Go to main content
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS
Cite
Citation

Files

Abstract

Oral communication is the most important way for delivering information in our daily life. Unfortu-nately, the quality of such communication can be degraded by 1) speech disorders (e.g. dysarthria) and 2) surrounding environments (e.g. noise or reverberation). Style conversion is a technology that modifies the source speaking style of a speaker to sound like a more intelligible target speak-ing style of either the same or different speaker. In the dissertation, I consider new machine learning based-approaches for style conversion. Inspired by the intelligibility gain of clear (CLR) speaking style over habitual (HAB) speaking style, I propose several HAB-to-CLR spectral mappings approaches for intelligibility improvement.

Details

PDF

Statistics

from
to
Export
Download Full History