defined parameter budget.

The gate regularization coefficient is tuned during training optimize performance, and to remove

more or less parameters depending on the use case, but the network optimization determines the

final budget. Since we cannot specify a specific the exact, final GLoREA parameter budget up-front,

we optimize the hyperparameters in each GLoREA experiment to maximize performance, and then

set the number of parameters in each corresponding LoRA experiment to approximately the final

parameter budget retained by GLoREA. Adding a mechanism by which a ending parameter budget

can be specified up-front will be left to future work.

5.4.1 Base Model

A ViT-small variant, pretrained on ImageNet 1K [46], was used as the base model architecture for

each adaption method. ViT-small is a 12 layer ViT, with ≈ 23M parameters. ImageNet was first

introduced in 2009 and is one of the most widely used datasets in CV. While there is more than

one version of ImageNet (e.g., ImageNet 21K), ImageNet 1K is arguably the most popular. More

specifically, ImageNet 1K is a high quality, supervised image dataset which spans 1K object classes

and contains over 1M training examples, 50K validation images and 100K test images.
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5.4.2 Image Classification

We first evaluate each of the adaptation methods on eight common benchmark tasks in image

classification. The specific benchmark image classification tasks used for evaluation are as follows:

• CIFAR10: CIFAR10 is a subset of the “tiny images” dataset introduced in [123], and is one

of the most commonly used benchmarks in image classification. The dataset consists of 60K

32 × 32 colour images in 10 general classes which include animals, vehicles, ships and aircraft.

The dataset comprises 50K training images and 10K test images.

• MIT Indoor: The objective of the MIT Indoor task is scene recognition [176]. The dataset is

made up of ≈ 16K example scenes in total across 67 indoor seen categories. Scene categories

include office, bedroom and kitchen, and span 5 domains: store, home, public spaces, leisure

and work.

• MINC: The Materials in Context Database (MINC) was introduced in [12] and is used to

evaluate a models ability to recognize materials in real-world images. The dataset consists of

≈ 7K samples in total spanning 23 material classes.

• Oxford Pets: The pets dataset is another common image classification dataset comprising

≈ 7K samples across 37 categories of cats and dogs.

• Inaturalist-2019-insects and plants (two separate tasks): Inaturalist is a large reposi-

tory of natural images which span many high level classes as described in [210]. We focus

on two species classification sub-tasks from the larger 2019 Inaturalist repository in this

evaluation: insects and plants. Plants is one of the largest datasets in the Inaturalist repository

with ≈ 160K training, and ≈ 40K validation images from around 2K categories. Insects,

another of the larger Inaturalist datasets consists of ≈ 100K training and ≈ 20K validation

images across 1K species.

• Stanford Cars: The Cars dataset is another widely used benchmark in image classification

and was first introduced in [122]. There are 16K samples in this dataset which span 196

categories in total.

• Colorectal Histology: The task of classifying textures in RGB colorectal cancer histology

images is discussed in detail in [107]. The dataset is small, comprising only 5K images in

total, spanning 8 distinct classes. Furthermore, this dataset represents medical images, and is

dissimilar to the data used in ViT pretraining, making it a good test for the robustness of the

PEFT methods being evaluated.
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Each of the experiments shown in Table 5.1 was ran using a gate regularization coefficient

λ1 = 1e−3 (from Equation 5.1), which was shown empirically to reduce the overproduced budget by

≈ 50% with respect to the tasks being evaluated. This will not always be the case, and should be

evaluated by task, and by architecture. Imposing larger or smaller amounts of gate regularization

could yield varying amounts of parameter reduction, as could a change in base model. The amount of

weight regularization imposed varied by task, but was always relatively small with λ2 ∈ [1e−5, 2e−4].

Each job was ran for upwards of 100 epochs, where the final model selected was based on best

validation set metrics, as evaluated via standard cross-validation.

Dataset Full FT LoRA GLoREA

trainable params 23M 0.2M 0.2M

cifar-10 98.4 98.5 98.8
mit-indoor 86.7 87.0 87.5

minc 85.5 87.0 87.0
pets 92.6 91.4 93.5

inaturalist-2019-insects 60.5 56.7 57.6
inaturalist-2019-plants 65.0 64.4 65.5

colorectal-histology 98.4 98.7 99.2
stanford-cars 90.1 87.9 89.2

mean 84.7 84.0 84.8

Table 5.1: Comparison of fine-tuning method on ViT-small by classification accuracy.

Analysis of Image Classification

There are several key takeaways from our experiments in comparing full FT, LoRA and GLoREA

on the task of image classification. First, we see that PEFT is a viable option for model adaptation

with respect to this high-level task. LoRA is on par with full FT in most cases, with an average

classification accuracy delta of < 1% across all benchmark tasks. Moreover, LoRA wins over full FT

on 4 out of 8 tasks including cifar-10 5.4.2, mit-indoor 5.4.2, minc 5.4.2 (by a fairly large margin)

and colorecral-histology 5.4.2. Of the four remaining tasks where LoRA did not out-perform full

FT, two showed a deficiency which was more pronounced than the rest. Specifically, inaturalist-

insects and stanford-cars. We speculate that this deficiency could be due to a disconnect between

the pretraining and FT tasks. In other words, a base model pretrained on a task which is not

complementary to the FT task could result in a worse performing LoRA based adaptation. In

general, PEFT is highly dependant on transfer learning. It follows that if new task cannot gain any

benefit from the pretraining task, then PEFT will likely fall short of full FT. This seems intuitive
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since full FT, despite its shortcomings (discussed in Section 2.9), can adjust all of the base model

weights to adapt to a new task, and can therefore mimic training from scratch in the case where

the base model is ill-suited to the FT task. LoRA, and other PEFT methods, can only update the

small number of parameters allotted for adaptation, and will therefore not be as flexible as full FT

in such a setting.

Next, we can see from Table 5.1 that GLoREA does not exclusively outperform all other

adaptation approaches. GLoREA does however outperforms LoRA across all but one task (which

was tied), and performs best of the three methods on average. GLoREA also stands out in tasks

where base LoRA under performs full FT by a larger margin, and therefore serves to close the gap

with respect to such tasks, while still respecting the parameter budget. For example, we see LoRA

under-performing full FT on the pets dataset. GLoREA not only closes the gap between PEFT

and full FT, but actually out performs full FT on this task by a respectable margin of around 1%.

Another such example is stanford-cars. With a large number of classes (≈ 200) and a relatively

small number of total examples (≈ 16K), the cars dataset can be challenging for PEFT, and may

benefit from GLoREA’s ability to create more focused, task-specialized features through learned

parameter allocation.

Finally, the results indicate that GLoREA, which is capable of allocating resources to parts of

the network that need the most help, is well suited to tasks which fall into the low-data regime.

We speculate that this is due in part to GLoREAs ability to use trainable parameters sparingly,

retaining only the most useful subset, which is particularly important when training examples are

scarce. If a DNN has too many parameters it’s hard for the model to optimize adequately with

few training examples. Moreover, if parameters are allocated to the parts of the network that are

most helpful for the task at hand, the network can optimize a much smaller number of “specialized”

parameters instead of a larger number of general parameters. To emphasize this point further

we look at the colorectal-histology task, which is a medical imaging task with only 5K examples.

We see that while LoRA slightly outperforms full FT on this task, GLoREA shows a much more

impressive performance margin with the same parameter budget. Again, this result is likely the

result of the learned parameter allocation, which results in a more effective utilization of the same

parameter budget as compared to LoRA. We noted a clear pattern with respect to the proportion of

parameters which are retained, or allocated, to different layers in the network based on layer type,

and layer depth in the network. First, we noted that MLP layers retained a much larger proportion

of their initial parameter budget as compared to self-attention layers, which was consistent across

transformer blocks at different network depths. Second, early layers in the network seemed to retain

less parameters as compared to mid and final layers in the network, which makes intuitive sense as
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early layers are typically responsible for much more general tasks, such as edge detection, and may

therefore require less help in adapting to new network-level tasks efficiently.

5.4.3 Semantic Segmentation

The second set of experiments focused on dense prediction, specifically semantic segmentation,

where the goal is to correctly predict the correct class label for each pixel in the input image.

Semantic segmentation typically employs an encoder-decoder style architecture [139, 187, 35].

While it’s common to leverage a pretrained backbone for encoding, the decoder is usually trained

from scratch which we also do for this set of experiments. As a result, parameter reduction of an

encoder-decoder segmentation network of this type is bounded below by the size of the decoder.

We evaluate each adaptation method on two commonly used datasets for semantic segmentation:

Pascal Context [156], which consists of roughly 10K train and 10K test images with around

450 classes; and ade20k [232], comprising 20K train, 2K validation, and 3K test images with

approximately 150 pixel classes. The architectures trained for this set of experiments are based

on Segmenter [205], which is a Transformer-based encoder-decoder style architecture for dense

prediction. Segmenter leverages a ViT pretrained on ImageNet [45] as the encoder backbone, and

initializes a smaller decoder consisting of two Transformer blocks. The role of the decoder is to

map patch-level class scores to patch-level encodings, which are in turn up-sampled via bi-linear

interpolation to represent pixel-level scores. We chose to leverage the Segmenter architecture

to compare approaches, and to evaluate the general effectiveness of PEFT in dense prediction,

but note that several other Transformer-based architectures for dense prediction could have also

been leveraged in a similar way. For example, Dense Prediction Transformers (DPT) [181], BERT

Pretraining of Image Transformers (BEiT) [10] and Masked Auto Encoder pretraining (MAE) [75]

with a segmentation head would all have been viable base architectures.

For this evaluation we used an ImageNet pretrained variant of ViT-Base as the encoder backbone

with an image size of 384×384, and a patch size of 16×16. ViT-Base is a 12 layer, 12 head ViT with

≈ 87M parameters. The Segmenter architecture with ViT-Base comprises 103M parameters. The

encoder, with ≈ 87M parameters, represents ≈ 84.5% of the overall architecture, with an additional

≈ 15.5%(16M) parameters in the decoder. We allow for a PEFT parameter budget of 500K and

300K for the encoder, resulting in two reported models for both LoRA and GLoREA in Table 5.2,

and reducing the encoder’s trainable parameters by 99.5% and 99.7% respectively. The decoder,

however, is not pretrained, so must be trained from scratch which adds ≈ 16M parameters to the

budget. The final parameter budget reduction was ≈ 84% for each PEFT semantic segmentation

experiment.
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We use a GLoREA gate regularization coefficient of λ1 = 1e−3, resulting in a 20% reduction in

trainable parameters across the encoder network, which is a smaller reduction compared to image

classification. Performance on the task of semantic segmentation is compared via mean intersection

over union (mIoU), which is reported in Table 5.2.

Method Trainable ade20k PascalContext

Full FT 103M 49.1 53.9
LoRA 16.3M 46.6 53.3
LoRA 16.5M 46.7 53.2
GLoREA 16.3M 47.5 53.8
GLoREA 16.5M 48.0 54.1

Table 5.2: Comparison of fine-tuning method on ViT-base by mean Intersection over Union
(mIoU).

Analysis of Semantic Segmentation

The results of our semantic segmentation experiments echo several of the key points noted in Section

5.4.2. First, we can see from Table 5.2 that LoRA achieves results which approach that of full FT

on the pascal context dataset. This is an impressive validation of PEFT as semantic segmentation,

where a label is output for each pixel, is typically a much more challenging task compared to image

classification where the objective is to correctly predict a single class label. Second, when we look

at the results from ade20k we see a much more pronounced deficiency between LoRA and full FT.

As in the case of image classification, this could be the result of a pretrained base model which is

ill-suited to the FT task. In such as a setting we would expect the base model to require fairly

dramatic changes to adapt to the new task, and would therefore benefit less from PEFT where the

new task is assumed to benefit from knowledge transferred from the pretraining task. It is worth

noting that in such a case the base model would likely suffer from catastrophic forgetting, since the

base model weights would be changed significantly during FT to accommodate the new task.

It is notable that GLoREA not only performs well on the pascal context dataset, but actually

out-performs full FT. This is an impressive result on a task with hundreds of pixel level classes,

and a relatively small number of training examples. As in the case of image classification, we

speculate that GLoREA is able to achieve such an impressive result by effectively leveraging the

base model, and allocating trainable parameters only to the parts of the network that need them

the most with respect to the specific task adaptation. GLoREA thereby allows for the number of

parameters to be kept as low as possible, which helps to encourage task-specialized parameters

while simultaniously helping to prevent overfitting. Lastly, we see that GLoREA closes the gap
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considerably on ade20k, although still falls short of full FT. As in the case of LoRA discussed

in Section 5.4.2, it’s possible that the base model being adapted is simply not well suited to the

ade20k task, and therefore PEFT, even with budget allocation, is not flexible enough to effectively

adapt this imagenet pretrained variant of ViT to the new task.

5.5 Conclusion

We have shown that a general pretrained ViT, equipped with a very small number of supplemental,

trainable parameters, can perform on par with or even outperform its full FT counterpart. That

is, the accomplishments of PEFT that have been proven to be highly successful in NLP can be

applied to vision tasks with a similar degree of success. Moreover, we have introduced a simple

yet powerful method, which we refer to as GLoREA, that learns an effective parameter budget

allocation alongside weight updates during overall network optimization. The success of GLoREA

over LoRA and full FT in our experiments shows the benefit of stretching a parameter budget

by allowing the network to decide where it needs to the most help. This is in contrast to simply

allocating parameters uniformly as in LoRA, or updating all network weights as in full FT. It is our

opinion that using a smaller number of parameters, and learning how they should be distributed

contributes to a more focused adaptation, which better preserves the most effective contributions of

these very powerful base models. A lot of thought and computational resources went into training

these widely used base models, and it may be the case that we not only don’t need to change these

well-trained DNNs much during adaptation, but we shouldn’t. We further speculate that since

preservation of the base model weights is more effective during GLoREA training, it should also

reduced the likelihood of catastrophic forgetting.

Much like the work showcased in Chapter 3 and Chapter 4, PEFT, and GLoREA in particular,

can be effectively leveraged towards advancing healthcare specific applications. Healthcare problems

often fall into the low-data regime, and are commonly associated with data which can be significantly

different from the general purpose data used in most pretraining tasks. It follows that healthcare

applications can benefit greatly from leveraging modern, pretrained DNNs adapted via effective

PEFT methods. We note that while GLoREA does not always out-perform base LoRA, it performs

at least as well, and often times better with the same, or even smaller parameter budget. Since

there does not seem to be a downside to GLoREA over base LoRA, we would suggest considering

it as a drop-in replacement when choosing a PEFT method.



Chapter 6

Conclusions

6.1 Summary

This thesis has showcased original contributions with respect to three individual, but compli-

mentary layers of applied DL: First, in Chapter 3, we detailed an effective approach for learning

representations of clinical events which can be leveraged by a host of downstream tasks such as

recommendation, personalization, and clinical predictive modeling within the domain of health-

care. Next, we showed in Chapter 4 how DNNs could be used to automatically, and accurately

identify events related to RSWA from multi-channel sensor data (i.e., PSGs). By doing so we

empower clinicians by providing an efficient, reliable, and high performing method for automatically

annotating PSGs. The approach we developed was able to annotate a full overnight PSG in a

matter of seconds, and performed on par with expert human sleep clinicians who typically take

hours to perform a similar task. Our approach to RSWA event detection has the potential to save

countless human hours, as well as healthcare costs, thereby significantly broadening accessibility,

and availability of effective diagnosis of RBD. By extension, our method enables early detection

and possibly treatment of neurodegenerative diseases such as Parkinson’s and Alzheimer’s. Lastly,

in Chapter 5, we proposed and evaluated a novel PEFT method capable of learning how to allocate

a fixed budget of trainable parameters, alongside network weights, to best serve the overall network

objective. By applying our approach, a DNN composed of a large, pretrained base model and a

small set of supplementary trainable parameters is able to stretch a fixed parameter budget, in a

task driven way, in order to more effectively and efficiently adapt to new tasks. By introducing

this approach we aim to lower the bar to adoption of top-performing modern DNNs, and aid in

the development of SOTA systems which are less bound by the ever-increasing trends associated

with data, storage, and distributed memory requirements. Through the methods and concepts

proposed in this thesis we hope to inspire and empower researchers, and industry professionals alike

to continue pushing applied DL and healthcare AI forward. The future of heathcare, and AI, can
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benefit greatly from a continued partnership resulting in high quality, personalized care, and wide

reaching clinical solutions. Advancing medicine and AI together has the potential to change lives,

to save lives, and to revolutionize an industry that we all rely on.

6.2 Future Direction

This section in no way claims to provide an exhaustive list of extensions to the work proposed in

this thesis, but simply aims to outline a few immediate directions which could be explored further

with respect to each area of research.

6.2.1 Learning Semantic Relationships from Medical Codes

There are several logical updates, and extensions to the work presented in Chapter 3. One such

update would be to replace the LSTM used in the autoregressive embedding approach with a

Transformer based architecture. When this research was conducted, LSTMs were still the dominant

architecture in NLP. Since then, Transformers have all but replaced RNNs in research and industry.

It makes sense that Transformer based modeling approaches could yield better, more robust, and

more generalizable representations. Since the time of the work outlined in Chapter 3 Transformers

have been integrated into biomedical NLP. For example, in Med-BERT [183], the authors leverage

a BERT-like Transformer to learn embeddings from EHRs, which are subsequently used for disease

prediction.

Another natural extension to this chapter would be to create a combined representation by

leveraging various patient level features, such as demographics and geographic data, in addition

to the sequences of clinical events used in our work. Moreover, it seems reasonable to assume

that there could be benefits to learning embeddings of such features by way of reconstruction

style embedding methods like autoencoders. Such an approach could allow for encoding of richer

relationships between patients, and allow for modeling of clinical scenarios through a combined

embedded representation which reflects clinical events as well as non-clinical, patient specific

features.

Lastly, a well known issue with representing medical history via sequences of clinical events

is that the events are not evenly spaced. That is, unlike many common language applications

where time between sequential elements (e.g., tokens) is not taken into consideration, time between

successive clinical events can be highly informative, and should therefore be accounted for in clinical

models. Factoring in the time between events would be a natural extension to the work presented

in Chapter 3, and has the potential to greatly improve upon our methods.
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6.2.2 Deep Learning Approaches to RSWA Event Detection

The AASM standards requires that an RSWA event cannot be classified outside of REM sleep, or

in the presence of apnia / hypopnia events. In Chapter 4, we leverage expert clinical annotations

to identify epochs which can, or cannot be used in model training as per the before mentioned

criteria. One extension to this work would be to build on the event detection capability, which

utilizes human in the loop components, towards an end-to-end system where no human is needed.

It follow that an end-to-end system for RSWA event detection would need to be able to accurately

determine sleep stage, and identify apnia / hypopnia events.

A simple and intuitive way to design an end-to-end system for RSWA event detection is by

combining several component, each of which is responsible for an individual task, contributing to

the primary goal. We will refer to this design as “train and chain.” For example, one could train a

stand alone model to perform sleep stage classification, another for apnia / hypopnia identification,

another yet for RSWA event detection, and then chain the individual components together in an

end-to-end fashion. Figure 6.1 depicts a pipeline where each example (i.e., preprocessed PSG) is

routed first to a component tasked with sleep stage classification, then to a component for apnia /

hypopnia identification, through an artifact reducer as described in Section 4.5, and finally into a

RSWA event detection component.

A primary drawback to this “train and chain” style approach is that a chain only as strong as

its weakest link. Since each component in a system such as this is trained with its own independent

objective function, the final system can be very hard to debug and improve as the individual

components cannot take into account the end-to-end system performance. Moreover, a system

composed of several components trained in isolation, each with its own performance issues, will

inevitably compound individual component level shortcomings into poor system level performance.

There are several ways to potentially improve upon the pipeline discussed above. First, one

could take advantage of transfer learning 2.7 by adapting a pretrained backbone to each of the

individual tasks. This could improve the performance of the individual component networks, and

by extension, the end to end system. However, the previously discussed problems associated with

training components in isolation will remain. Second, one could reformulate the pipeline shown

in Figure 6.1, which consists of several, single task models, into a multi-task (MT) problem

(discussed in Section 2.7.4) where the individual tasks of sleep stage classification, apnia / hypopnia

identification, and RSWA event detection are learned simultaneously. Converting a sequence of

single task DNNs into a single MT DNN would allow for information to be shared across tasks,

and to more easily assess the individual contributions of each task through a shared objective.
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Figure 6.1: A example pipeline for end to end RSWA event detection. In this system, each
component is trained in isolation to perform a specific task, and then chained together.

Moreover, in the MT setting one could affect the contributions of individual tasks on the overall

model objective by assigning different weights to each. Weighing individual tasks in MTL can be

done in many ways including manual tuning, or through task uncertainty [110].

6.2.3 Parameter Efficient Fine Tuning of Deep Neural Networks with

Budget Allocation

A simple, but interesting extension of the methods proposed in Chapter 5 would be to remove the

requirement of setting an initial rank r (i.e., how much to overparameterize), and simply initialize

each GLoREA layer with the rank of its base model counterpart. That is, let rl = dout for a

base model layer W (l) ∈ Rdin×dout . While this would require more memory to train at first, it

could be implemented in a way that removes memory requirements along with feature dimensions,

which could result in a better performing final (reduced) model by allowing more freedom for

parameter budget allocation up front. For example, a task could benefit most if a small subset

of pretrained layers are fully retrained, while all others are kept frozen. In such a case the model

adapted with GLoREA could learn to retain the full rank for the before mentioned subset of layers,

while dropping all GLoREA weight vectors in the other layers.
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The methods proposed in Chapter 5 were tested on CV applications with well known benchmark

datasets. An area that could be explored in order to “stress test” our approach is real world 3D

medical imaging applications, such as multimodal brain tumor segmentation [?]. One of the key

blockers of applying DNNs within domains such as medical imaging is the availability of data. We

have emphasized throughout this thesis that DNNs are notoriously data hungry, and that high

quality healthcare data, such as medical images, are expensive to collect and typically contains

very few examples of important classes. We showed empirically in Section 5.4.2 that GLoREA

is effective in adapting large DNNs to low-data tasks using fairly small, task specific datasets.

However, we did not apply our method to dense prediction tasks involving medical images, nor

tasks involving 3D images. We note that while future medical applications are used as examples in

this section, GLoREA itself is a general purpose PEFT method which could be leveraged for large

model adaptation across many diverse problems in AI.

Lastly, GLoREA is most certainly not the only way to distribute parameter budget while

adapting a DNN in a parameter efficient way. For example, one could consider taking an approach

more directly related to sparsely gated MoE, wherein an explicit, but very small gating network

could assign weights to each low-rank vector for each layer being adapted. The output from such

a gating network, along with a layer-specific threshold (possibly learned as part of the network),

could be used to reduce an over-parameterized budget.

Furthermore, GLoREA does not include a way to determine the proportion by which the initial

parameter budget will be reduced by over the course of the model training a priori. We would

highly recommend integrating a mechanism by which the final parameter budget can be specified,

such as an adaptable regularization coefficient.

Regardless of the method employed, parameter budget allocation is an effective way to get the

most out of PEFT with a small budget constraint, which is an area worthy of further research. By

allowing the distribution of parameters to be learned, we are making already powerful DNNs even

more robust and adaptable. Coupling PEFT with parameter budget allocation allows DNNs to

strengthen themselves on the fly, and to learn specialized features which are better equipped to

help specific network layers towards the overall adaptation task.
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