Files
Abstract
The research presented in this dissertation is composed of two parts. Part I (Chapters 2 and 3) concerns the development of a combined chemical and biological remediation strategy involving the application of nano zerovalent iron (nZVI) to sequester pertechnetate (TcO4−), a common radionuclide oxyanion. Part II (Chapters 4 and 5) concerns the development of a general approach to characterize the thermodynamic, kinetic, and capacity aspects of a broad spectrum of reducing iron minerals in order to better understand their contributions to in-situ chemical reduction.